

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266327330

Tests der pertubativen QCD in der e+e-Annihilation

Thesis · October 2002

DOI: 10.13140/2.1.2955.3607

CITATIONS	READS
0	23
1 author:	

Oliver Passon

Bergische Universität Wuppertal

578 PUBLICATIONS 5,485 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Quasi-history in science teaching View project

All content following this page was uploaded by Oliver Passon on 03 November 2014.

FACHBEREICH PHYSIK BERGISCHE UNIVERSITÄT GESAMTHOCHSCHULE WUPPERTAL

Tests der perturbativen QCD in der e^+e^- Annihilation

Messung der starken Kopplung und inklusiver Spektren mit dem DELPHI Detektor bei den höchsten LEP Energien

Dissertation zur Erlangung des Doktorgrades

vorgelegt von Oliver Passon

> WUB–DIS 2002–6 Juli 2002

Abstract

This thesis presents the DELPHI measurement of event shape distributions and inclusive spectra in e^+e^- annihilation at LEP between 183 and 207 GeV.

These data have been reprocessed in 2001 and the results supersede some older DELPHI measurements at the corresponding energies [1, 2, 3, 4, 5].

The differential distributions in $\xi_p = \ln \frac{1}{x_p}$ and their maxima ξ^* are compared with predictions in the MLLA/LPHD framework. These tests support the manifestation of coherence effects on the hadronic level.

From the event shapes Thrust, C parameter, heavy jet mass, wide and total jet broadening, α_s is extracted with four different methods: The differential distributions are compared to predictions in $\mathcal{O}(\alpha_s^2)$, pure NLLA and $\mathcal{O}(\alpha_s^2)$ +NLLA (logR), folded with fragmentation models. For the mean values, α_s is extracted using an analytical power correction ansatz.

The α_s values are combined with results obtained at other LEP2 energies and at and around M_Z . This allows both, a combined measurement of α_s and a test of the running of α_s . The smallest uncertainties are obtained from the measurement of mean values with power corrections. Here the results are:

$$\alpha_s(M_Z) = 0.1184 \pm 0.0004 \,(\text{stat}) \pm 0.0008 \,(\text{sys.ex.}) \pm 0.0008 \,(\text{had}) \pm 0.0031 \,(\text{scale}) \\ = 0.1184 \pm 0.0033 \,(\text{tot})$$

and for the measurement of the β function:

$$\frac{d\alpha_{\rm s}^{-1}}{d\ln Q} = 1.11 \pm 0.09 \,({\rm stat}) \pm 0.19 \,({\rm sys})$$

The last number has to be compared with the QCD value of 1.27 and the expected slope in an QCD+gluino scenario of 0.89.

Another way to measure the β function directly is to compare the energy dependence of inclusive quantities like mean values of event shape observables with the RGI perturbation theory [24]. For the quantity $R = \langle 1 - T \rangle / A$, using also low energy data, we obtain:

$$Q\frac{dR^{-1}}{dQ} = 4.21 \pm 0.18$$

This number has to be compared with the QCD expectation of 4.14 and the QCD+gluino value of 2.76.

Inhaltsverzeichnis

1	The	eorie		10
	1.1	Das St	andardmodell	11
	1.2	Die sta	arke Wechselwirkung	11
		1.2.1	Renormierung	13
		1.2.2	Die gleitende Kopplung der QCD	15
	1.3	Der Pi	rozess der e^+e^- Annihilation	16
	1.4	Observ	vable in der e^+e^- Annihilation	18
		1.4.1	Ereignisformobservable	19
		1.4.2	Inklusive Spektren	21
		1.4.3	Störungstheoretische Vorhersagen für Ereignisformobser-	
			vable	23
		1.4.4	Rechnungen in fester Ordnung	24
		1.4.5	Resummation führender Logarithmen	26
		1.4.6	Kombination von $\mathcal{O}(\alpha_s^2)$ +NLLA	27
		1.4.7	Die Renormierugsgruppen invariante (RGI)	
			Störungstheorie	29
		1.4.8	Theoretische Fehler der QCD Vorhersagen	30
		1.4.9	Das Konzept der lokalen Parton Hadron Dualität	31
	1.5	Hadro	nisierung	34
		1.5.1	Ereignisgeneratoren	34
		1.5.2	Potenzartige Korrekturen	36
	1.6	Physik	c jenseits des Standardmodells	38
		1.6.1	Das minimal supersymmetrische Standardmodell	40
		1.6.2	MSSM und GUT Skala	40
2	\mathbf{Exp}	erime	nt	43
	2.1	Der Ll	EP Beschleuniger	43
	2.2	Physik	alische Mechanismen des Teichennachweises	44
		2.2.1	Energieverlust durch Ionisation	44
		2.2.2	Elektromagnetische Schauer	44
		2.2.3	Hadronische Schauer	45
		2.2.4	Der Cherenkoveffekt	46
	2.3	Der D	ELPHI Detektor	46
		2.3.1	Spurrekonstruktion	47
		2.3.2	Energiemessung	49

		2.3.3	Teilchenidentifikation	49
		2.3.4	Die Aufbereitung der Daten	50
3	Ana	alyse		51
	3.1	Kriter	eien für die Güte der Selektion	51
	3.2	Selekt	ion hadronischer Endzustände	52
		3.2.1	Spurselektion	52
		3.2.2	Ereignisselektion	53
		3.2.3	Der TPC Effekt	54
	3.3	Unter	drückung von Untergrundprozessen	55
		3.3.1	Untergrund aus Strahlung im Anfangszustand	55
		3.3.2	Vierfermion–Untergrund	58
	3.4	Korre	kturen und systematische Unsicherheiten	64
		3.4.1	Subtraktion des Untergrundes	64
		3.4.2	Akzeptanzkorrektur	65
		3.4.3	Abschätzung des experimentellen Fehlers	66
	3.5	Ergeb	nisse	67
		3.5.1	Inklusive Spektren	67
		3.5.2	Ereignisformobservablen	68
		3.5.3	Mittelwerte und höhere Momente	68
1	Too	t don l	okolon Ponton Hadron Dualität	79
4	4.1	Frorg	ionhöngigkoit der 6 Verteilung	14 79
	4.1	Energ	icabhangigkeit von ξ^*	$\frac{12}{73}$
	4.2 1 3	Zusan		75
	4.0	Zusan		10
5	\mathbf{Me}	ssung	der starken Kopplung	76
	5.1	Mittel	lung korrelierter Messungen	76
		5.1.1	Schätzung der Korrelationsmatrix	77
		5.1.2	Vergleich der Mittelungsverfahren der LEP Experimente	80
	5.2	α_s aus	s Verteilungen	81
		5.2.1	Hadronisierungskorrektur	81
		5.2.2	Wahl des Anpassungsbereiches	82
		5.2.3	Systematische und theoretische Fehler	88
		5.2.4	Ergebnisse der Anpassung	89
	5.3	α_s aus	s Mittelwerten	102
	5.4	Zusan	nmenfassung der Messungen und Methodenvergleich	113
		5.4.1	Kombination der α_s Messungen $\ldots \ldots \ldots \ldots \ldots \ldots$	114
	5.5	Messu	ing der β Funktion	122
		5.5.1	Methode 1: Energieabhängigkeit der starken Kopplung	122
		5.5.2	Methode 2: RGI Verfahren	123

6	Zusammenfassung und Vergleich mit anderen Resultaten	129
	6.1 Bestimmung der starken Kopplung	. 129
	6.1.1 Vergleich mit anderen α_s Messungen	. 130
	6.2 Messung der β Funktion	. 130
	6.2.1 Vergleich mit anderen Messungen	. 131
A	Inklusive Verteilungen	134
В	Ereignisformverteilungen	143
С	Tabellen der inklusiven Verteilungen	160
D	Tabellen der Ereignisformverteilungen	163

Tabellenverzeichnis

1.1	Teilchen des Standardmodells und ihre Quantenzahlen				12
1.2	Experimentell optimierte Skalen				25
1.3	y_{max} Werte				28
1.4	Theoriefehler von α_s				32
1.5	Theoriekoeffizienten für Mittelwerte				37
1.6	Beiträge des MSSM zu den Koeffizienten der β Funktion $~$.		•	•	40
2.1	Kenngrößen von Detektormaterialien	•	•	•	46
3.1	Schnitte zur Spur- und Ereignisselektion		•		54
3.2	Kanäle der WPHACT Simulation		•	•	59
3.3	Statistik der Ereignisselektion				64
3.4	Variation der Schnitte zur Ereignisselektion				66
3.5	Momente von 1-T		•	•	69
3.6	Momente des C Parameters				69
3.7	Momente von B_{sum}		•	•	69
3.8	Momente von $M_{\rm h}^2/E_{\rm vis}^2$				70
3.9	Momente von $M_{\rm h}^2/E_{\rm vis}^2$ (p Definition)				70
3.10	Momente von $M_{\rm h}^2/E_{\rm vis}^2$ (E Definition)				-70
3.11	Momente von B_{\max}	•	•	•	71
4.1	Maxima der ξ_p Verteilung	•		•	75
5.1	Studien zur Fitbereichsabhängigkeit				85
5.2	Werte für α_0 und α_s bei Anpassung der Dokshitzer-Webber V	Vc	r-		
	hersage an Mittelwerte		•	•	102
5.3	Mittlere Streuung der α_s Messungen $\ldots \ldots \ldots \ldots$		•		114
5.4	α_s Werte bei LEP1 für die $\mathcal{O}(\alpha_s^2)$ Vorhersage		•		115
5.5	α_s Werte bei LEP1 für die NLLA Vorhersage		•		116
5.6	α_s Werte bei LEP1 für die log R Vorhersage $\ $				117
5.7	Mittelung der α_s Messungen von DELPHI bei LEP2				118
5.8	Mittelung der α_s Messungen von DELPHI				118
5.9	Werte der logarithmischen Ableitung der starken Kopplung				123
5.10	Ergebnisse der RGI Anpassung für α_s	•	•	•	124
6.1	Mittelung der α_s Messungen von DELPHI				130
6.2	Werte der logarithmischen Ableitung der starken Kopplung				131

Abbildungsverzeichnis

1.1	Schematische Darstellung des Hadronisierungsprozesses	18
1.2	Vereinigung der Kopplungen in einem MSSM Szenario	41
2.1	Schematische Darstellung des DELPHI Detektors	48
3.1	TPC Effekt für Rapidität und skalierten Impuls	55
3.2	Effektive Schwerpunktsenergie bei 183 und 189 GeV	56
3.3	Effektive Schwerpunktsenergie von 192 bis 202 GeV	57
3.4	Effektive Schwerpunktsenergie bei 205 und 207 GeV	58
3.5	Schnitt in der B_{\min} - N_{ch} Ebene zur Unterdrückung des Vierfermion-	
	Untergrundes	60
3.6	WW Antiselektion bei 183 und 189 GeV	61
3.7	WW Antiselektion von 192 bis 202 GeV	62
3.8	WW Antiselektion bei 205 und 207 GeV $\ldots \ldots \ldots \ldots$	63
4.1	ξ_n Verteilungen mit Fong–Webber Anpassung	73
4.2	Maxima der ξ_p Verteilung mit MLLA/LPHD Anpassung	74
5.1	Vergleich der Hadronisierungskorrekturen der LEP Experimente	83
5.2	α_s Abhängigkeit vom Anpassungsbereich	86
5.3	Einfluss experimenteller Korrekturen auf die Anpassungsbereiche	87
5.4	Anpassungsbereiche dieser Analyse	88
5.5	α_s in 2.0rdnung von 183 bis 196 GeV	92
5.6	α_s in 2.Ordnung von 200 bis 207 GeV	93
5.7	α_s in NLLA von 183 bis 196 GeV	96
5.8	α_s in NLLA von 200 bis 207 GeV	97
5.9	α_s im logR matching von 183 bis 196 GeV	00
5.10	α_s im logR matching von 200 bis 207 GeV	01
5.11	Ergebnisse der Dokshitzer-Webber Anpassung in der $\alpha_s - \alpha_0$ Ebene1	03
5.12	Mittelwerte verschiedener Observablen mit Dokshitzer–Webber	
	Anpassung	.04
5.13	α_s aus Mittelwerten von 66 bis 91.2 GeV	.09
5.14	α_s aus Mittelwerten von 93 bis 172 GeV	10
5.15	α_s aus Mittelwerten von 183 bis 196 GeV	11
5.16	α_s aus Mittelwerten von 200 bis 207 GeV	12
5.17	Mittelung aller DELPHI α_s Werte	19

ABBILDUNGSVERZEICHNIS

5.18 En 5.19 En	ergieabhängigkeit von α_s aus Vorhersagen in $\mathcal{O}(\alpha_s^2)$ und logR 120 nergieabhängigkeit von α_s aus Mittelwerten und Verteilungen	0
in	NLLA	1
5.20 Mi	ittelwerte verschiedener Observablen mit RGI Anpassung $12'$	7
5.21 Me	essung der eta Funktion mit der RGI Methode	8
0 1 V		~
6.1 Ve	rgleich verschiedener α_s Messungen bei LEP	2
6.2 Ve	rgleich verschiedener N_F Messungen $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 13$	3
A.1 Inł	klusive Verteilungen bei 183 GeV	5
A.2 Inl	klusive Verteilungen bei 189 GeV	6
A.3 Inl	klusive Verteilungen bei 192 GeV	7
A.4 Inl	klusive Verteilungen bei 196 GeV	8
A.5 Inl	klusive Verteilungen bei 200 GeV	9
A.6 Inł	klusive Verteilungen bei 202 GeV	0
A.7 Inh	klusive Verteilungen bei 205 GeV	1
A.8 Inl	klusive Verteilungen bei 207 GeV	2
D1 E		4
B.I Ere	eignisformgroßen bei 183 GeV \dots 144	4
D.2 Ere	eignistormgroben bei 185 Gev \dots 144	Э с
B.3 Ere	eignisformgroßen bei 189 GeV \ldots 140	0
B.4 Ere	eignisformgroßen bei 189 GeV	(0
B.5 Ere	eignisformgroßen bei 192 GeV \ldots 140	8
B.0 Ere	eignisformgroßen bei 192 GeV	9
B. (Ere	eignisformgroßen bei 196 GeV	1
B.8 Ere	eignisformgroßen bei 196 GeV	1
B.9 Er	eignisformgroßen bei 200 GeV	2
B.10 Er	eignisformgroßen bei 200 GeV	3
B.11 Ere	eignisformgroßen bei 202 GeV	4
B.12 Er	eignisformgrößen bei 202 GeV	5
B.13 Er	eignisformgrößen bei 205 GeV	6
B.14 Ere	eignistormgrößen bei 205 GeV \ldots \ldots \ldots \ldots $15'$	7
B. 15 Er	eignistormgrößen bei 207 GeV \ldots \ldots \ldots \ldots 158	8
B .16 Ere	eignisformgrößen bei 207 GeV	9

Einleitung

Zwischen 1989 und 2000 wurde am LEP Speicherring in der Nähe von Genf der DELPHI Detektor betrieben, um die Endzustände der e^+e^- Annihilation aufzuzeichnen. Hadronische Ereignisse dieses Prozesses sind dabei eine ideale Umgebung für das Studium der starken Wechselwirkung.

In den ersten sechs Jahren (LEP1) lag die Schwerpunktsenergie in der Nähe der Z Masse, sodass die Ereignisrate von der resonanten Überhöhung des Wirkungsquerschnittes profitierte.

In den folgenden fünf Jahren zwischen 1996 und 2000 (LEP2) wurde die Schwerpunktsenergie sukzessiv erhöht und erreichte schließlich im Herbst 2000 einen Wert von 209 GeV. Jenseits der Z Resonanz zeigt der Wirkungsquerschnitt der e^+e^- Annihilation wieder das typische $1/E_{\rm cm}^2$ Verhalten, sodass trotz gesteigerter Luminosität die Datenmenge der LEP2 Phase weniger als 1% der Statistik von LEP1 beträgt. Gleichzeitig erlaubt die höhere Schwerpunktsenergie die Paarerzeugung von W und Z Bosonen. Zusammen mit dem Untergrund von ISR¹ Ereignissen ist die Analyse bei LEP2 also von vollkommen neuartigen Schwierigkeiten begleitet.

Das Thema dieser Arbeit ist ein QCD Test bei LEP2. Im Mittelpunkt steht die Messung der starken Kopplung α_s sowie ihrer Energieabhängigkeit. Nach den einführenden Bemerkungen erwartet man nicht, dass das Ziel von LEP2 in einer Präzissionsmessung – etwa von α_s – liegen kann. Im Falle der starken Wechselwirkung kann das bei den hohen Energien dramatisch gefallene Signal-Untergrund Verhältnis jedoch teilweise kompensiert werden. Zum Einen nehmen Hadronisierungseffekte, die eine Überprüfung der perturbativen QCD erschweren, ab. Zum Anderen werden auch die theoretischen Fehler der perturbativen Rechnungen kleiner – obwohl eine genauere Abschätzung dieser Unsicherheiten zu den bisher ungelösten Problemen der QCD zählt. Diese theoretischen Fehler sind es auch, die bei LEP1 Energien die Messung von α_s limitieren. Dadurch wird es möglich, auch bei LEP2 einen wichtigen Beitrag zur Überprüfung der QCD zu leisten.

Der Test der Energieabhängigkeit der starken Kopplung setzt schließlich Messungen über einen großen Energiebereich voraus. Dies kann somit nicht mit

 $^{^{1}}$ initial state radiation

LEP1 Daten alleine, sondern nur durch eine Kombination aller Messungen erfolgen.

Neben diesen Tests der "harten" QCD, widmet sich ein Teil dieser Arbeit auch der Überprüfung von Vorhersagen der lokalen Parton Hadron Dualität (LPHD). Dieses Konzept betrifft Eigenschaften inklusiver Spektren bei kleinen Impulsen. Das Studium von Kohärenzeffekten des hadronischen Endzustandes in diesem Impulsbereich erlaubt Rückschlüsse auf den Mechanismus der Hadronisierung.

Kapitel 1

Theorie

Theorien sind gewöhnlich Übereilungen des ungeduldigen Verstandes, der die Phänomene gerne los sein möchte. J. W. Goethe (Maximen und Reflektionen)

Die Elementarteilchenphysik versucht die Aufklärung der Frage, was Materie ist, und welche Kräfte zwischen ihr wirksam sind. Obwohl der Teilchenbegriff in der Quantenphysik an Schärfe verliert, bleibt das "Konstituentenkonzept", also Materie als aus elementaren Bausteinen aufgebaut zu denken, verbreitet und meist auch sinnvoll. Gerade die diskreten Anregungszustände quantisierter Felder laden zu dieser Interpretation wieder ein. In diesem Sinne werden im Rahmen der Quantenfeldtheorien auch die Kraftwirkungen durch den "Austausch" von Feldquanten erklärt, obwohl diese Anregungszustände der Kraftfelder vollkommen unlokalisiert sind und somit eine intuitive Eigenschaft des Teichenbegriffs vermissen lassen.

Das naive Teilchenbild für Materiekonstituenten ist im Grunde so lange sinnvoll, wie das Energieäquivalent der Massen der betrachteten Konstituenten deutlich größer als die Bindungsenergie zwischen ihnen ist. Dies ist die notwendige Bedingung, um zwischen den "Teilen" eines "Ganzen" überhaupt unterscheiden zu können! Für die Abschätzung der Bindungsenergie kann auch die Anregungsenergie gewählt werden. Im Falle eines Atoms werden etwa 500 eV schwere Elektronen und Kerne mit Massen von $\mathcal{O}(1 \text{ GeV})$ durch Energien in der Größenordnung von $\mathcal{O}(10 \text{eV})$ gebunden. Im Kern betragen die Anregungsenergien hingegen schon einige KeV, liegen damit aber immer noch deutlich unter den Massen von Proton und Neutron. Innerhalb der Nukleonen jedoch sind die Verhältnisse drastisch verschieden, da hier die (Quark-) Massen kleiner als die Bindungsenergie sind. Die Behauptung, dass Neutron und Proton aus drei Quarks "bestehen", muss deshalb um die Bemerkung ergänzt werden, dass hier zwischen Konstituentenquarks und Seequarks unterschieden wird. Der Versuch, Quarks aus ihren gebundenen Zuständen zu lösen, scheitert an ihrer "Einschließung". Dies scheint die drastische Folge einer Bindungsenergie, die die Massen der beteiligten Partner übersteigt. Dass Quarks in der störungstheoretischen

Beschreibung von Prozessen wie $e^+e^- \rightarrow q\bar{q}$ wie freie Teichen behandelt werden können, setzt hohe Impulsüberträge voraus, mithin eine Virtualität der Partonen, die weit über der Confinement-Skala liegt.

1.1 Das Standardmodell

In diesem erläuternden Sinne kann davon gesprochen werden, dass nach dem Standardmodell [6, 7] der Elementarteilchenphysik Materie aus je drei Generationen fundamentaler Fermionen besteht, zwischen denen mit elektromagnetischer, schwacher- und starker Wechselwirkung drei¹ fundamentale Kräfte wirksam sind. Die Unterscheidung der Fermionen in Leptonen (e, μ, τ sowie zugehörige Neutrinos) und Quarks (ebenfalls sechs "Flavour") erfolgt dabei über die Teilnahme an der starken Kraft. Im Gegensatz zu Quarks unterliegen Leptonen ihr nicht. Die Kraftwirkungen werden durch den Austausch von Vektorbosonen erklärt: dem Photon sowie Z und W^{+/-} für den elektroschwachen</sup> Anteil, sowie acht Gluonen als Eichfelder der Quantenchromodynamik (QCD).

Eine große Attraktivität gewinnt das Standardmodell aus dem Umstand, dass alle diese Wechselwirkungen durch Eichtheorien beschrieben werden. Das bedeutet, dass sie aus einer lokalen Symmetrie der Lagrangedichte unter einer sog. Eichgruppe abgeleitet werden können. Da dieses Konzept jedoch die Masselosigkeit der Eichfelder voraussetzt, muss diese Symmetrie gebrochen werden. Aus diesem Grunde wird das Higgs Hintergrundfeld eingeführt. Das als Higgs Teilchen bezeichnete Quant dieses Feldes konnte bisher jedoch noch nicht nachgewiesen werden. Bis auf diesen fehlenden Nachweis des Higgs Boson, sind alle experimentellen Befunde in guter Übereinstimmung mit dem Standardmodell. Tabelle 1.1 fasst die fundamentalen Entitäten dieser Theorie noch einmal zusammen².

1.2 Die starke Wechselwirkung

Die QCD ist die Eichtheorie, die im Rahmen des Standardmodells die starke Wechselwirkung beschreibt. Neben den Quarks als fermionischen Materiefeldern treten Eichfelder auf, deren minimale Kopplung über die kovariante Ableitung die lokale Invarianz unter der Eichgruppe SU(3) gewährleistet. Die

¹Die Gravitation wird in der experimentellen Elementarteilchenphysik aufgrund ihrer Schwäche vernachlässigt, aber auch theoretisch fügt sie sich nicht in das Bild des Standardmodells. Die Allgemeine Relativitätstheorie (ART) widersetzt sich bisher allen Versuchen ihrer Quantisierung. Es handelt sich jedoch ebenfalls um eine lokale Eichtheorie.

²Tabelle 1.1 enthält keine rechtshändigen Neutrinos, obwohl deren Existenz durch den Nachweis einer endlichen Neutrinomasse nahegelegt wird.

Fermionen	F	Ι	I_3	Y	Q
$\left(\begin{array}{c}\nu_e\\e\end{array}\right)_L \left(\begin{array}{c}\nu_\mu\\\mu\end{array}\right)_L \left(\begin{array}{c}\nu_\tau\\\tau\end{array}\right)_L$	0	1/2	$+1/2 \\ -1/2$	-1	$0 \\ -1$
$\left(\begin{array}{c} u \\ d \end{array}\right)_{L} \left(\begin{array}{c} c \\ s \end{array}\right)_{L} \left(\begin{array}{c} t \\ b \end{array}\right)_{L}$	3	1/2	$+1/2 \\ -1/2$	+1/3	$+2/3 \\ -1/3$
$e_B \mu_B \tau_B$	0	0	0	-2	-1
u_R c_R t_R	3	0	0	+4/3	+2/3
d_R s_R b_R	3	0	0	-2/3	-1/3
Eichbosonen					
Gluonen	8	0	0	0	0
W^+	0	1	+1	0	+1
W^-	0	1	-1	0	-1
Z	0	1	0	0	0
γ	0	0	0	0	0
Higgsbosonen					
$\left(egin{array}{c} \phi^+ \ \phi^0 \end{array} ight)$	0	1/2	+1/2 -1/2	+1	$+1 \\ 0$

F : Anzahl der Farben I : schwacher Isospin Y : Hyperladung Q : elektrische Ladung

Q : elektrische Ladung

Tabelle 1.1: Teilchen des Standardmodells und ihre Quantenzahlen

diskreten Anregungszustände des Eichfeldes werden Gluonen genannt. Die QCD Lagrangedichte lautet [8]:

$$\mathcal{L}_{QCD} = \bar{\psi}(x)(i\gamma^{\mu}D_{\mu} - m)\psi(x) - \frac{1}{4}F^{a}_{\mu\nu}(x)F^{\mu\nu,a}(x)$$
(1.1

$$mit: F^{a}_{\mu\nu}(x) = D_{\mu}A^{a}_{\nu}(x) - D_{\nu}A^{a}_{\mu}(x) \text{ Feldstärketensor}$$

$$D_{\mu} = \partial_{\mu} - ig_{s}\frac{\lambda_{a}}{2}A^{a}_{\mu}(x) \text{ kovariante Ableitung}$$

$$\psi(x) = \text{ Quarkfelder}$$

$$\lambda_{a} = \text{Generatoren der SU(3)}$$

 $g_s = \text{starke Kopplungsstärke}$

Aus der Lagrangedichte können sog. Feynmanregeln abgeleitet werden, die es erlauben, prinzipiell jeden physikalischen Prozess in einer Störungsreihe in Potenzen der Kopplung $\alpha_s = \frac{g_s^2}{4\pi}$ zu entwickeln. Bei Rechnungen höherer Ordnung treten dabei jedoch Divergenzen auf. Diesem Problemkreis ist der nächste Abschnitt gewidmet.

1.2.1 Renormierung

Bei Korrekturen höherer Ordnung zu Propagatoren oder Vertizes treten Schleifendiagramme auf, die der Integration über beliebig hohen Impulsen entsprechen. Diese Integrale sind typischerweise ultraviolett divergent. Dies ist, inhaltlich gesprochen, Ausdruck der *punktförmigen* Wechselwirkung einer Quantenfeldtheorie, da beliebig hohe Impulse beliebig geringen Abständen entsprechen. Unendliche Werte für diese "Strahlungskorrekturen" sind physikalisch offensichtlich unbefriedigend, und das Verfahren ihrer Beseitigung wird Renormierung genannt.

Es basiert darauf, die divergenten Anteile in die Definition von Feldnormierungen, Massen und Kopplungen aufzunehmen. Betrachten wir als Beispiel die Φ^4 Theorie, die die Selbstwechselwirkung skalarer Felder Φ mit Masse m und Kopplung g beschreibt. Die Größen der unrenormierten Theorie seien mit Bindiziert. Die Relationen, die diese mit den entsprechenden Ausdrücken der renormierten Theorie in Beziehung setzten, lauten hier [12]:

$$\Phi_B = \sqrt{Z_{\Phi}} \Phi$$

$$g_B = Z_{\Phi}^{-2} Z_g g$$

$$m_B^2 = Z_{\Phi}^{-1} Z_m m^2$$

Die Z_i sind die sog. Renormierungsfunktionen, die divergenten Anteile enthalten. In einem ersten Schritt werden die divergenten Integrale Regularisiert, d.h. durch einen endlichen Ausdruck ersetzt, der von einem zusätzlichen

)

(Regularisierungs-) Parameter abhängt. In einem bestimmten Limes kann das ursprüngliche Integral zurückgewonnen werden. Dadurch gelingt die Isolierung der Divergenzen, die in die Definitionen der Renormierungsfunktionen Z_i aufgenommen werden. Damit sind die Renormierungsfunktionen jedoch nicht eindeutig festgelegt, denn jede endliche Modifikation an ihnen führt ebenfalls zu endlichen Werten der renormierten Parameter. Formal kann man diesen Übergang zwischen zwei Renormierungsschemen R und R', die sich nur durch endliche Anteile unterscheiden, als Abbildung $R \to R'$ auffassen. Die Menge dieser Abbildungen wird als Renormierungsgruppe bezeichnet [11].

Charakteristisches Merkmal jeder Renormierungsforschrift ist das auftreten eines dimensionsbehafteten Parameters, der sog. Renormierungsskala bzw. des Renormierungspunktes μ .

Die Renormierungsgruppengleichung

Die Willkür in der eindeutigen Festlegung der Renormierungsfunktionen erscheint auf den ersten Blick als große Schwäche des gesamten Renormierungsprogramms. Die exakte mathematische Formulierung der Invarianzforderung unter Wahl des Renormierungspunktes in der Renormierungsgruppengleichung erweist sich jedoch als wichtiges theoretisches Werkzeug in der Störungstheorie.

Betrachten wir hierzu den Zusammenhang zwischen n-Punkt Vertex Funktionen der Φ^4 Theorie in renormierten und unrenormierten Parametern [12]:

$$\Gamma_B^{(n)}(p_i, \alpha_B, \epsilon) = Z_{\Phi_\mu}^{-n/2}(\mu, \epsilon) \Gamma_\mu^{(n)}(p_i, \alpha_\mu)$$
(1.2)

Hier sind die Ausdrücke der rechten Seite mit μ indiziert, um auszudrücken, dass die renormierten Größen erst durch die Auswahl des Renormierungspunktes eindeutig festgelegt sind. Außerdem ist das Analogon zur Feinstrukturkonstanten $\alpha = g^2/4\pi$ eingeführt worden. Die unrenormierte Vertexfunktion enthält zusätzlich den Regularisierungparameter als Argument, wohingegen diese Abhängigkeit für die rechte Seite vollständig in die Renormierungsfunktion $Z_{\Phi_{\mu}}$ eingeht. Zusätzlich werden in der folgenden Diskussion alle Massen vernachlässigt. Logarithmische Differentiation nach μ führt auf die Renormierungsgruppengleichung (RGG)[11, 12]:

$$\left(\mu\frac{\partial}{\partial\mu} + \beta_{\mu}\frac{\partial}{\partial\alpha_{\mu}} - n\gamma_{\mu}\right)\Gamma^{(n)}_{\mu}(p_i, g_{\mu}) = 0$$
(1.3)

mit den folgenden *Definitionen* für die γ bzw. β Funktion:

$$\beta_{\mu} = \frac{d\alpha_{\mu}}{d\ln\mu} \tag{1.4}$$

$$\gamma_{\mu} = \frac{\mu}{2Z_{\Phi_{\mu}}} \frac{d}{d\mu} Z_{\Phi_{\mu}} \tag{1.5}$$

Diese Funktionen können gemäß ihrer Definition in der Störungstheorie berechnet werden und hängen vom Renormierungschema ab. Die RGG beschreibt den Effekt der Variation in der unphysikalischen μ Skala. Sie ist ein exaktes Resultat der Theorie, wohingegen Observable, die in endlicher Ordnung Störungstherorie berechnet sind, eine verbleibende μ Abhängigkeit aufweisen.

Um aus 1.3 einen Zusammenhang zur Impulsabhängigkeit zu gewinnen, betrachtet man die Vertexfunktion unter Skalierung aller massenbehafteter Größen. Offensichtlich gilt (mit d der Massendimension der Vertexfunktion):

$$\Gamma^{(n)}(s \cdot p_i, s \cdot \mu, \alpha) = s^d \cdot \Gamma^{(n)}(p_i, \mu, \alpha)$$

Unter Anwendung des Eulerschen Satzes über homogene Funktionen kann in Gleichung 1.3 die μ -Ableitung durch die Ableitung nach dem Skalierungsfaktor *s* ersetzt werden. Man erhält als Resultat, dass die β Funktion nicht nur die Abhängigkeit vom unphysikalischen (massenbehafteten) Parameter μ beschreibt, sondern auch die Änderung mit einem physikalischen äußeren Impuls [12]. Aufgrund der Skalenabhängigkeit von α nach Gleichung 1.4 wird auch von der "gleitenden Kopplung" gesprochen.

Renormierung der QCD

Von der Renormierung der Kopplung in der QCD sind Materie und Eichfelder betroffen, sodass hier zwei Renormierungsfunktionen Z_{ψ} und Z_A auftreten. Für die renormierte starke Kopplung g_s gilt nun [12]:

$$g_B = Z_A^{-1/2} Z_{\psi}^{-1} Z_g \mu^{\epsilon} g_{\mu}$$
(1.6)

Die Ersetzung 1.6 gilt, falls die in der QCD verbreitete dimensionale Regularisierung angewendet wird. Dabei werden die Schleifenintegrale in einem 4-2 ϵ dimensionalen Raum fortgesetzt, und der Faktor μ^{ϵ} stellt sicher, dass dabei die Kopplung dimensionslos bleibt. Dadurch wird die Singularität isoliert und entweder alleine (MS Schema) oder zusammen mit einigen Konstanten ($\overline{\text{MS}}$ Schema) in die Renormierungsfunktionen absorbiert.

