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Abstract

A search for narrow vector resonances decaying into quark-antiquark pairs is pre-
sented. The analysis is based on data collected in proton-proton collisions at√

s = 13 TeV with the CMS detector at the LHC, corresponding to an integrated lu-
minosity of 35.9 fb−1. The hypothetical resonance is produced with sufficiently high
transverse momentum that its decay products are merged into a single jet with two-
prong substructure. A signal would be identified as a peak over a smoothly falling
background in the distribution of the invariant mass of the jet, using novel jet sub-
structure techniques. No evidence for such a resonance is observed within the mass
range of 50–300 GeV. Upper limits at 95% confidence level are set on the production
cross section, and presented in a mass-coupling parameter space. The limits further
constrain simplified models of dark matter production involving a mediator interact-
ing between quarks and dark matter particles through a vector or axial-vector current.
In the framework of these models, the results are the most sensitive to date, extending
for the first time the search region to masses below 100 GeV.
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1 Introduction
Many extensions of the standard model (SM) predict the existence of new resonances that cou-
ple to quarks (q) [1–11]. The first searches for such particles were reported by the UA1 [12]
and UA2 [13, 14] experiments using

√
s = 630 GeV collisions at the CERN Spp̄S, and were ex-

tended to larger values of resonance masses by the CDF [15–19] and D0 [20] experiments using√
s = 1.8 and 1.96 TeV collisions at the Fermilab Tevatron. At the CERN LHC, the searches in

proton-proton (pp) collisions at
√

s = 7, 8 and 13 TeV performed by the ATLAS [21–27] and
CMS [28–35] Collaborations have mostly focused on the production of heavy particles. For
resonance masses below 1 TeV, the sensitivity is limited by high trigger thresholds and by the
large expected backgrounds, notably from SM events consisting of jets produced through the
strong interaction, referred to here as QCD multijet events.

These difficulties can be avoided by an approach focused on the events where at least one high
transverse momentum (pT) jet from initial-state radiation (ISR) is produced in association with
a light resonance decaying into a qq pair. The ISR requirement provides enough energy in the
event to satisfy the trigger, either by the ISR jet or by the resonance itself. The minimum pT
of the resonance considered in this search is sufficiently high that the hadronization products
of the daughter quarks merge and are reconstructed as a single, large-radius jet. The only
previous search in this topology to place constraints on resonance masses below 300 GeV was
by the CMS Collaboration, applying this technique to data collected at the LHC in 2015 [36].

In the current paper, the results of a search for leptophobic vector resonances (Z′) decaying to
quark-antiquark pairs in pp collisions at

√
s = 13 TeV are reported, using data collected by

the CMS detector in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The search
is performed by looking for a narrow resonance peak in the continuous jet mass distribution.
The analysis exploits a new substructure variable that is decorrelated from the jet mass and pT
and preserves the shape of the jet mass distribution used in the search. The jet is required to
have the two-prong substructure expected from the signal. The dominant background from
SM QCD multijet production is estimated from a signal-depleted control region created by in-
verting the substructure requirement. The signal yield is extracted by simultaneously fitting
the signal and control regions, while requiring that the ratio of QCD components in each re-
gion is described by a smooth two-dimensional function of jet mass and pT. The W+jets and
Z+jets background components are estimated from simulation and the top quark background
contribution is obtained from simulation corrected with scale factors derived from a tt-enriched
control sample.

Results are interpreted within the framework of a leptophobic vector resonance model, and
are also used to set limits on the existence of generic vector-like resonances decaying into
quarks [37]. Limits are also set in the context of a simplified model of dark matter (DM) pro-
duction at the LHC, in which the mediators couple only to quarks and DM particles [38].

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid.
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Events are selected using a two-tiered trigger system [39]. The first level, composed of cus-
tom hardware processors, uses information from the calorimeters and muon detectors to select
events of interest in a time interval of less than 4 µs. The second level, known as the high-level
trigger (HLT), consists of a farm of processors running a version of the full event reconstruction
software optimized for fast processing, and further reduces the event rate from around 100 kHz
to less than 1 kHz, before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [40].