1.2.2 Die gleitende Kopplung der QCD

Für die β Funktion gewinnt man in der QCD [8]:

$$\frac{d\alpha_s}{d\ln\mu} = \beta(\alpha_s)$$

$$= -\frac{\beta_0}{2\pi}\alpha_s^2 - \frac{\beta_1}{4\pi^2}\alpha_s^3 - \frac{\beta_2}{64\pi^3}\alpha_s^4 - \cdots$$
(1.7)

mit:

$$\begin{aligned} \beta_0 &= 11 - \frac{2}{3} n_f \ (\approx 7.67 \text{ für } n_f = 5) \\ \beta_1 &= 51 - \frac{19}{3} n_f \ (\approx 19.33 \text{ für } n_f = 5) \\ \beta_2 &= 2857 - \frac{5033}{9} n_f + \frac{325}{27} n_f^2 \ (\approx 362 \text{ für } n_f = 5) \end{aligned}$$

Die Koeffizienten β_0 und β_1 sind dabei vom verwendeten Renormierungsschema unabhängig. Alle höheren Koeffizienten haben diese Eigenschaft nicht mehr, und der Ausdruck für β_2 ist im \overline{MS} Schema angegeben. Entwickelt man die Lösung dieser Gleichung in inverse Potenzen von $\ln \mu^2 / \Lambda_{\overline{MS}}^2$, lautet diese in zweiter Ordnung:

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln \mu^2 / \Lambda_{\overline{MS}}^2} \left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln \left[\ln \mu^2 / \Lambda_{\overline{MS}}^2 \right]}{\ln \mu^2 / \Lambda_{\overline{MS}}^2} + \cdots \right]$$
(1.8)

Dies ist eine Möglichkeit, den dimensionsbehafteten Parameter $\Lambda_{\overline{MS}}$ zu definieren. Man erkennt, dass aufgrund des negativen Vorzeichens der β Funktion (bzw. ihres führenden Beitrages) die Kopplung mit wachsendem Impulsübertrag abnimmt solange $n_f \leq 16$ gilt. Dieser Effekt liefert die Erklärung für den Erfolg des naiven Partonmodells und wird "asymptotische Freiheit" genannt.

Alternativ kann der Λ Parameter als Integrationskonstante bei der Lösung von Gleichung 1.7 eingeführt werden [9]:

$$\ln \frac{Q^2}{\tilde{\Lambda}^2} = -\int_{\alpha_s(Q^2)}^{\infty} \frac{dx}{\beta(x)}$$
(1.9)

Die beiden Definitionen sind durch folgende Relation verknüpft [9, 10]:

$$\tilde{\Lambda} = \Lambda \left(\frac{2\beta_1}{\beta_0^2}\right)^{-\beta_1/\beta_0^2} \approx 1.15\Lambda \text{ bei: } n_f = 5$$
(1.10)

1.3 Der Prozess der e^+e^- Annihilation

Im Folgenden diskutieren wir die Erzeugung von Lepton- Quark- und Bosonpaaren in der e^+e^- Annihilation. Dieser Vorgang wird vollständig durch die elektroschwache Theorie beschrieben. Erst die Abstrahlung von Gluonen durch Quarks führt auf QCD Korrekturen. Dadurch wird die e^+e^- Physik ein Labor zum Studium der starken Wechselwirkung.

Bosonpaarproduktion

Neben der Produktion von Fermionen kommt es bei der e^+e^- Annihilation auch zur Paarerzeugung von Bosonen ($\gamma\gamma$, W^+W^- und ZZ). Hadronische Endzustände dieser Prozesse stellen dabei eine Quelle von Untergrund für QCD Analysen dar.

Die Erzeugung zweier Photonen erfolgt in erster Ordnung über den Austausch eines Elektrons. Beiträge der schwachen Wechselwirkung gehen erst mit α^4 ein. Für den differentiellen Wirkungsquerschnitt gilt näherungsweise [13]:

$$\frac{d\sigma(e^+e^- \to \gamma\gamma)}{d\Omega} = \frac{\alpha^2}{s} \left(\frac{1+\cos^2\theta}{1-\cos^2\theta}\right) \tag{1.11}$$

Zur W^+W^- Paarerzeugung tragen drei Borngraphen bei: Z oder Photon Austausch im s-Kanal und Neutrinoaustausch im t-Kanal. Erst die Summe aller beteiligten Graphen führt zur endlichen Vorhersage des Standardmodells. Die W^+W^- zerfallen entweder in hadronische Endzustände $(q\bar{q}q\bar{q})$, semileptonische Endzustände $(q\bar{q}l\bar{l})$ oder rein leptonisch $(l\bar{l}l\bar{l})$. Das Verzweigungsverhältnis beträgt näherungsweise 5:4:1 [14].

Paarerzeugung von Leptonen

Selbstverständlich können die Endzustände der e^+e^- Annihilation auch wieder Leptonpaare sein, also entweder e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$ oder Neutrinopaare $\nu\bar{\nu}$. Die Erzeugung von $\mu^+\mu^-$ und $\tau^+\tau^-$ erfolgt dabei sehr ähnlich, wohingegen bei e^+e^- Erzeugung Anfangs- und Endzustand identisch sind, und somit Photon oder Z sowohl im s-, als auch im t-Kanal ausgetauscht werden können.

Paarerzeugung von Quarks

Näherungsweise 70% der Endzustände der e^+e^- Annihilation sind hadronisch, erfolgen also über die $q\bar{q}$ -Erzeugung. Dieser Prozess ist bei LEP Energien in idealer Weise geeignet, Vorhersagen der perturbativen QCD zu testen, da die QCD Skala (bei der die störungstheoretische Reihe nicht mehr erklärt ist) in der Größenordnung von einigen hundert MeV liegt. Im Prozess $e^+e^- \rightarrow$ Hadronen können 4 Stufen unterschieden werden:

• Annihilation von e^+e^- (I)

Elektron und Positron annihilieren und koppeln über den Austausch eines Photons, Z oder eines Higgs an ein Quark-Antiquark Paar. Dieser Prozess wird durch die Elektroschwache Theorie beschrieben.

Abbildung 1.1: Schematische Darstellung des Hadronisierungsprozesses

• Gluonbremsstrahlung und weitere $q\bar{q}$ -Erzeugung (II)

Diese Quarks könne Gluonen abstrahlen; ebenfalls kann es zur erneuten Paarbildung $(g \to q\bar{q})$, bzw. zum Prozess $g \to gg$, kommen.

• Hadronisierung (III)

Dieser Vorgang erfolgt solange, bis die Energie der Partonen gering genug ist, um stabile Bindungszustände einzugehen, nämlich die prinzipiell beobachtbaren Hadronen. Dieser Vorgang ist der perturbativen QCD nicht zugänglich und wird durch phänomenologische Modelle beschrieben.

• Zerfall kurzlebiger Hadronen (IV)

Zahlreiche dieser Hadronen sind jedoch ihrerseits wiederum nur kurzlebig, sodass lediglich ihre Zerfallsprodukte im Detektor nachgewiesen werden können.

1.4 Observable in der e^+e^- Annihilation

Aufgrund des Quark-Confinement erschweren sich experimentelle Tests von Vorhersagen der (störungstheoretischen) QCD natürlich beträchtlich. Gesucht werden Kenngrößen des hadronischen Endzustandes, die Informationen des partonischen Zustandes – etwa seine Topologie – kodieren. Zu diesem Zweck wurden sog. Ereignisformgrößen entwickelt. Eine notwendige Bedingung für ihre Anwendung bei QCD Tests ist dabei offensichtlich, dass für diese Größen endliche Vorhersagen in der störungstheoretischen QCD bestehen. Zwei Quellen von Divergenzen bei der Berechnung von QCD Prozessen sind die Abstrahlung weicher Gluonen, sowie die Emission von Gluonen unter sehr kleinen Winkeln (kollineare Gluonen). Größen, die gegen beide Effekte unempfindlich sind, bezeichnet man auch als infrarot- und kollinearitätssicher. Diese Observablen sind für eine Überprüfung der Theorie im Bereich *hoher* Impulsüberträge und eine Messung der starken Kopplung α_s geeignet.

Eine andere Möglichkeit zur quantitativen Überprüfung von QCD Vorhersagen bietet das Konzept der "Lokalen Parton Hadron Dualität". Danach sollen inklusive Verteilungen auf Parton- und Hadronniveau lediglich durch einen *energieunabhängigen* Normierungsfaktor unterschieden sein. Diese Tests betreffen "infrarot sensitive" Größen und können in diesem Sinne als Überprüfung der QCD für den Bereich *niedriger* Impulsüberträge betrachtet werden.

1.4.1 Ereignisformobservable

Die ersten Jets in der e^+e^- Annihilation wurden 1975 am SPEAR bei einer Schwerpunktsenergie von ca. 7 GeV nachgewiesen[15]. Dies gelang mit Hilfe der Observablen Sphärizität:

$$S = \frac{3}{2} \left[1 - \max_{\vec{n}} \frac{\sum_{i} (\vec{p}_{i} \cdot \vec{n})^{2}}{\sum_{i} \vec{p}_{i}^{2}} \right]$$

wobei die Maximierung sich auf die Wahl des Vektors \vec{n} bezieht, und die Summe über alle Teilchenimpulse eines Ereignisses läuft. Ab der oben erwähnten Schwerpunktsenergie konnte ein charakteristisches Abfallen der Sphärizität verzeichnet werden, wohingegen ihr Wert für eine homogene Impulsverteilung bei Eins liegt.

Da in die Sphärizität die Impulse quadratisch eingehen, ist sie offensichtlich sensitiv für die Aufteilung eines Endzustandes in zwei kollineare Teilchen. Dies bedeutet jedoch, dass es für diese Größe in der perturbativen QCD keine endliche Vorhersage gibt. Deshalb ist die Variable Thrust vorgeschlagen worden:

$$T = \max_{\vec{n}} \left\{ \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|} \right\} = \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{\text{Thrust}}|}{\sum_{i} |\vec{p}_{i}|} \quad .$$
(1.12)

Der Einheitsvektor, der T maximiert, definiert die "Thrustachse" \vec{n}_{Thrust} . Der Wertebereich von T liegt zwischen 0.5 und 1. Den Maximalwert nimmt der Thrust im Falle eines idealen Zweijetereignisses (im Schwerpunktsystem) an. Die Thrustachse weist in diesem Fall also in die Richtung des primär erzeugten Quark-Antiquark Paares. Die Abweichung der typischerweise betrachteten Größe 1 - T von 0 ist somit ein Maß für die Zunahme des Transversalimpulses in der Hadronisierung und den Anteil von Ereignissen mit drei und mehr Jets.

Mit Hilfe des Ausdrucks 1.12 kann auch die Observable Major berechnet werden, nur dass an die Richtung \vec{n}_{Major} zusätzlich die Bedingung $\vec{n}_{\text{Major}} \perp \vec{n}_{\text{Thrust}}$ gestellt wird.

$$M = \max_{\vec{n}} \left\{ \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|} \middle| \vec{n} \perp \vec{n}_{\text{Thrust}} \right\} = \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{\text{Major}}|}{\sum_{i} |\vec{p}_{i}|} \quad .$$
(1.13)

Somit erklären die Richtungen \vec{n}_{Major} und \vec{n}_{Thrust} die Ereignisebene. Man definiert die Observable Minor (m), indem man die obige Summe über den Vektor $\vec{n}_{Minor} = \vec{n}_{Major} \times \vec{n}_{Thrust}$ laufen lässt:

$$m = \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{\text{Minor}}|}{\sum_{i} |\vec{p}_{i}|} \quad . \tag{1.14}$$

Die Observable Oblateness(O) ist erklärt als O = M - m.

Die Ebene senkrecht zur Thrustachse teilt das Ereignis in zwei Hemisphären. Aus Kenngrößen dieser Bereiche lassen sich weitere Ereignisformgrößen definieren. Darauf basiert die Definition der Jetmassen und Jetbreiten. Man definiert die schwere Jetmasse, leichte Jetmasse bzw. Jetmassendifferenz als:

$$M_{high}^2 / E_{vis}^2 = \max(M_+^2, M_-^2) / E_{vis}^2$$
(1.15)

$$M_{low}^2 / E_{vis}^2 = \min(M_+^2, M_-^2) / E_{vis}^2$$
(1.16)

$$M_{diff}^2 / E_{vis}^2 = |M_+^2 - M_-^2| / E_{vis}^2$$
(1.17)

 M_{\pm}^2 ist die invariante Masse der Hemisphären:

$$M_{\pm}^{2} = \left(\sum_{\pm \vec{p_{i}} \cdot \vec{n_{T}} > 0} p_{i}\right)^{2} \quad . \tag{1.18}$$

Dabei bezeichnet p_i den Viererimpuls des Teilchens i. Für störungstheoretische Rechnungen, die keine Masseneffekte berücksichtigen, ist die Ersetzung

$$(E_i, \vec{p_i}) \rightarrow (|\vec{p_i}|, \vec{p_i})$$
 (1.19)

bzw.
$$(E_i, \vec{p_i}) \rightarrow (E_i, E_i \cdot \vec{p_i} / |\vec{p_i}|)$$
 (1.20)

in Gleichung 1.18 jedoch äquivalent. Es zeigt sich, dass diese "masselosen" Definitionen der Jetmassen günstige Eigenschaften bei der Anwendung von potenzartigen Korrekturen zur Berücksichtigung von Hadronisierungseffekten haben [16]. Im Folgenden werden diese alternativen Definitionen als "p-Schema" bzw. "E-Schema" Definition der Jetmasse bezeichnet.

Ähnlich lauten die Definitionen der maximalen–, minimalen–, summierten Jetbreite bzw. Jetbreitendifferenz:

$$B_{\max} = \max(B_+, B_-)$$
 (1.21)

$$B_{\min} = \min(B_+, B_-)$$
 (1.22)

$$B_{\rm sum} = B_+ + B_-$$
 (1.23)

$$B_{\rm diff} = B_{+} - B_{-} \tag{1.24}$$

Die Größe B_{\pm} ist dabei definiert als:

$$B_{\pm} = \left(\sum_{\pm \vec{p_i} \cdot \vec{n_T} > 0} |\vec{p_i} \times \vec{n_T}|\right) / \left(2\sum_i |\vec{p_i}|\right) \quad . \tag{1.25}$$

Der lineare Impulstensor Θ wird zur Definition von Ereignisformvariablen verwendet, die *nicht* auf der Auszeichnung einer Ereignisachse beruhen. Er ist definiert als:

$$\Theta^{ab} = \sum_{i=1}^{n_{\rm spur}} \frac{p_i^a p_i^b}{|\vec{p_i}|} / \sum_{i=1}^{n_{\rm spur}} |\vec{p_i}| \quad \text{mit: } a, b = x, y, z$$
(1.26)

Aus seinen Eigenwerten λ_i definiert man den C- bzw. D-Parameter:

$$C = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3) \tag{1.27}$$

$$D = 27\lambda_1\lambda_2\lambda_3 \tag{1.28}$$

Schließlich kommen wir auf die eingangs erwähnte Sphärizität zurück. Diese kann ebenfalls über den quadratischen Impulstensor definiert werden:

$$M^{ab} = \sum_{i=1}^{n_{\text{spur}}} p_i^a p_i^b \quad \text{mit:} a, b = x, y, z \tag{1.29}$$

Aus seinen Eigenwerten $\Lambda_1 \ge \Lambda_2 \ge \Lambda_3$ definiert man $\lambda_i = \Lambda_i / \sum_j \Lambda_j$. Damit berechnet man schließlich die Größen Sphärizität, Planarität bzw. Aplanarität:

$$S = \frac{3}{2}(\tilde{\lambda}_2 + \tilde{\lambda}_3) \tag{1.30}$$

$$P = \tilde{\lambda}_2 - \tilde{\lambda}_3 \tag{1.31}$$

$$A = \frac{3}{2}\tilde{\lambda}_3 \tag{1.32}$$

Wie bereits erwähnt, sind diese Größen nicht kollinearitätssicher und eignen sich deshalb nicht zur α_s Bestimmung. Sie werden in dieser Arbeit lediglich mit den Vorhersagen von Ereignisgeneratoren verglichen.

Zur α_s Analyse dieser Arbeit werden die Größen Thrust, C-Parameter, schwere Jetmasse (M_h^2/E_{vis}^2) , maximale Jetbreite (B_{max}) sowie die summierte Jetbreite (B_{sum}) verwendet. Alle diese Observablen sind sog. dreijetartige Größen, da drei Partonen notwendig sind, um einen nichttrivialen Wert zu erhalten.

1.4.2 Inklusive Spektren

Inklusive Verteilungen werden, im Gegensatz zu Ereignisformgrößen, spurweise berechnet. Zudem werden in dieser Analyse nur geladene Teilchen berücksichtigt. Die übliche Darstellung des differentiellen Wirkungsquerschnittes in einer inklusiven Größe g lautet $\frac{1}{N} \frac{dn}{dg}$, mit N der Ereignisanzahl und n der Teilchenanzahl. Das Integral über den differentiellen Wirkungsquerschnitt liefert also die geladene Multiplizität.

Skalierter Impuls

Eine der einfachsten Größen dieser Art ist der skalierte Impuls:

$$x_p = \frac{|\vec{p}|}{|\vec{p}_{\text{beam}}|}$$

Diese Skalenvariable misst den Impulsanteil eines Hadron am initialen Quark bzw. Antiquark. Jede Parametrisierung der Fragmentation verwendet ähnliche Bildungen, etwa:

$$z = \frac{(E+p_{\parallel})_{\text{Hadron}}}{(E+p_{\parallel})_{\text{Quark}}}$$
(1.33)

Der skalierte Impuls ist die experimentell zugängliche Größe diesen Typs. Die Größe ξ_p ist prinzipiell nur eine andere Darstellung des skalierten Impulses:

$$\xi_p = \ln \frac{1}{x_p}$$

Mit ihrer Hilfe kann der Bereich kleiner Impulse untersucht werden. Ihre Bedeutung liegt darin, dass für große ξ_p eine Vorhersage in der störungstheoretischen QCD existiert (siehe Abschnitt 1.4.9). Zusammen mit dem Konzept der lokalen Parton Hadron Dualität erlaubt dies einen Test der QCD.

Transversalimpulse und Rapidität

Eine weitere Klasse von inklusiven Verteilungen wird durch die Projektion der Impulse in die Ereignisebene, oder senkrecht zu ihr, erklärt. Zur Definition der Ereignisebene muß jedoch eine Ereignisachse ausgezeichnet werden. Wählt man dafür die Thrustachse, so lauten die entsprechenden Größen:

$$p_{\parallel} = \vec{p} \cdot \vec{n}_{\text{Thrust}} \tag{1.34}$$

$$p_{\perp}^{\rm m} = \vec{p} \cdot \vec{n}_{\rm Major} \tag{1.35}$$

$$p_{\perp}^{\text{out}} = \vec{p} \cdot \vec{n}_{\text{Minor}} \tag{1.36}$$

Schließlich ist die Rapidität definiert als:

$$y = \frac{1}{2} \cdot \ln \frac{E + p_{||}}{E - p_{||}} \tag{1.37}$$

Unter Lorentztransformationen entlang der Ereignisachse gewinnt jedes Teilchen denselben y off-set (mit anderen Worten verhält sich die Rapidität also wie eine nicht-relativistische Geschwindigkeit). Unter Ausnutzung der Beziehung:

$$(E + p_{\parallel})(E - p_{\parallel}) = M^2 + p_{\perp}^2 \equiv M_{\perp}^2$$
 "transversale Masse"

kann die Rapidität auch in der Form:

$$y = \ln \frac{E + p_{\parallel}}{M_{\perp}}$$

geschrieben werden. Der Höchstwert beträgt somit $y_{max} = \ln(E_{\rm CM}/M)$. Der typische Verlauf der differentiellen Rapiditätsverteilung dN/dy zeigt einen flachen Bereich bei niedrigen Werten (Rapiditätsplateau). In ihm gilt offensichtlich $E \gg p_{\parallel}$, und die Energie ist im wesentlichen durch Masse und Transversalimpuls des Teilchens bestimmt. Mit $y \rightarrow y_{\rm max}$ zeigt die Verteilung einen raschen Abfall, denn nur bei wenigen Teilchen wird die Energie durch den Longitudinalimpuls dominiert.

1.4.3 Störungstheoretische Vorhersagen für Ereignisformobservable

Der Prozess $e^+e^- \rightarrow q\bar{q}$ bietet ideale Voraussetzungen für ein Studium der perturbativen QCD. Der Anfangszustand ist vollkommen bekannt, wohingegen etwa in der Lepton-Nukleonstreuung zusätzlich auf die perturbativ nicht berechenbaren Strukturfunktionen geschlossen werden muss. Die charakteristischen Eigenschaften der QCD werden jedoch deutlich, wenn man sie mit der Quantenelektrodynamik (QED) vergleicht:

- Die (perturbative) QCD bietet im Gegensatz zur QED keine Beschreibung der experimentell messbaren Objekte, sondern ist die Theorie der (asymptotisch) freien Quarks und Gluonen. Vor dem Vergleich zwischen theoretischer Vorhersage und experimenteller Messung müssen zusätzliche Annahmen über den Hadronisierungsprozess getroffen werden. Dies geschieht etwa über Monte Carlo Modelle oder theoretisch motivierte potenzartige Korrekturen (siehe dazu den Abschnitt 1.5). Der Bereich der Hadronerzeugung ist dabei prinzipiell der perturbativen QCD verschlossen, da bei geringen Impulsüberträgen die vorausgesetzte Kleinheit des Entwicklungsparameters nicht mehr vorliegt. Einen davon verschiedenen Ansatz bietet die numerische Behandlung der QCD in der Gittereichtheorie.
- Die Kopplung der starken Wechselwirkung ist um ca. einen Faktor 10 größer als in der QED. Die Kenntnis von Termen höherer Ordnung ist also bedeutend wichtiger, und gleichzeitig ist deren Berechnung aufgrund zusätzlich beitragender Graphen schwieriger. Die meisten Observablen sind nur in zweiter Ordnung bekannt.
- Aus der Renormierung der QCD erwächst eine Abhängigkeit der meisten störungstheoretischen Vorhersagen von der unphysikalischen Renormierungsskala (meist mit μ bezeichnet). Obwohl dies im Prinzip auch in

der QED auftritt, ergeben sich deutliche Unterschiede: In der QED wird typischerweise ein MPS³ Renormierungsschema verwendet, bei dem der Pol des vollen Propagators bei der physikalischen Elektronmasse gewählt wird. Dies ist zwar pure Konvention, aufgrund ihrer konsistenten Anwendung ist jedoch die unmittelbare Vergleichbarkeit verschiedener Rechnungen möglich. Die Kopplung kann nun aus dem Vergleich zwischen Experiment und theoretischer Berechnung gewonnen werden. In der QCD ist dieses Vorgehen prinzipiell von der Ordnung der verwendeten Rechnung abhängig. Dieses Problem kann in der QED jedoch umgangen werden, da der Comptonwirkungsquerschnitt im Limes großer Wellenlängen exakt mit dem klassischen Resultat übereinstimmt. Da in der QCD weder Quarkmassen eindeutig erklärt sind, noch ein Analogon zum exakten Comptonwirkungsquerschnitt bekannt ist, gibt hier die Abhängigkeit von der unphysikalischen Renormierungsskala konzeptionell größere Probleme.

1.4.4 Rechnungen in fester Ordnung

Diese Vorhersagen beruhen auf der Berechnung *aller* Feynmangraphen zu einer gegebenen Ordnung in der starken Kopplung. Die in dieser Analyse verwendeten Größen sind in $\mathcal{O}(\alpha_s^2)$ berechnet. Da es sich um dreijetartige Observable handelt, entspricht dies also next-to-leading-order (NLO) Ergebnissen. Die allgemeine Form dieser Vorhersagen für eine Observable y lautet⁴:

$$\frac{1}{\sigma_{tot}}\frac{d\sigma}{dy} = \underbrace{\frac{\alpha_s(\mu)}{2\pi}A(y)}_{LO} + \frac{\alpha_s^2(\mu)}{4\pi^2} \cdot \left[B(y) + \underbrace{A(y) \cdot 2\pi b_0 \ln(\mu^2/Q^2)}_{\mu \text{ Abhängigkeit}}\right]_{NLO} (1.38)$$

mit $b_0 = \beta_0/4\pi$, der Renormierungsskala μ und der Schwerpunktsenergie Q. Die in dieser Analyse verwendeten Koeffizienten A(y) und B(y) liegen auch der Arbeit [17] zu Grunde und wurden mit dem EVENT2 Generator gewonnen. Man beachte, dass die Sensitivität der Messung auf die Renormierungsskala μ nicht aus der Abhängigkeit von α_s stammt. In α_s gehen schließlich nur Verhältnisse (μ^2/Λ^2) ein, mit Λ als dem freien Parameter der Anpassung. Der für die Renormierungsskalenabhängigkeit relevante Term ist der Ausdruck proportional zu $\ln(\mu^2/Q^2)$. Es zeigt sich [17], dass bei einer Wahl von $\mu = Q$ ("physikalische Skala") keine befriedigende Übereinstimmung mit den Daten gewonnen werden kann. Aus diesem Grunde verwendet unsere Analyse die in [17] bestimmten experimentell optimierten Skalen⁵. Deren Werte sind Tabelle 1.2 zu entnehmen.

³momentum point substraction scheme

 $^{^4 {\}rm In}$ diesem Abschnitt bezeichnet y die Observablen 1-Thrust, C–Parameter, schwere Jetmasse bzw. maximale und summierte Jetbreite.

⁵Die Bestimmung der experimentell optimierten Skalen ist vom verwendeten Anpassungs-

Variable	μ_{EOS}^2/Q^2
1-T	0.0033
С	0.0068
M_{h}^{2}/E_{vis}^{2}	0.0036
$B_{\rm max}$	0.0204
$B_{\rm sum}$	0.0092

Tabelle 1.2: Experimentell optimierte Skalen für Anpassung der $\mathcal{O}(\alpha_s^2)$ Vorhersage an Verteilungen aus [17].

Daneben existieren zahlreiche theoretisch motivierte Ansätze zur Festlegung der Renormierungsskala μ . Die wichtigsten sind:

• Prinzip der minimalen Sensitivität (PMS)

Dieses Verfahren basiert auf der Idee, das Renormierungsschema (RS) so zu wählen, dass symbolisch ausgedrückt [21]:

$$\frac{d\mathcal{R}^n}{d(RS)} = 0$$

gilt. Dabei ist \mathcal{R}^n die Vorhersage eines Wirkungsquerschnittes in nter Ordnung Störungstheorie, und RS bezeichnet die Parameter, die die Schemenwahl eindeutig festlegen. In nächstführender Ordnung ist jedes Schema jedoch eindeutig durch die Wahl von μ parametrisiert [21].

• Methode der effektiven Ladung (ECH)

Die Idee dieses Verfahrens besteht darin, dass durch die Schemenwahl alle Terme höherer Ordnung Null gesetzt werden [22]. Dadurch fungiert die Observable selbst (geteilt durch den perturbativen Koeffizienten erster Ordnung) als "effektive Kopplung" bzw. "Ladung". In nächstführender Ordnung lautet diese Bedingung also:

$$B(y) + A(y) \cdot 2\pi b_0 \ln \frac{\mu_{ECH}^2}{Q^2} = 0$$

$$\Leftrightarrow \mu_{ECH} = Q \cdot \exp\left(-\frac{B(y)}{4\pi b_0 A(y)}\right) \quad (1.39)$$

Man beachte, dass μ_{ECH} eine Funktion von A(y) und B(y) ist und dadurch für jeden Wert der Observable eine eigene Skala gefunden wird. Wenn in Arbeit [17] von der ECH Skala einer bestimmten Observablen gesprochen wird, ist

bereich abhängig. Wir verwenden die Skalen aus [17] obwohl unsere Anpassungsbereiche nicht identisch sind. Da die Skalenabhängigkeit nur logarithmisch ist, ist die daraus resultierende Ungenauigkeit klein.

deshalb ein gemittelter Wert gemeint. Da in α_s nur Verhältnisse μ/Λ eingehen, ist es offensichtlich äquivalent, statt an der μ -Skala, folgende Modifikation an Λ vorzunehmen:

$$\Lambda_{ECH} = \Lambda_{\overline{MS}} \cdot \left(\exp \frac{B}{A\beta_0} \right) \tag{1.40}$$

1.4.5 Resummation führender Logarithmen

In der Nähe des Zweijetbereiches sind Rechnungen in fester Ordnung nicht mehr anwendbar. In dieser kinematischen Region tragen Terme in 1/y bei:

$$\frac{1}{\sigma}\frac{d\sigma_n}{dy} \sim \alpha_s^n \frac{1}{y} \ln^{2n-1} \frac{1}{y} \quad , \tag{1.41}$$

bzw. mit dem "kumulierten Wirkungsquerschnitt" $R(y) = \int_0^y dy \frac{1}{\sigma} \frac{d\sigma}{dy}$

$$R_n(y) \sim \alpha_s^n \ln^{2n}(1/y) = \alpha_s^n L^{2n}$$
 . (1.42)

Der Entwicklungsparamter lautet somit $\alpha_s L^2$, sodass dessen Kleinheit (und nicht nur $\alpha_s \ll 1$) notwendige Bedingung für eine störungstheoretische Behandlung ist. Für kleine y Werte (also im Zweijetbereich) ist dies offensichtlich nicht erfüllt.

Eine bestimmte Klasse von Observablen ist dadurch ausgezeichnet, dass diese führenden Logarithmen in allen Ordnungen summiert werden können. Diese Eigenschaft ist an Faktorisierungsbedingungen des Phasenraums geknüpft. Observablen, die sie erfüllen, werden auch als "exponenzierbar" bezeichnet. Die in dieser Analyse verwendeten Größen zur α_s Bestimmung haben alle diese Eigenschaft[18, 19]. Sie gestatten folgende Darstellung für R:

$$R(y) = C(\alpha_s)e^{G(y,\alpha_s)} + D(y,\alpha_s)$$
(1.43)

mit:

$$G(y, \alpha_s) = \sum_{n=1}^{\infty} \sum_{m=1}^{n+1} G_{nm} \bar{\alpha}_s^n L^m$$

= $L \cdot g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \cdots$

Es wurde die Notation $\bar{\alpha_s} = \alpha_s/2\pi$ eingeführt. Die Funktionen g_i summieren die "leading" (~ $\alpha_s^n L^{n+1}$), "next to leading" (~ $\alpha_s^n L^n$) bzw. "subdominaten" (~ $\alpha_s^n L^m$, 0 < m < n) logarithmischen Beiträge. Die Funktion D ("remainder function") verschwindet im Limes $y \to 0$ und wird in der reinen NLLA (next-to-leading-log approximation) vernachlässigt.

Bei Kenntnis der Funktionen g_i kann die perturbative Beschreibung vom Bereich $\alpha_s L^2 \ll 1$ auf $\alpha_s L < 1$ ausgedehnt werden. Bis zur Ordnung α_s^2 können auch die Koeffizienten der Funktion $C(\alpha_s) = 1 + \sum c_n \bar{\alpha}_s^n$ bestimmt werden, sodass man für den kumulierten Wirkungsquerschnitt der NLLA findet:

$$R_{NLLA} = (1 + c_1 \bar{\alpha_s} + c_2 \bar{\alpha_s}^2) e^{(Lg_1 + g_2)}$$
(1.44)

1.4.6 Kombination von $\mathcal{O}(\alpha_s^2)$ +NLLA

Der NLLA Ansatz behauptet eine genauere Beschreibung der Observablen im Zweijetbereich, wohingegen die Abstrahlung harter Gluonen durch Rechnungen in fester Ordnung verlässlicher beschrieben wird. Erstrebenswert ist mithin eine Kombination beider Methoden, um einen möglichst großen kinematischen Bereich abzudecken. Das prinzipielle Vorgehen besteht dabei darin, das NLLA Resultat in α_s zu entwickeln, und die Terme in erster und zweiter Ordnung durch die exakte $\mathcal{O}(\alpha_s^2)$ Vorhersage zu ersetzten. In der technischen Durchführung dieses Programms ergeben sich jedoch Mehrdeutigkeiten hinsichtlich der Behandlung subdominanter Terme. Dies führt zu verschiedenen "matching schemes". Führt man diese Berechnung für den Logarithmus des kumulierten Wirkungsquerschnittes durch ("logR matching") "wird man auf folgenden Ausdruck geführt [18]:

$$\ln(R_{NLLA+\mathcal{O}(\alpha_{s}^{2})}) = L \quad g_{1} + g_{2} \\ + \left[\mathcal{A} - G_{11}L - G_{12}L^{2}\right] \cdot \bar{\alpha_{s}} \\ + \left[\mathcal{B} - \frac{1}{2}\mathcal{A}^{2} - G_{22}L^{2} - G_{23}L^{3}\right] \cdot \bar{\alpha_{s}}^{2}$$
(1.45)

 \mathcal{A} und \mathcal{B} bezeichnen die summierten Koeffizienten der Vorhersage in fester Ordnung.

Da die NLLA Rechnungen an den Grenzen des Phasenraums für harte Gluonabstrahlung nicht notwendig gegen Null gehen, ist die folgende Modifikation vorgeschlagen worden⁶[18]:

$$L = \ln\left(\frac{1}{y}\right) \to L' = \ln\left(\frac{1}{y} - \frac{1}{y_{max}} + 1\right) \tag{1.46}$$

Dabei ist y_{max} der kinematische Grenzwert der Observable. Ursprünglich wurde für diesen Wert das Vierjetlimt verwendet (erste Spalte in Tabelle 1.3). Aufgrund einer Übereinkunft der LEP QCD Arbeitsgruppe wird nun der Maximalwert gemäß Simulation mit dem Pythia Generator gewählt. Diese Werte sind ebenfalls Tabelle 1.3 zu entnehmen.

Die Renormierungsskalenabhängigkeit der kombinierten Theorie ist durch folgende Relationen gegeben:

$$g_{2}(x, \mu^{2}) = g_{2}(x, Q^{2}) + \beta_{0}x^{2}g_{1}(x)\ln\mu^{2}/Q^{2}$$

$$\mathcal{B} = \mathcal{B} + 2\pi\beta_{0}\mathcal{A}\ln\mu^{2}/Q^{2}$$

$$G_{21} = G_{21} + 2\pi\beta_{0}G_{11}\ln\mu^{2}/Q^{2}$$

$$G_{22} = G_{22} + 2\pi\beta_{0}G_{12}\ln\mu^{2}/Q^{2}$$

 $^{^{6}}$ dementsprechend wird bei Verwendung von L' von "modifiziertem logR matching" gesprochen. In unserer Analyse wird diese Modifikation auch bei der reinen NLLA Vorhersage angewendet.

Variable	Vierjetlimit	y_{max}
1-T	0.42	0.50
С	0.96	1.00
M_h^2/E_{vis}^2	0.42	0.47
$B_{\rm max}$	0.32	0.35
B_{sum}	0.40	0.41

Tabelle 1.3: Vierjetgrenzen und y_{max} Werte die in dieser Analyse verwendet werden.

Die ursprüngliche Hoffnung einer im Vergleich zu den Rechnungen in fester Ordnung reduzierten μ Abhängigkeit hat sich dabei nicht bestätigt. Damit bleibt das Problem der Skalenwahl auch hier drängend. Aus konzeptionellen Gründen ist eine zum Beispiel experimentelle Optimierung jedoch problematisch: Die Skala μ hat in NLLA bzw. $\mathcal{O}(\alpha_s^2)$ Rechnungen eine unterschiedliche Bedeutung. Während sie in einer Rechnung fester (nächstführender) Ordnung eine Parametrisierung des Renormierungsschemas liefert, fehlt ihr diese Eigenschaft in der resummierten Theorie. Aus diesem Grund wird in dieser Analyse die konventionelle Wahl $\mu = Q$ vorgenommen. Dementsprechend findet sich eine systematische Diskrepanz zwischen Daten und $\mathcal{O}(\alpha_s^2)$ +NLLA Vorhersage [17]. Dieser Befund wird in jüngster Zeit durch die Arbeiten [20] unterstützt. Diese Autoren haben formal subdominante aber numerisch große Beiträge identifiziert, die in der herkömmlichen NLLA Resummation vernachlässigt werden.

Ebenfalls im Zuge der Diskussionen der LEP QCD Arbeitsgruppe wurde darauf hingewiesen [23], dass zahlreiche (und formal gleichberechtigte) Möglichkeiten bestehen, die Phasenraumbedingung zu erfüllen. Etwa kann L ebensogut durch die folgenden Ausdrücke ersetzt werden:

$$L_p = \frac{1}{p} \ln \left(\frac{1}{y^p} - \frac{1}{y^p_{max}} + 1 \right)$$
(1.47)

$$L_X = \ln\left(\frac{1}{X \cdot y} - \frac{1}{X \cdot y_{max}} + 1\right) \tag{1.48}$$

Dabei sind p bzw. X im Prinzip beliebige Konstanten. Ihre Variation induziert formal nur subdominante Beiträge, sodass theoretisch keine Wahl ausgezeichnet ist. Die numerischen Effekte dieser Modifikationen sind jedoch beträchtlich. Die Variation der X-Skala hat dabei ebenfalls Einfluss auf die G_{ij} Koeffizienten:

$$G_{21}^X = G_{21} + 2G_{22} \ln X + 3G_{23} \ln^2 X$$

$$G_{22}^X = G_{22} + 3G_{23} \ln X$$

Bei der Diskussion der theoretischen Fehler werden wir auf die alternativen Definitionen des modifizierten logR matching zurückkommen.

1.4.7 Die Renormierugsgruppen invariante (RGI) Störungstheorie

In Anbetracht der Ambiguitäten störungstheoretischer Rechnungen für einen Wirkungsquerschnitt \mathcal{R} in Folge der Renormierung, haben A. Dhar und V. Gupta [24] die Frage adressiert, ob nicht für andere Größen Renormierungsschemen unabhängige Vorhersagen getroffen werden können. Tatsächlich identifizieren sie statt \mathcal{R} , die logarithmische Ableitung $dR/d \log Q$ als solch ein Objekt. Dabei ist $R = \mathcal{R}/A$, mit A dem Koeffizient führender Ordnung, wenn \mathcal{R} in Potenzen von α_s/π entwickelt wird, und \mathcal{R} eine inklusive Größe, die nur von einer äußeren Skala abhängt. Dhar und Gupta zeigen, dass folgende Beziehung gilt:

$$Q\frac{dR}{dQ} = b\rho(R) = -R^2(1+\rho_1 R + \rho_2 R^2 + \cdots)$$
(1.49)

Die ersten Koeffizienten ρ_i lauten:

$$b = \frac{\beta_0}{2} , \qquad \rho_1 = \frac{\beta_1}{2\beta_0} ,$$

$$\rho_2 = \frac{\beta_2}{32\beta_0} + \frac{C}{4A} - \frac{B}{2A}\frac{\beta_1}{32\beta_0} - \left(\frac{B}{2A}\right)^2 .$$

Diese Koeffizienten sind *invariant* unter Renormierungsschemenwahl bzw. können bereits aus der unrenormierten Theorie gewonnen werden [24]. Für die Skalenabhängigkeit von R^{-1} ergibt sich folgender einfache Ausdruck:

$$Q\frac{dR^{-1}}{dQ} = \frac{\beta(R)}{R^2} = \frac{\beta_0}{2} \left[1 + \frac{\beta_1}{2\beta_0}R + \cdots \right] \quad . \tag{1.50}$$

Bei der Lösung von Gleichung 1.49 tritt als Integrationskonstante die Skala Λ_R auf. Die *implizite* Gleichung für R lautet damit:

$$b\ln\frac{Q}{\Lambda_R} = \frac{1}{R} - \rho_1\ln\left(1 + \frac{1}{\rho_1 R}\right) + \int_0^R dx \left(\frac{1}{\rho(x) + \frac{1}{x^2(1+\rho_1 x)}}\right)$$
(1.51)

Das schemen**un**abhängige aber observablen**ab**hängige Λ_R kann in die Skala $\Lambda_{\overline{MS}}$ umgewandelt werden [25]:

$$\Lambda_{\overline{MS}} = \Lambda_R \cdot \left(\exp \left(-\frac{B}{A\beta_0} \right) \cdot \left(\frac{2\beta_1}{\beta_0^2} \right)^{\beta_1/\beta_0^2} \right)$$
(1.52)

Diese Relation hängt eng mit Beziehung 1.40 zusammen. Der erste Term ist identisch, während der zusätzliche Ausdruck $\left(\frac{2\beta_1}{\beta_0^2}\right)^{\beta_1/\beta_0^2}$ lediglich eine abweichende Definition der Λ Skala reflektiert (siehe dazu auch Gleichung 1.10). Daraus erkennt man, dass numerisch RGI und ECH übereinstimmen. Auf der

Ebene der α_s Messung stellt das RGI Verfahren also nur eine spezielle Schemenwahl dar und ist dadurch konzeptionell den anderen Verfahren *nicht* überlegen. Bezüglich der Messung der β Funktion nach Gleichung 1.50 hingegen liegt eine QCD Vorhersage vor, die frei von jeder Schemenabhängigkeit ist!

Bereits in ρ_2 geht jedoch der im allgemeinen unbekannte Koeffizient dritter Ordnung C ein. Damit ist ein Test der RGI Störungstheorie, etwa für Mittelwerte von Ereignisformobservablen, ebenfalls nur in zweiter Ordnung möglich. In Abschnitt 1.5.2 gehen wir zudem auf die Möglichkeit ein, durch potenzartige Korrekturen Hadronisierungseffekte in die RGI Methode zu integrieren.

1.4.8 Theoretische Fehler der QCD Vorhersagen

Die in diesem Abschnitt vorgestellten störungstheoretischen Vorhersagen der QCD sind durch die Vernachlässigung von Termen mit theoretischen Fehlern behaftet. Aus demselben Grund verbleibt auch die Renormierungsskalenabhängigkeit dieser Rechnungen. Einzig die Messung der β Funktion mit Hilfe der RGI Störungstheorie ist von dieser Ambiguität frei. Das konventionelle Verfahren zur Abschätzung des theoretischen Fehlers besteht deshalb darin, die Anpassung für verschiedene μ Werte zu wiederholen, und die sich daraus ergebende mittlere Abweichung in α_s als theoretischen Fehler aufzufassen. Der Bereich dieser μ Variation wird jedoch durch keine theoretischen Argumente eingeschränkt, sondern beruht auf Konvention.

An dieser Methode sind (mindestens) zwei Kritikpunkte anzubringen:

- Der Skalenfehler ist nach diesem Verfahren mit α_s positiv korreliert. Die Mittelung der α_s Ergebnisse verschiedener Observablen bzw. Experimente wird deshalb zu kleinen α_s Werten tendieren, sobald der Skalenfehler eine dominante Fehlerquelle darstellt.
- Innerhalb der LEP QCD Arbeitsgruppe haben Theoretiker darauf hingewiesen [26], dass Ereignisformgrößen, die nur in einer Hemisphäre berechnet werden, in der Resummation weniger vertrauenswürdige Ergebnisse liefern. Die Zuordnung weicher Gluonen zu einzelnen Hemisphären liefert hier Ambiguitäten. Diese Ungenauigkeit ist zwar zum jetzigen Zeitpunkt nicht quantifizierbar, das Verfahren zur Abschätzung des theoretischen Fehlers sollte sich jedoch nicht in offensichtlichem Widerspruch zu diesem Befund stellen. Der Fehler aus Skalenvariation hat aber gerade die Eigenschaft, der schweren Jetmasse und vor allem B_{max} den kleinsten Fehler zuzuordnen ("ranking problem").

Für die $\mathcal{O}(\alpha_s^2)$ +NLLA Theorie ist deshalb in der LEP QCD Arbeitsgruppe eine neue Definition des theoretischen Fehlers entwickelt worden. Diese basiert auf der X-Skalenvariation (siehe Gleichung 1.48). Die Anpassung wird für X = 1/3 und X = 3/2 wiederholt, und die mittlere Abweichung in α_s als theoretischer Fehler gewählt. Diese Anpassung erfolgt an die Theorievorhersagen (modifiziertes logR matching mit X = 1) mit festem⁷ α_s , um die positive Korrelation mit dem Zentralwert zu vermeiden. Die daraus resultierenden Unsicherheiten bei 91.2 GeVsind Tabelle 1.4 zu entnehmen. Für die NLLA Vorhersage wurde derselbe Fehler gewählt.

Durch diese Definition werden die Unsicherheiten von B_{max} und M_h^2/E_{vis}^2 zwar größer, das "ranking problem" bleibt jedoch bestehen. Seine Lösung ist auch mit einem Fehler aus der X-Skalen Variation nur möglich, wenn die Intervalle dieser Variation observablenabhängig gewählt werden. In der LEP QCD Arbeitsgruppe wurden zwar verschiedene derartige Ansätze diskutiert, eine Einigung scheiterte jedoch an der fehlenden soliden theoretischen Begründung dieser Intervalle.

Für die theoretischen Vorhersagen in fester Ordnung, sowie die α_s Messung aus Mittelwerten, wird weiterhin der Theoriefehler durch $x_{\mu} = \mu_R/Q$ Variation abgeschätzt ($0.5 \leq x_{\mu} \leq 2$). Zur Vermeidung der Korrelation mit dem Zentralwert der Messung werden dabei ebenfalls nicht die *Daten*, sondern die *Theorievorhersagen* bei festem α_s Wert angepasst. Zudem genügt es dies bei einer Referenzskala zu tun, und diesen Fehler zu den anderen Energien zu propagieren. Die Vorschrift zur Propagation eines bei der Energie E_1 gewonnenen Fehlers zur Energie E_2 lautet dabei⁸:

$$\Delta(E_2) = \Delta(E_1) \cdot \left(\frac{\alpha_s(E_2)}{\alpha_s(E_1)}\right)^3 \tag{1.53}$$

Mit dieser Beziehung werden auch die logR und NLLA Theoriefehler zu anderen Energien propagiert. Die Theoriefehler der $\mathcal{O}(\alpha_s^2)$ Vorhersage aus Skalenvariation, sowie für α_s aus Mittelwerten, sind Tabelle 1.4 zu entnehmen.

1.4.9 Das Konzept der lokalen Parton Hadron Dualität

Das Konzept der lokalen Parton Hadron Dualität (LPHD) behauptet die Proportionalität von berechneten partonischen und gemessenen hadronischen Impulsverteilungen [27, 28]. Hadronisierungseffekte werden in diesem Ansatz also lediglich durch die Normierung berücksichtigt. Da inklusive Spektren jedoch

 $^{^7\}mathrm{Als}\ \alpha_s$ Wert wird dabei das *Ergebnis* der Mittelung gewählt. Das Verfahren seiner Bestimmung ist also iterativ.

⁸Die Propagation erfolgt $\propto \alpha_s^3$, und nicht – wie man naiv erwarten würde – mit Hilfe der β Funktion. Der Grund dafür ist, dass theoretische Fehler einer NLO Vorhersagen den NNLO Term betreffen.

Variable	$\pm \Delta^{\log R}_{\text{theo}}$	$\pm \Delta_{\rm theo}^{NLLA}$	$\pm \Delta_{\text{theo}}^{\mathcal{O}(\alpha_s^2)}$	$\pm \Delta_{\rm theo}^{\rm means}$
1-T	0.0060	0.0060	0.0040	0.0051
С	0.0057	0.0057	0.0044	0.0039
M_{h}^{2}/E_{vis}^{2}	0.0048	0.0048	0.0040	0.0029
$B_{\rm max}$	0.0051	0.0051	0.0018	0.0044
B_{sum}	0.0073	0.0073	0.0068	0.0037

Tabelle 1.4: Fehler der Observablen bei 91.2 GeV für die verschiedenen Methoden der α_s Bestimmung. Die Unsicherheiten bei LEP2 Energien wurden durch Anwendung der Gleichung 1.53 gewonnen.

nicht infrarotsicher sind, muss deren Berechnung (etwa in der MLLA⁹ Näherung), neben der QCD Skala Λ_{eff} , einen Abschneideparamter Q_0 für den partonischen Verzweigungsprozess enthalten. Dessen Größe sollte im Bereich der Masse der betrachteten Hadronen liegen. Das sog. "limited spectrum" [27] gewinnt man durch Gleichsetzen dieser beiden Größen ($\Lambda_{\text{eff}} = Q_0$).

Diese Vorhersagen betreffen den Bereich kleiner Impulse, testen also die QCD in der kinematische Region, in der Hadronisierung und Resonanzzerfälle stattfinden. Daraus folgt, dass diese Beschreibung nur phänomenologisch aufzufassen ist.

Die Energieabhängigkeit der ξ_p Verteilung

In der limited spectrum Näherung kann die ξ_p Verteilung durch eine Gaussverteilung mit höheren Momenten angenähert werden [28]:

$$\frac{dN}{d\xi_p} = \frac{N(Y)}{\sigma\sqrt{2\pi}} \exp\left(\frac{k}{8} - \frac{s\delta}{2} - \frac{(2+k)\delta^2}{4} + \frac{s\delta^3}{6} + \frac{k\delta^4}{24}\right) \tag{1.54}$$

mit: $Y = \ln(E_{\text{beam}}/\Lambda_{\text{eff}})$, sowie $\delta = \frac{\xi - \langle \xi \rangle}{\sigma}$ ($\langle \xi \rangle$ bezeichnet das Maximum der Verteilung in führender Ordnung).

Fong und Webber haben $\langle \xi \rangle$, die Breite σ , die Schräge *s* sowie die Kurtosis *k* unter Berücksichtigung nächstführender Korrekturen berechnet [29]. Mit $\beta = 11 - 2n_f/3$, $\rho = 11 + 2n_f/27$ und $\omega = 1 + n_f/n_c^3$ findet man für Quarkjets:

$$\begin{aligned} \langle \xi \rangle &= \frac{1}{2} Y \left(1 + \frac{\rho}{24} \sqrt{\frac{48}{\beta Y}} \right) \cdot \left(1 - \frac{\omega}{6Y} \right) + \mathcal{O}(1) \\ \sigma &= \sqrt{\frac{Y}{3}} \cdot \left(\frac{\beta Y}{48} \right)^{1/4} \cdot \left(1 - \frac{\beta}{64} \sqrt{\frac{48}{\beta Y}} \right) \cdot \left(1 + \frac{\omega}{8Y} \right) + \mathcal{O}(Y^{-1/4}) \end{aligned}$$

⁹modified leading log approximation

$$s = -\frac{\rho}{16}\sqrt{\frac{3}{Y}} \cdot \left(\frac{48}{\beta Y}\right)^{1/4} \cdot \left(1 + \frac{\omega}{4Y}\right) + \mathcal{O}(Y^{-5/4})$$

$$k = -\frac{27}{5Y}\left(\sqrt{\frac{\beta Y}{48}} - \frac{\beta}{24}\right) \cdot \left(1 + \frac{5\omega}{12Y}\right) + \mathcal{O}(Y^{-3/2})$$

$$(1.55)$$

Diese Ausdrücke sind Funktionen von Y, und damit des effektiven Skalenparameters. Als freie Parameter verbleiben weiterhin die Multiplizität N(Y) sowie der Korrekturterm $\mathcal{O}(1)$ für $\langle \xi \rangle$. Diese Verteilung besitzt ein ausgeprägtes Maximum ("hump backed Plateau"), da aufgrund destruktiver Interferenz der Gluonen lediglich Bremsstrahlung unter immer kleineren Winkeln möglich ist. Dadurch wird die Produktion weicher Teilchen unterdrückt. Diese "Winkelordnung" der Gluonen stellt einen der klassischen Kohärenzeffekte der QCD dar.

Die Energieabhängigkeit von ξ^*

Eine besonders einfache Form nimmt die MLLA/LPHD Vorhersage für die Energieentwicklung des Maximums der ξ_p Verteilung (ξ^*) an. Für diese gilt auf der oben erwähnten Grundlage:

$$\xi^*(Y) = 0.5 \cdot Y + \sqrt{C} \cdot \sqrt{Y} - C + \mathcal{O}(Y^{-\frac{3}{2}})$$
(1.56)
mit: $C = \frac{\rho^2}{48\beta}$

C hat also einen Wert von 0.2915 für drei aktive Flavour. Diese Anzahl erscheint sinnvoll, da die leichten Quarks die Paarproduktion in der Partonkaskade dominieren. Mit wachsender Energie verschiebt sich das Maximum gemäß dieser Vorhersage also zu größeren ξ_p -Werten bzw. kleineren Impulsen. Eine Abnahme der Zählraten bei großen Impulsen erwartet man selbstverständlich auch auf der Grundlage eines reinen Phasenraummodells [30], da sich der Impuls auf eine immer größere Zahl von Endzuständen verteilt. Sie würde in diesem Fall jedoch bei Energien auftreten, die proportional zur Teilchenmasse sind, also $x_p \sim m/E_{CM}$. Die Variation von ξ^* mit der Energie würde sich demnach wie ln E_{CM} verhalten. Die Vorhersage dieses inkohärenten Parton Schauer Modells kann somit durch folgenden funktionalen Zusammenhang mit der Energie ausgedrückt werden [31]:

$$\xi^*(Y) = Y + b \tag{1.57}$$

Dieser Anstieg ist stärker als im kohärenten Parton Schauer Szenario, da hier die Abstrahlung weicher Gluonen nicht der Winkelordnung unterliegt.
1.5 Hadronisierung

Alle störungstheoretischen Vorhersagen der QCD beziehen sich auf asymptotisch freie Quarks und Gluonen, wohingegen im Experiment nur farbneutrale Hadronen beobachtet werden. Der *Hadronisierung* genannte Übergang zwischen diesen beiden Phasen entzieht sich aus prinzipiellen Gründen der perturbativen Behandlung. Er kann jedoch mit Hilfe phänomenologischer Annahmen modelliert werden. Die Bedeutung der daraus entwickelten Ereignisgeneratoren ist dabei mindestens zweifach: Zum Einen ist eine Simulation des hadronischen Endzustandes und von Detektoreffekten zur Akzeptanz- und Untergrundkorrektur der Daten von entscheidender Bedeutung. Zum Anderen kann die Simulation des Hadronisierungsprozesses verwendet werden, um in einer Faltung mit der perturbativen Rechnung eine komplette Vorhersage für den hadronischen Endzustand zu gewinnen.

Im folgenden Abschnitt werden die grundlegenden Konzepte der Ereignisgeneratoren kurz vorgestellt. In Abschnitt 1.5.2 folgt eine Diskussion der sog. potenzartigen Korrekturen, die eine analytische Methode zur Berücksichtigung von Hadronisierungseffekten darstellen.

1.5.1 Ereignisgeneratoren

Die erste Phase der e^+e^- Annihilation wird gemäß der elektroschwachen Theorie unter Berücksichtigung von Strahlungskorrekturen implementiert. Die Behandlung der zweiten Phase ist der perturbativen QCD zugänglich, und sog. Matrix Element (ME) Monte Carlo verwendet hierzu die Ergebnisse in fester Ordnung Störungstheorie. Da jedoch vollständige Rechnungen aller beteiligten Prozesse nur in zweiter Ordnung vorliegen, kann auf diese Weise nur eine maximale Multiplizität von vier *Partonen* erzielt werden. Eine Beschreibung der Daten bei verschiedenen Energien setzt hier eine erneute Anpassung der Modellparameter voraus. Aus diesem Grund werden bei LEP2 in der Regel Partonschauer Generatoren verwendet. Diese berücksichtigen nur logarithmisch führende Terme. Durch die Wahl eines geeigneten Entwicklungsparameters wird ein probalistisches Bild des Vorgangs aufrecht erhalten. Der Impuls wird unter den Quarks und Gluonen gemäß der Altarelli-Parisi Gleichung [33] aufgeteilt:

$$\frac{dP_{a\to bc}}{dt} = \int \frac{\alpha_s(Q^2)}{2\pi} P_{a\to bc}(z) dz$$

Für die sog. "splitting kernels" gilt:

$$P_{q \to qg} = C_F \frac{1+z^2}{1-z}$$

$$P_{g \to gg} = N_C \frac{(1 - z + z^2)^2}{z(1 - z)}$$
$$P_{g \to q\overline{q}} = T_R(z^2 + (1 - z)^2)$$

mit $t = ln(Q^2/\Lambda^2)$, $C_F = 4/3$, $N_C = 3$ und $T_R = n_f/2$. Tochterparton b erhält den Bruchteil z, und Tochterparton c den Anteil (1-z) einer geeignet zu wählenden Impulsvariablen. In der genauen Definition dieser Größe unterscheiden sich die verschiedenen Generatoren [34]. Die Integration über z wird erst ab einem Abschneideparameter Q_0 durchgeführt, der als fiktive Gluonmasse interpretiert werden kann. Dadurch werden die Infrarotsingularitäten der *splitting kernel* umgangen.

Zusätzlich können Kohärenzeffekte berücksichtigt werden, wie etwa die Winkelordnung der Gluonbremsstrahlung. Der gesamte Prozess erfolgt bis zu einer minimalen Virtualität Q_0 der Partonen in der Größenordnung von einem GeV.

Ein abweichendes Verfahren zur Vielteilchenerzeugung besteht darin, jedes Paar farbgeladener Partonen als Farbdipol aufzufassen, anstatt (wie bisher beschrieben) jedes Parton als unabhängige Farbladungsquelle zu behandeln [35]. Eine Reihe von Kohärenzeffekten wird bei diesem Ansatz automatisch berücksichtigt. Diese Idee liegt dem ARIADNE Generator zu Grunde.

Zur Beschreibung der eigentlichen Hadronerzeugung schließlich stehen phänomenologische Modelle zur Verfügung, da die Störungsentwicklung nur bei hohen Impulsüberträgen erklärt ist. Populär ist das LUND Modell [36, 37]. In ihm wird die Hadronisierung durch die Dynamik eines String beschrieben, der sich im Partonschauer zwischen den farbgeladenen Quarks und Gluonen Partonen ausbildet. Dieses Konzept ist QCD-motiviert, da sich aufgrund der Gluon-Selbstkopplung die Farbfeldlinien zu einer Flussröhre zusammenziehen. Harte Gluonen werden durch eine Schlaufe in diesem String beschrieben. Sie tragen zwei Farbindizes und sind mit einem Quark und Antiquark verbunden. Unter der Annahme, dass dieser String eine konstante Energie pro Einheitslänge aufweist, erwartet man einen linearen Anstieg des QCD Potentials mit dem Abstand. Gitterrechnungen stützen dieses Szenario, und für die "Saitenspannung" wird typischerweise ein Wert in der Größenordnung von $\kappa \approx 1 \text{ GeV/fm}$ $(\approx 0.2 \text{ GeV}^2)$ gewählt. Ab einem gewissen Abstand bricht dieser String auf, wobei neue Quark-Antiquark Paare erzeugt werden. Dieser Mechanismus der Hadronerzeugung wird bei den Generatoren JETSET/PYTHIA und ARIAD-NE angewendet.

Ein alternativer Ansatz, welcher ohne Fragmentationsfunktionen und spezielle Annahmen über die Erzeugung von Transversalimpulsen auskommt, ist das "Cluster-Modell" der Hadronisierung. In ihm werden am Ende der perturbativen Phase alle Gluonen in Quark-Antiquark Paare aufgespalten, die sich dann nach Nähe im Phasenraum zu farbneutralen Zuständen verbinden ("preconfinement"). Diese farbneutralen Cluster zerfallen dann im wesentlichen isotrop in je zwei beobachtbare Hadronen. Dieses Konzept der Hadronisierung liegt dem HERWIG Modell zu Grunde.

Der Zerfall der kurzlebigen Hadronen schließlich wird in den Ereignisgeneratoren mit Hilfe experimentell bestimmter Verzweigungsverhältnisse implementiert.

1.5.2 Potenzartige Korrekturen

Die Berücksichtigung der Hadronisierung durch potenzartige Korrekturen geht auf jüngere theoretische Entwicklungen zurück, und ist von phänomenologischen Ereignisgeneratoren unabhängig. Nach Dokshitzer und Webber lässt sich der Mittelwert einer Ereignisformgröße f darstellen als [38]:

$$\langle f \rangle = \langle f_{\text{pert}} \rangle + \langle f_{\text{pow}} \rangle \quad , \tag{1.58}$$

wobei der perturbative Anteil in 2. Ordnung geschrieben werden kann als:

$$\langle f_{\text{pert}} \rangle = A_f \frac{\alpha_s(\mu)}{2\pi} + \left(A_f \cdot 2\pi b_0 \ln \frac{\mu^2}{E_{\text{cm}}^2} + (B_f - 2A_f) \cdot \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \quad (1.59)$$

Die Koeffizienten A_f und B_f können in der Störungstheorie berechnet werden und sind in 1.5 tabelliert. Der Term $-2A_f$ berücksichtigt den Unterschied zwischen totalem und Bornwirkungsquerschnitt in der Definition der perturbativen Koeffizienten. Die potenzartige Korrektur hat die Form:

$$\langle f_{\rm pow} \rangle = c_f \mathcal{P} \tag{1.60}$$

Während \mathcal{P} eine universelle Funktion ist, hängt c_f von der betrachteten Observablen ab. Es gilt:

$$\mathcal{P} = \frac{4C_F}{\pi^2} \mathcal{M} \frac{\mu_I}{E_{\rm CM}} \left[\alpha_0 - \alpha_s(\mu) - \left(b_0 \ln \frac{\mu^2}{\mu_I^2} + \frac{K}{2\pi} + 2b_0 \right) \alpha_s^2(\mu) \right].$$
(1.61)

Dabei ist μ_I die sog. "infrared matching scale", die nach [38] zu 2 GeV gewählt wird. Unterhalb dieser Skala wird eine mittlere Kopplung α_0 angenommen. Es gilt also:

$$\alpha_0(\mu_I) = \frac{1}{\mu_I} \int_0^{\mu_I} \alpha_s^{\rm NP}(k) dk \quad . \tag{1.62}$$

Der Index NP deutet an, dass über die nicht-perturbative Kopplung integriert wird. Der Milanfaktor \mathcal{M} hat für drei aktive Flavour den Wert 1.49 und modifiziert die ursprüngliche Power Korrektur um Effekte aus Zweischleifenrechnungen [39]. Ferner ist $K = (67/18 - \pi^2/6)C_A - 5N_f/9$. Der Faktor c_f ist von der betrachteten Observablen abhängig. Die verwendeten Werte für die Koeffizienten A, B und c_f sind Tabelle 1.5 zu entnehmen. Für die Jetbreiten haben die c_f eine komplexere Gestalt [40]:

$$c_f = c_B \left(\frac{\pi \sqrt{c_B}}{2\sqrt{C_F \alpha_s (1 + K\frac{\alpha_s}{2\pi})}} + \frac{3}{4} - \frac{\beta_0 c_B}{6C_F} + \eta_0 \right)$$
(1.63)

Die Größe c_B ist 0.5 und 1 für $\langle B_{\text{max}} \rangle$ bzw. $\langle B_{\text{sum}} \rangle$, $\eta_0 = -0.6137$. Im Gegensatz zu den anderen Observablen ist hier c_f also keine Konstante.

Variable	A_f	B_f	c_f
$\langle 1 - T \rangle$	2.103	44.99	2
$\langle C \rangle$	8.638	146.8	3π
$\langle M_h^2/E_{vis} \rangle$	2.103	23.24	1
$\langle B_{\rm max} \rangle$	4.066	-9.53	Gleichung 1.63
$\langle B_{\rm sum} \rangle$	4.066	64.24	Gleichung 1.63

Tabelle 1.5: A und B Koeffizienten für die Entwicklung in $\alpha_s/2\pi$, sowie Werte für die Observablenabhängige Größe c_f .

Neben α_s hängen diese Vorhersagen also vom nicht-perturbativen Parameter α_0 ab, der etwa aus einer Anpassung an Daten über ein großes Energieintervall gewonnen werden kann. Der so ermittelte Wert für α_0 soll nach [38] universell sein und bei ≈ 0.5 liegen. Ist dieser Parameter festgelegt, kann für jeden Mittelwert α_s berechnet werden.

Es muss betont werden, dass für die potenzartigen Korrekturen nach Dokshitzer et al. die Schemenabhängigkeit nicht parametrisiert ist. Sie werden in \overline{MS} angegeben, weshalb auch der störungstheoretische Teil der Vorhersage 1.58 in diesem Schema ausgewertet werden muss. Schon aus diesem Grund leuchtet ein, dass die Größe der Potenzkorrektur nicht nur die Wirkung der *nichtperturbativen* Hadronisierung reflektiert, sondern ebenfalls den *perturbativen* Effekt fehlender höherer Ordnungen im \overline{MS} Schema.

Potenzartige Korrekturen im RGI Verfahren

Die in Abschnitt 1.4.7 vorgestellte Renormierungsschemen-invariante Methode trifft – wie jede Störungstheorie – nur Vorhersagen auf Partonniveau. Es können jedoch potenzartige Korrekturen angebracht werden [41], die, ähnlich wie im letzten Abschnitt beschrieben, nichtperturbative Anteile berücksichtigen. Nach [42] erfolgt dies durch folgende Modifikation der ρ -Funktion:

$$\rho(x) \to \rho'(x) = \rho(x) - \frac{K_0}{b} x^{\beta_1/\beta_0^2} \exp\left(-\frac{2}{\beta_0 x}\right)$$
(1.64)

Dabei ist K_0 ein freier Parameter, der die Größe der Potenzkorrektur steuert. Die Bezeichnung "potenzartige Korrektur" ist insofern gerechtfertigt, als die Wirkung der Modifikation 1.64 näherungsweise einer Korrektur C_1/Q mit $C_1 \sim K_0$ entspricht [42].

1.6 Physik jenseits des Standardmodells

Es wurde bereits die Skalenabhängigkeit aller Parameter (Massen, Kopplungen und Feldnormierungen) der Lagrangedichte in Folge der Renormierung erwähnt. Die genaue Form dieser Skalenabhängigkeit hängt vom Teilcheninhalt der Theorie ab. Dadurch gibt die Messung dieses Effekts Sensitivität auf Theorien jenseits des Standardmodells, die einen modifizierten Teilcheninhalt aufweisen. Zusätzlich kann in diesem Zusammenhang studiert werden, welche Theorien eine Vereinheitlichung aller Eichkopplungen erlauben. Im Folgenden soll dieser Punkt genauer diskutiert werden.

Die drei Eichkopplungen des Standardmodells haben die folgende Form:

$$\alpha_1 = \frac{5}{3} \frac{g^2}{4\pi} = \frac{5\alpha}{3\cos^2\theta_W}$$
(1.65)

$$\alpha_2 = \frac{g^2}{4\pi} = \frac{\alpha}{\sin^2 \theta_W} \tag{1.66}$$

$$\alpha_3 = \frac{g_s}{4\pi} \tag{1.67}$$

Dabei ist α die elektromagnetische Feinstrukturkonstante und θ_W der elektroschwache Mischungswinkel. α_3 entspricht α_s in der bisherigen Bezeichnungsweise. Mit den Werten aus [43]:

$$\begin{aligned} \alpha^{-1}(M_Z) &= 128.978 \pm 0.027 \\ \sin^2 \theta_W &= 0.23146 \pm 0.00017 \\ \alpha_s(M_Z) &= 0.1184 \pm 0.0031 \end{aligned}$$

wird man auf folgende Werte für die α_i bei M_Z geführt:

$$\alpha_1 = 0.017$$

 $\alpha_2 = 0.034$

 $\alpha_3 = 0.118$

Die obigen Werte sind der üblichen Konvention folgend im \overline{MS} Schema angegeben. Für Tests einer Vereinheitlichung der Kopplungen ist es jedoch sinnvoll, das sogenannte "dimensional regularization" Schema \overline{DR} zu verwenden, da in ihm alle Massenschwellen als einfache Stufenfunktionen behandelt werden [43]. Die Umrechnung erfolgt gemäß:

$$\frac{1}{\alpha_i^{\overline{DR}}} = \frac{1}{\alpha_i^{\overline{MS}}} - \frac{C_i}{12\pi}$$
(1.68)

Dabei sind C_i die Casimir Operatoren der Eichgruppe:

$$C_{i} = \begin{cases} 0 & \text{für U}(1) \\ 2 & \text{für SU}(2) \\ 3 & \text{für SU}(3) \end{cases}$$
(1.69)

Die Skalenabhängigkeit der Kopplungen lautet in führender Ordnung¹⁰:

$$\frac{\mathrm{d}\tilde{\alpha}_{\mathrm{i}}}{\mathrm{d}\mathrm{t}} = b_i \tilde{\alpha}_i^2 \tag{1.70}$$

Mit $\tilde{\alpha}_i = \alpha_i/4\pi$ und $t = \ln Q^2/\mu^2$. Dadurch kann die Änderung der Kopplung bei einer Skala Q im Vergleich zum Wert an einer Refernzskala μ berechnet werden:

$$\frac{1}{\tilde{\alpha}_i(Q^2)} = \frac{1}{\tilde{\alpha}_i(\mu^2)} - b_i \ln Q^2 / \mu^2$$
(1.71)

Im Standardmodell lauten die Koeffizienten b_i [43]:

$$b_{i} = \underbrace{-\frac{11}{3}C_{i}}_{\text{F}} + \underbrace{\frac{2}{3}T_{\text{F}}}_{\text{F}} + \underbrace{\frac{1}{6}T_{\text{S}}}_{\text{C}}$$
(1.72)

Eichbosonen Fermionen Skalare

mit

$$T_{\rm F} = \begin{cases} 3/5 \sum Y_i/N & \text{für jedes U(1) Multiplett} \\ 1/2 & \text{für jedes SU(2) Lepton Dublett} \\ 3/2 & \text{für jedes SU(2) Quark Dublett} \\ 1 & \text{für jedes SU(3) Flavour} \\ 0 & \text{sonst} \end{cases}$$
(1.73)

Die C_i sind genauso wie in 1.68 die Casimir Operatoren der jeweiligen Eichgruppe. Y_i ist die Hyperladung des *i*-ten Teilchens in einem N-Multiplett. T_F entspricht der Anzahl skalarer Teilchen. Für ein Higgsdublett findet man:

$$T_{\rm S} = \begin{cases} 6/10 & \text{für U}(1) \\ 1 & \text{für SU}(2) \\ 0 & \text{für SU}(3) \end{cases}$$
(1.74)

DasEinsetzen der entsprechenden Koeffizienten führt auf die folgenden Werte:

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}_{\rm SM} = \begin{pmatrix} 0 \\ -22/3 \\ -11 \end{pmatrix} + N_{\rm Fam} \begin{pmatrix} 4/3 \\ 4/3 \\ 4/3 \end{pmatrix} + N_{\rm Higgs} \begin{pmatrix} 1/10 \\ 1/6 \\ 0 \end{pmatrix}$$
(1.75)

¹⁰In zweiter Ordnung muss ein System gekoppelter Differentialgleichung behandelt werden. Die Effekte der nächstführenden Ordnung sind jedoch mit $\alpha_i/4\pi$ unterdrückt. Dadurch sind sie an der Grenze der numerischen Präzision der Daten und können für unsere qualitative Diskussion vernachlässigt werden [43].