3 Event simulation and selection
3.1 Simulated samples

Simulated samples of the Z′ resonance decaying into a quark-antiquark pair are generated at
leading order (LO) with the MADGRAPH5 aMC@NLO 2.2.3 generator [41] with up to 3 extra jets
in matrix element calculations. The dominant SM backgrounds arise from multijet and W/Z
+ jets processes. These backgrounds are simulated at LO using the MADGRAPH5 aMC@NLO

generator with the MLM matching [42] between jets from matrix element calculations and from
parton showers, while the POWHEG 2.0 [43] generator at next-to-leading order (NLO) precision
is used to model the subdominant contribution from pair and single top quark production. All
signal and background generators are interfaced with PYTHIA 8.212 [44], with the CUETP8M1
underlying event tune [45], to simulate parton showering and hadronization effects. The gener-
ated events are further processed through a GEANT4 [46] simulation of the CMS detector. The
parton distribution function (PDF) set NNPDF3.0 [47] is used to produce all simulated sam-
ples, with the accuracy (LO or NLO) determined by the generator used. For events containing
W and Z bosons, we apply higher-order QCD and electroweak (EW) pT dependent corrections
to improve the modeling of the pT distribution of W and Z events, following Refs. [48–52]. The
same NLO QCD corrections that are applied to the W and Z simulation are also applied to the
signal simulation. However, since the coupling of the Z′ mediator differs from that of the Z
boson, the equivalent Z NLO EW corrections are not applied to the signal model.

3.2 Event reconstruction and selection

The CMS particle-flow (PF) event algorithm [53] reconstructs and identifies individual particles
with an optimized combination of information from the various elements of the CMS detector.
Each particle candidate is classified as either an electron, a muon, a photon, or a charged or
neutral hadron. The energy of photons is obtained directly from the ECAL measurement, cor-
rected for zero-suppression effects. The energy of electrons is determined from a combination
of the electron momentum at the primary interaction vertex as determined by the tracker, the
energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron track. The energy of muons is obtained
from the curvature of the corresponding track. The energy of charged hadrons is determined
from a combination of their momentum measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for zero-suppression effects and for the response function of
the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from
the corresponding corrected ECAL and HCAL energy. The missing transverse momentum
vector is defined as the negative vectorial sum of the transverse momenta of all the particles
identified in the event, and its magnitude is referred to as pmiss

T .

The PF candidates are clustered into jets using the anti-kT algorithm [54, 55]. Jets are clustered
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with distance parameters of 0.4 and 0.8, and are referred to as AK4 and AK8 jets, respectively.
To mitigate the impact of particles arising from additional proton-proton interactions within
the same or adjacent bunch crossings (pileup), weights calculated with the pileup-per-particle
identification algorithm [56] are applied to each PF candidate prior to jet clustering, based on
the likelihood of it coming from the hard-scattering vertex. Further corrections are applied to
simulated jet energies as a function of jet η and pT to match the observed detector response [57,
58].

This search focuses on events in which a high-pT jet from a merged Z′ → qq recoils against
another high-pT ISR jet. A combination of several online signatures is required for the trigger
selection, all requiring the total hadronic transverse energy in the event (HT) or the jet pT to
exceed a certain threshold. In addition, soft radiation remnants are removed with the jet trim-
ming technique [59] before the mass selection, allowing the HT and jet pT trigger thresholds to
be reduced, and improving the signal acceptance. To be fully efficient with respect to the trig-
ger requirement, we require at least one AK8 jet with pT > 500 GeV and |η| < 2.5. Additional
quality criteria are applied to the jets in order to remove spurious jet-like features originating
from isolated noise patterns in the calorimeters or the tracker. The efficiency of these jet quality
requirements for signal events is above 99%. In order to reduce backgrounds from SM EW pro-
cesses, events are removed if they contain identified and isolated electrons, muons, or taus with
pT > 10 GeV and |η| < 2.5, 2.4, or 2.3, respectively, according to the isolation criteria in [48].