Der erste Term liefert den Beitrag der Eichbosonen, der zweite den der Fermionen und der letzte den Anteil aus dem Higgssektor. Im (minimalen) Standardmodell ist $N_{\text{Higgs}} = 1$ und $N_{\text{Fam}} = 3$. Bei LEP Energien muss jedoch der Anteil des Top Quarks subtrahiert werden [44] (siehe dazu Tabelle 1.6). Die Koeffizienten b_i lauten somit (41/10, -19/6, -7) für sechs, und (106/30, -25/6, -23/3) für nur fünf aktive Flavour.

1.6.1 Das minimal supersymmetrische Standardmodell

Im minimalen supersymmetrischen Standardmodell (MSSM) führen die Superpartner zu folgenden Modifikationen der Koeffizienten der Betafunktion [43]:

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}_{\text{MSSM}} = \begin{pmatrix} 0 \\ -6 \\ -9 \end{pmatrix} + N_{\text{Fam}} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + N_{\text{Higgs}} \begin{pmatrix} 3/10 \\ 1/2 \\ 0 \end{pmatrix}$$
(1.76)

Im MSSM gilt ebenfalls $N_{\text{Fam}} = 3$, jedoch $N_{\text{Higgs}} = 2$. Die Koeffizienten b_i nehmen damit für sechs aktive Flavour die Werte (33/5, 1, -3) an. Dadurch wird die Skalenabhängigkeit von α_s geringer, die der SU(2) Kopplung wechselt das Vorzeichen und die U(1) Kopplung gewinnt eine stärkere Energieabhängigkeit als im Standardmodell.

Teilchen	b_1	b_2	b_3
\widetilde{g}	0	0	2
\tilde{l}_l	3/10	1/2	0
\tilde{l}_r	3/5	0	0
\tilde{w}	0	4/3	0
$\tilde{q} - \tilde{t}$	49/60	1	5/3
$ ilde{t}_l$	1/60	1/2	1/6
\tilde{t}_r	4/15	0	1/6
$ ilde{h}$	2/5	2/3	0
H	1/10	1/6	0
t	17/30	1	2/3
SM	41/10	-19/6	-7
MSSM	33/5	1	-3

Tabelle 1.6: Beiträge des minimalen supersymmetrischen Standardmodells zu den Koeffizienten der β Funktion in erster Ordnung [44].

1.6.2 MSSM und GUT Skala

Falls eine Fermion-Boson Symmetrie $\ddot{u}berhaupt$ existiert, ist sie offensichtlich gebrochen, und erst ab einer charakteristischen Maskenskala M_{SUSY} werden

Abbildung 1.2: Skalenabhängigkeit der Eichkopplungen im Standardmodell sowie im MSSM. Ab 10^{2.3} GeV (dem als $M_{\rm SUSY}$ gekennzeichneten Wert) werden die SM b_i durch die Koeffizienten des MSSM ersetzt. Dadurch kann eine Vereinheitlichung der Kopplungen bei $\approx 10^{16}$ GeV erzielt werden.

ihre Effekte manifest. Interessanterweise kann man diese Skala so wählen, dass sich alle drei Eichkopplungen bei $\approx 10^{16}$ GeV treffen. Man beachte, dass diese Vorhersage des MSSM von der Anzahl der Familien unabhängig ist, da $N_{\rm Fam}$ die Steigungen *aller* Kopplungen identisch beeinflusst.

Ein Vergleich der Eichkopplungsevolution nach SM und MSSM, sowie das Treffen aller Kopplungen bei geeignet gewähltem $M_{\rm SUSY}$, illustriert Abbildung 1.2. Offensichtlich ist es jedoch unphysikalisch, die SUSY Effekte ab einer Skala $M_{\rm SUSY}$ abrupt einsetzten zu lassen, da die SUSY Teilchen zum Einen verschiedene Massen haben, und zum Anderen auch virtuelle Effekte beitragen [43]. Wählt man einen kontinuierlichen Übergang zwischen b_i^{SM} und b_i^{MSSM} über 1 - 3 Größenordnungen um $M_{\rm SUSY}$, ändert sich $M_{\rm GUT}$ jedoch nur geringfügig [43].

Man findet eine charakteristische Massenskala von $\approx 10^{16}$ GeV für die Vereinigung aller Eichkopplungen. Dies kann als Hinweis auf eine große Vereinheitlichung aller Kräfte an dieser Massenskala gedeutet werden, mit einer Kopplung $\alpha_{\rm GUT} \approx 0.04$. Im Szenario einer vereinheitlichten Theorie (GUT) steht diese Skala in direktem Zusammenhang zur Masse M_X des Austauschbosons der neuen Symmetrie ($M_X \approx 0.3 \cdot M_{\rm GUT}$ [43]). Dieses wiederum kann etwa den Zerfall des Protons im Kanal $p\to e^+\pi^0$ vermitteln, woraus sich numerisch eine Protonlebensdauer von

$$\tau_p \approx \left(\frac{M_X}{10^{15} \,\text{GeV}}\right)^4 \cdot 2.757 \cdot 10^{32} \,\text{Jahre}$$
 (1.77)

ergibt. Ein Wert von $M_{\rm GUT} \approx 10^{16} \,{\rm GeV}$ steht also nicht im Widerspruch zu dem aktuellen Limit von $\tau_p > 10^{32\pm 1}$ Jahre [8]. Allerdings muss einschränkend hinzugefügt werden, dass in einem SUSY Szenario auch andere Zerfallskanäle dominant seien können.

Im Rahmen des minimalen Standardmodells ist eine Vereinheitlichung der Kopplungen *nicht* möglich. Sie kann jedoch durch Modifikationen des Higgssektor erzielt werden [43]. Für $N_{\text{Higgs}} = 4$ etwa treffen sich alle Kopplungen bei $\alpha_{\text{GUT}} \approx 0.03$. Die entsprechende GUT Skala bei $\approx 10^{14}$ GeV ist jedoch durch die untere Grenze der Protonlebensdauer bereits ausgeschlossen.

Kapitel 2

Experiment

In den folgenden Abschnitten wird der LEP Beschleuniger vorgestellt, sowie die physikalischen Mechanismen des Teilchennachweises diskutiert. Darauf folgt eine Beschreibung des DELPHI Detektors sowie der Datenaufbereitung.

2.1 Der LEP Beschleuniger

Der LEP¹-Speicherring am CERN² bei Genf war mit 26.7km Umfang der größte Teilchenbeschleuniger der Welt. Er befand sich in einem ringförmigen Tunnel in einer Tiefe von 50 bis 130m unterhalb der französisch-schweizer Grenze. Die Planung von LEP begann bereits 1976, der Bau 1983. Sein Betrieb erfolgte von 1989 bis 2000.

An vier Wechselwirkungspunkten befanden sich die LEP-Experimente ALEPH³, DELPHI⁴, L3⁵ und OPAL⁶, um die Endzustände der Elektron Positron Annihilation aufzuzeichnen. 1989 wurde LEP in seiner ersten Ausbaustufe in Betrieb genommen, bei der die Schwerpunktsenergie der e^+e^- Annihilation $\approx 91.2 \text{ GeV}$ betrug. Seit dem Oktober 1995 befand sich der LEP Beschleuniger in seiner zweiten Ausbaustufe, in der die Beschleunigungsstrukturen durch supraleitende Hohlraumresonatoren ersetzt wurde. Dadurch gelang es, die Schwerpunktsenergie schrittweise auf über 200 GeV zu erhöhen. Im Zuge dessen kam es bis zum Herbst 2000 zu Messperioden bei Energien zwischen 130 und 209 GeV.

¹Large Electron Positron Collider

 $^{^2\,{\}rm Conseil}$ Européen pour la Recherche Nucleaire – Europäisches Kernforschungszentrum $^3{\rm Aparatus}$ for LEP PHysics

 $^{{}^{4}\}mathbf{DE}$ tector with Lepton, Photon and Hadron Identification

 $^{{}^{5}\}mathbf{L}$ etter of intend **3**

⁶**O**mni **P**urpose **A**pparatus for **L**EP

2.2 Physikalische Mechanismen des Teichennachweises

Der Nachweis der Teilchen, die durch die e^+e^- Annihilation entstehen, erfolgt durch ihre Wechselwirkung mit dem Detektormaterial. Geladene Teilchen werden im Wesentlichen durch ihre elektromagnetische Wechselwirkung registriert, wobei ihre Eigenschaften (etwa in Drahtkammern) nur wenig verändert werden. Neutrale Hadronen hingegen können nur durch die geladenen Produkte von *inelastischen* Wechselwirkungen nachgewiesen werden. In diesem Sinne ist ihr Nachweis nur indirekt möglich.

2.2.1 Energieverlust durch Ionisation

Geladene Teilchen erfahren beim Durchgang durch ein Medium einen Energieverlust durch Ionisation. Der mittlere Energieverlust wird durch die Bethe-Bloch Gleichung [45] beschrieben. Die Massenabhängigkeit dieses Phänomens erlaubt mit einer dE/dx Messung sogar eine Teilchenidentifikation.

Der Energieverlust durch Ionisation liegt aber auch den meisten spurgebenen Detektoren zugrunde. In ihnen werden die Ionisationselektronen im elektrischen Feld einer Kammer zu Anodendrähten⁷ beschleunigt und dort nachgewiesen. Um die Ortsauflösung nicht durch die Drahtabstände zu begrenzen, wird bei Driftkammern die Ortskoordinate aus der Driftzeit der Ionisationselektronen bestimmt. Aus Kenntnis der Spurkrümmung in einem Magnetfeld kann schließlich auf den Impuls geschlossen werden. Es gilt:

$$p_t \sim \frac{B}{R}$$
 ,

mit R dem Krümmungsradius, B der Magnetfeldstärke und p_t dem Teilchenimpuls senkrecht zum B-Feld.

2.2.2 Elektromagnetische Schauer

Die Bethe-Bloch Gleichung gilt selbstverständlich auch für Elektronen, jedoch findet ihr Energieverlust vorrangig durch Bremsstrahlung (im Feld der Atomkerne) statt. Diese Photonen können ihrerseit durch Photo- oder Comptoneffekt mit Materie wechselwirken, oder e^+e^- Paare bilden. Letzteres überwiegt bei Energien oberhalb eines MeV, sodass es zur Ausbildung elektromagnetischer Schauer mit Elektronen, Positronen und Photonen kommt.

⁷Bei Siliziumdetektoren werden stattdessen Elektron-Loch Paare erzeugt. Dieser Mechanismus ist konzeptionell jedoch identisch.

Deren Länge wird durch die "Strahlungslänge" X_0 charakterisiert, d.h. die Wegstrecke, nach der die Energie von Elektron oder Positron im Mittel auf 1/e abgesunken ist. Diese Größe ist vom Detektormaterial abhängig. Tabelle 2.1 gibt typische Größenordnungen an. Da die mittlere freie Weglänge von Photonen ungefähr denselben Wert hat, charakterisiert die Größe X_0 den gesamten elektromagnetischen Schauer. Dieser entwickelt sich solange, bis der Energieverlust durch Bremsstrahlung und Ionisation sich die Waage halten. Diese Energie wird auch als "kritische Energie" E_C bezeichnet (es gilt: $E_C \approx 600 \text{ MeV}/Z$). Die Paarbildung der Photonen bricht offensichtlich unterhalb von einem MeV ab.

Die Anzahl N, der auf diese Weise erzeugten Sekundärteilchen, ist proportional zu der Energie E_0 des primären Teilchens ($N \approx E_0/E_C$). Schauerzähler erlauben somit eine Energiemessung.

2.2.3 Hadronische Schauer

Hadronische Schauer entstehen durch inelastische Wechselwirkung von Hadronen mit den Kernen des Detektormaterials. Sie sind die einzige Möglichkeit neutrale Hadronen (Neutronen, K_0^L) nachzuweisen. Sie entwickeln sich ähnlich wie Elektromagnetische Schauer, jedoch ist die Anzahl der beteiligten Prozesse größer. Ebenfalls enthalten sie durch π^0 Zerfälle immer auch eine elektromagnetische Komponente. Andere mögliche sekundäre Produkte wie Myonen oder Neutrinos bleiben, ebenso wie Kernanregungen⁸, undetektiert. Aus diesen Gründen treten wesentlich größere Fluktuationen auf, sodass der typische Fehler von Hadronkalorimetern mit $\Delta E/E \approx 0.5/\sqrt{E}$ ca. das Zehnfache der Messgenauigkeit von elektromagnetischen Schauerzählern beträgt. Da die Schauerentwicklung ein statistischer Prozess ist, nimmt ihr Fehler jedoch mit wachsender Energie wie $1/\sqrt{E}$ ab. Dies steht im Gegensatz zur eingangs erwähnten Impulsmessung, deren Auflösung sich wie p^2 verhält.

Die charakteristische Ausdehnung eines hadronischen Schauers ist durch die "Absorptionslänge" λ gegeben. Dabei handelt es sich um die mittlere Wegstrecke, die bis zu einer inelastischen Wechselwirkung zurückgelegt wird. Sie beträgt $\lambda = 1/(\rho\sigma_{inel})$, mit ρ der Targetteilchendichte. Die relevanten Wirkungsquerschnitte liegen typischerweise in der Größenordnung von 10–30mbarn [45]. Tabelle 2.1 gibt für einige typische Detektormaterialien die Werte für X_0, λ und E_C an.

⁸Verlustenergie durch Kernanregung bzw. Spaltung kann durch die Verwendung von ²³⁸U als Absorber kompensiert werden. Die Neutronen und harten Photonen, die in ihm erzeugt werden, verstärken einerseits das hadronische Signal, andererseits vermindert die hohe Kernladungszahl das Signal von elektromagnetischen Schauern. Als Ideal gilt, wenn die hadronischen- und elektromagnetischen Signale dieselbe Größe haben.

Material	Ζ	$X_0[\mathrm{cm}]$	λ [cm]	$E_C[\mathrm{MeV}]$
Aluminium	13	8.9	39.4	47
Eisen	26	1.8	16.8	28
Blei	82	0.56	17.1	9.5
Uran	92	0.32	10.5	9

Tabelle 2.1: Ladungszahl Z, Strahlungslänge (X_0) , Absorptionslänge (λ) und kritische Energie (E_C) für einige Materialien. Um eine Absorption der Primärenergie von $\approx 95\%$ erzielen zu können, muss die Länge elektromagnetischer Kalorimeter ca. $21X_0$, die von Hadronkalorimetern ca. 6λ betragen. Man erkennt, dass Hadronkalorimeter bedeutend größere Ausdehnung besitzen [45].

2.2.4 Der Cherenkoveffekt

Geladene Teilchen, die sich in einem Medium mit Brechungszahl n schneller als mit der Geschwindigkeit c/n (c: Vakuumlichtgeschwindigkeit) bewegen, senden kohärente Strahlung unter dem Winkel θ (mit: $\cos \theta = 1/\beta n$) aus. Dieses Phänomen wird als Cherenkoveffekt bezeichnet und stellt das elektromagnetische Analogon zur akustischen Schockwelle bei Überschreiten der Schallgeschwindigkeit dar. Ringabbildene Cherenkovzähler (RICH) erlauben die Messung des Öffnungswinkels und damit der Teilchengeschwindigkeit. Zusammen mit der Impulsmessung aus der Spurkrümmung kann also auf die Masse des betreffenden Teilchens geschlossen werden. Damit ist das Teilchen eindeutig identifiziert.

2.3 Der DELPHI Detektor

Wie der Name andeutet, ist bei der Entwicklung des DELPHI⁹ Detektors auf die Teilchenidentifikation ein besonderer Schwerpunkt gelegt worden. Desweiteren bietet der Detektor eine hohe dreidimensionale Spurauflösung, sowie präzise Vertexinformation.

DELPHI ist ein zylindrischer Detektor, der fast den gesamten Raumwinkelbereich abdeckt. Im DELPHI Koordinatensystem weist die z-Achse entlang der Strahlröhre in Elektron Richtung, die x-Achse zum LEP Mittelpunkt, und die y-Achse senkrecht nach oben. Der Polarwinkel zur z-Achse wird mit θ bezeichnet, und der Azimuthalwinkel um die z-Achse mit ϕ .

Man unterscheidet zwischen dem Zentralbereich (Barrel) in einem Winkelbereich von $140^{\circ} < \theta < 40^{\circ}$, und den Endkappen (Forward). Abbildung 2.1

⁹**DE**tektor for Lepton, Photon and Hadron Identification

ist eine schematische Darstellung der einzelnen Komponenten. Diese können sinnvoll nach ihrer Hauptfunktion (Spurmessung, Energiemessung oder Teilchenidentifikation) klassifiziert werden. Im Folgenden werden die wichtigsten Komponenten kurz beschrieben. Genauere Informationen sind den Referenzen [46] und [47] zu entnehmen.

2.3.1 Spurrekonstruktion

Die folgenden Komponenten befinden sich alle innerhalb der Solenoiden, um aus der Ablenkung geladener Teilchen im 1,23 T starken Magnetfeld auf den Impuls schließen zu können. Unmittelbar in Strahlrohrnähe befindet sich der

- Vertex Detector (VD). Dieser Siliziumdetektor zur Vertexbestimmung ist seit Inbetriebnahme des DELPHI Detektors ständig verbessert worden. Der ursprüngliche Streifendetektor, der lediglich eine Rφ-Auslese gestattete, hat sich durch Pixeldetektoren zu einem Instrument dreidimensionaler Spurauflösung bis zu einem Winkel von 25° entwickelt. Die Auflösung beträgt 7.6µm in Rφ und zwischen 9 bis 30µm in z-Richtung. Ihm schließt sich der
- Inner Detector (ID) an, der aus einer Jetkammer und einer außen liegenden Triggerschicht besteht. Bei Radien zwischen 12 und 28cm wird der Polarwinkel von $\theta > 17^{\circ}$ abgedeckt. Der ID verbessert die Zweispurauflösung und dient auch als schneller Trigger. Die wichtigste und größte Spurkammer bei DELPHI ist jedoch die
- Time Projection Chamber (TPC). Sie hat eine Länge von 300 cm und ist in Strahlrichtung in zwei Hälften geteilt. Der maximale Außenradius beträgt 120 cm. Die an der Spur durch Ionisation frei gewordenen Elektronen driften in z-Richtung nach außen, wobei das Magnetfeld fokussierend wirkt. Die Endplatten der TPC bestehen aus 6 φ-Sektoren, die mit je 192 Signaldrähten und 16 in konzentrischen Kreisen angeordneten Kathodenstreifen ausgestattet sind. Der auf diese Weise gewonnene Ladungsschwerpunkt ergibt die Rφ Koordinate; die z Information wird aus der Driftzeit bestimmt. Man gewinnt eine Auflösung von 250µm in Rφ und 880µm in z-Richtung. An die TPC folgt als spurgebende Komponente (dazwischen befindet sich allerdings der Barrel Rich) der
- Outer Detector (OD) an, der einen radialen Abstand von 200cm und eine Länge von 470cm hat. Diese fünflagige Driftkammer kann die Impulsmessung hochenergetischer Spuren stark verbessern. Schließlich messen im Vorwärtsbereich die Driftkammern
- Forward Chambers (FCA, FCB), die bei einem Abstand von z=160cm, bzw. z=275cm montiert sind. Sie decken einen Polarwinkelbereich von

Abbildung 2.1: Schematische Darstellung des DELPHI Detektors

ca. $11^{\circ} < \theta < 35^{\circ}$ ab. Ähnlich wie der OD dienen sie einer Verbesserung der Impulsauflösung im Bereich $\theta > 20^{\circ}$, unterhalb davon sind sie die einzigen spurgebenden Komponenten.

Muon Chambers (MUB, MUF, SMC) Für den Nachweis von Myonen befinden sich zwei Lagen Driftkammern im Endbereich des HAC. Jede Lage dieser zentralen Myonkammer (MUB) hat drei Ebenen, und es wird eine Auflösung von 4mm in Rφ und 25mm in z-Richtung erzielt. Im Vorwärtsbereich sind ebenfalls zwei Lagen Driftkammern, die eine Rφ Auflösung von 1mm ermöglichen. Seit 1994 befindet sich eine zusätzliche Myondriftkammer im Bereich zwischen Zentralteil und Endkappen (SMC, Surround Muon Chambers).

2.3.2 Energiemessung

- High Density Projection Chamber (HPC) Als elektromagnetisches Kalorimeter befindet sich zwischen OD und Spule die HPC. Die Verwendung des Zeitprojektionsprinzips in einem Samplingkalorimeter erlaubt eine dreidimensionale Schauerrekonstruktion. Im Vorwärtsbereich überdeckt das
- Forward Electromagnetic Calorimeter (FEMC) einen Winkelbereich von $11^{\circ} < \theta < 36.5^{\circ}$. Es besteht aus 5 cm^2 großen Bleigläsern. Das
- Hadron Calorimeter (HAC) ist in Samplingbauweise aus Eisenplatten (als Absorbermaterial) und Proportionalkammern konstruiert.

2.3.3 Teilchenidentifikation

Neben den hier erwähnten Komponenten, dient die Pulshöhe bei der Auslese der TPC Signaldrähte ebenfalls der Teilchenidentifikation, indem sie die Bestimmung der spezifischen Ionisation gestattet. Selbstverständlich liefern auch die Kalorimeter diesbezügliche Informationen.

• Ring Imaging Cherenkov Detector (BRICH, FRICH) Zwischen TPC und OD befindet sich der Barrel Rich (BRICH). Beim Durchgang geladener Teilchen durch seinen Gas- und Flüssigkeitsradiator wird Cherenkovstrahlung erzeugt, die in einer Driftkammer mit photoionisierbarem Gaszusatz nachgewiesen werden kann. Aus der Bestimmung des Cherenkovwinkels (d.h. des Winkels, unter dem das Licht emittiert wurde), zusammen mit einer Impulsmessung der Spur, kann auf die Teilchenmasse geschlossen werden. Im Vorwärtsbereich (zwischen FCA und FCB) befinden sich ebenfalls ringabbildende Cherenkovdetektoren.

2.3.4 Die Aufbereitung der Daten

Aus der Summe der Detektorsignale (Rohdaten), zusammen mit der präzisen Information über die geometrische Anordnung aller Komponenten, erfolgt mit Hilfe des Analyseprogramms DELANA [48] die Rekonstruktion von Spuren sowie die Festlegung eines Massencodes.

In einem ersten Schritt werden Spurstücke in einzelnen Detektorkomponenten identifiziert, bevor diese zur Gesamtspur kombiniert werden. Mit diesen wird die Vertexrekonstruktion durchgeführt. Schließlich werden Informationen von Subdetektoren, die zur Massenidentifizierung beitragen, den Spuren zugeordnet. Das Resultat der Ereignisrekonstruktion wird als sog. Master-DST¹⁰ auf Magnetbändern gespeichert.

Zur Physikanalyse steht der Wuppertaler DELPHI Gruppe mit dem Mini-DST ein Datenformat zur Verfügung, das durch weitere Reduktion einen effizienten Zugriff auf die Daten ermöglicht.

¹⁰Data Summary Tape

Kapitel 3

Analyse

In diesem Kapitel wird die Selektion hadronischer Endzustände vorgestellt. Die analysierten Daten umfassen die Jahrgänge '97 bis 2000 (183 – 207 GeV). Für diese Datensätze wurde im Jahr 2001 eine neue Rekonstruktion (G Processing für die 183 GeV Daten und E Processing für 189 bis 207 GeV) durchgeführt. Damit werden die Ergebnisse der Arbeiten [1, 2, 3, 4, 5] ganz oder teilweise aufdatiert.

Nachdem die Begriffe "Effizienz" und "Reinheit" als Kenngrößen für die Güte der Selektion definiert werden, wird die Spur- und Ereignisselektion beschrieben. Die Abschnitte 3.3.1 und 3.3.2 behandeln im Besonderen die Antiselektion von radiativem und Vierfermion-Untergrund.

Abschnitt 3.5 stellt schließlich die gemessenen Verteilungen (inklusive Spektren und Ereignisformobservablen) sowie Mittelwerte und höhere Momente vor.

3.1 Kriterien für die Güte der Selektion

Ein Maß für die Güte der Selektion ist die sog. "Effizienz". Sie ist definiert als:

$$Effizienz = \frac{Anzahl \text{ korrekt selektierter Ereignisse}}{Anzahl aller Ereignisse}$$

Sie ist korreliert mit der sog. "Reinheit" der selektierten Daten, die definiert ist als:

 $Reinheit = \frac{Anzahl korrekt selektierter Ereignisse}{Anzahl selektierter Ereignisse}$

Diese Größen können etwa mit der Monte Carlo Simulation abgeschätzt werden. Die Bedeutung von *korrekt selektiert* in der Definition der Effizienz bezieht sich auf das jeweils betrachtete Signal, in unserem Fall also auf QCD Ereignisse. Die Untergrundprozesse, die die Reinheit der Selektion beeinträchtigen, sind in unserem Fall die Paarerzeugung von W und Z Bosonen (Vierfermion-Untergrund), sowie Ereignisse mit reduzierter Schwerpunktsenergie (ISR Ereignisse). Damit berechnen sich Effizienz und Reinheit in dieser Analyse gemäß:

$$\epsilon_{HE} = \epsilon_{QCD} \frac{\sigma_{tot}}{\sigma_{HE} \cdot p_{HE}} \tag{3.1}$$

$$p_{HE,QCD} = \frac{\sigma_{HE} \cdot \epsilon_{HE}}{\sigma_{4F} \epsilon_{4F} + \sigma_{tot} \epsilon_{QCD}}$$
(3.2)

HE bezieht sich auf das Merkmal "Hochenergieereignis¹", und 4F auf den Untergrund aus Vierfermion-Produktion. Diese Größen wurden aus der Monte Carlo Simulation mit Hilfe der folgenden Relationen berechnet:

$$\epsilon_{QCD} = \frac{|MC_{acc}^{QCD}|}{|MC_{gen}^{QCD}|} , \quad \epsilon_{HE} = \frac{|MC_{acc,HE}^{QCD}|}{|MC_{gen,HE}^{QCD}|} , \quad p_{HE} = \frac{|MC_{acc,HE}^{QCD}|}{|MC_{acc}^{QCD}|}$$

Dabei bezeichnet |MC| die Anzahl der Monte Carlo Ereignisse der jeweiligen Klasse, *acc* bezieht sich auf akzeptierte, und *gen* auf generierte Ereignisse. Als Wirkungsquerschnitte wurden ebenfalls die Werte aus der Simulation verwendet. In 3.3 sind diese zusammen mit den anderen Kenngrößen der Selektion tabelliert.

3.2 Selektion hadronischer Endzustände

Die Selektion der Signalereignisse $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$ erfolgt in zwei Schritten. Zunächst mit Hilfe einer Spurselektion, die ungenau vermessene bzw. unphysikalische Spuren verwirft. Danach wird eine Ereignisselektion durchgeführt, die ebenfalls Qualitätskriterien anwendet und zudem Untergrundereignisse abtrennt.

3.2.1 Spurselection

Zur Spurselektion werden folgende Größen betrachtet:

• Impuls p

Die Forderung eines Mindestimpulses (in der Größenordnung von einigen hundert MeV) trägt dem Umstand Rechnung, dass unterhalb dieser

¹genauer lautet unsere Definition für "Hochenergieereignis", dass $\sqrt{s'_{\text{gen}}} > 0.9 \cdot E_{\text{LEP}}$ gilt, wobei E_{LEP} die nominelle LEP Schwerpunktsenergie bezeichnet. Mit Hilfe der "Akzeptanzkorrektur" werden die Daten schließlich auf den verbleibenden Unterschied zur LEP Energie korrigiert. Siehe dazu auch Abschnitt 3.4.2.

Grenze auf Grund von Vielfachstreuung die Monte Carlo Simulationen die Daten nicht angemessen beschreiben. Die obere Grenze unterdrückt Spuren aus kosmischer Strahlung und sonstige Fehlmessungen.

- Fehler der Impulsmessung $\Delta p/p$ und gemessene Spurlänge Diese beiden Kriterien erhöhen die Qualität der selektierten Spuren.
- Abstand zum Wechselwirkungspunkt in $r\phi$ -Ebene $(D_{r\phi})$ und z-Richtung (D_z)

Diese Kriterien sollen Spuren aus sekundären Ereignissen (Strahl-Gas oder Strahl-Wand Wechselwirkung) unterdrücken. Ebenfalls betroffen sind Ereignisse aus kosmischer Strahlung und Fehlrekonstruktionen.

Die verwendeten Spurschnitte sind in Tabelle 3.1 zusammengestellt.

3.2.2 Ereignisselektion

Der Selektion spezieller Ereignisklassen dienen folgende Größen:

• geladene Multiplizität N_{ch}

Diese Größe gestattet eine Unterscheidung zwischen leptonischen und hadronischen Ereignissen. Ab einem typischen Wert von $N_{ch} \geq 7$ verbleibt nur noch ein geringer τ -Untergrund. Zum Anderen unterdrückt dieser Schnitt den Zwei-Photon Untergrund effektiv. Die obere Grenze für N_{ch} schneidet zusätzlich auf hadronisch zerfallene W Ereignisse.

```
• Polarwinkel der Thrustachse \theta_{Thrust}
```

Dieser Schnitt trägt der höheren Messgenauigkeit im Zentralbereich des Detektors Rechnung. Desweiteren verwirft er Zweiphoton Ereignisse.

• gemessene totale Energie E_{tot}

Dieser Schnitt dient ebenfalls der Unterdrückung von Zwei-Photon Ereignissen. Ebenso werden leptonisch und semileptonisch zerfallene W^+W^- Ereignisse unterdrückt, bei denen Neutrinos entweichen. Aus diesem Grund ist es auch sinnvoll, auf die *totale* (und nicht nur die *geladene*) Energie zu schneiden.

• effektive Schwerpunktsenergie $\sqrt{s'}$

Diese Größe dient zur Trennung der radiativen Untergrundereignisse. Abschnitt 3.3.1 erläutert die Definition dieser Variable.

• Minimale Jetbreite B_{\min}

Diese Größe (für ihre Definition siehe Abschnitt 1.4.1) ist sensitiv auf Mehrjetereignisse. Zusammen mit der geladenen Multiplizität wird sie zur Unterdrückung von W^+W^- Ereignissen und anderem Vierfermion-Untergrund verwendet (siehe dazu Abschnitt 3.3.2).

Spur-	$0.2 \mathrm{GeV} \le p \le 100 \mathrm{GeV}$
selektion	$\Delta p/p \le 1.0$
	Spurlänge ≥ 30 cm
	Abstand des IP zur $r\phi$ Ebene ≤ 4 cm
	Abstand des IP in $z \leq 10 \text{ cm}$
Ereignis–	$N_{\rm charged} \ge 7$
Ereignis– selektion	$N_{\text{charged}} \ge 7$ $25^{\circ} \le \theta_{\text{Thrust}} \le 155^{\circ}$
Ereignis– selektion	$N_{\text{charged}} \ge 7$ $25^{\circ} \le \theta_{\text{Thrust}} \le 155^{\circ}$ $E_{\text{tot}} \ge 0.5 \cdot E_{\text{LEP}}$
Ereignis- selektion	$N_{\text{charged}} \ge 7$ $25^{\circ} \le \theta_{\text{Thrust}} \le 155^{\circ}$ $E_{\text{tot}} \ge 0.5 \cdot E_{\text{LEP}}$ $\sqrt{s'_{\text{rec}}} > 0.9 \cdot E_{\text{LEP}}$
Ereignis- selektion	$N_{\text{charged}} \ge 7$ $25^{\circ} \le \theta_{\text{Thrust}} \le 155^{\circ}$ $E_{\text{tot}} \ge 0.5 \cdot E_{\text{LEP}}$ $\sqrt{s'_{\text{rec}}} > 0.9 \cdot E_{\text{LEP}}$ $N_{\text{charged}} \le 42$

Tabelle 3.1: Schnitte zur Spur- und Ereignisselektion. p ist der Spurimpuls, Δp sein Fehler, r der radiale Abstand des primären Vertex zum IP ("interaction point") und z der Abstand entlang der Strahlachse. ϕ bezeichnet den Azimuthalwinkel, N_{charged} die geladene Multiplizität, θ_{Thrust} den Polarwinkel der Thrustachse. E_{tot} ist die Energie aller Teilchen, $\sqrt{s'_{\text{rec}}}$ die rekonstruierte Schwerpunktsenergie, E_{LEP} die nominelle LEP Energie und B_{min} die kleine Jetbreite. Die ersten beide Schnitte der Spurselektion werden auf alle Spuren angewendet, die anderen nur auf geladene Spuren.

Die verwendeten Schnitte sind in Tabelle 3.1 zusammengestellt. Im Folgenden wird ihre Wahl und Wirkung – vor allem auf den Untergrund – noch genauer diskutiert.

3.2.3 Der TPC Effekt

Im September 2000 fiel einer von sechs Sektoren der TPC aus. Davon betroffen ist eine integrierte Luminosität von $\mathcal{L} = 49.7 pb^{-1}$ bzw. 750 Ereignisse bei 207 GeV. Für diese Daten ist eine spezielle Monte Carlo Simulation erzeugt worden. Für die inklusiven Verteilungen ergibt sich ein signifikanter Unterschied zwischen den Datensätzen vor und nach Ausfall des TPC Sektors. Abbildung 3.1 vergleicht die jeweiligen Akzeptanzkorrekturen für die Größen Rapidität (y_t) und ξ_p . Die Korrekturen unterscheiden sich systematisch um einige Prozent. Für inklusive Spektren ist der Effekt auch deshalb deutlicher, weil diese auf die Multiplizität der Ereignisse normiert werden. Die geladene Multiplizität ist aber offensichtlich sehr sensitiv auf den Ausfall eines Teiles der TPC.

Aus diesem Grunde wurden die inklusiven Spektren der Daten vor und nach

Abbildung 3.1: Vergleich der Akzeptanzkorrekturen mit voller und eingeschränkter TPC Funktionalität für die Größen Rapidität (y_t) und ξ_p .

dem TPC Defekt getrennt korrigiert, und erst danach luminositätsgewichtet addiert. Für Ereignisformobservable ist hingegen keine getrennte Korrektur notwendig.

3.3 Unterdrückung von Untergrundprozessen

Tabelle 3.3 entnimmt man die Wirkungsquerschnitte für Vierfermion und Quark-Antiquark Produktion². Letzterer ist zusätzlich nach dem *totalen* sowie *nichtradiativem* Anteil unterschieden. Man erkennt, dass radiative QCD Ereignisse die größte Untergrundklasse darstellen. Ab 196 GeV ist ebenfalls die Erzeugung von Vierfermion Ereignissen gegenüber Hochenergie $q\bar{q}$ Produktion dominant.

3.3.1 Untergrund aus Strahlung im Anfangszustand

Bei ca. 80% der Ereignisse emittieren ein oder beide Elektronen vor der Annihilation ein hartes Photon. Dadurch wird die effektive Schwerpunktsenergie des hadronischen Endzustandes herabgesetzt. Die Rate dieser Ereignisse ist proportional zum Wirkungsquerschnitt der verminderten Energie, sodass für die meisten dieser Ereignisse die Schwerpunktsenergie des hadronischen Systems in

²Die Wirkungsquerschnitte sind der Monte Carlo Simulation entnommen, mit der die Datenkorrektur und die Effizienzbestimmung erfolgt.

Abbildung 3.2: Vergleich zwischen Daten und Monte Carlo bezüglich der effektiven Schwerpunktsenergie $\sqrt{s'}$.

der Nähe der Z Resonanz liegt. Deshalb spricht man auch von "Z return" Ereignissen. Die ISR (initial state radiation) Photonen werden bevorzugt entlang der Strahlachse emittiert und entgehen so einer direkten Detektion.

Zur Unterdrückung dieser radiativen Ereignisse verwendet diese Analyse das SPRIME 2.0 Paket [49]. Es rekonstruiert die effektive Schwerpunktsenergie $\sqrt{s'}$ des hadronischen Systems unter der Annahme, mit einem hypothetischen ISR Photon in z-Richtung die Impulsbilanz des Ereignisses auszugleichen. Einbezogen wird ebenfalls die Information detektierter isolierter Photonen, sowie das Ergebnis eines Optimierungsverfahrens unter den Randbedingungen Impulsund Energieerhaltung. Die Entscheidung für das Ergebnis einer dieser Methoden wird anhand eines χ^2 Kriteriums getroffen.

Die Abbildungen 3.2 bis 3.4 zeigen den Vergleich zwischen unkorrigierten Daten und akzeptierter Monte Carlo Simulation (Signal und Untergrund) für die effektive Schwerpunktsenergie $\sqrt{s'}$. Deutlich ist der "return peak" bei dem Wert der Z Masse zu erkennen. Man erkennt ebenfalls, dass dieser Schnitt auch zu einer beträchtlichen Unterdrückung des Vierfermion-Untergrundes beiträgt.

In diese Analyse wird $\sqrt{s'} > 0.9 \cdot E_{\text{LEP}}$ für die Selektion gefordert. Als weitere Variable zur Unterdrückung von ISR Ereignissen bietet sich die totale gemes-

Abbildung 3.3: Vergleich zwischen Daten und Monte Carlo bezüglich der effektiven Schwerpunktsenergie $\sqrt{s'}$.

Abbildung 3.4: Vergleich zwischen Daten und Monte Carlo bezüglich der effektiven Schwerpunktsenergie $\sqrt{s'}$.

sene Energie E_{tot} an.

Bei einem Schnitt von $\sqrt{s'} > 0.9 \cdot E_{\text{LEP}}$ und $E_{tot} > 0.5 \cdot E_{\text{LEP}}$ ergeben sich Effizienz und Reinheit der Selektion gemäß den Angaben der Tabelle 3.3. Der verbliebene Effekt radiativer Ereignisse wird mit Hilfe der "Akzeptanzkorrektur" berücksichtigt.

3.3.2 Vierfermion–Untergrund

Ab einer Schwerpunktsenergie von 161 bzw. 183 GeV kommt es bei LEP zur Paarerzeugung von WW und ZZ Paaren. Diese zerfallen in Endzustände mit vier Fermionen, sodass sich die Sprechweise "Vierfermion–Untergrund" eingebürgert hat. Dabei ist der Wirkungsquerschnitt σ_{WW} für die W–Paarproduktion etwa einen Faktor 10 größer als σ_{ZZ} .

Zur Simulation dieses Prozesses wird das WPHACT³ Monte Carlo verwendet [50]. Unterschieden werden "charged current" (CC) und "neutral current"

³WW and Higgs Physics with **PHACT** (Program for Helicity Amplitudes Calculations with Tau matrices)

CC (WW-artig)	NC (ZZ-artig)	NC (GG-artig)
q ar q q ar q	$llq\bar{q}\ (l \neq e)$	eear q q
q ar q e u	u u q ar q	$ee\mu\mu$
$q\bar{q}m u$	νννν	ee au au
$q \bar{q} t \nu$	$lll'l' \ (l,l' \neq e)$	$eeff \ (f \neq e)$
l u l u	$eeff \ (f \neq e)$	eeee
	eeee	

Tabelle 3.2: Betrachtete Kanäle des WPHACT Monte Carlo zur Simulation des Vierfermion-Untergrundes. Unterschieden wird in "charged current" (CC) und "neutral current" (NC) Anteile. Die NC Kanäle sind weiterhin in "ZZ-artig" und Zweiphotonprozesse ("GG-artig") unterschieden. q, l und ν bezeichnen dabei – falls nicht explizit anders angegeben – Quark, geladenes Lepton bzw. Neutrino von beliebigem Flavour.

(NC) Anteile. Letztere Klasse ist weiterhin in "ZZ-artige" und Zweiphotonprozesse ("GG-artig") unterschieden, obwohl auch die sog. "ZZ-artige" Simulation Zweiphotonprozesse enthält. Die Effizienz, Zweiphotonuntergrund (der GG-Klasse) zu selektieren, liegt bei $\approx 10^{-4}$. Vor allem der Schnitt auf die geladene Multiplizität trennt diese Untergrundklasse sehr effektiv ab. Damit kann diese Klasse von Untergrund vernachlässigt werden. Die Tabelle 3.2 gibt eine Übersicht über die betrachteten Kanäle.

Die hier verwendete Trennung von QCD Signal und Untergrund basiert auf der unterschiedlichen Korrelation zwischen den Größen minimale Jetbreite $(B_{\min})^4$ und geladene Multiplizität (N_{ch}) . Der hadronische Vierfermion-Untergrund unterscheidet sich durch höhere Multiplizität und größere Jetbreite von Signalereignissen. Semileptonischer Vierfermion-Untergrund paart häufiger niedrigere Multiplizität mit hohen Jetbreiten. Dieser Zusammenhang, sowie die verwendeten Schnitte, sind in Abbildung 3.5 illustriert.

Eine grafische Darstellung des Vergleichs zwischen Daten und Monte Carlo Simulation hinsichtlich dieses zweidimensionalen Schnittes ist schwierig. Stattdessen wird in den Abbildungen 3.6 bis 3.8 die Größe $\frac{B_{\min}+1.5}{N_{\rm ch}}$ dargestellt. Der Schnitt $N_{\rm ch} > B_{\min} + 1.5$ entspricht also dem Wert von eins in dieser Observablen.

Bei den Schnitten von Tabelle 3.1 ergeben sich Effizienz und Reinheit der Selektion gemäß den Angaben der Tabelle 3.3. Die Selektioneffizienzen sind hier nach CC und NC unterschieden. Von den verbleibenden Vierfermion-Ereignissen stammen ca. 85% aus dem hadronischen Kanal.

⁴Für ihre Definition siehe Abschnitt 1.4.1

Abbildung 3.5: Hadronischer und Semileptonischer Vierfermion-Untergrund sowie QCD Ereignisse in der $B_{\min} - N_{ch}$ Ebene. QCD und Vierfermion-Ereignisse sind im Verhältnis des nicht-radiativen Wirkungsquerschnittes gewichtet.

Antiselektion des Vierfermion-Untergrundes bei anderen LEP Experimenten

Es ist instruktiv, die Unterdrückung des Vierfermion-Untergrundes bei den verschiedenen LEP Experimenten miteinander zu vergleichen. Tatsächlich werden sehr unterschiedliche Strategien angewendet. Im Ergebnis gewinnt jedes Experiment jedoch eine Antiselektionseffizienz von $\approx 90\%$.

• ALEPH

Die Strategie des ALEPH Experimentes basiert darauf, WW Paare zu identifizieren [51]. Zu diesem Zweck werden die Ereignisse durch einen Clusteralgorithmus in eine Vierjetkonfiguration gezwungen. Nach einer Reskalierung der Energien (durch Anwendung der Bedingungen $E_{tot} = E_{LEP}$ und $\sum \vec{p_i} = 0$) werden folgende Größen berechnet:

$$d^{2} = \min_{(i,j)(k,l)} \left[\frac{(m_{ij} - m_{W})^{2} + (m_{kl} - m_{W})^{2}}{m_{W}^{2}} \right]$$

 $c_{WW} = \cos(\text{kleinster Interjetwinkel})$

Abbildung 3.6: Vergleich zwischen Daten und Monte Carlo bezüglich der Variablen $\frac{500B_{\min}+1.5}{N_{ch}}$.

Dabei ist m_{ij} die invariante Masse eines Jetpaares. Ein Ereignis wird akzeptiert, falls es die Bedingungen $d^2 \ge 0.1$ und $c_{WW} \ge 0.9$ erfüllt. Mit anderen Worten wird also im Wesentlichen die Hypothese getestet, ob die vier Jets zu zwei W Bosonen kombiniert werden können. Diese Strategie nutzt die hohe Güte der Spurrekonstruktion des ALEPH Detektors aus. Ein ähnliches Verfahren wurde auch in der DELPHI Vierjetanalayse [52] angewendet.

• OPAL

Das Verfahren der OPAL Kollaboration ist gerade komplementär dazu [53]. Hier wird zuerst ebenfalls eine Vierjetkonfiguration erzeugt. Die so gewonnenen Impulse werden jedoch verwendet, um das entsprechende Vierjet-Matrixelement $|\mathcal{M}(p_1, p_2, p_3, p_4)|^2$ (für eine $q\bar{q}q\bar{q}$ und $q\bar{q}gg$ Konfiguration) durch EVENT2 berechnen zu lassen. Daraus wird ein "QCD-Gewicht" bestimmt:

$$W_{QCD} = \max_{p_1, p_2, p_3, p_4} \log(|\mathcal{M}|^2)$$

Gemäß ihrer Bildung liefert diese Größe für Untergrundereignisse kleinere Werte, sodass Signal und Untergrund durch einen Schnitt in W_{QCD}

Abbildung 3.7: Vergleich zwischen Daten und Monte Carlo bezüglich der Variablen $\frac{500B_{\min}+1.5}{N_{ch}}$.

Abbildung 3.8: Vergleich zwischen Daten und Monte Carlo bezüglich der Variablen $\frac{500B_{\min}+1.5}{N_{ch}}$.

getrennt werden. Hier basiert das Verfahren also auf einer positiven Identifikation von Ereignissen der Signalklasse. Das Verfahren erlaubt damit den Vorwurf, die zu testende Theorie bereits als Selektionskriterium zu verwenden.

• L3

Das L3 Experiment führt naturgemäß die detektorabhängigste Selektion durch [54]. Die wichtigsten Selektionskriterien lauten⁵:

$$\begin{array}{rcl} N_{\rm cluster} & \geq & 40 \\ E_{\rm jet1} < 0.405 \sqrt{s} & , & E_{\rm jet4} > 0.004 \sqrt{s} \\ y_{34} & \geq & 0.004 \end{array}$$

Dabei bezeichnet N_{cluster} die Anzahl von Kalorimeterzellen, in denen mehr als 100 MeV deponiert wurden, E_{jet1} bzw. E_{jet4} die reskalierte Energie des höchst- bzw. niederenergetischsten Jets, nachdem das Ereignis in eine Vierjetkonfiguration gezwungen wurde, sowie y_{34} den Durham Auflöseparameter ab dem das Ereignis zwischen Vier- und Dreijetkonfiguration wechselt. Ähnlich wie in unserer Analyse wird also die hohe

⁵Diese Schnitte gelten für die 189 GeV Analyse, und wurden für jede Energie optimiert.

Energie [GeV]	183	189	192	196	200	202	205	207
$\mathcal{L}[pb]^{-1}$	55.73	157.97	25.34	67.29	78.07	39.31	76.33	130.12
$\sigma_{tot}^{QCD}[{ m pb}]$	108.78	100.05	96.06	91.31	86.73	84.56	81.18	79.78
$\sigma^{QCD}_{s'>90\%}$ [pb]	23.09	21.24	20.42	19.36	18.35	18.18	16.89	16.59
$\sigma^{4F,CC}[ext{pb}]$	17.54	18.74	19.10	19.57	19.85	19.97	20.10	20.14
$\sigma^{4F,NC}[\mathrm{pb}]$	8.16	8.15	8.14	8.08	8.03	8.01	7.93	7.90
ϵ_{HE}	0.721	0.720	0.736	0.740	0.735	0.734	0.736	0.749
ϵ_{CC}	0.090	0.100	0.104	0.112	0.122	0.120	0.127	0.124
ϵ_{NC}	0.017	0.017	0.017	0.017	0.015	0.016	0.016	0.016
$p_{HE,QCD}$	0.867	0.848	0.837	0.828	0.808	0.801	0.790	0.795
$\epsilon_{HE} \cdot p_{HE,QCD}$	0.625	0.610	0.617	0.612	0.594	0.588	0.581	0.593
# sel.Daten	1070	2848	455	1164	1303	653	1203	2036
# CC Untergrund	87.8	296.0	50.1	147.7	189.8	94.1	195.6	315.4
# NC Untergrund	7.7	21.4	3.54	9.36	9.65	4.88	9.67	16.60

Tabelle 3.3: Statistik der Hochenergiedaten und Kenngrößen der Selektion. Für die Defintion von Effizienz und Reinheit siehe Abschnitt 3.1.1.

Multiplizität und spezielle Kinematik der Vierfermion–Ereignisse ausgenutzt.

3.4 Korrekturen und systematische Unsicherheiten

Die mit Hilfe der Schnitte aus Tabelle 3.1 selektierten Daten müssen vor der eigentlichen Messung noch auf Untergrund- und Detektoreffekte korrigiert werden. Dieses Verfahren wird in den folgenden beiden Abschnitten beschrieben. Schließlich wird die Abschätzung der systematischen Unsicherheiten diskutiert.

3.4.1 Subtraktion des Untergrundes

Der Tabelle 3.3 entnimmt man, dass ca. 10% des Vierfermion-Untergrundes in den Daten verbleiben. Diese Ereignisse müssen mit Monte Carlo Methoden im richtigen Verhältnis von den Daten subtrahiert werden. Symbolisch lässt sich dies wie folgt ausdrücken:

$$Daten_{korr} = Daten - \left(\frac{\sigma_{4F} \cdot \mathcal{L}}{|MC_{gen}^{4F}|} \cdot MC_{acc}^{4F}\right)$$
(3.3)

Dabei bezeichnen "Daten" und "MC" jeweils noch nicht normierte Histogramme einer beliebigen Observable. $|MC_{gen}^{4F}|$ bezeichnet die Anzahl generierter Untergrund Monte Carlo Ereignisse. Die integrierte Luminosität \mathcal{L} kann entweder direkt gemessen, oder aus den Wirkungsquerschnitten, Effizienzen und der Datenstatistik berechnet werden:

$$\mathcal{L} = \frac{N_{\text{data}}}{\sigma_{q\bar{q}}\epsilon_{q\bar{q}} + \sigma_{4F}\epsilon_{4F}} \tag{3.4}$$

Beide Methoden liefern im Rahmen ihrer Fehler konsistente Ergebnisse. Die so korrigierten Daten werden auf die Anzahl der Signalereignisse $(N_{Daten} - N_{4F})$ normiert. Der statistische Fehler eines Bins mit B_i Einträgen wird gemäß der Poissonverteilung als $\sqrt{B_i}$ angenommen. Nach Normierung auf die Ereignisanzahl N beträgt dieser also $\frac{\sqrt{B_i}}{N}$. Zu beachten ist jedoch, dass der statistische Fehler der Daten aus der Zählrate vor Untergrundsubtraktion berechnet wird. Auf diese Weise wird dem ebenfalls statistischen Charakter des Untergrundes Rechnung getragen!

3.4.2 Akzeptanzkorrektur

Die experimentelle Bestimmung einer Häufigkeitsverteilung muss berücksichtigen, dass jede Messapparatur nur endliche Auflösung und begrenzte Akzeptanz besitzt. Mit anderen Worten wird der Detektor immer einen Messfehler machen, manchmal jedoch auch gar nichts registrieren. Der erste Effekt bewirkt, dass Messungen von identischen Ereignissen in verschiedene Bins verteilt werden können, wohingegen die endliche Detektorakzeptanz die Anzahl der Einträge verringert. Diese Effekte können mit Monte Carlo Methoden simuliert werden und führen auf eine Korrekturmatrix, die die Bins gemessener Histogramme in die korrigierten Häufigkeitsverteilungen überführt. Zu diesem Zweck lässt man das "generierte" Monte Carlo eine Detektorsimulation durchlaufen, um es schließlich derselben Selektion wie die Daten zu unterwerfen. Demzufolge bezeichnet man die Simulation auf Detektorniveau auch als "akzeptiertes" Monte Carlo. Unter recht allgemeinen Bedingungen [55, 56] kann diese Korrekturabbildung durch eine Diagonalmatrix genähert werden, sodass man auf eine multiplikative Korrektur mit einem Faktor geführt wird. Dieser bestimmt sich also als Verhältnis aus akzeptiertem und generiertem Monte Carlo, jeweils für die betrachtete Observable. In unserem Fall wird diese Korrektur aber ebenfalls verwendet, um den verbliebenen Effekt von ISR Ereignissen zu korrigieren:

$$C_{korr} = \frac{MC_{\text{gen}}^{\text{ohne ISR}}}{MC_{\text{acc}}^{\text{mit ISR}}}$$

Diese Bildung entspricht:

$$C_{\rm korr} = C_{\rm ISR} \cdot C_{\rm Det} = \frac{MC_{\rm gen}^{\rm ohne\, ISR}}{MC_{\rm gen}^{\rm mit\, ISR}} \cdot \frac{MC_{\rm gen}^{\rm mit\, ISR}}{MC_{\rm acc}^{\rm mit\, ISR}}$$

Variable	Zentralwert	Variation
$N_{\rm charged}$	≥ 7	$\geq 6, \geq 8$
$ heta_{\mathrm{Thrust}}$	$[25^\circ, 155^\circ]$	$[20^{\circ}, 160^{\circ}], [30^{\circ}, 150^{\circ}]$
$\frac{\sqrt{s'_{\rm rec}}}{E_{\rm LEP}}$	≥ 0.9	$\geq 0.875, \geq 0.925$

Tabelle 3.4: Variation der Ereignisselektionsschnite zur Abschätzung des systematischen Fehlers.

Dabei bezeichnet $MC_{\rm gen}^{\rm ohne\,ISR}$ generierte Monte Carlo Ereignisse mit der nominellen LEP Energie und $MC_{\rm acc}^{\rm mit\,ISR}$ akzeptierte Monte Carlo Ereignisse, die also das $\sqrt{s'} > 0.9 \cdot E_{\rm LEP}$ Kriterium erfüllt haben. Die "Akzeptanzkorrektur" berücksichtigt hier also sowohl den Effekte endlicher Akzeptanz, als auch den maximal zehn prozentigen Effekt der noch verbliebenen Differenz zwischen $\sqrt{s'}$ und $E_{\rm LEP}$.

3.4.3 Abschätzung des experimentellen Fehlers

Neben den statistischen Fehlern unterliegt jede Messung ebenfalls systematischen Fehlerquellen aus Selektion und Korrektur. Diese können naturgemäß nur abgeschätzt werden. Um den Einfluss der Selektion zu studieren, wurde die Analyse mit modifizierten Schnitten wiederholt. Die Variationen sind Tabelle 3.4 zu entnehmen. Die halbe Differenz, die sie sich aus der Variation derselben Schnittvariablen ergibt, wird als Komponente des systematischen Fehlers aufgefasst. Auf eine gesonderte Variation des Schnittes gegen den Vierfermion-Untergrund wird verzichtet, da der $\sqrt{s'}$ Schnitt ebenfalls zu einer deutlichen Unterdrückung dieser Untergrundklasse führt. Stattdessen trägt der Effekt einer fünf-prozentigen Vergrößerung des WW Wirkungsquerschnittes ebenfalls eine Komponente des systematischen Fehlers bei. Schließlich wird als Fehler der Akzeptanzkorrektur 2% angenommen. Diese fünf Beiträge werden quadratisch addiert und bilden den experimentellen systematischen Fehler. Zusammen mit der statistischen Unsicherheit bilden sie den totalen experimentellen Fehler der Messung.

In [1] wird die Problematik der statistischen Signifikanz systematischer Fehler diskutiert. Klarerweise unterliegt die *Schätzung* der systematischen Unsicherheiten ebenfalls statistischen Fluktuationen. Dies kann im Besonderen im Falle kleiner Datenmengen zu einer Mehrfachzählung des statistischen Fehlers führen. In [1] wurde deshalb ein Verfahren mit "Pseudodatensätzen" angewendet, das es erlaubt, die *statistische* Komponente des *systematischen* Fehlers zu ermitteln und zu subtrahieren. Durch den Datensatz bei 189 GeV mit ca. 3000 hadronischen Ereignissen ergibt sich für diese Analyse die Möglichkeit, die betroffenen Studien des systematischen Fehlers mit bedeutend größerer Statistik durchzuführen. Die Komponenten des systematischen Fehlers, die sich aus wiederholter Analyse unter Variation der Selektionskriterien ergeben, werden also lediglich bei dieser Energie durchgeführt. Der Anteil aus Variation des $\sqrt{s'}$ Schnittes wurde dabei gemäß der Entwicklung des Verhältnisses $\sigma_{WW}/\sigma_{q\bar{q}}$ skaliert.

3.5 Ergebnisse

In den folgenden Abschnitten werden die Ergebnisse der Messung inklusiver Spektren, Ereignisformverteilungen sowie deren Mittelwerten vorgestellt. Die Interpretation dieser Messungen folgt in den Kapiteln 4 und 5.

3.5.1 Inklusive Spektren

Mit den auf diese Weise selektierten und korrigierten Daten werden die inklusiven Spektren ξ_p , y_t , p_{\perp}^{in} und p_{\perp}^{out} aller geladenen Teilchen gemessen. Die Abbildungen in Anhang A zeigen diese Verteilungen für alle betrachteten Energien von 183 bis 207 GeV. Dargestellt ist im zentralen Teil jeder Abbildung der Vergleich mit verschiedenen Monte Carlo Modellen und die Größe des subtrahierten Vierfermion-Untergrundes. Der obere Teil der Abbildungen zeigt die Akzeptanzkorrektur und der untere Ausschnitt das Verhältnis zwischen den Ergebnissen bei m_Z und der jeweiligen LEP2 Energie. Die tabellierten Werte dieser Verteilungen sind Anhang C zu entnehmen.

Für alle Verteilungen findet sich eine gute Übereinstimmung zwischen den Daten und der Simulation, sowohl bei jeder festen Energie, als auch bezüglich der Energieentwicklung. Hinsichtlich der p_{\perp}^{out} Verteilung ergibt sich sogar eine bessere Übereinstimmung als bei den LEP1 Messungen [57].

Die Akzeptanzkorrekturen für die Größen ξ_p und y_t liegen in weiten Bereichen der Verteilung bei ca. 10%. Insbesondere die Maximumregion der ξ_p Verteilung erfährt relativ geringe Korrekturen. Für die Rapidität y_t tritt ein charakteristischer Durchgang der Akzeptanzkorrektur durch die Eins auf. Die Akzeptanzkorrektur der Transversalimpulse wächst für große Werte der Observablen auf über 30%.

Die Energieentwicklung der ξ_p Verteilung zeigt einen leichten Rückgang des Anteils von Spuren mit großem skalierten Impuls. Dies ist ebenso wie die Zunahme von Spuren mit großer Rapidität ein Hinweis auf die QCD Skalenverletzung. Die Transversalimpulsverteilungen zeigen einen deutlichen Anstieg des Anteils von Spuren mit großem Transversalimpuls. Dies ist auf den größeren Phasenraum bei den höheren Energien zurückzuführen.

3.5.2 Ereignisformobservablen

Mit den auf diese Weise selektierten und korrigierten Daten (geladene und neutrale Teilchen) werden die Ereignisformgrößen der Thrust-Familie (Thrust, Major, Minor und Oblateness), Jetbreiten, Jetmassen, C- und D-Parameter gemessen. Betrachtet werden außerdem die alternativen Definitionen der Jetmassen wie sie in Abschnitt 1.4.1 vorgestellt werden.

Die Abbildungen in Anhang B zeigen eine Auswahl dieser Verteilungen für alle betrachteten Energien von 183 bis 207 GeV. Dargestellt ist im zentralen Teil jeder Abbildung der Vergleich mit verschiedenen Monte Carlo Modellen und die Größe des subtrahierten Vierfermion-Untergrundes. Der obere Teil der Abbildungen zeigt die Akzeptanzkorrektur und der untere Ausschnitt den Vergleich zwischen relativem Fehler und der Abweichung von der Monte Carlo Simulation. Die tabellierten Werte aller betrachteten Ereignisformgrößen sind Anhang D zu entnehmen.

3.5.3 Mittelwerte und höhere Momente

Neben differentiellen Wirkungsquerschnitten enthält diese Arbeit auch eine Messung der einfachen Momente. Diese berechnen sich aus den korrigierten Verteilungen gemäß:

$$\langle y^k \rangle = \frac{\sum_i y_i^k D_i \Delta y_i}{\sum_i D_i \Delta y_i} \tag{3.5}$$

Die Summe läuft über die Binanzahl, y_i bezeichnet den Wert der Obervahlen für das *i*-te Bin, D_i den Inhalt und Δy_i die Breite dieses Intervalls. Der statistische Fehler kann mittels Fehlerfortpflanzung gewonnen werden:

$$\Delta \langle y^k \rangle = \sqrt{\frac{1}{N^2} \sum_i \Delta D_i^2 (y_i^k - \langle y_k \rangle)^2}$$
(3.6)

Die Ergebnisse dieser Messung sind in den Tabellen 3.5 bis 3.11 enthalten. Der erste Fehler gibt hier die statistische, der zweite die systematische Unsicherheit an.

Energie	$\langle 1 - T \rangle$	$\langle (1-T)^2 \rangle$	$\langle (1-T)^3 \rangle$
183	$0.0592 \pm 0.0024 \pm 0.0020$	$0.00766 \pm 0.00070 \pm 0.00054$	$0.00154 \pm 0.00021 \pm 0.00015$
189	$0.0557 \pm 0.0016 \pm 0.0022$	$0.00658 \pm 0.00048 \pm 0.00060$	$0.00121 \pm 0.00015 \pm 0.00017$
192	$0.0502 \pm 0.0040 \pm 0.0023$	$0.00454 \pm 0.00116 \pm 0.00064$	$0.00055 \pm 0.00035 \pm 0.00018$
196	$0.0592 \pm 0.0029 \pm 0.0024$	$0.00810 \pm 0.00085 \pm 0.00067$	$0.00171 \pm 0.00026 \pm 0.00019$
200	$0.0541 \pm 0.0028 \pm 0.0025$	$0.00613 {\pm} 0.00086 {\pm} 0.00071$	$0.00101 \pm 0.00027 {\pm} 0.00020$
202	$0.0480 \pm 0.0040 \pm 0.0025$	$0.00330 \pm 0.00121 \pm 0.00072$	$0.00003 \pm 0.00039 \pm 0.00020$
205	$0.0446 \pm 0.0030 \pm 0.0026$	$0.00322 {\pm} 0.00090 {\pm} 0.00077$	$0.00019 \pm 0.00027 {\pm} 0.00022$
207	$0.0536 \pm 0.0023 \pm 0.0027$	$0.00572 {\pm} 0.00066 {\pm} 0.00079$	$0.00086 \pm 0.00020 \pm 0.00022$

Tabelle 3.5: Mittelwerte und höhere Momente der Thrust Verteilung.

Energie	$\langle C \rangle$	$\langle (C)^2 \rangle$	$\langle (C)^3 \rangle$
183	$0.2286 {\pm}~ 0.0070 {\pm}~ 0.0106$	$0.08846 \pm 0.00544 \pm 0.00952$	$0.04585 \pm 0.00413 \pm 0.00824$
189	$0.2304 \pm 0.0046 \pm 0.0113$	$0.09252{\pm}0.00369{\pm}0.01030$	$0.05114 \pm 0.00287 {\pm} 0.00894$
192	$0.2060 \pm 0.0115 \pm 0.0117$	$0.06634{\pm}0.00915{\pm}0.01073$	$0.02676 \pm 0.00716 {\pm 0.00933}$
196	$0.2181 {\pm}\ 0.0080 {\pm}\ 0.0121$	$0.08091{\pm}0.00657{\pm}0.01118$	$0.03909 \pm 0.00515 {\pm} 0.00973$
200	$0.2139 \pm 0.0079 \pm 0.0126$	$0.07882{\pm}0.00658{\pm}0.01170$	$0.03907 \pm 0.00524 {\pm} 0.01020$
202	$0.2066 {\pm}~ 0.0111 {\pm}~ 0.0127$	$0.06730 {\pm} 0.00919 {\pm} 0.01184$	$0.02761 \pm 0.00737 {\pm} 0.01032$
205	$0.1726 {\pm}~ 0.0088 {\pm}~ 0.0133$	$0.03792 {\pm} 0.00743 {\pm} 0.01251$	$0.00349 \pm 0.00596 {\pm} 0.01092$
207	$0.2081 {\pm}~ 0.0065 {\pm}~ 0.0136$	$0.07123 {\pm} 0.00540 {\pm} 0.01278$	$0.03150 \pm 0.00426 {\pm 0.01116}$

Tabelle 3.6: Mittelwerte und höhere Momente der C Parameter Verteilung.

Energie	$\langle B_{sum} \rangle$	$\langle (B_{\rm sum})^2 angle$	$\langle (B_{ m sum})^3 angle$
183	$0.0953 \pm 0.0023 \pm 0.0010$	$0.01334 {\pm} 0.00070 {\pm} 0.00028$	$0.00247 \pm 0.00020 \pm 0.00011$
189	$0.0920 \pm 0.0015 \pm 0.0010$	$0.01192 {\pm} 0.00047 {\pm} 0.00030$	$0.00199 \pm 0.00013 {\pm} 0.00012$
192	$0.0893 {\pm}~ 0.0038 {\pm}~ 0.0010$	$0.01113 {\pm} 0.00117 {\pm} 0.00031$	$0.00178 \pm 0.00034 {\pm 0.00013}$
196	$0.0931 \pm 0.0026 \pm 0.0010$	$0.01266 {\pm} 0.00082 {\pm} 0.00032$	$0.00224 \pm 0.00024 \pm 0.00014$
200	$0.0927 {\pm}~ 0.0026 {\pm}~ 0.0010$	$0.01254 {\pm} 0.00081 {\pm} 0.00034$	$0.00222 \pm 0.00023 {\pm} 0.00015$
202	$0.0954 \pm 0.0035 \pm 0.0010$	$0.01344 \pm 0.00111 \pm 0.00034$	$0.00257 \pm 0.00032 \pm 0.00015$
205	$0.0845 {\pm}~ 0.0028 {\pm}~ 0.0010$	$0.00952 {\pm} 0.00086 {\pm} 0.00036$	$0.00131 \pm 0.00025 {\pm} 0.00016$
207	$0.0902 {\pm}~ 0.0021 {\pm}~ 0.0010$	$0.01151 {\pm} 0.00066 {\pm} 0.00036$	$0.00188 \pm 0.00019 \pm 0.00016$

Tabelle 3.7: Mittelwerte und höhere Momente der B_{sum} Verteilung.
Energie	$\langle M_{\rm h}^2/E_{ m vis}^2 \rangle$	$\langle (M_{\rm h}^2/E_{\rm vis}^2)^2 \rangle$	$\langle (M_{\rm h}^2/E_{ m vis}^2)^3 angle$
183	$0.0457 \pm 0.0023 \pm 0.0012$	$0.00451 {\pm} 0.00066 {\pm} 0.00027$	$0.00068 \pm 0.00021 \pm 0.00006$
189	$0.0437 \pm 0.0016 \pm 0.0013$	$0.00408 {\pm} 0.00045 {\pm} 0.00030$	$0.00060 \pm 0.00014 \pm 0.00007$
192	$0.0406 \pm 0.0039 \pm 0.0013$	$0.00285{\pm}0.00117{\pm}0.00032$	$0.00024 \pm 0.00040 \pm 0.00008$
196	$0.0441 \pm 0.0027 \pm 0.0014$	$0.00421 {\pm} 0.00079 {\pm} 0.00034$	$0.00060 \pm 0.00024 \pm 0.00008$
200	$0.0451 \pm 0.0027 \pm 0.0015$	$0.00458 {\pm} 0.00078 {\pm} 0.00036$	$0.00071 \pm 0.00025 \pm 0.00009$
202	$0.0460 \pm 0.0038 \pm 0.0015$	$0.00470 {\pm} 0.00112 {\pm} 0.00036$	$0.00083 \pm 0.00037 \pm 0.00009$
205	$0.0401 \pm 0.0028 \pm 0.0016$	$0.00338 {\pm} 0.00080 {\pm} 0.00039$	$0.00045 \pm 0.00023 \pm 0.00009$
207	$0.0444 \pm 0.0022 \pm 0.0016$	$0.00439 {\pm} 0.00066 {\pm} 0.00040$	$0.00068 \pm 0.00021 \pm 0.00010$

Tabelle 3.8: Mittelwerte und höhere Momente der $M_{\rm h}^2/E_{\rm vis}^2$ Verteilung.