In the subsequent offline analysis, the most energetic jet in the event is assumed to correspond
to the Z′ → qq system, and is reconstructed as a single AK8 jet. The search is performed
using the distribution of the jet mass groomed with the soft-drop algorithm (mSD), which is an
extension of the modified mass drop tagger [60, 61] that removes soft and wide-angle radiation
produced by parton shower activity, pileup interactions, and the underlying event from the jet.
Jets are groomed using the parameters zcut = 0.1 and β = 0. Here, zcut specifies subleading the
energy fraction relative to the whole jet at which jet declustering into subjet pairs is stopped.
The parameter β adds additional angular requirements on the jet declustering. For β = 0, these
requirements are neglected, and approximately the same fraction of energy is groomed away
regardless of the initial jet energy [61]. The soft-drop grooming reduces the jet mass for QCD
background jets when large masses arise from soft gluon radiation. In contrast, the jet mass
for merged Z′ → qq and W/Z → qq jets comes from the kinematic distributions of the decay,
and is largely unchanged by grooming. Figure 1 shows the distributions of mSD for data and
simulation, after the jet kinematic selection.

In this paper, the dimensionless scaling variable ρ [60, 62], defined as ρ = ln(m2
SD/p2

T), is used
in the characterization of the correlation of jet substructure variables with the jet mass and
pT. For QCD jets, the distribution of ρ is approximately invariant under a change of jet pT, in
the region where perturbative contributions dominate and scale as (mSD/pT). This property
does not hold in two regimes: in the low mass region below ρ ≈ −6, where non-perturbative
effects are large and scale as (1/mSD) instead, and in the high mass region above ρ ≈ −2. The
departure from ρ invariance in the latter case arises because the cone size of the AK8 jets is
insufficient to provide complete containment at high masses. Consequently, only events in the
range −5.5 < ρ < −2.0 are considered. This requirement is fully efficient for the Z′ boson
signal and roughly translates to a mSD range from 25 GeV to 185 GeV at pT = 500 GeV.

In addition to the jet mass, the observable N1
2 [63] is used to discriminate the two-prong struc-

ture of the jets from the Z′ → qq decay from the hadronization products of single light quarks
or gluons, which are overwhelmingly one-prong. This jet substructure variable is defined from
a combination of generalized energy correlation functions ven, sensitive to correlations of v
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Figure 1: Distributions of data (points) and simulated backgrounds (histograms), of the leading
pT jet soft-drop mass after the jet kinematic selection. Dashed lines illustrate the signal contri-
bution for different Z′ boson masses. The multijet processes (QCD) dominate the background
component, with subdominant contributions from inclusive SM W, Z, and tt and single top
quark processes. The QCD simulation is corrected by an overall factor of 0.74 to match the data
yield.

pairwise angles among n-jet constituents [63]. In particular, the 2-point (1e2) and 3-point (2e3)
correlation functions are defined as:

1e2 = ∑
1≤i<j≤n

zizj∆Rij , (1)

2e3 = ∑
1≤i<j<k≤n

zizjzk min{∆Rij∆Rik, ∆Rij∆Rjk, ∆Rik∆Rjk} , (2)

where zi represents the energy fraction of the constituent i in the jet and ∆Rij is the angular
separation between constituents i and j. For a two-prong structure, signal jets have a stronger
2-point correlation than a 3-point correlation. The discriminant variable N1

2 is then constructed
via the ratio:

N1
2 =

2e3

(1e2)2 . (3)

The energy correlation functions are computed from the jet constituents after the soft-drop
grooming has been applied, thereby reducing their dependence on the jet mass and pT [63].