Energie	$\langle M_{\rm h}^2/E_{ m vis}^2p\rangle$	$\langle (M_{\rm h}^2/E_{ m vis}^2p)^2 \rangle$	$\langle (M_{\rm h}^2/E_{\rm vis}^2 p)^3 \rangle$
183	$0.0427 {\pm}\ 0.0023 {\pm}\ 0.0012$	$0.00421{\pm}0.00066{\pm}0.00027$	$0.00068 \pm 0.00021 \pm 0.00006$
189	$0.0411 \pm 0.0016 \pm 0.0013$	$0.00383 {\pm} 0.00045 {\pm} 0.00030$	$0.00060 \pm 0.00014 \pm 0.00007$
192	$0.0384 {\pm}~ 0.0039 {\pm}~ 0.0013$	$0.00274{\pm}0.00117{\pm}0.00032$	$0.00025 \pm 0.00039 \pm 0.00008$
196	$0.0413 \pm 0.0027 \pm 0.0014$	$0.00396 {\pm} 0.00079 {\pm} 0.00034$	$0.00057 \pm 0.00024 \pm 0.00008$
200	$0.0424 \pm 0.0027 \pm 0.0015$	$0.00426 {\pm} 0.00078 {\pm} 0.00036$	$0.00065 \pm 0.00025 \pm 0.00009$
202	$0.0436 \pm 0.0038 \pm 0.0015$	$0.00451 {\pm} 0.00112 {\pm} 0.00036$	$0.00081 \pm 0.00037 \pm 0.00009$
205	$0.0380 {\pm}~ 0.0029 {\pm}~ 0.0016$	$0.00320{\pm}0.00080{\pm}0.00039$	$0.00043 \pm 0.00023 \pm 0.00009$
207	$0.0420 \pm 0.0023 \pm 0.0016$	$0.00419 {\pm} 0.00067 {\pm} 0.00040$	$0.00065 \pm 0.00021 \pm 0.00010$

Tabelle 3.9: Mittelwerte und höhere Momente der $M_{\rm h}^2/E_{\rm vis}^2$ (p Definition) Verteilung.

Energie	$\langle M_{\rm h}^2/E_{\rm vis}^2E\rangle$	$\langle (M_{\rm h}^2/E_{\rm vis}^2 E)^2 \rangle$	$\langle (M_{\rm h}^2/E_{\rm vis}^2 E)^3 \rangle$
183	$0.0434 \pm 0.0023 \pm 0.0012$	$0.00426 {\pm} 0.00066 {\pm} 0.00027$	$0.00064 \pm 0.00021 \pm 0.00006$
189	$0.0417 \pm 0.0016 \pm 0.0013$	$0.00390 {\pm} 0.00045 {\pm} 0.00030$	$0.00057 \pm 0.00014 \pm 0.00007$
192	$0.0391 \pm 0.0039 \pm 0.0013$	$0.00282{\pm}0.00117{\pm}0.00032$	$0.00026 \pm 0.00039 \pm 0.00008$
196	$0.0420 \pm 0.0027 \pm 0.0014$	$0.00403 {\pm} 0.00079 {\pm} 0.00034$	$0.00058 \pm 0.00024 \pm 0.00008$
200	$0.0430 \pm 0.0027 \pm 0.0015$	$0.00434{\pm}0.00078{\pm}0.00036$	$0.00067 \pm 0.00025 \pm 0.00009$
202	$0.0440 \pm 0.0038 \pm 0.0015$	$0.00450 {\pm} 0.00112 {\pm} 0.00036$	$0.00080 \pm 0.00037 {\pm} 0.00009$
205	$0.0385 \pm 0.0029 \pm 0.0016$	$0.00325{\pm}0.00080{\pm}0.00039$	$0.00044 \pm 0.00023 \pm 0.00009$
207	$0.0426 \pm 0.0023 \pm 0.0016$	$0.00425 {\pm} 0.00067 {\pm} 0.00040$	$0.00066 \pm 0.00021 \pm 0.00010$

Tabelle 3.10: Mittelwerte und höhere Momente der $M_{\rm h}^2/E_{\rm vis}^2$ (E Definition) Verteilung.

Energie	$\langle {B}_{ m max} angle$	$\langle (B_{ m max})^2 angle$	$\langle ({B}_{\max})^3 angle$	
183	$0.0663 {\pm}~ 0.0021 {\pm}~ 0.0021$	$0.00688 {\pm} 0.00053 {\pm} 0.00034$	$0.00095 \pm 0.00013 \pm 0.00007$	
189	$0.0652 {\pm}~ 0.0014 {\pm}~ 0.0022$	$0.00656{\pm}0.00037{\pm}0.00036$	$0.00089 \pm 0.00009 \pm 0.00008$	
192	$0.0621 {\pm}~ 0.0035 {\pm}~ 0.0022$	$0.00557{\pm}0.00096{\pm}0.00038$	$0.00061 \pm 0.00026 \pm 0.00008$	
196	$0.0668 {\pm}~ 0.0024 {\pm}~ 0.0022$	$0.00719 {\pm} 0.00064 {\pm} 0.00039$	$0.00105 \pm 0.00016 \pm 0.00009$	
200	$0.0659 {\pm}~ 0.0024 {\pm}~ 0.0023$	$0.00699 {\pm} 0.00063 {\pm} 0.00041$	$0.00100 \pm 0.00016 \pm 0.00009$	
202	$0.0666 {\pm}\ 0.0033 {\pm}\ 0.0023$	$0.00671 {\pm} 0.00089 {\pm} 0.00041$	$0.00087 \pm 0.00023 \pm 0.00009$	
205	$0.0625 {\pm}~ 0.0025 {\pm}~ 0.0023$	$0.00585 {\pm} 0.00068 {\pm} 0.00044$	$0.00073 \pm 0.00017 \pm 0.00010$	
207	$0.0658 {\pm}~ 0.0020 {\pm}~ 0.0023$	$0.00695 {\pm} 0.00053 {\pm} 0.00044$	$0.00100 \pm 0.00013 \pm 0.00010$	

Tabelle 3.11: Mittelwerte und höhere Momente der B_{\max} Verteilung.

Kapitel 4

Test der lokalen Parton Hadron Dualität

In Abschnitt 1.4.9 wurde das Konzept der lokalen Parton Hadron Dualität vorgestellt. Es macht – zusammen mit den Rechnungen der MLLA – Vorhersagen für die Impulsspektren der e^+e^- Annihilation.

In diesem Abschnitt werden diese Vorhersagen für die ξ_p Verteilung sowie ihres Maximums ξ^* getestet. Eine detaillierte Darstellung dieser Thematik findet sich in [4, 58].

4.1 Energieabhängigkeit der ξ_p Verteilung

In der *limited spectrum* Näherung kann der differentielle Wirkungsquerschnitt in ξ_p durch eine Gaussverteilung mit höheren Momenten parametrisiert werden. Zum Test dieser Vorhersage wurde die Beziehung 1.54 mit den Fong-Webber Koeffizienten 1.55 an die Daten angepasst. Neben den Messungen dieser Analyse werden ebenfalls Ergebnisse von Niederenergieexperimenten [59] verwendet. Der Anpassungsbereich umfasst dabei die symmetrische Region, in der die Verteilung auf 60% ihres Höchstwertes abgefallen ist. Die Normierung N(Y)ist energieabhängig. Dagegen sagt die LPHD voraus, dass die Parameter Λ_{eff} und der Korrekturterm $\mathcal{O}(1)$ für $\langle \xi \rangle$ nicht von der Energie abhängen. Deshalb erfolgt die Anpassung dieser beiden Parameter simultan bei allen Daten.

Das Ergebnis dieser simultanen Anpassung an *alle* Energien ist in 4.1 abgebildet¹. Lediglich die Z Daten sind aus der Anpassung ausgeschlossen, da der erhöhte Anteil an $b\overline{b}$ Ereignissen eine Verschiebung der Verteilung zu kleineren Werten bewirkt. Wie zuvor erläutert, beträgt die Anzahl der freien Parameter² 18.

 $^{^1\}mathrm{Aus}$ Gründen der Übersichtlichkeit sind nur einige exemplarische LEP2 Energien dargestellt.

 $^{^2 \}mathrm{Die}$ Normierung für jede Energie plus der zwei energie
unabhängigen Parameter.

Abbildung 4.1: ξ_p Verteilungen mit einer Anpassung der Fong—Webber Parametrisierung des limited spectrum.

Man findet einen Wert des effektiven Skalenparameters von $\Lambda_{\text{eff}} = 200 \pm 7 \text{ MeV}$ bei $\chi^2/ndf = 219/141 = 1.55$. Für die $\mathcal{O}(1)$ Korrektur an $\langle \xi \rangle$ ergibt die Anpassung ein Ergebnis von -0.58 ± 0.02 . Die Fehler stammen aus der Anpassung an die Daten mit *statistischen* Unsicherheiten.

4.2 Energieabhängigkeit von ξ^*

Wir betrachten nun die Energieabhängigkeit des Maximums der ξ_p Verteilung, ξ^* . Für den Vergleich mit anderen Messungen ist es von entscheidender Bedeutung, dass eine einheitliche Definition des Maximums verwendet wird. Aufgrund einer Übereinkunft der LEP QCD Arbeitsgruppe, wählen wir dazu die im letzten Abschnitt erwähnte Darstellung des *limited spectrum* durch Fong

Abbildung 4.2: Maxima der ξ_p Verteilung zusammen mit einer Anpassung der MLLA Vorhersage sowie des inkohärenten Phasenraummodells.

und Webber. Der Anpassungsbereich umfasst dabei die symmetrische Region um das Maximum, in dem die Verteilung auf 60% ihres Höchstwertes abgefallen ist. Alle Werte die in diese Analyse eingehen wurden mit dieser Methode bestimmt (in [60] wurden auch die TASSO Messungen mit diesem Verfahren behandelt).

In Tabelle 4.1 werden die gewonnenen ξ^* Werte angegeben. Der systematische Fehler reflektiert die Variation dieses Merkmals unter Veränderung der Schnitte und Korrekturen wie in Abschnitt 3.4.3 beschrieben.

Die Anpassung der Beziehung 1.56 an die Daten aus Tabelle 4.1 zusammen mit Niederenergiedaten und andern LEP Messungen [60, 61] ergibt dabei den Wert von $\Lambda_{\text{eff}} = 200 \pm 2 \,\text{MeV}$ bei $\chi^2/ndf = 20/23 = 0.87$. Die Daten zusammen mit der Anpassung und der Vorhersage des inkohärenten Phasenraumodells sind in Abbildung 4.2 dargestellt.

Energie	$\xi^* \pm { m stat} \pm { m sys}$
183	$4.196 \pm 0.017 \pm 0.030$
189	$4.146 \pm 0.011 \pm 0.033$
192	$4.111 \pm 0.026 \pm 0.035$
196	$4.129 \pm 0.016 \pm 0.037$
200	$4.167 \pm 0.015 \pm 0.039$
202	$4.191 \pm 0.022 \pm 0.039$
205	$4.151 \pm 0.017 \pm 0.043$
207	$4.190 \pm 0.013 \pm 0.044$

Tabelle 4.1: Maxima der $\xi_p = -\ln x_p$ Verteilung, ξ^* .

4.3 Zusammenfassung

Das Konzept der lokalen Parton Hadron Dualität kann, da es sekundäre Zerfälle vernachlässigt, nur einen phänomenologischen Status beanspruchen. Für eine *quantitative* Überprüfung der QCD ist es damit ungeeignet. Eine *qualitative* Übereinstimmung mit den Vorhersagen der MLLA/LPHD findet sich jedoch bei allen untersuchten Größen, wobei der Wert des effektiven Skalenparamters Λ_{eff} im physikalisch sinnvollen Bereich liegt.

Das charakteristische Merkmal aller MLLA Rechnungen ist die große Bedeutung der kohärenten Abstrahlung weicher Gluonen. Die Manifestation dieses Effektes auf Hadronniveau erlaubt somit Rückschlüsse auf die Fragmentation.

Kapitel 5

Messung der starken Kopplung

In diesem Kapitel wird die Messung der starken Kopplung α_s vorgestellt. Bevor die Ergebnisse der verschiedenen Methoden diskutiert werden, wird die diesen Resultaten gemeinsame Problematik der Mittelung korrelierter Messungen behandelt.

5.1 Mittelung korrelierter Messungen

Die α_s Werte aus der Anpassung an verschiedene Observable, die mit dem selben Datensatz berechnet wurden, sind statistisch und systematisch hochkorreliert. Dadurch verbietet sich die Bildung eines einfachen gewichteten Mittelwertes dieser Größen. Wird stattdessen jedoch ein ungewichtetes Mittel berechnet, ist es unklar, welcher Fehler diesem Mittelwert zugeordnet werden soll. Zudem vernachlässigt man die Information, die in der Korrelation enthalten ist.

Ein kleinster-Quadrate-Schätzer α , der die Korrelation zwischen den Werten α_i berücksichtigt, kann aus folgendem χ^2 gewonnen werden [62]:

$$\chi^{2} = \sum_{i,j=1}^{N} (\alpha_{i} - \alpha) (V^{-1})_{ij} (\alpha_{j} - \alpha)$$
(5.1)

Der Index N läuft in unserem Fall also über die Anzahl der verschiedenen Observablen und V ist die Kovarianzmatrix, die definiert ist als:

$$V_{ij} = E[(\alpha_i - E[\alpha_i])(\alpha_j - E[\alpha_j])]$$
(5.2)

Der Schätzer für den Mittelwert $\overline{\alpha}$ wird wie üblich durch Nullsetzen der ersten Ableitung von 5.1 gewonnen. Dadurch ergibt sich:

$$\overline{\alpha} = \sum_{i=1}^{N} w_i \alpha_i \tag{5.3}$$

mit den Gewichten:

$$w_i = \frac{\sum_j (V^{-1})_{ij}}{\sum_{k,l} (V^{-1})_{kl}}$$
(5.4)

Im Falle einer diagonalen Kovarianzmatrix reduzieren sich diese Ausdrücke zur üblichen Definition des gewichteten Mittels mit Gewichten $w_i = 1/s^2(\alpha_i)$. Mittels Fehlerfortpflanzung ergibt sich die Varianz des Schätzers 5.3 zu:

$$s^{2}(\overline{\alpha}) = \sum_{i,j=1}^{N} w_{i} V_{ij} w_{j}$$
(5.5)

Korrelationen können auch unerwartete Konsequenzen haben. Die Gewichte w_i aus Gleichung 5.4 summieren sich gemäß ihrer Definition zwar zu eins, können aber auch negativ werden! Dieser Fall tritt genau dann auf, wenn die Korrelation $\frac{V_{ij}}{\sqrt{V_{ii}V_{jj}}}$ größer wird als das Verhältnis der Fehler $\frac{\Delta x_i}{\Delta x_j}$ (mit $\Delta x_j > \Delta x_i$). Dadurch kann gemäß Gleichung 5.3 der Mittelwert sogar außerhalb des Intervalls der Einzelmessungen liegen. Diese unintuitive Eigenschaft des Mittelwertschätzers, ist bei genauerer Betrachtung jedoch leicht zu erklären, denn im Falle größer positiver Korrelation wächst die Wahrscheinlichkeit, dass *alle* Messwerte größer oder kleiner als der wahre Parameter sind. In [62] wird ein physikalisches Beispiel diskutiert, bei dem diese unintuitive Eigenschaft der Korrelation auftritt. Es ist also von entscheidender Bedeutung, die Korrelationsmatrix mit hoher Genauigkeit zu schätzen. Dieser Teil der Analyse wird im folgenden Abschnitt beschrieben.

5.1.1 Schätzung der Korrelationsmatrix

Die volle Kovarianzmatrix besitzt eine additive Struktur bezüglich der einzelnen Fehlerkomponenten (die genaue Definition dieser Fehler wird in Abschnitt 5.2.3 gegeben.):

$$V = V^{\text{stat}} + V^{\text{sys.exp.}} + V^{\text{Had}} + V^{\text{Skala}}$$

Um den statistischen Anteil der Kovarianzmatrix V zu ermitteln, wurden 100 Monte Carlo Datensätze mit je 20000 Ereignissen bei 189 GeV generiert¹. Für jeden der 100 Datensätze wurden die verschiedenen α_s Analysen durchgeführt. Die statistische Kovarianzmatrix kann damit geschätzt werden als:

$$V_{ij}^{\text{stat}} = \frac{1}{N} \sum_{k=1}^{N} \left\{ \left[\alpha_{s\,i}^{k} - \frac{1}{N} \left(\sum_{m=1}^{N} \alpha_{s\,i}^{m} \right) \right] \left[\alpha_{s\,j}^{k} - \frac{1}{N} \left(\sum_{n=1}^{N} \alpha_{s\,j}^{n} \right) \right] \right\}$$
(5.6)

¹Die Effekte einer möglichen Energieabhängigkeit der statistischen Korrelation werden hier vernachlässigt.

Dabei ist N die Anzahl der simulierten Datensätze, und der untere Index an α_s läuft über die Observablenanzahl (i = 1, ..., 5). Die so gewonnene Kovarianz wird durch folgende Normierung in die Korrelationsmatrix übersetzt:

$$K_{ij} = \frac{V_{ij}}{\sqrt{V_{ii}V_{jj}}} \tag{5.7}$$

Um die Unsicherheit dieser Korrelationskoeffizienten abschätzen zu können, wurden die 100 Monte Carlo Datensätze in 10 Sample unterteilt, und die Korrelationsmatrix für diese 10 Datensätze berechnet. Die Streuung dieser Schätzer der statistischen Korrelationskoeffizienten liegt bei unter 10%.

Die Korrelationsmatrizen 5.8 bis 5.11 wurden also gewonnen, indem die Kovarianzmatrix mit der Streuung der MC Studie normiert wurde. Die Kovarianzmatrix, die zur Berechnung von 5.1 verwendet wird, gewinnt man, indem K wiederum mit den statistischen Fehlern aus der Anpassung an die Daten multipliziert wird:

$$V_{ij}^{\text{stat}} = K_{ij} \cdot \Delta_i^{\text{stat}} \cdot \Delta_j^{\text{stat}}$$

$$K_{\mathcal{O}(\alpha_s^2)}^{\text{stat}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.64 & 0.84 & 0.81 & 0.82 \\ 1.00 & 0.70 & 0.65 & 0.71 \\ & 1.00 & 0.86 & 0.78 \\ & & 1.00 & 0.83 \\ & & & 1.00 \end{pmatrix}$$
(5.8)

$$K_{\text{logR}}^{\text{stat}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.71 & 0.78 & 0.81 & 0.74 \\ & 1.00 & 0.81 & 0.68 & 0.59 \\ & & 1.00 & 0.81 & 0.58 \\ & & & 1.00 & 0.78 \\ & & & & 1.00 \end{pmatrix}$$
(5.9)

$$K_{NLLA}^{\text{stat}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.54 & 0.60 & 0.61 & 0.68 \\ & 1.00 & 0.55 & 0.24 & 0.27 \\ & & 1.00 & 0.37 & 0.29 \\ & & & 1.00 & 0.73 \\ & & & & 1.00 \end{pmatrix}$$
(5.10)

$$K_{\text{means}}^{\text{stat}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.98 & 0.93 & 0.94 & 0.97 \\ & 1.00 & 0.94 & 0.93 & 0.95 \\ & & 1.00 & 0.95 & 0.89 \\ & & & 1.00 & 0.95 \\ & & & & 1.00 \end{pmatrix}$$
(5.11)

Korrelation systematischer Fehler

Die Korrelation zwischen den systematischen Effekten kann nur modelliert werden. Eine sinnvolle Annahme ist es, die Kovarianzen gemäß folgender Vorschrift zu wählen ("minimum overlapp"):

$$V_{ij} = \min(\Delta_i^2, \Delta_j^2) \tag{5.12}$$

Dabei bezeichnen die Δ_i die jeweiligen systematischen und theoretischen Unsicherheiten. Durch diese Annahme wird die Korrelation um so größer, je ähnlicher die Fehler sind. Motiviert ist diese Hypothese aus der Tatsache, dass umgekehrt hohe Korrelation für ähnliche Fehler verantwortlich ist. Durch diese Definition sind die Korrelations- bzw. Kovarianzmatrizen für die verschiedenen Fehlertypen bei jeder Energie und Methode leicht abweichend. Die Matrizen 5.13,5.14 und 5.15 geben die entsprechenden Korrelationen exemplarisch bei 189 GeV und der Anpassung der $\mathcal{O}(\alpha_s^2)$ Theorie an.

Die Fehlerkomponenten des korrelierten Mittelwertes berechnen sich unter Anwendung von Beziehung 5.5, wobei für die jeweilige Komponente die entsprechende Kovarianzmatrix einzusetzten ist.

$$K_{\text{sys.exp.}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.96 & 0.96 & 0.82 & 0.52 \\ & 1.00 & 1.00 & 0.86 & 0.50 \\ & & 1.00 & 0.86 & 0.50 \\ & & & 1.00 & 0.43 \\ & & & & 1.00 \end{pmatrix}$$
(5.13)

$$K_{\text{Had.}} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\text{max}} B_{\text{sum}} \\ 1.00 & 0.71 & 0.44 & 0.36 & 0.79 \\ & 1.00 & 0.31 & 0.50 & 0.91 \\ & & 1.00 & 0.16 & 0.34 \\ & & & 1.00 & 0.45 \\ & & & & 1.00 \end{pmatrix}$$
(5.14)

$$K_{\mu_R} = \begin{pmatrix} C & 1 - T M_h^2 & B_{\max} B_{\sup} \\ 1.00 & 0.91 & 0.91 & 0.39 & 0.66 \\ & 1.00 & 1.00 & 0.43 & 0.60 \\ & & 1.00 & 0.43 & 0.60 \\ & & & 1.00 & 0.26 \\ & & & & 1.00 \end{pmatrix}$$
(5.15)

5.1.2 Vergleich der Mittelungsverfahren der LEP Experimente

Durch die Schwierigkeit die Korrelation der systematischen Fehler zu schätzen, existiert kein allgemein akzeptiertes Verfahren zur Mittelung der α_s Werte aus verschiedenen Observablen bei fester Energie. Die verschiedenen LEP Experimente wenden folgende Verfahren an:

• ALEPH

Das ALEPH Experiment kombiniert die Messungen verschiedener Observablen mit einem durch den totalen Fehler der Einzelmessungen gewichteten Mittelwert. Erst bei der Berechnung des statistischen Fehlers wird Information aus der Korrelation ausgenutzt:

$$\sigma_{\overline{\alpha_s}}^{stat} = \sqrt{\sum_{i\neq j}^{N} ((\sigma_i^{stat}w_i)^2 + 2\rho_{ij}\sigma_i^{stat}w_i\sigma_j^{stat}w_j)}$$

Dabei werden die statistischen Korrelationskoeffizienten ρ_{ij} wie in dieser Analyse mit Monte Carlo Methoden geschätzt. Der systematische und theoretische Fehler des Mittelwertes wird aus der Schwankung des α_s Mittelwertes unter Variation der Willkürparameter (Selektionskriterien, Hadronisierungsmodell etc.) gewonnen. Bei diesem Verfahren geht in den Zentralwert der Messung also *keine* Information über die Korrelationen ein. Der Fehler der dem Mittelwert zugeordnet wird, ist im mathematischen Sinne nicht seine Standardabweichung. Gemäß ihrer Definition liegen die systematischen Fehler des Mittelwertes in der Nähe von gemittelten Einzelfehlern. Vor allem können bei diesem Verfahren die Fehler des Mittelwertes größer als der kleinste Fehler einer Einzelmessung sein.

• OPAL

Die OPAL Kollaboration referenziert für das Verfahren seiner Mittelung die Arbeit [63]. In dieser Analyse werden zahlreiche Verfahren zur Kombination der Ergebnisse verschiedener Observablen diskutiert. Darunter auch eine Methode die die volle Korrelationsmatrix berücksichtigt, wobei systematische Korrelationen mit der extrem konservativen Annahme $V_{ij} = \Delta_i \cdot \Delta_j$ modelliert werden. Am Ende dieser länglichen Diskussion steht die lapidare Bemerkung, man habe das zentrale Resultat aus einem "simple weighted average" gewonnen. Damit ist gemeint [64], dass man den Zentralwert aus einem (mit dem totalen Fehler) gewichteten Mittelwert gewinnt. Sämtliche Fehler (also auch die statistischen) werden durch Variation dieses Zentralwertes unter der entsprechenden Variation der Einzelmessungen gewonnen. Auch bei dieser Methode wird der Fehler also konservativ abgeschätzt, und gleichzeitig wird die Information aus der Korrelation nur approximativ verwendet.

• L3

Das L3 Experiment verwendet einen ungewichteten Mittelwert zur Kombination der α_s Werte aus verschiedenen Observablen [54]. Diesem Wert wird als Fehler ebenfalls der gemittelte Fehler der Einzelmessungen zugeordnet. Auf diese Weise wird jede Information aus der Korrelation vernachlässigt und die Unsicherheit der kombinierten Messung nur abgeschätzt.

Das in unserer Analyse verwendete Mittelungsverfahren versucht, im Gegensatz zu den anderen hier beschriebenen Methoden, eine Einbeziehung der (geschätzten) Korrelation, sowohl bei der Bestimmung des Zentralwertes der Mittelung, als auch bei der Schätzung seiner Unsicherheit. Dadurch wird sichergestellt, dass der totale Fehler des Mittelwertes kleiner als der kleinste totale Fehler der Einzelmessungen ist.

Die Ergebnisse, die sich aus der Wahl jedes der vorgestellten Kombinationverfahren ergeben, sind – zumindest hinsichtlich ihrer Zentralwerte – den Abbildungen 5.5 bis 5.10 und 5.14 bis 5.16 zu entnehmen. Hier sind neben dem Ergebnis der korrelierten Mittelung (unser Verfahren) auch ungewichteter und unkorreliert-gewichteter² Mittelwert dargestellt.

5.2 α_s aus Verteilungen

In diesem Abschnitt wird die Messung der starken Kopplung aus der Anpassung an Ereignisformverteilungen vorgestellt. Besonderes Augenmerk liegt dabei auf der Begründung der Wahl des Anpassungsbereiches in Abschnitt 5.2.2.

5.2.1 Hadronisierungskorrektur

Die störungstheoretischen Vorhersagen der QCD beziehen sich auf asymptotisch freie Partonzustände. Vor einer Anpassung an die Daten muß deshalb eine Hadronisierungskorrektur angewendet werden. Dies kann entweder durch sogenannte potenzartige Korrekturen, oder mit Hilfe von Monte Carlo Generatoren, geschehen. Die Anwendung von potenzartigen Korrekturen wird in

²Als Gewichte wurden die totalen Fehler verwendet

dieser Analyse auf Mittelwerte von Ereignisformobservablen betrachtet. Für die differentiellen Wirkungsquerschnitte wenden wir stattdessen eine Monte Carlo Hadronisierungskorrektur an:

$$Daten_{Partonniveau} = Daten \cdot \frac{MC_{Partonniveau}}{MC_{Hadronniveau}}$$
(5.16)

Die Abbildung 5.3 stellt die Größe der Jetset Hadronisierungskorrektur in den hier verwendeten Anpassungsbereichen dar. Sie beträgt maximal zehn Prozent im Zweijetbereich und fällt im Dreijetbereich der Verteilungen auf unter fünf Prozent ab. Als Fehler dieser Korrektur wurde die größere der beiden Abweichungen gewählt, die sich bei alternativer Verwendung von ARIADNE bzw. HERWIG Monte Carlo ergeben. Das zentrale Resultat bezieht sich auf das JETSET Modell.

Vergleich der Hadronisierungskorrekturen in der LEP QCD Arbeitsgruppe

Innerhalb der LEP QCD Arbeitsgruppe wurden die Hadronisierungskorrekturen aller LEP Experimente verglichen. Ziel dieser Studie war vor allem die Aufklärung der Frage, wie hoch die Korrelation der *Hadronisierungsfehler* zwischen den LEP Experimenten ist. Es ergeben sich relative Unterschiede zwischen den Korrekturen von bis zu 15% bei nominell gleichen Generatoren. Für den JETSET Generator, mit dem alle Experimente ihr zentrales Resultat erzeugen, liegen die Abweichungen in den kinematisch relevanten Bereichen jedoch nur bei einigen Prozent. Diese Abweichungen können im Prinzip auf unterschiedliches Tuning sowie die Verwendung unterschiedlicher Versionen zurückgeführt werden. Für den Hadronisierungsfehler, der ja aus der Differenz der Vorhersage verschiedener Modelle abgeleitet wird, ergibt sich somit eine geringere Korrelation als ursprünglich erwartet.

Die andere wichtige Frage lautet, ob die Hadronisierungskorrekturen konsistente Ergebnisse liefern. Zur Aufklärung dieser Frage wurden DELPHI Daten bei 189 GeV mit den Hadronisierungsmodellen aller Experimente korrigiert, und daraus α_s angepasst. In Abbildung 5.1 sind die Ergebnisse am Beispiel der Thrust Verteilung dargestellt. Es findet sich zwischen DELPHI, OPAL und ALEPH eine glänzende Übereinstimmung in α_s . Die Abweichungen liegen hier unter einem Prozent, und werden durch die Hadronisierungsfehler der Experimente vollständig abgedeckt. Erst die Hinzunahme der L3 Werte lässt die Streuung auf einige Prozent wachsen. Diese ist jedoch immer noch mit den angegebenen Hadronisierungsfehlern verträglich.

5.2.2 Wahl des Anpassungsbereiches

Eine zentrale Bedeutung bei jeder α_s Analyse kommt der Wahl des Anpassungsbereiches zu. Sie ist im wesentlichen von zwei Faktoren abhängig:

Abbildung 5.1: Werte für α_s aus Anpassung der logR Vorhersage an die Thrust Verteilung mit DELPHI Daten und Hadronisierungskorrekturen der anderen LEP Experimente. Die Fehlerbalken entsprechen den Hadronisierungsfehlern der einzelnen Experimente.

- Dem Gültigkeitsbereich der verwendeten Theorie.
- Dem Bereich in dem die Korrekturen (Akzeptanz, Hadronisierung und subtrahierter Untergrund) nur geringe Unsicherheiten verursachen.

Die erste Frage lässt sich formal einfach beantworten: Resummie rte Rechnungen sind ihrer Konstruktion nach im Zweijetbereich anwendbar, wohingegen Rechnungen in nächstführender Ordnung für die hier betrachteten Observablen den Dreijetbereich beschreiben. Diese Anpassungsbereiche sollten also disjunkt gewählt werden. Dies hat den zusätzlichen Vorteil, dass die Ergebnisse statistisch unkorreliert sind. Kombinierte Rechnungen (etwa: NLLA+ $\mathcal{O}(\alpha_s^2)$ im logR matching) sollten in der Vereinigung beider Anpassungsbereiche anwendbar sein. Da der Übergang zwischen diesen Topologien jedoch kontinuierlich ist, kann diese Betrachtung alleine die möglichen Anpassungsbereiche nur qualitativ einschränken. Eine andere notwendige Bedingung für eine verlässliche Messung der starken Kopplung ist jedoch die Stabilität des α_s Wertes unter Variation des Anpassungsbereiches. Nur wenn die Güte der Anpassung die Hypothese stützt, dass die Theorie die Daten überhaupt beschreibt, kann α_s – der freie Parameter der Anpassung – vertrauenswürdig geschätzt werden.

Im folgenden studieren wir deshalb die Abhängigkeit des α_s Wertes von der Wahl des Anpassungsbereiches. Daraus gewinnt man einen maximal möglichen Bereich für die α_s Anpassung. Im Anschluss daran diskutieren wir, wie die Größe von Korrekturen diese Intervalle gegebenenfalls noch einschränken.

α_s Abhängigkeit vom Anpassungsbereich

Studien zur Abhängigkeit des α_s Wertes vom Anpassungsbereich können bei LEP2 Energien wegen der geringen Statistik nicht mit den Daten durchgeführt werden. Stattdessen werden simulierte Verteilungen auf Partonniveau bei einer Energie von 189 GeV verwendet. Die Abbildungen 5.2 zeigen die Ergebnisse einer α_s Anpassung als Funktion der jeweiligen Observable. Die Anpassungsbereiche umfassen dabei nur zwei Bins und überschneiden für benachbarte Observablenwerte um ein Bin. Dargestellt sind die Ergebnisse für Rechnungen in fester Ordnung mit $x_{\mu} = 1$, experimentell optimierten Skalen sowie der kombinierten NLLA+ $\mathcal{O}(\alpha_s^2)$ Theorie im logR matching. Auf eine Darstellung der reinen NLLA Theorie wurde verzichtet, da diese schon aus konzeptionellen Gründen nur in einem sehr speziellen kinematischen Bereich Gültigkeit behauptet.