The N1
2 observable has excellent performance in discriminating two-prong signal jets from mul-

tijet QCD background jets [63]. However, N1
2 and similar variables are correlated with the jet

mass and pT. A selection based on N1
2 would distort the jet mass distribution, with the amount

of distortion depending on the pT of the jet. This would make the search for a resonant peak in
the jet mass distribution, over a large range of pT, particularly challenging.
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The key feature of our approach is that the application of the substructure requirement pre-
serves the shape of the soft-drop jet mass distribution. Improving on the decorrelation pro-
cedure proposed in Ref. [62], we apply a DDT (designed decorrelated tagger) transformation
of N1

2 to N1,DDT
2 . It is defined as N1,DDT

2 (ρ, pT) ≡ N1
2 (ρ, pT)− X(5%)(ρ, pT), where X(5%) is de-

rived from the simulated N1
2 distribution and illustrated in Fig. 2. We require events to pass

the N1,DDT
2 (ρ, pT) < 0 selection, such that we select a fixed 5% of QCD multijet events indepen-

dent of ρ and pT. The distribution of X(5%) is smoothed using a distance weighted k-nearest
neighbor (kNN) approach [64]. The chosen percentile maximizes the sensitivity to the Z′ boson
signal.

)2
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SD
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Figure 2: The distribution of X(5%) used to define the N1,DDT
2 variable, corresponding to the

5% quantile of the N1
2 distribution in simulated multijet events. The distribution is shown as

a function of the jet ρ and pT and smoothed using a kNN approach [64]. The N1
2 distribu-

tion is mostly insensitive to the jet ρ and pT in the kinematic phase space considered for this
analysis (−5.5 < ρ < −2.0). Residual correlations in simulation are corrected by applying a
decorrelation procedure that yields the N1,DDT

2 variable.

The distributions of N1,DDT
2 for data and simulation are shown in Fig. 3 after the jet pT >

500 GeV requirement. Since there is a visible disagreement between simulation and data, the
multijet background is estimated from data, as described in the next section. Additional distri-
butions of kinematic observables for data and simulation are available in Appendix A.

4 Background estimate
The search is performed by looking for a resonance in the soft-drop mass distribution over
background contributions dominated by QCD multijet events and smaller contributions from
W(q′q)+jets, Z(qq)+jets, and top quark background processes.

To model the background contribution from pair and single top quark production we utilize
simulation with data-driven corrections based on a dedicated control region. This region has
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Figure 3: Distributions of data (points) and simulated backgrounds (histograms), of the N1,DDT
2

variable for the leading pT jet after the kinematic selection. Dashed lines illustrate the signal
contribution for different Z′ boson masses. The multijet processes (QCD) dominate the back-
ground component, with subdominant contributions from inclusive SM W, Z, and tt and single
top quark processes. The QCD simulation is corrected by an overall factor of 0.74 to match the
data yield.

the same kinematic requirements as the signal region but with the muon veto inverted. The
muon is selected using dedicated muon triggers and is required to have pT > 100 GeV and
|η| < 2.1 and to be in the opposite hemisphere to the selected AK8 jet. To enrich the tt contribu-
tion and reduce the multijet contamination, at least one AK4 jet with pT > 50 GeV is required to
pass the b-tagging medium selection based on the combined secondary vertices version-2 algo-
rithm [65], which identifies AK4 jets that originate from the hadronization of b quarks. Separate
scale factors correct the overall top quark background normalization and the N1,DDT

2 efficiency
for mistagging jets from top quark decays. These scale factors are SFtt

norm = 0.75± 0.10 and
SFt

mistag = 0.83± 0.03, respectively.

Subdominant backgrounds arising from resonant SM processes (W/Z+ jets) are estimated from
simulations that include corrections to the shape and normalization from higher order NLO
QCD and EW calculations. Additional data-to-simulation corrections for the jet mass shapes
and N1,DDT

2 tagging efficiencies are applied to the simulation. These corrections are evaluated
from a tt control region rich in merged hadronic W bosons, as further explained below.

We estimate the main QCD multijet event background by taking advantage of the decorrelation
of N1,DDT

2 from ρ and pT. The fraction of events passing the N1,DDT
2 selection is, by construction,

a constant 5% in simulated multijet events. The decorrelation ensures that the events passing
and failing the selection have the same shape of the QCD jet mass distribution, and their ratio,
the “pass-to-fail ratio” Rp/f, is constant for simulated multijet events. The prediction of events
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passing the selection can then be expressed as:

nQCD
pass (mSD, pT) = Rp/f(ρ(mSD, pT), pT) nQCD

fail (mSD, pT) , (4)

where nQCD
pass and nQCD

fail are the number of passing and failing events in a given mSD, pT bin.
This procedure is illustrated schematically in Fig. 4. Since the distribution of ρ is expected to
be invariant under a change of pT, Rp/f is parametrized as a function of ρ, which is in turn
expressed as a function of mSD and pT.

N21,DDT

pT

“fail”

“pass”

N21,DDT = 0

ρ

N21,DDT

pT

“fail”

“pass”

N21,DDT = 0

ρ

Figure 4: A schematic of the background estimation method. The pass-to-fail ratio,
Rp/f(ρ(mSD, pT)), is defined from the events passing and failing the N1,DDT

2 selection. The vari-
able N1,DDT

2 is constructed so that, for simulated multijet events, Rp/f is constant (left). To
account for residual differences between data and simulation, Rp/f is extracted by performing
a two-dimensional fit to data in (ρ, pT) space (right).

Owing to residual differences between data and simulation, the correction Rp/f(ρ, pT) is al-
lowed to deviate from a constant. The deviation is modeled by expanding Rp/f(ρ, pT) into a
polynomial series in orders of ρ and pT:

Rp/f(ρ, pT) = εQCD(1 + a01 pT + a02 p2
T + · · · (5)

+ (a10 + a11 pT + a12 p2
T + · · · )ρ

+ (a20 + a21 pT + a22 p2
T + · · · )ρ2 + · · · ).

The coefficients εQCD and ak` have no external constraints but are determined from a simulta-
neous fit to the data events passing and failing the substructure requirement, together with the
signal yield. The number of required coefficients in the fit is determined with a Fisher F-test on
data [66] by iteratively adding polynomial orders. The optimum choice is found to be of fourth
order in ρ and third order in pT. The fact that Rp/f varies slowly across the mSD–pT domain
is essential, since it allows one to estimate the background under a narrow signal resonance
based on the events across the whole jet mass range.

5 Systematic uncertainties
Uncertainties in the multijet background arise from the fit parameter uncertainties in the pass-
to-fail ratio fit described in Eq. (5). The uncertainties in the top quark background normaliza-
tion (10%) and N1,DDT

2 mistag (2%) scale factors are propagated to the signal extraction through
the fit.
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The systematic effects for the shapes and normalization of the W, Z backgrounds, and signal
components are strongly correlated since they are affected by similar systematic mismeasure-
ments. We constrain the jet mass scale, the jet mass resolution, and the N1,DDT

2 selection effi-
ciency using a sample of merged W boson jets in semileptonic tt events in data. In this region,
events are required to have an energetic muon with pT > 100 GeV, pmiss

T > 80 GeV, a high-pT
AK8 jet with pT > 200 GeV, and a b-tagged AK4 jet separated from the AK8 jet by ∆R > 0.8.
Using the same N1,DDT

2 requirement described above, we define samples with events that pass
and fail the selection for merged W boson jets in data and simulation, shown in Fig. 5. A si-
multaneous fit to the two samples is performed in order to extract the selection efficiency of
a merged W jet in simulation and in data. We measure the data-to-simulation scale factor for
the N1,DDT