Es zeigt sich³, dass grundsätzlich die α_s Werte aus der Theorie in fester Ordnung mit optimierter Skala in den zentralen Bereichen der Verteilungen eine ausgeprägtere Plateaustruktur aufweisen, als die kombinierte NLLA+ $\mathcal{O}(\alpha_s^2)$ Theorie. Lediglich für die Größe B_{sum} zeigt auch diese Theorie eine geringe Abhängigkeit vom Anpassungsbereich. Die schwere Jetmasse ist hingegen auch in fester Ordnung nur in einem kleinen Bereich näherungsweise unabhängig vom Bereich der Anpassung. Für den C Parameter unterscheiden sich $\mathcal{O}(\alpha_s^2)$ und NLLA+ $\mathcal{O}(\alpha_s^2)$ Theorie hinsichtlich der Abhängigkeit vom Anpassungsbereich nur geringfügig. Für die Theorie fester Ordnung mit $x_{\mu} = 1$ bestätigt sich das bekannte Resultat einer sehr starken Abhängigkeit des α_s Wertes von der Observablen über den gesamten Anpassungsbereich.

Die senkrechten Linien in Abbildung 5.2 trennen den Bereich näherungsweiser Konstanz der α_s Werte ab. Für die Observable Thrust, B_{max} und die schwere Jetmasse ist dieses Kriterium jedoch nur für die $\mathcal{O}(\alpha_s^2)$ (mit optimierter Skala) Theorie erfüllt. Im Zweijetbereich findet man jedoch für alle Observable eine geringere Abhängigkeit für die logR gemittelte Theorie, als für die $\mathcal{O}(\alpha_s^2)$ Vorhersage mit optimierter Skala. Dieser Bereich wird in dieser Analyse für die Anpassung der reinen NLLA Theorie verwendet. Diese Intervalle stellen damit die unter diesem Gesichtspunkt möglichen Anpassungsbereiche für die NLLA, $\mathcal{O}(\alpha_s^2)$ und NLLA+ $\mathcal{O}(\alpha_s^2)$ Theorie dar. Tabelle 5.1 enthält diese Bereiche.

Anpassungsbereiche und Korrekturen

Die im vorigen Abschnitt aus der Bedingung eines stabilen α_s Wertes unter Variation des Anpassungsbereiches abgeleiteten Intervalle der Verteilungen stellen die *theoretisch möglichen* Anpassungsbereiche dar. Zusätzlich ist jedoch zu berücksichtigen, ob die Größe von angewendeten Korrekturen in den jeweiligen

³An dieser Stelle wir das Merkmal "Konstanz unter Änderung des Anpassungsbereiches" rein qualitativ verwendet, und die jeweiligen Intervalle durch Inspektion gewonnen.

	1 - T	С	$M_{ m h}^2/E_{ m vis}^2$	B_{\max}	$B_{\rm sum}$
NLLA	0.05 - 0.09	0.16 - 0.28	0.03 - 0.05	0.05 - 0.07	0.06 - 0.115
$\mathcal{O}(lpha_s^2)$	0.09 - 0.28	0.28 - 0.60	0.05 - 0.17	0.07 - 0.20	0.115 - 0.24
NLLA+ $\mathcal{O}(\alpha_s^2)$	0.05 - 0.28	0.16 - 0.60	0.03 - 0.17	0.05 - 0.20	0.06 - 0.24

Tabelle 5.1: Bereiche näherungsweiser Konstanz der α_s Werte unter Variation des Anpassungsbereiches.

Bereichen überhaupt signifikante Aussagen zulässt. Zu diesem Zweck werden zwei Einflüsse untersucht:

- Die Einschränkungen der unteren Grenze des Anpassungsbereiches durch die Hadronisierungskorrektur
- Die Einschränkungen der oberen Grenze des Anpassungsbereiches durch den verbliebenen Vierfermion-Untergrund.

Abbildung 5.3 stellt die Hadronisierungskorrektur sowie das Verhältnis aus verbliebenem Vierfermion–Untergrund zu QCD Simulation dar. Die senkrechten Linien trennen die Intervalle aus Tabelle 5.1 ab.

An den unteren Grenzen dieser Bereiche ergeben sich Hadronisierungskorrekturen von drei (B_{\max}) bis ca. zwölf Prozent (B_{\sup}) . Daraus ergibt sich nicht die Notwendigkeit, eine weitere Einschränkung der unteren Grenze des Anpassungsbereiches vorzunehmen.

Für große Werte der Observablen verbleibt ein beträchtlicher Anteil von Vierfermion-Untergrund in den Daten. Dieser wird mit Monte Carlo Methoden subtrahiert. In den Abbildungen 5.3 bezeichnet die gestrichelte Linie das Verhältnis von Untergrund zu Signal. Für alle Observablen bis auf Thrust ist dieses Verhältnis an der oberen Intervallgrenze näherungsweise eins. Lediglich für die 1-T Verteilung ergibt sich an der oberen Intervallgrenze (0.28) ein Untergrund zu Signalverhältnis von ca. drei. Aus diesem Grund wird die obere Grenze des Anpassungsbereiches auf 0.21 modifiziert. Damit ergeben sich für unsere Analyse Anpassungsbereiche wie in Abbildung 5.4 dargestellt.

Abbildung 5.2: Abhängigkeit der α_s Werte vom gewählten Anpassungsbereich. Dargestellt sind die Ergebnisse einer Anpassung an Jetset Monte Carlo bei 189 GeV. Die senkrechten Linien trennen den Bereich näherungsweiser Konstanz der α_s Werte ab.

Abbildung 5.3: Hadronisierungskorrektur und Verhältnis von verbliebenem WW Untergrund zur Signalsimulation. Die senkrechten Linien trennen die Fitbereiche für eine α_s Anpassung in NLLA, $\mathcal{O}(\alpha_s^2)$ (bzw. NLLA+ $\mathcal{O}(\alpha_s^2)$ in der Summe aus beiden Bereichen) ab.

Abbildung 5.4: Anpassungsbereiche für Ereignisformverteilungen wie sie in dieser Analyse verwendet wurden.

5.2.3 Systematische und theoretische Fehler

Die experimentellem systematischen Fehler von α_s leiten sich direkt aus den entsprechenden Fehlern der Verteilungen selber ab. Deren Bestimmung wurde bereits in Abschnitt 3.4.3 diskutiert.

Eine weitere Fehlerquelle ist die Monte Carlo Hadronisierungskorrektur. Wie in Abschnitt 5.2.1 beschrieben, wurde als Hadronisierungsfehler die größere der beiden Abweichungen gewählt, die sich bei alternativer Verwendung des ARI-ADNE bzw. HERWIG Monte Carlo ergeben. Das zentrale Resultat bezieht sich auf das Jetset Modell.

Schließlich sind die QCD Rechnungen unvollständig (sie vernachlässigen höhere Ordnungen bzw. NNL-Logarithmen), wodurch diese Vorhersagen ebenfalls mit einem theoretischen Fehler behaftet sind. Für die $\mathcal{O}(\alpha_s^2)$ +NLLA Theorie wenden wir einen in der LEP QCD Arbeitsgruppe entwickelten Fehler aus der sog. X-Skalen Variation an (siehe Gleichung 1.48). Im Falle der $\mathcal{O}(\alpha_s^2)$ Theorie verwenden wir weiterhin die Variation der Renormierungsskala zur Abschätzung der theoretischen Unsicherheit, gewinnen deren Wert aber aus der Theorie alleine (bei festem α_s), um Korrelationen zwischen Fehler und dem Zentralwert der Messung zu vermeiden. Eine ausführliche Diskussion des theoretischen Fehlers und seiner genauen Definition enthält Abschnitt 1.4.8.

5.2.4 Ergebnisse der Anpassung

Auf den folgenden Seiten sind die Ergebnisse der Anpassungen von $\mathcal{O}(\alpha_s^2)$, NLLA und $\mathcal{O}(\alpha_s^2)$ +NLLA (logR) an die Verteilungen 1 - T, C, M_h^2/E_{vis}^2 , B_{max} sowie B_{sum} dargestellt. Neben den tabellierten Werten der Fitergebnisse aller Observablen mit aufgeschlüsselten Einzelfehlern, gibt die letzte Spalte das Ergebnis der korrelierten Mittelung an. Schließlich geben die Abbildungen 5.5 bis 5.10 eine grafische Darstellung aller Anpassungsergebnisse, Mittelwerte sowie des Vergleiches mit dem Weltmittelwert. Der Vergleich der verschiedenen Mittelwertbildungen (ungewichtet, gewichtet-unkorreliert und korreliertgewichtet) ergibt Abweichungen die in den Fehlergrenzen verträglich sind.

Das χ^2/ndf der Anpassungen streut bei allen Observablen und Methoden ähnlich, sodass auf seiner Grundlage bei LEP2 Energien kein Verfahren ausgezeichnet werden kann. Eine genauere Diskussion der Anpassungsergebnisse zusammen mit einem Vergleich der Methoden wird in Abschnitt 5.4 gegeben.

$\alpha_s \text{ in } \mathcal{O}(\alpha_s^2)$						
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.09-0.21	028-0.6	0.05 - 0.17	0.07 - 0.20	0.115 - 0.24	
$\alpha_s(183 \mathrm{GeV})$	0.1075	0.1053	0.1053	0.1065	0.1024	0.1059
$\pm \Delta$ stat.	0.0042	0.0039	0.0047	0.0044	0.0034	0.0037
$\pm \Delta$ sys. exp.	0.0022	0.0023	0.0024	0.0026	0.0012	0.0020
$\pm \Delta$ had.	0.0015	0.0010	0.0033	0.0003	0.0009	0.0008
$\pm \Delta \ \mu_R$ Skala	0.0030	0.0033	0.0030	0.0013	0.0050	0.0020
$\pm \Delta_{\rm tot}$	0.0058	0.0057	0.0069	0.0053	0.0062	0.0047
χ^2/ndf	2.15	1.08	1.18	3.44	1.55	
					$\operatorname{Streuung}$	0.0019
$\alpha_s(189 \text{ GeV})$	0.1000	0.1038	0.1056	0.1042	0.1007	0.1026
$\pm \Delta$ stat.	0.0030	0.0025	0.0030	0.0028	0.0022	0.0025
$\pm \Delta$ sys. exp.	0.0024	0.0023	0.0024	0.0028	0.0012	0.0022
$\pm \Delta$ had.	0.0010	0.0014	0.0032	0.0005	0.0011	0.0007
$\pm \Delta \ \mu_R$ Skala	0.0029	0.0032	0.0029	0.0013	0.0050	0.0018
$\pm \Delta_{\rm tot}$	0.0049	0.0049	0.0058	0.0042	0.0057	0.0039
χ^2/ndf	2.30	3.03	1.44	1.58	2.13	
					$\operatorname{Streuung}$	0.0024
$\alpha_s(192 \mathrm{GeV})$	0.1047	0.1053	0.1143	0.1079	0.1029	0.1035
$\pm \Delta$ stat.	0.0072	0.0064	0.0074	0.0073	0.0055	0.0058
$\pm \Delta$ sys. exp.	0.0026	0.0024	0.0025	0.0029	0.0012	0.0019
$\pm \Delta$ had.	0.0003	0.0009	0.0030	0.0004	0.0006	0.0006
$\pm \Delta \ \mu_R$ Skala	0.0029	0.0032	0.0029	0.0013	0.0050	0.0028
$\pm \Delta_{\rm tot}$	0.0081	0.0076	0.0088	0.0079	0.0076	0.0067
χ^2/ndf	0.95	2.18	2.70	1.65	1.93	
					Streuung	0.0044
$\alpha_s(196 \text{ GeV})$	0.0977	0.1041	0.1086	0.1034	0.1016	0.1021
$\pm \Delta$ stat.	0.0050	0.0041	0.0041	0.0046	0.0036	0.0039
$\pm \Delta$ sys. exp.	0.0027	0.0024	0.0024	0.0030	0.0012	0.0021
$\pm \Delta$ had.	0.0011	0.0009	0.0038	0.0003	0.0005	0.0005
$\pm \Delta \ \mu_R$ Skala	0.0029	0.0032	0.0029	0.0013	0.0049	0.0023
$\pm \Delta_{\rm tot}$	0.0065	0.0058	0.0072	0.0057	0.0062	0.0050
χ^2/ndf	3.61	1.21	1.08	1.14	1.37	
					Streuung	0.0039

$\alpha_s \text{ in } \mathcal{O}(\alpha_s^2)$						
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.09-0.21	028-0.6	0.05 - 0.17	0.07 - 0.20	0.115 - 0.24	
$\alpha_s(200{\rm GeV})$	0.1074	0.1039	0.1085	0.1026	0.1032	0.1031
$\pm \Delta$ stat.	0.0042	0.0039	0.0045	0.0044	0.0034	0.0036
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0012	0.0022
$\pm \Delta$ had.	0.0014	0.0015	0.0032	0.0006	0.0011	0.0009
$\pm \Delta \ \mu_R$ Skala	0.0029	0.0032	0.0029	0.0013	0.0049	0.0023
$\pm \Delta_{\rm tot}$	0.0060	0.0058	0.0068	0.0055	0.0062	0.0049
χ^2/ndf	0.43	1.15	1.54	0.39	0.48	
					$\operatorname{Streuung}$	0.0027
$\alpha_s(202{\rm GeV})$	0.1054	0.1107	0.1169	0.1114	0.1055	0.1077
$\pm \Delta$ stat.	0.0064	0.0052	0.0062	0.0061	0.0047	0.0049
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0012	0.0020
$\pm \Delta$ had.	0.0016	0.0009	0.0034	0.0004	0.0005	0.0007
$\pm \Delta \ \mu_R$ Skala	0.0029	0.0031	0.0029	0.0013	0.0049	0.0026
$\pm \Delta_{\rm tot}$	0.0077	0.0066	0.0080	0.0070	0.0069	0.0060
χ^2/ndf	1.54	1.47	0.76	1.04	1.54	
					$\operatorname{Streuung}$	0.0048
$\alpha_s(205{ m GeV})$	0.0980	0.0978	0.1017	0.1033	0.0976	0.1000
$\pm \Delta$ stat.	0.0053	0.0044	0.0051	0.0047	0.0039	0.0041
$\pm \Delta$ sys. exp.	0.0030	0.0026	0.0026	0.0033	0.0012	0.0022
$\pm \Delta$ had.	0.0006	0.0012	0.0028	0.0005	0.0012	0.0008
$\pm \Delta \ \mu_R$ Skala	0.0028	0.0031	0.0028	0.0013	0.0048	0.0023
$\pm \Delta_{\rm tot}$	0.0067	0.0061	0.0070	0.0059	0.0064	0.0052
χ^2/ndf	1.21	1.34	2.50	2.74	2.08	
					Streuung	0.0026
$\alpha_s(207{ m GeV})$	0.1057	0.1031	0.1090	0.1040	0.1032	0.1033
$\pm \Delta$ stat.	0.0035	0.0032	0.0036	0.0035	0.0028	0.0030
$\pm \Delta$ sys. exp.	0.0031	0.0026	0.0027	0.0034	0.0013	0.0023
$\pm \Delta$ had.	0.0010	0.0010	0.0027	0.0002	0.0006	0.0004
$\pm \Delta \ \mu_R$ Skala	0.0028	0.0031	0.0028	0.0013	0.0048	0.0022
$\pm \overline{\Delta_{\text{tot}}}$	0.0056	0.0052	0.0060	0.0051	0.0057	0.0044
χ^2/ndf	1.22	1.54	1.60	1.67	0.84	
					Streuung	0.0025

Abbildung 5.5: α_s Werte in zweiter Ordnung aus Verteilungen von 183 bis 196 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.6: α_s Werte in zweiter Ordnung aus Verteilungen von 200 bis 207 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

α_s in NLLA						
Observable	1-T	С	$M_{\rm h}^2/E_{\rm vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.05 - 0.09	0.16-0.28	0.03 - 0.05	0.05 - 0.07	0.06 - 0.115	
$\alpha_s(183 \mathrm{GeV})$	0.0942	0.0971	0.1088	0.1029	0.1000	0.1000
$\pm \Delta$ stat.	0.0055	0.0052	0.0041	0.0097	0.0055	0.0037
$\pm \Delta$ sys. exp.	0.0022	0.0023	0.0024	0.0026	0.0012	0.0016
$\pm \Delta$ had.	0.0015	0.0023	0.0032	0.0005	0.0016	0.0020
$\pm\Delta$ X Skala	0.0044	0.0042	0.0035	0.0037	0.0054	0.0044
$\pm \Delta_{\rm tot}$	0.0075	0.0074	0.0067	0.0107	0.0079	0.0063
χ^2/ndf	5.0	1.50	1.80	0.04	1.10	
					Streuung	0.0056
$\alpha_s(189 \mathrm{GeV})$	0.1052	0.1005	0.1066	0.1026	0.1031	0.1021
$\pm \Delta$ stat.	0.0035	0.0031	0.0038	0.0057	0.0031	0.0026
$\pm \Delta$ sys. exp.	0.0024	0.0023	0.0024	0.0028	0.0012	0.0015
$\pm \Delta$ had.	0.0025	0.0025	0.0031	0.0005	0.0019	0.0021
$\pm\Delta$ X Skala	0.0044	0.0041	0.0035	0.0037	0.0053	0.0041
$\pm \Delta_{\rm tot}$	0.0066	0.0062	0.0065	0.0074	0.0065	0.0055
χ^2/ndf	4.48	0.10	2.7	0.19	0.58	
					Streuung	0.0024
$\alpha_s(192 \mathrm{GeV})$	0.1058	0.0906	0.1007	0.0890	0.0998	0.0998
$\pm \Delta$ stat.	0.0101	0.0090	0.0110	0.0099	0.0082	0.0071
$\pm \Delta$ sys. exp.	0.0026	0.0024	0.0025	0.0029	0.0012	0.0016
$\pm \Delta$ had.	0.0028	0.0017	0.0033	0.0007	0.0019	0.0019
$\pm\Delta$ X Skala	0.0043	0.0041	0.0035	0.0037	0.0053	0.0044
$\pm \Delta_{\rm tot}$	0.0116	0.0103	0.0123	0.0110	0.0100	0.0087
χ^2/ndf	0.50	0.60	1.86	0.10	1.24	
					$\operatorname{Streuung}$	0.0071
$\alpha_s(196 { m GeV})$	0.1007	0.0945	0.0974	0.1013	0.0962	0.0960
$\pm \Delta$ stat.	0.0057	0.0050	0.0060	0.0090	0.0047	0.0038
$\pm \Delta$ sys. exp.	0.0027	0.0024	0.0025	0.0030	0.0012	0.0015
$\pm \Delta$ had.	0.0015	0.0024	0.0017	0.0008	0.0017	0.0019
$\pm\Delta$ X Skala	0.0043	0.0041	0.0034	0.0036	0.0052	0.0042
$\pm \Delta_{\rm tot}$	0.0078	0.0073	0.0075	0.0101	0.0073	0.0062
χ^2/ndf	5.2	0.49	0.10	1.84	1.57	
					Streuung	0.0029

	α_s in NLLA						
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert	
Fitbereich	0.05 - 0.09	0.16-0.28	0.03 - 0.05	0.05-0.07	0.06-0.115		
$\alpha_s(200 \mathrm{GeV})$	0.0981	0.0864	0.0974	0.1012	0.0953	0.0914	
$\pm \Delta$ stat.	0.0058	0.0047	0.0057	0.0085	0.0045	0.0038	
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0014	0.0017	
$\pm \Delta$ had.	0.0024	0.0020	0.0028	0.0006	0.0020	0.0023	
$\pm \Delta$ X Skala	0.0043	0.0040	0.0034	0.0036	0.0052	0.0041	
$\pm \Delta_{\rm tot}$	0.0081	0.0070	0.0077	0.0098	0.0073	0.0063	
χ^2/ndf	1.01	0.54	2.7	0.07	0.94		
					$\operatorname{Streuung}$	0.0056	
$\alpha_s(202{\rm GeV})$	0.1165	0.1026	0.1005	0.1013	0.1039	0.1072	
$\pm \Delta$ stat.	0.0076	0.0071	0.0088	0.0146	0.0072	0.0055	
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0013	0.0016	
$\pm \Delta$ had.	0.0016	0.0017	0.0026	0.0005	0.0020	0.0021	
$\pm \Delta$ X Skala	0.0043	0.0040	0.0034	0.0036	0.0052	0.0041	
$\pm \Delta_{\rm tot}$	0.0093	0.00 87	0.0101	0.0154	0.0092	0.0073	
χ^2/ndf	0.28	0.98	1.28	0.17	0.34		
		•		•	Streuung	0.0066	
$\alpha_s(205{\rm GeV})$	0.0928	0.0970	0.1032	0.1039	0.1036	0.0996	
$\pm \Delta$ stat.	0.0056	0.0050	0.0062	0.0098	0.0049	0.0039	
$\pm \Delta$ sys. exp.	0.0030	0.0026	0.0026	0.0031	0.0013	0.0015	
$\pm \Delta$ had.	0.0029	0.0023	0.0024	0.0005	0.0017	0.0022	
$\pm \Delta$ X Skala	0.0042	0.0040	0.0034	0.0036	0.0051	0.0041	
$\pm \Delta_{\rm tot}$	0.0081	0.0073	0.0079	0.0109	0.0074	0.0063	
χ^2/ndf	0.84	3.5	0.65	1.26	1.11		
					$\operatorname{Streuung}$	0.0050	
$\alpha_s(207{ m GeV})$	0.1054	0.0935	0.1012	0.0972	0.0975	0.0976	
$\pm \Delta$ stat.	0.0043	0.0038	0.0047	0.0066	0.0036	0.0030	
$\pm \Delta$ sys. exp.	0.0031	0.0026	0.0027	0.0034	0.0013	0.0016	
$\pm \Delta$ had.	0.0019	0.0018	0.0025	0.0005	0.0016	0.0019	
$\pm \Delta$ X Skala	0.0042	0.0040	0.0034	0.0036	0.0051	0.0040	
$\pm \Delta_{\rm tot}$	0.0070	0.0064	0.0069	0.0083	0.0066	0.0056	
χ^2/ndf	2.2	2.53	2.2	0.11	1.81		
					Streuung	0.0045	

Abbildung 5.7: α_s Werte in NLLA aus Verteilungen von 183 bis 196 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.8: α_s Werte in NLLA aus Verteilungen von 200 bis 207 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

		α_s in $\mathcal{O}($	$(\alpha_s^2) + \text{NLLA}$	$(\log R)$		
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.05-0.21	0.16-0.6	0.03-0.17	0.05 - 0.20	0.06-0.24	
$\alpha_s(183 \mathrm{GeV})$	0.1072	0.1111	0.1094	0.1049	0.1119	0.1081
$\pm \Delta$ stat.	0.0043	0.0036	0.0037	0.0037	0.0039	0.0034
$\pm \Delta$ sys. exp.	0.0022	0.0023	0.0024	0.0026	0.0012	0.0021
$\pm \Delta$ had.	0.0017	0.0017	0.0031	0.0005	0.0016	0.0011
$\pm\Delta$ X Skala	0.0044	0.0042	0.0035	0.0037	0.0054	0.0037
$\pm \Delta_{\rm tot}$	0.0068	0.0062	0.0064	0.0059	0.0070	0.0056
χ^2/ndf	2.33	1.09	1.22	1.78	0.80	
					Streuung	0.0029
$\alpha_s(189 \text{ GeV})$	0.1105	0.1101	0.1079	0.1032	0.1122	0.1067
$\pm \Delta$ stat.	0.0027	0.0023	0.0027	0.0024	0.0021	0.0022
$\pm \Delta$ sys. exp.	0.0024	0.0023	0.0024	0.0028	0.0012	0.0020
$\pm \Delta$ had.	0.0020	0.0020	0.0031	0.0005	0.0016	0.0010
$\pm\Delta$ X Skala	0.0044	0.0041	0.0035	0.0037	0.0053	0.0038
$\pm \Delta_{\rm tot}$	0.0060	0.0056	0.0059	0.0052	0.0060	0.0049
χ^2/ndf	3.00	2.40	1.98	1.24	0.85	
					Streuung	0.0035
$\alpha_s(192 \mathrm{GeV})$	0.1124	0.1083	0.1082	0.1051	0.1139	0.1096
$\pm \Delta$ stat.	0.0068	0.0060	0.0063	0.0060	0.0052	0.0051
$\pm \Delta$ sys. exp.	0.0026	0.0024	0.0025	0.0029	0.0012	0.0018
$\pm \Delta$ had.	0.0017	0.0014	0.0032	0.0007	0.0019	0.0015
$\pm \Delta$ X Skala	0.0043	0.0041	0.0035	0.0037	0.0053	0.0040
$\pm \Delta_{\rm tot}$	0.0086	0.0078	0.0083	0.0077	0.0078	0.0069
χ^2/ndf	0.75	1.70	2.51	0.82	1.41	
					Streuung	0.0035
$\alpha_s(196 \text{ GeV})$	0.1045	0.1079	0.1060	0.1024	0.1107	0.1068
$\pm \Delta$ stat.	0.0042	0.0038	0.0040	0.0038	0.0032	0.0033
$\pm \Delta$ sys. exp.	0.0027	0.0024	0.0025	0.0030	0.0012	0.0019
$\pm \Delta$ had.	0.0013	0.0013	0.0029	0.0008	0.0017	0.0014
$\pm \Delta X$ Skala	0.0043	0.0041	0.0034	0.0036	0.0052	0.0038
$\pm \Delta_{\rm tot}$	0.0067	0.0062	0.0065	0.0061	0.0065	0.0055
χ^2/ndf	3.71	1.01	0.91	0.43	0.67	
					Streuung	0.0036

$\alpha_s \text{ in } \mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$						
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	B_{\max}	B_{sum}	Mittelwert
Fitbereich	0.05-0.21	0.16 - 0.6	0.03-0.17	0.05 - 0.20	0.06-0.24	
$\alpha_s(200 \mathrm{GeV})$	0.1095	0.1044	0.1045	0.1021	0.1101	0.1044
$\pm \Delta$ stat.	0.0041	0.0036	0.0034	0.0036	0.0032	0.0031
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0012	0.0020
$\pm \Delta$ had.	0.0023	0.0022	0.0030	0.0006	0.0020	0.0015
$\pm \Delta$ X Skala	0.0043	0.0040	0.0034	0.0036	0.0052	0.0037
$\pm \Delta_{\rm tot}$	0.0071	0.0063	0.0062	0.0060	0.0066	0.0054
χ^2/ndf	0.67	1.16	1.85	0.43	0.57	
					Streuung	0.0036
$\alpha_s(202{\rm GeV})$	0.1188	0.1160	0.1105	0.1103	0.1194	0.1141
$\pm \Delta$ stat.	0.0058	0.0050	0.0055	0.0053	0.0047	0.0046
$\pm \Delta$ sys. exp.	0.0028	0.0025	0.0026	0.0031	0.0012	0.0019
$\pm \Delta$ had.	0.0018	0.0015	0.0031	0.0005	0.0016	0.0014
$\pm\Delta$ X Skala	0.0043	0.0040	0.0034	0.0036	0.0052	0.0038
$\pm \Delta_{\rm tot}$	0.0081	0.0070	0.0074	0.0071	0.0074	0.0064
χ^2/ndf	1.18	1.30	0.96	0.37	0.70	
					Streuung	0.0044
$\alpha_s(205{\rm GeV})$	0.1023	0.1064	0.1041	0.1031	0.1109	0.1071
$\pm \Delta$ stat.	0.0045	0.0037	0.0041	0.0038	0.0033	0.0033
$\pm \Delta$ sys. exp.	0.0030	0.0026	0.0026	0.0033	0.0012	0.0019
$\pm \Delta$ had.	0.0021	0.0017	0.0027	0.0005	0.0017	0.0012
$\pm \Delta$ X Skala	0.0042	0.0040	0.0034	0.0036	0.0051	0.0037
$\pm \Delta_{\rm tot}$	0.0072	0.0063	0.0065	0.0061	0.0064	0.0055
χ^2/ndf	1.04	1.94	2.19	1.39	1.55	
					Streuung	0.0035
$\alpha_s(207{ m GeV})$	0.1118	0.1074	0.1058	0.1021	0.1134	0.1061
$\pm \Delta$ stat.	0.0036	0.0026	0.0031	0.0029	0.0025	0.0026
$\pm \Delta$ sys. exp.	0.0031	0.0026	0.0027	0.0034	0.0013	0.0020
$\pm \Delta$ had.	0.0016	0.0014	0.0027	0.0005	0.0016	0.0012
$\pm \Delta$ X Skala	0.0042	0.0040	0.0034	0.0036	0.0051	0.0037
$\pm \Delta_{\rm tot}$	0.0064	0.0056	0.0060	0.0058	0.0060	0.0051
χ^2/ndf	1.19	1.53	1.53	1.00	0.84	
					Streuung	0.0050

Abbildung 5.9: α_s Werte im logR matching aus Verteilungen von 183 bis 196 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.10: α_s Werte im logR matching aus Verteilungen von 200 bis 207 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

5.3 α_s aus Mittelwerten

In diesem Abschnitt stellen wir die Messung der starken Kopplung aus Mittelwerten von Ereignisformobservablen vor. Dabei werden Hadronisierungseffekte nicht mit Monte Carlo Methoden, sondern mit sog. potenzartigen Korrekturen berücksichtigt. Um den zusätzlichen freien Parameter α_0 dieser Vorhersage zu bestimmen wird in einem ersten Schritt die Vorhersage 1.58 an die LEP Daten von DELPHI sowie zahlreiche Niederenergieexperimente angepasst [73]. Die Ergebnisse dieser Anpassung sind Tabelle 5.2 zu entnehmen, sowie in Abbildung 5.12 dargestellt. Abbildung 5.11 zeigt die Fitergebnisse in der $\alpha_s - \alpha_0$ Ebene. Diese Darstellung macht die große (Anti-)Korrelation dieser beiden Parameter deutlich. Die α_0 Werte streuen um den theoretisch vorhergesagten Wert von 0.5, wobei sich durch die Verwendung der alternativen Definitionen der schweren Jetmasse die Konsistenz verbessert.

Durch die Einbeziehung von Niederenergieexperimenten ist die Abschätzung systematischer Fehler erschwert. Der erste Fehler aus Tabelle 5.2 ist die Unsicherheit aus der Anpassung an die Daten mit totalen Fehlern. Der zweite Fehler ergibt sich aus der Variation $0.5 \le x_{\mu} \le 2$ ($x_{\mu} = \mu_R/Q$). Es fällt auf, dass der Skalenfehler von α_0 für B_{max} deutlich größer ist.

Observable	$\alpha_0(2{ m GeV})$	$\alpha_s(M_Z)$	χ^2/ndf
$\langle 1 - T \rangle$	$0.532 \pm 0.011 \pm 0.002$	$0.122 \pm 0.001 \pm 0.009$	69/43
$\langle C \rangle$	$0.442 \pm 0.010 \pm 0.008$	$0.126\pm0.002\pm0.006$	18/22
$\langle M_h^2/E_{vis}^2 \rangle$	$0.620\pm0.028\pm0.010$	$0.119\pm0.002\pm0.004$	10/32
$\langle M_h^2/E_{vis}^2 \rangle$ (E def)	$0.576\pm0.113\pm0.002$	$0.111\pm0.005\pm0.003$	5/14
$\langle M_h^2/E_{vis}^2 \rangle$ (p def)	$0.517\pm0.110\pm0.003$	$0.110\pm0.005\pm0.004$	3/14
$\langle B_{\rm max} \rangle$	$0.460\pm0.029\pm0.078$	$0.116\pm0.001\pm0.002$	7/22
$\langle B_{\rm sum} \rangle$	$0.452 \pm 0.014 \pm 0.015$	$0.118\pm0.001\pm0.004$	12/22

Tabelle 5.2: Werte für α_0 und α_s bei Anpassung der Dokshitzer-Webber Vorhersage an Mittelwerte.

Nachdem α_0 für jede Observable bestimmt wurde, kann nun aus den Mittelwerten der Tabellen 3.5 bis 3.11 α_s berechnet werden. Einbezogen werden ebenfalls die Mittelwerte der hier betrachteten Observablen von 89 und 172 GeV aus [1], sowie die Messungen bei 44, 66 und 76 GeV aus [2]. Die folgenden Tabellen enthalten die Ergebnisse dieser α_s Bestimmung. Neben einem Fehler aus der μ_R Variation, wurde ebenfalls der Effekt einer Variation der μ_I Skala zwischen 1 und 3 GeV betrachtet. Die Unsicherheit, die daraus resultiert, wird im Folgenden auch als "Hadronisierungsfehler" dieser Methode bezeichnet. Die letzte Spalte gibt das Ergebnis der korrelierten Mittelung an. Die Abbildungen 5.13 bis 5.16 stellen alle Ergebnisse noch einmal grafisch dar. Durch die hohe statistische Korrelation der Mittelwerte (siehe Korrelationsmatrix 5.11) treten, anders als bei der Mittelung der Ergebnisse aus der Anpassung an Verteilungen, auch negative Gewichte < -10% auf. Bei den Energien 202 und 205 GeV liegen die korrelierten Mittelwerte sogar ausserhalb des Intervalls der Einzelmessungen. Diese Eigenschaft der Korrelation wurde bereits in Abschnitt 5.1 behandelt. Eine weitere Diskussion der Ergebnisse, zusammen mit dem Vergleich aller hier verwendeten Methoden zur α_s Bestimmung, wird in Abschnitt 5.4 gegeben.

Abbildung 5.11: Ergebnisse der Dokshitzer-Webber Anpassung in der α_s - α_s Ebene. Das Band gibt den Weltmittelwert an.

Abbildung 5.12: Anpassung der Vorhersage von Dokshitzer und Webber an Mittelwerte verschiedener Ereignisformobservablen. Die gestrichelte Linie gibt den Anteil der perturbativen Rechnung an.