2 selection to be 0.88± 0.10. The mass scale between data and simulation is found
to be 1.10 ± 0.05. The jet mass resolution data-to-simulation scale factor is measured to be
1.14± 0.06. These scale factors determine the initial distributions of the jet mass for the W, Z
boson, and signal and they are further constrained in the fit to data because of the presence of
the W and Z resonances in the jet mass distribution. To account for potential deviations due
to missing higher-order corrections to the simulated boson pT distributions, uncertainties are
assumed in the W and Z boson yields that are pT-dependent. An additional systematic uncer-
tainty is included to account for potential differences between the W and Z boson higher-order
corrections. Finally, uncertainties associated to the jet energy resolution [57], trigger efficiency,
lepton veto efficiency, and the integrated luminosity determination [67] are also applied to the
W, Z boson, and Z′ boson signal yields. A quantitative summary of the systematic effects con-
sidered is listed in Table 1.
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Figure 5: Soft-drop jet mass distributions that pass (left) and fail (right) the N1,DDT
2 selection in

the semileptonic tt sample. Results of fits to data and simulation are shown.

To validate the robustness of the fit, we perform a goodness-of-fit test and bias tests using
pseudo-experiments and injecting a simulated signal, for different values of Z′ boson mass.
No significant bias is observed. As a further test of fit robustness, we split the region failing
the N1,DDT

2 selection into two smaller regions mimicking the passing and failing regions in the
signal extraction fit. The mimicked passing-like region corresponds to a background efficiency
of 60–65% and the mimicked failing-like region corresponds to an efficiency of 65–100%. We
repeat our background estimation procedure on this selection as if the 60–65% efficiency region
were the passing region. We find negligible biases in the fitted signal strength.



9

Table 1: Summary of the systematic uncertainties for signal and background processes and
their relative size. The symbol 4 denotes uncertainties decorrelated per pT bin in the 500–
1000 GeV range. The symbol † denotes a shape uncertainty in the peaking SM W and Z boson
backgrounds and Z′ boson signal shape. A long dash (—) indicates that the uncertainty does
not apply.

Systematic source Multijet Z′ W/Z tt
Lepton veto efficiency — 0.5% 0.5% —
Jet mass scale† — 0.5% 0.5% —
Jet mass scale (pT dependence) †4 — 0.5–2% 0.5–2% —
Trigger efficiency — 2% 2% —
Top quark mistag rate — — — 2%
Integrated luminosity — 2.5% 2.5% —
Multijet fit parameters 1–3% — — —
N1,DDT

2 selection efficiency — 9% 9% —
Top quark background normalization — — — 10%
Jet energy resolution† — 10% 10% —
NLO QCD corrections — 10% 10% —
NLO EW corrections4 — — 15–35% —
NLO EW W/Z decorrelation — — 5–15% —

6 Results
We combine the estimates of the various SM background processes and search for a potential
signal from a Z′ resonance in the mass range from 50 to 300 GeV. A binned maximum likelihood
fit to the observed shape of the soft-drop jet mass distribution is performed simultaneously in
the passing and failing regions of five pT ranges whose boundaries are: 500, 600, 700, 800, 900
and 1000 GeV. The number of observed events is consistent with the predicted background
from SM processes. Figure 6 shows the soft-drop jet mass distribution for data and measured
background contributions in the different pT ranges for a Z′mass of 135 GeV; the W and Z boson
contributions are clearly visible in the data. The mSD distribution for data in the combined pT
ranges is available in Appendix A.

The results are interpreted in terms of 95% confidence level (CL) upper limits on the produc-
tion cross section. Upper limits are computed using the modified frequentist approach for
confidence levels (CLs); taking the profile likelihood as the test statistic [68, 69] in the asymp-
totic approximation [70]. They are shown as a function of the resonance mass in Fig. 7 (left),
where they are compared to cross sections for a model of a leptophobic Z′ resonance with quark
coupling gq′ value of either 0.17 or 0.08 that are close to our current sensitivity. Systematic un-
certainties are treated as nuisance parameters, which are modeled with log-normal priors and
profiled over in the limit calculations. The maximum local observed p-value corresponds to
2.9 standard deviations from the background-only expectation at a Z′ boson mass of 115 GeV,
and the global significance, calculated over the probed mass range [71], corresponds to approx-
imately 2.2 standard deviations.

Upper limits on the signal cross section are translated into the coupling gq′ as a function of Z′

boson mass, related to the Z′ coupling convention of Ref. [37] by gq′ = gB/6. Coupling values
above the solid curves are excluded. In Fig. 7 (right), we show previous results from UA2,
CDF, ATLAS and CMS experiments. Indirect constraints from the hadronic Z boson partial
width measurement and limits from the UA2 and CDF experiments are interpreted from [37].
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Figure 6: Soft-drop jet mass distribution for the different pT ranges of the fit from 500 to
1000 GeV. Data are shown as black points. The multijet background prediction, including
uncertainties, is shown by the shaded bands. Contributions from the W and Z boson, and top
quark background processes are shown, scaled up by a factor of 3 for clarity. A hypothetical Z′

boson signal at a mass of 135 GeV is also indicated. In the bottom panel, the ratio of the data
to the background prediction, including uncertainties, is shown. The scale on the x-axis differs
for each pT range due to the kinematic selection on ρ.
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Figure 7: The 95% CL upper limits on the Z′ boson production cross section compared to the-
oretical cross sections (left) and on the quark coupling gq′ as a function of resonance mass for
a leptophobic Z′ resonance that only couples to quarks (right). The observed limits (solid),
expected limits (dashed) and their variation at the 1 and 2 standard deviation levels (shaded
bands) are shown. Limits from other relevant searches and an indirect constraint on a potential
Z′ signal from the SM Z boson width [72] are also shown.

The results of this analysis can be used to constrain simplified models of DM. Figure 8 shows
the excluded values at 95% CL of mediator mass (mMed) as a function of the dark matter particle
mass (mDM) for vector mediators, in simplified models that assume a leptophobic mediator that
couples only to quarks and DM particles [38, 73]. Limits are shown for a choice of universal
quark coupling gq = 0.25 and a DM coupling gDM = 1.0. The difference in limits between axial-
vector and vector mediator couplings is small and thus only constraints for the latter coupling
scenario are shown. The excluded range of mediator mass (red) is between 50 and 300 GeV.
The upper bound decreases to 240 GeV when mMed > 2mDM, because the branching fraction
(BR) to qq decreases as the BR to DM becomes kinematically favorable. If mMed < 2mDM, the
mediator cannot decay to DM particles and the dijet cross section from the mediator model
becomes identical to that in the leptophobic Z′ model, meaning that the limits on the mediator
mass in Fig. 8 are identical to the limits on the Z′ mass with a coupling gq′ = gq = 0.25. For
axial-vector mediators, the excluded values of mediator mass are expected to be identical to the
excluded values in Fig. 8 when mDM > mMed/2 or mDM = 0, with differences only expected
in the transition region mMed ' 2mDM. Additional limits (blue) in Fig. 8 come from traditional
dijet searches [35].

7 Summary
A search for a vector resonance (Z′) decaying into a quark-antiquark pair and reconstructed
as a single jet has been presented, using a data set comprising proton-proton collisions at√

s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. Novel substructure tech-
niques are employed to identify a jet containing a Z′ boson candidate over a smoothly falling
soft-drop jet mass distribution in data. No significant excess above the SM prediction is ob-
served, and 95% confidence level upper limits are set on the Z′ boson coupling to quarks, gq′ ,
as a function of the Z′ boson mass. Coupling values of gq′ > 0.25 are excluded over the Z′ mass
range from 50 to 300 GeV, with strong constraints for masses less than 200 GeV. The results
obtained for masses from 50 to 100 GeV represent the first direct limits to be published in this
range. Limits are set on a simplified model of dark matter mediators that only couple to quarks
and dark matter particles, excluding vector mediators with masses between 50 and 300 GeV,



12 7 Summary

 (GeV) Medm
50 210 210×2 310 310×2

 (
G

eV
)

 D
M

m

0

200

400

600

800

1000

1200

1400

 (13 TeV)-135.9 fb

CMS
Vector mediator
Dirac fermion DM

 = 1.0
DM

g
  = 0.25

q
g

DM

 =
 2

 x
 m

M
ed

M

 0.12
≥ 2

 hcΩ

Exclusion at 95% CL

Observed

Expected

Boosted dijet

Resolved dijet

 [35]-112.9 fb

 (13 TeV)-135.9 fb

CMS
Vector mediator
Dirac fermion DM

 = 1.0
DM

g
  = 0.25

q
g

210×5
210×5 210×5 210×5 210×5210×5

Figure 8: The 95% CL observed (solid red) and expected (dashed red) excluded regions in the
plane of dark matter particle mass (mDM) vs. mediator mass (mMed), for vector mediators. A
branching fraction of 100% is assumed for a leptophobic vector mediator decaying to dijets.
The exclusion is computed for a quark coupling choice gq = 0.25 and for a dark matter cou-
pling gDM = 1. The excluded regions from the dijet resolved analysis (blue dot dashed lines)
using early 2016 data [35] are also shown. Results are compared to constraints from the cosmo-
logical relic density of DM (light gray) determined from astrophysical measurements [74, 75]
and MADDM version 2.0.6 [76, 77] as described in Ref. [78].
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and using a universal quark coupling gq = 0.25 and a dark matter coupling gDM = 1.0.
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Figure 9: Distributions of data (points) and simulated backgrounds (histograms) of the leading
pT jet N1

2 (top left) and ρ (top right) observables, after the kinematic selection. The soft-drop
jet mass distributions for the passing (bottom left) and failing (bottom right) region, defined
by the N1,DDT

2 selection, are also shown. The decorrelation ensures that the shape of the mul-
tijet mass distribution in both regions is unaffected by the N1,DDT

2 selection for different pT
ranges. Dashed lines illustrate the signal contribution for different Z′ boson masses. The mul-
tijet processes (QCD) dominate the background component, with subdominant contributions
from inclusive SM W, Z, and tt and single top quark processes. The QCD simulation is scaled
by an overall factor of 0.74 to match the data yield. Residual differences between data and sim-
ulation demonstrate the need for a background estimation method based on control samples
in data.
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Figure 10: Soft-drop jet mass distribution for the passing region and combined pT categories.
The multijet background prediction in the passing region is obtained using the failing region
and the pass–fail ratio Rp/f(mSD, pT). Data are shown as black points. The multijet background
prediction, including uncertainties, is shown by the shaded bands. Contributions from the
W and Z boson, and top quark background processes are shown, scaled up by a factor of 3 for
clarity. A hypothetical Z′ boson signal at a mass of 135 GeV is also indicated. The features at
45, 185, 220 and 255 GeV in the mSD distribution are due to the kinematic selection on ρ, which
affects each pT category differently. In the bottom panel, the ratio of the data to the background
prediction, including uncertainties, is shown.
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H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer,
B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo,
W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf,
F. Hartmann15, S.M. Heindl, U. Husemann, F. Kassel15, S. Kudella, H. Mildner, M.U. Mozer,
Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis,
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M. Bartók19, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati22, S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, S. Kaur,
R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia



27

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri,
A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta,
S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit,
A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant,
P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity24,
G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage25

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, M. Khakzad, M. Mohammadi
Najafabadi, M. Naseri, S. Paktinat Mehdiabadi27, F. Rezaei Hosseinabadi, B. Safarzadeh28,
M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
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A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori,
K. Lamichhane, S.W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb,
I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon,
S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu,
T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe,
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12: Also at Université de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
14: Also at Tbilisi State University, Tbilisi, Georgia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
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