α_s aus Mittelwerten mit Potenzkorrekturen							
Observable	$\langle 1-T \rangle$	$\langle C \rangle$	$\langle M_{\rm h}^2/E_{\rm vis}^2 \rangle$	$\langle B_{\rm max} \rangle$	$\langle B_{\rm sum} \rangle$	Mittelwert	
$\alpha_s(45{\rm GeV})$	0.1341	0.1418	0.1268	0.1358	0.1421	0.1370	
$\pm \Delta$ stat.	0.0154	0.0165	0.0140	0.0127	0.0091	0.0043	
$\pm \Delta$ sys. exp.	0.0036	0.0037	0.0026	0.0005	0.0005	0.0023	
$\pm \Delta \ \mu_R$ Skala	0.0072	0.0055	0.0041	0.0062	0.0052	0.0051	
$\pm \Delta \ \mu_I$ Skala	0.0052	0.0038	0.0035	0.0005	0.0001	0.0016	
$\pm \Delta_{\rm tot}$	0.0181	0.0181	0.0152	0.0142	0.0105	0.0073	
Streuung						0.0063	
$\alpha_s(66 \mathrm{GeV})$	0.1159	0.1252	0.1140	0.1189	0.1265	0.1251	
$\pm \Delta$ stat.	0.0080	0.0081	0.0076	0.0070	0.0055	0.0043	
$\pm \Delta$ sys. exp.	0.0023	0.0028	0.0032	0.0009	0.0006	0.0010	
$\pm \Delta \ \mu_R$ Skala	0.0059	0.0045	0.0034	0.0051	0.0043	0.0041	
$\pm \Delta \ \mu_I$ Skala	0.0054	0.0049	0.0030	0.0012	0.0009	0.0019	
$\pm \Delta_{\rm tot}$	0.0116	0.0109	0.0094	0.0088	0.0070	0.0064	
				S	treuung	0.0055	
$\alpha_s(76{ m GeV})$	0.1302	0.1388	0.1235	0.1244	0.1313	0.1255	
$\pm \Delta$ stat.	0.0074	0.0077	0.0072	0.0070	0.0053	0.0039	
$\pm \Delta$ sys. exp.	0.0032	0.0040	0.0034	0.0020	0.0016	0.0023	
$\pm \Delta \ \mu_R$ Skala	0.0055	0.0042	0.0032	0.0048	0.0040	0.0038	
$\pm \Delta \ \mu_I$ Skala	0.0024	0.0013	0.0018	0.0006	0.0004	0.0008	
$\pm \Delta_{\rm tot}$	0.0101	0.0098	0.0087	0.0088	0.0068	0.0060	
Streuung						0.0062	
$\alpha_s(89{ m GeV})$	0.1189	0.1263	0.1152	0.1163	0.1235	0.1177	
$\pm \Delta$ stat.	0.0004	0.0004	0.0004	0.0003	0.0002	0.0003	
$\pm \Delta$ sys. exp.	0.0015	0.0013	0.0019	0.0003	0.0004	0.0009	
$\pm \Delta \ \mu_R$ Skala	0.0052	0.0039	0.0029	0.0044	0.0037	0.0031	
$\pm \Delta \ \mu_I$ Skala	0.0031	0.0027	0.0019	0.0009	0.0007	0.0010	
$\pm \Delta_{\rm tot}$	0.0063	0.0050	0.0040	0.0046	0.0038	0.0034	
Streuung						0.0048	
$\alpha_s(91.2 \mathrm{GeV})$	0.1193	0.1270	0.1153	0.1167	0.1238	0.1176	
$\pm \Delta$ stat.	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	
$\pm \Delta$ sys. exp.	0.0015	0.0013	0.0019	0.0008	0.0007	0.0011	
$\pm \Delta \ \mu_R$ Skala	0.0051	0.0039	0.0029	0.0044	0.0037	0.0031	
$\pm \Delta \ \mu_I$ Skala	0.0030	0.0025	0.0019	0.0008	0.0007	0.0010	
$\pm \Delta_{\rm tot}$	0.0061	0.0048	0.0039	0.0046	0.0038	0.0034	
				S	treuung	0.0049	
α_s aus Mittelwerten mit Potenzkorrekturen							
---	-----------------------	---------------------	--	-------------------------------	-------------------------------	------------	--
Observable	$\langle 1-T \rangle$	$\langle C \rangle$	$\langle M_{\rm h}^2/E_{ m vis}^2 \rangle$	$\langle B_{\rm max} \rangle$	$\langle B_{\rm sum} \rangle$	Mittelwert	
$\alpha_s(93{ m GeV})$	0.1182	0.1255	0.1145	0.1157	0.1226	0.1171	
$\pm \Delta$ stat.	0.0004	0.0003	0.0004	0.0003	0.0002	0.0003	
$\pm \Delta$ sys. exp.	0.0013	0.0011	0.0017	0.0006	0.0004	0.0009	
$\pm \Delta \ \mu_R$ Skala	0.0051	0.0039	0.0029	0.0044	0.0037	0.0031	
$\pm \Delta \ \mu_I$ Skala	0.0030	0.0026	0.0019	0.0009	0.0007	0.0010	
$\pm \Delta_{\rm tot}$	0.0061	0.0048	0.0039	0.0045	0.0038	0.0033	
				S	treuung	0.0047	
$\alpha_s(133{ m GeV})$	0.1158	0.1203	0.1120	0.1109	0.1163	0.1150	
$\pm \Delta$ stat.	0.0047	0.0039	0.0048	0.0038	0.0026	0.0023	
$\pm \Delta$ sys. exp.	0.0010	0.0011	0.0009	0.0016	0.0011	0.0011	
$\pm \Delta \ \mu_R$ Skala	0.0043	0.0033	0.0025	0.0037	0.0031	0.0030	
$\pm \Delta \ \mu_I$ Skala	0.0020	0.0019	0.0013	0.0007	0.0006	0.0010	
$\pm \Delta_{\rm tot}$	0.0067	0.0056	0.0056	0.0056	0.0043	0.0041	
				S	treuung	0.0037	
$\alpha_s(161{\rm GeV})$	0.1037	0.1131	0.1020	0.1053	0.1083	0.1068	
$\pm \Delta$ stat.	0.0069	0.0067	0.0068	0.0053	0.0038	0.0031	
$\pm \Delta$ sys. exp.	0.0052	0.0066	0.0060	0.0038	0.0023	0.0026	
$\pm \Delta \ \mu_R$ Skala	0.0040	0.0031	0.0023	0.0034	0.0029	0.0028	
$\pm \Delta \ \mu_I$ Skala	0.0023	0.0020	0.0014	0.0007	0.0008	0.0010	
$\pm \Delta_{\rm tot}$	0.0098	0.0101	0.0094	0.0074	0.0053	0.0050	
				S	treuung	0.0044	
$\alpha_s(172{\rm GeV})$	0.1140	0.1164	0.1107	0.1119	0.1167	0.1130	
$\pm \Delta$ stat.	0.0112	0.0090	0.0106	0.0080	0.0069	0.0061	
$\pm \Delta$ sys. exp.	0.0021	0.0036	0.0011	0.0020	0.0048	0.0031	
$\pm \Delta \ \mu_R$ Skala	0.0039	0.0030	0.0022	0.0034	0.0028	0.0031	
$\pm \Delta \ \mu_I$ Skala	0.0015	0.0016	0.0010	0.0004	0.0004	0.0011	
$\pm \Delta_{\rm tot}$	0.0121	0.0103	0.0109	0.0089	0.0089	0.0076	
				S	treuung	0.0027	

	α_s aus l	Mittelwe	rten mit Pot	enzkorrek	turen	
Observable	$\langle 1-T \rangle$	$\langle C \rangle$	$\langle M_{\rm h}^2/E_{ m vis}^2 \rangle$	$\langle B_{\rm max} \rangle$	$\langle B_{\rm sum} \rangle$	Mittelwert
$\alpha_s(183 \mathrm{GeV})$	0.1156	0.1172	0.1067	0.1059	0.1121	0.1121
$\pm \Delta$ stat.	0.0047	0.0038	0.0058	0.0042	0.0026	0.0022
$\pm \Delta$ sys. exp.	0.0045	0.0061	0.0032	0.0044	0.0011	0.0013
$\pm \Delta \ \mu_R$ Skala	0.0038	0.0029	0.0022	0.0033	0.0027	0.0029
$\pm \Delta \mu_I$ Skala	0.0013	0.0014	0.0010	0.0005	0.0005	0.0005
$\pm \Delta_{\rm tot}$	0.0077	0.0079	0.0071	0.0069	0.0040	0.0039
				S	treuung	0.0051
$\alpha_s(189 \text{ GeV})$	0.1092	0.1185	0.1022	0.1039	0.1085	0.1082
$\pm \Delta$ stat.	0.0032	0.0024	0.0040	0.0028	0.0017	0.0017
$\pm \Delta$ sys. exp.	0.0044	0.0061	0.0032	0.0044	0.0011	0.0012
$\pm \Delta \ \mu_R$ Skala	0.0037	0.0029	0.0021	0.0032	0.0027	0.0027
$\pm \Delta \ \mu_I$ Skala	0.0016	0.0013	0.0011	0.0006	0.0006	0.0006
$\pm \Delta_{\rm tot}$	0.0068	0.0073	0.0057	0.0061	0.0035	0.0034
				S	treuung	0.0064
$\alpha_s(192 \mathrm{GeV})$	0.0984	0.1056	0.0947	0.0980	0.1055	0.1092
$\pm \Delta$ stat.	0.0093	0.0066	0.0127	0.0074	0.0045	0.0028
$\pm \Delta$ sys. exp.	0.0040	0.0057	0.0030	0.0042	0.0010	0.0015
$\pm \Delta \ \mu_R$ Skala	0.0037	0.0028	0.0021	0.0032	0.0027	0.0030
$\pm \Delta \ \mu_I$ Skala	0.0021	0.0021	0.0013	0.0007	0.0007	0.0009
$\pm \Delta_{\rm tot}$	0.0110	0.0094	0.0133	0.0091	0.0054	0.0044
				S	treuung	0.0049
$\alpha_s(196 \text{ GeV})$	0.1165	0.1124	0.1036	0.1072	0.1100	0.1092
$\pm \Delta$ stat.	0.0057	0.0044	0.0070	0.0048	0.0030	0.0023
$\pm \Delta$ sys. exp.	0.0045	0.0059	0.0032	0.0044	0.0011	0.0014
$\pm \Delta \ \mu_R$ Skala	0.0037	0.0028	0.0021	0.0032	0.0027	0.0029
$\pm \Delta \mu_I$ Skala	0.0012	0.0016	0.0010	0.0005	0.0005	0.0006
$\pm \Delta_{\rm tot}$	0.0082	0.0080	0.0081	0.0072	0.0042	0.0039
				S	treuung	0.0049

	α_s aus l	Mittelwe	rten mit Pote	enzkorrek	turen	
Observable	$\langle 1-T \rangle$	$\langle C \rangle$	$\langle M_{\rm h}^2/E_{ m vis}^2 \rangle$	$\langle B_{\rm max} \rangle$	$\langle B_{\rm sum} \rangle$	Mittelwert
$\alpha_s(200{ m GeV})$	0.1068	0.1104	0.1062	0.1056	0.1096	0.1105
$\pm \Delta$ stat.	0.0057	0.0043	0.0069	0.0048	0.0030	0.0023
$\pm \Delta$ sys. exp.	0.0042	0.0058	0.0032	0.0044	0.0011	0.0014
$\pm \Delta \ \mu_R$ Skala	0.0037	0.0028	0.0021	0.0032	0.0026	0.0028
$\pm \Delta \ \mu_I$ Skala	0.0016	0.0017	0.0009	0.0005	0.0005	0.0006
$\pm \Delta_{\rm tot}$	0.0082	0.0079	0.0079	0.0072	0.0042	0.0039
				S	treuung	0.0022
$\alpha_s(202{ m GeV})$	0.0946	0.1066	0.1085	0.1070	0.1127	0.1185
$\pm \Delta$ stat.	0.0097	0.0063	0.0101	0.0067	0.0040	0.0023
$\pm \Delta$ sys. exp.	0.0040	0.0057	0.0032	0.0044	0.0011	0.0015
$\pm \Delta \ \mu_R$ Skala	0.0036	0.0028	0.0021	0.0031	0.0026	0.0029
$\pm \Delta \ \mu_I$ Skala	0.0022	0.0019	0.0009	0.0005	0.0004	0.0008
$\pm \Delta_{\rm tot}$	0.0114	0.0091	0.0108	0.0086	0.0049	0.0041
				S	treuung	0.0068
$\alpha_s(205{ m GeV})$	0.0877	0.0879	0.0942	0.0991	0.1003	0.1042
$\pm\Delta$ stat.	0.0072	0.0054	0.0078	0.0050	0.0033	0.0023
$\pm \Delta$ sys. exp.	0.0037	0.0052	0.0030	0.0042	0.0011	0.0013
$\pm \Delta \ \mu_R$ Skala	0.0036	0.0028	0.0021	0.0031	0.0026	0.0028
$\pm \Delta \ \mu_I$ Skala	0.0025	0.0030	0.0012	0.0006	0.0008	0.0010
$\pm \Delta_{\rm tot}$	0.0092	0.0085	0.0087	0.0072	0.0044	0.0040
				S	treuung	0.0060
$\alpha_s(207{ m GeV})$	0.1063	0.1077	0.1049	0.1055	0.1070	0.1072
$\pm \Delta$ stat.	0.0047	0.0036	0.0055	0.0040	0.0024	0.0020
$\pm \Delta$ sys. exp.	0.0042	0.0057	0.0032	0.0044	0.0010	0.0012
$\pm \Delta \ \mu_R$ Skala	0.0036	0.0028	0.0020	0.0031	0.0026	0.0027
$\pm \Delta \ \mu_I$ Skala	0.0015	0.0018	0.0009	0.0005	0.0006	0.0006
$\pm \Delta_{\rm tot}$	0.0074	0.0075	0.0068	0.0067	0.0037	0.0036
				S	treuung	0.0011

Abbildung 5.13: α_s aus Mittelwerten mit Potenzkorrekturen von 91.2 bis 172 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.14: α_s aus Mittelwerten mit Potenzkorrekturen von 91.2 bis 172 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.15: α_s aus Mittelwerten mit Potenzkorrekturen von 183 bis 196 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

Abbildung 5.16: α_s aus Mittelwerten mit Potenzkorrekturen von 200 bis 207 GeV. Dargestellt sind die Fitergebnisse der verschiedenen Observablen mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Ergebnisse an. Der Weltmittelwert wurde zur jeweiligen LEP2 Energie evolviert.

5.4 Zusammenfassung der Messungen und Methodenvergleich

Im Folgenden diskutieren wir einige Charakteristika der Anpassungsergebnisse und vergleichen die verschiedenen Methoden zur α_s Bestimmung.

• Anpassungen der $\mathcal{O}(\alpha_s^2)$ Vorhersage an Verteilungen

Es findet sich ein charakteristisches Muster der Anpassungsergebnisse, bei dem die α_s Werte für $M_{\rm h}^2/E_{\rm vis}^2$ systematisch über, und die Werte aus der summierten Jetbreite unterhalb des Mittelwertes liegen. Die kleinsten Fehler aus Hadronisierung und Skalenvariation besitzt die Größe $B_{\rm max}$. Dadurch hat diese Observable auch den kleinsten totalen Fehler aller Einzelmessungen. Die Größe $B_{\rm sum}$ besitzt ca. 50% kleinere experimentell systematische Fehler als die anderen Observablen. Gleichzeitig hat diese Observable den größten Fehler aus der Skalenvariation.

• Anpassungen der NLLA Vorhersage an Verteilungen

Im Gegensatz zu den anderen Verfahren findet sich hier kein ausgeprägtes Muster der Anpassungsergebnisse hinsichtlich der einzelnen Observablen. Die Messungen liegen jedoch systematisch unter dem Weltmittelwert.

• Anpassungen der $\mathcal{O}(\alpha_s^2) + \mathbf{NLLA}$ (logR) Vorhersage an Verteilungen

Auch hier findet sich ein charakteristisches Muster der Anpassungsergebnisse, bei dem jedoch die α_s Werte aus der großen Jetbreite systematisch unterhalb, und die der summierten Jetbreite oberhalb des Mittelwertes liegen. Die Größe $B_{\rm max}$ zeichnet sich auch hier durch den kleinsten Hadronisierungsfehler aus, wodurch auch ihr totaler Fehler am kleinsten ist.

• Mittelwerte mit potenzartigen Korrekturen

Man findet hier, dass schwere Jetmasse und maximale Jetbreite systematisch kleinere α_s Werte liefern. Den kleinsten Skalenfehler besitzt B_{\max} , wohingegen die summierte Jetbreite den kleinsten experimentellen systematischen Fehler aufweist. Dadurch hat B_{\sup} in den meisten Fällen auch den kleinsten totalen Fehler.

Wie bereits erwähnt, ist durch die geringe Statistik der LEP2 Daten keine unserer Methoden zur α_s Bestimmung aufgrund des χ^2/ndf ausgezeichnet. Es ergeben sich jedoch Unterschiede in der Streuung der Ergebnisse aus den verschiedenen Observablen bei der selben Energie. Tabelle 5.3 vergleicht die mittlere Streuung der acht von uns analysierten Energien sowie die mittleren theoretischen Fehler⁴.

 $^{^4\}mathrm{Als}$ theoretischer Fehler wird die quadratische Summe aus Skalen- und Hadronisierungsfehler aufgefasst

Die geringste mittlere Streuung besitzt die α_s Bestimmung aus der Anpassung der $\mathcal{O}(\alpha_s^2)$ Vorhersage an Verteilungen (0.0031). Ihr Wert ist dabei gleichzeitig in guter Übereinstimmung mit dem mittleren theoretischen Fehlers (0.0026). Dadurch rechtfertigt sich auch unsere Wahl des Skalenfehlers durch Variation der *linearen* Skala $x_{\mu} = \mu_{EOS}/Q$ zwischen $0.5 \cdot x_{\mu}$ und $2 \cdot x_{\mu}$. In [17] wird die entsprechende Größe lediglich zwischen $\sqrt{0.5}$ und $\sqrt{2}$ variiert, wodurch die theoretische Unsicherheit ca. 30% kleiner wird. Gleichzeitig beträgt die Streuung der α_s Werte in [17] bei den fünf von uns betrachteten Observablen 0.0041, und bei allen 18 in [17] untersuchten Größen 0.0027.

Für die $\mathcal{O}(\alpha_s^2)$ +NLLA Vorhersage ergibt sich eine ca. 20% größerer mittlere Streuung. Wiederum ist deren Wert jedoch in guter Übereinstimmung mit der mittleren theoretischen Unsicherheit dieser Messungen.

Für die Bestimmung von α_s aus Mittelwerten mit potenzartigen Korrekturen liegt die mittlere Streuung bei 0.0047. Gleichzeitig ist die theoretische Unsicherheit fast 40% kleiner als dieser Wert. Dies kann als Hinweis auf eine unterschätzte systematische Fehlerquelle gedeutet werden.

Theorie	mittlere Streuung	mittlerer theo. Fehler
$\mathcal{O}(lpha_s^2)$	0.0031	0.0026
NLLA	0.0050	0.0041
$\mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$	0.0038	0.0040
Mittelwerte mit pot.Korr.	0.0047	0.0029

Tabelle 5.3: Vergleich der mittleren Streuung der α_s Messungen mit dem mittleren theoretischen Fehler.

5.4.1 Kombination der α_s Messungen

Unter der Annahme, dass die QCD die Energieentwicklung von α_s korrekt beschreibt, können die α_s Messungen bei verschiedenen Energien zu einer Referenzskala evolviert und anschließend gemittelt werden. Das Ergebnis der QCD Evolution aller Messwerte zu $\alpha_s(M_Z)$ ist den Abbildungen 5.17 zu entnehmen. Neben den Werten unserer Analyse enthalten diese Abbildungen auch α_s Ergebnisse anderer DELPHI Messungen. Die Werte von 133 bis 172 GeV für Verteilungen sind dabei der Arbeit [1] entnommen.

Für die Werte bei 89.5, 91.2 und 93.0 GeV wurde aus den in der Arbeit [1] gemessenen Verteilungen für die fünf von uns betrachteten Observablen α_s angepasst. Diese Ergebnisse sowie die (korrelierten) Mittelwerte sind den Tabellen 5.4 bis 5.6 zu entnehmen. Für die Vorhersage in $\mathcal{O}(\alpha_s^2)$ ergibt sich aus diesen Daten ein Wert von $\alpha_s(M_Z) = 0.1162 \pm 0.0038$ (tot). Dies ist zu vergleichen mit dem zentralen Resultat der Arbeit [17] von $\alpha_s(M_Z) = 0.1180 \pm 0.0018$

			α_s in $\mathcal{O}(\alpha_s^2)$	1		
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.09-0.21	0.28-0.6	0.05-0.17	0.07-0.20	0.115 - 0.24	
$\alpha_s(89.5{\rm GeV})$	0.1135	0.1149	0.1222	0.1186	0.1123	0.1158
$\pm \Delta$ stat.	0.0004	0.0004	0.0005	0.0005	0.0003	0.0004
$\pm \Delta$ sys. exp.	0.0009	0.0021	0.0014	0.0022	0.0030	0.0015
$\pm \Delta$ Had.	0.0026	0.0023	0.0025	0.0031	0.0032	0.0027
$\pm \Delta \ \mu_R$ Skala	0.0040	0.0054	0.0040	0.0018	0.0068	0.0022
$\pm \Delta_{\rm tot}$	0.0049	0.0062	0.0051	0.0042	0.0081	0.0038
					Streuung	0.0040
$\alpha_s(91.2{\rm GeV})$	0.1139	0.1155	0.1230	0.1191	0.1128	0.1162
$\pm \Delta$ stat.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
$\pm \Delta$ sys. exp.	0.0009	0.0021	0.0014	0.0022	0.0030	0.0015
$\pm \Delta$ Had.	0.0026	0.0023	0.0025	0.0031	0.0032	0.0027
$\pm \Delta \ \mu_R$ Skala	0.0040	0.0054	0.0040	0.0018	0.0068	0.0022
$\pm \Delta_{\rm tot}$	0.0049	0.0062	0.0051	0.0042	0.0081	0.0038
					Streuung	0.0042
$\alpha_s(93.0{\rm GeV})$	0.1128	0.1140	0.1208	0.1179	0.1117	0.1152
$\pm \Delta$ stat.	0.0004	0.0004	0.0005	0.0005	0.0003	0.0003
$\pm \Delta$ sys. exp.	0.0009	0.0021	0.0014	0.0022	0.0030	0.0015
$\pm \Delta$ Had.	0.0026	0.0023	0.0025	0.0031	0.0032	0.0027
$\pm \Delta \ \mu_R \ Skala$	0.0040	0.0054	0.0040	0.0018	0.0068	0.0022
$\pm \Delta_{\rm tot}$	0.0049	0.0062	0.0051	0.0042	0.0081	0.0038
					Streuung	0.0039

Tabelle 5.4: α_s Werte bei LEP1 für die $\mathcal{O}(\alpha_s^2)$ Vorhersage, die in diese Arbeit eingehen. Mit den Verteilungen aus [1] wurden die Anpassungen für diese Analyse durchgeführt.

(tot) aus der Observablen "jet cone energy fraction" (JCEF) alleine⁵. Der unterschiedliche Fehler ist zu großen Teilen auf die abweichende Definition des Skalenfehlers zurückzuführen. In unserer Analyse wird nicht nur der Skalenfehler bei festem $\alpha_s(M_Z)$ berechnet, sondern ebenfalls die *lineare* Skala $x_{\mu} = \mu/Q$ zwischen $0.5 \cdot x_{\mu}$ und $2 \cdot x_{\mu}$ variiert. In [17] wird hingegen die quadratische Skala μ^2/Q^2 um den selben Betrag verändert. Wendet man diese Skalenfehlerdefinition auf unsere Mittelung an, reduziert sich die Unsicherheit des $\alpha_s(M_Z)$ Wertes von 0.0038 auf 0.0028. Für die Begründung unserer Wahl des Skalenfehlers siehe die Abschnitte 1.4.8 und 5.4. Die Frage, ob $\alpha_s(M_Z)$ bei LEP1 mit

⁵Die Anwendung unseres Mittelungsverfahrens auf die Ergebnisse in [17] ergibt als Mittelwert aller 18 Untersuchten Größen $\alpha_s(M_Z) = 0.1185 \pm 0.0016$ (tot). Bei dieser Mittelwertbildung hat die Größe JCEF ein Gewicht von 86%. Dadurch rechtfertigt sich die Verwendung dieser Einzelmessung als zentrales Resultat in [17].

		0	α_s in NLLA			
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert
Fitbereich	0.09-0.21	0.16-0.28	0.05 - 0.17	0.07 - 0.20	0.115 - 0.24	
$\alpha_s(89.5{\rm GeV})$	0.1158	0.1034	0.1190	0.1062	0.1080	0.1088
$\pm \Delta$ stat.	0.0006	0.0003	0.0007	0.0009	0.0002	0.0003
$\pm \Delta$ sys. exp.	0.0014	0.0023	0.0041	0.0042	0.0033	0.0018
$\pm \Delta$ Had.	0.0042	0.0032	0.0062	0.0031	0.0042	0.0032
$\pm\Delta$ X Skala	0.0059	0.0054	0.0063	0.0067	0.0067	0.0054
$\pm \Delta_{\rm tot}$	0.0074	0.0067	0.0097	0.0085	0.0086	0.0066
					$\operatorname{Streuung}$	0.0066
$\alpha_s(91.2{ m GeV})$	0.1167	0.1034	0.1197	0.10056	0.1075	0.1081
$\pm \Delta$ stat.	0.0003	0.0002	0.0003	0.0003	0.0002	0.0002
$\pm \Delta$ sys. exp.	0.0014	0.0023	0.0041	0.0042	0.0033	0.0018
$\pm \Delta$ Had.	0.0042	0.0032	0.0062	0.0031	0.0042	0.0032
$\pm\Delta$ X Skala	0.0059	0.0054	0.0063	0.0067	0.0067	0.0054
$\pm \Delta_{\rm tot}$	0.0074	0.0067	0.0097	0.0085	0.0086	0.0066
					$\operatorname{Streuung}$	0.0083
$\alpha_s(93.0{\rm GeV})$	0.1141	0.1013	0.1176	0.1038	0.1062	0.1080
$\pm \Delta$ stat.	0.0005	0.0003	0.0006	0.0009	0.0002	0.0003
$\pm \Delta$ sys. exp.	0.0014	0.0023	0.0041	0.0042	0.0033	0.0018
$\pm \Delta$ Had.	0.0042	0.0032	0.0062	0.0031	0.0042	0.0032
$\pm \Delta$ X Skala	0.0059	0.0054	0.0063	0.0067	0.0067	0.0054
$\pm \Delta_{\rm tot}$	0.0074	0.0067	0.0097	0.0085	0.0086	0.0066
					Streuung	0.0070

Tabelle 5.5: α_s Werte bei LEP1 für die NLLA Vorhersage die in diese Arbeit eingehen. Mit den Verteilungen aus [1] wurden die Anpassungen für diese Analyse durchgeführt.

einer relativen Genauigkeit von 1.5% (wie in [17]) oder 2.8% (unsere Analyse) gemessen werden kann, ist angesichts der spekulativen Natur des theoretischen Fehlers, nicht letztgültig zu entscheiden.

Bei der Kombination aller LEP1 und LEP2 Messungen in den Abbildungen 5.17 stellt sich wiederum das Problem der Behandlung von Korrelationen. Wir berücksichtigen die Korrelationen zwischen den Messungen bei verschiedenen Energien durch Einbeziehung der Kovarianzmatrix wie in Abschnitt 5.1 beschrieben. Dabei ist für Hadronisierungs⁶-, Skalenfehler und korrelierte Systematik die Kovarianzmatrix gemäß Beziehung $V_{ij} = \min(\Delta_i^2, \Delta_j^2)$ gewählt. Der experimentell systematische Fehler aus Untergrundsubtraktion und ISR Kor-

⁶Bei der Bestimmung von α_s aus Mittelwerten bezieht sich "Hadronisierungsfehler" dabei auf die Variation der μ_I Skala.

$\alpha_s \text{ in } \mathcal{O}(\alpha_s^2) + \text{NLLA } (\log R)$							
Observable	1-T	С	$M_{ m h}^2/E_{ m vis}^2$	$B_{\rm max}$	$B_{\rm sum}$	Mittelwert	
Fitbereich	0.09-0.21	0.16 - 0.6	0.05 - 0.17	0.07-0.20	0.115 - 0.24		
$\alpha_s(89.5{\rm GeV})$	0.1257	0.1211	0.1226	0.1155	0.1249	0.1220	
$\pm \Delta$ stat.	0.0002	0.0002	0.0004	0.0004	0.0001	0.0004	
$\pm \Delta$ sys. exp.	0.0021	0.0022	0.0023	0.0021	0.0019	0.0020	
$\pm \Delta$ Had.	0.0031	0.0021	0.0019	0.0023	0.0029	0.0020	
$\pm \Delta$ X Skala	0.0060	0.0057	0.0048	0.0051	0.0073	0.0048	
$\pm \Delta_{\rm tot}$	0.0071	0.0065	0.0057	0.0060	0.0081	0.0056	
					$\operatorname{Streuung}$	0.0040	
$\alpha_s(91.2{\rm GeV})$	0.1256	0.1211	0.1230	0.1156	0.1250	0.1219	
$\pm \Delta$ stat.	0.0002	0.0002	0.0002	0.0001	0.0001	0.0002	
$\pm \Delta$ sys. exp.	0.0021	0.0022	0.0023	0.0021	0.0019	0.0020	
$\pm \Delta$ Had.	0.0031	0.0021	0.0019	0.0023	0.0029	0.0020	
$\pm\Delta$ X Skala	0.0060	0.0057	0.0048	0.0051	0.0073	0.0048	
$\pm \Delta_{\rm tot}$	0.0071	0.0065	0.0057	0.0060	0.0081	0.0056	
					$\operatorname{Streuung}$	0.0040	
$\alpha_s(93.0{\rm GeV})$	0.1257	0.1211	0.1208	0.1144	0.1235	0.1222	
$\pm \Delta$ stat.	0.0002	0.0002	0.0004	0.0004	0.0001	0.0004	
$\pm \Delta$ sys. exp.	0.0021	0.0022	0.0023	0.0021	0.0019	0.0020	
$\pm \Delta$ Had.	0.0031	0.0021	0.0019	0.0023	0.0029	0.0020	
$\pm \Delta$ X Skala	0.0060	0.0057	0.0048	0.0051	0.0073	0.0048	
$\pm \Delta_{\rm tot}$	0.0071	0.0065	0.0057	0.0060	0.0081	0.0056	
					Streuung	0.0042	

Tabelle 5.6: α_s Werte bei LEP1 für die logR Vorhersage, die in diese Arbeit eingehen. Mit den Verteilungen aus [1] wurden die Anpassungen für diese Analyse durchgeführt.

rektur korreliert lediglich die LEP2 Daten, die diese Fehlerquelle gemeinsam haben. Der statistische Fehler zwischen den Energien ist selbstverständlich unkorreliert. Im folgenden betrachten wir die Ergebnisse dieser Mittelung für alle LEP2 Messungen sowie für alle DELPHI Messungen bei LEP1 und LEP2.

Kombination der α_s Messungen bei LEP2

Mit dem im letzten Abschnitt beschriebenen Mittelungsverfahren werden in einem ersten Schritt die Messungen bei LEP2 Energien zu einem einzigen $\alpha_s(M_Z)$ Resultat zusammengefasst. Die Ergebnisse dieser Mittelung sind in Tabelle 5.7 angegeben.

Die α_s Messung bei LEP2 erzielt dabei eine Genauigkeit von 3% ($\mathcal{O}(\alpha_s^2)$, Mit-

Theorie	$\alpha_s(M_Z)$	stat.	sys.exp.	Had.	Skala	tot
$\mathcal{O}(\alpha_s^2)$	0.1152	0.0016	0.0022	0.0007	0.0026	0.0038
NLLA	0.1097	0.0016	0.0024	0.0007	0.0049	0.0057
$\mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$	0.1198	0.0016	0.0022	0.0011	0.0047	0.0055
Mittelwerte mit Pot.Korr.	0.1215	0.0009	0.0012	0.0006	0.0034	0.0038

Tabelle 5.7: Ergebnis der korrelierten Mittelung aller α_s Werte bei LEP2.

telwerte mit potenzartigen Korrekturen) bis 5% (NLLA, logR). Dies ist vergleichbar mit der Präzision der LEP1 Messungen, da die kleineren theoretischen Unsicherheiten die größeren statistischen Fehler kompensieren. Immer noch wird der totale Fehler von α_s bei LEP2 Energien jedoch durch die theoretische Unsicherheit dominiert.

Kombination der α_s Messungen bei LEP1 und LEP2

Wir betrachten nun die Kombiantion *aller* DELPHI α_s Messungen bei LEP1 und LEP2 mithilfe des in Abschnitt 5.4 vorgestellten Mittelungsverfahrens. Die Auswahl der Daten die nicht aus dieser Analyse stammen ist ebenfalls in Abschnitt 5.4 beschrieben worden. Die Ergebnisse sind Tabelle 5.8 zu entnehmen

Theorie	$\alpha_s(M_Z)$	stat.	sys.exp.	Had.	Skala	tot
$\mathcal{O}(\alpha_s^2)$	0.1157	0.0008	0.0016	0.0016	0.0022	0.0032
NLLA	0.1093	0.0012	0.0020	0.0011	0.0050	0.0056
$\mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$	0.1205	0.0010	0.0018	0.0013	0.0048	0.0054
Mittelwerte mit Pot.Korr.	0.1184	0.0004	0.0008	0.0008	0.0031	0.0033

Tabelle 5.8: Ergebnis der korrelierten Mittelung aller α_s Werte Bei LEP1 und LEP2.

und sind zusammen mit allen Einzelmessungen ebenfalls in den Abbildungen 5.17 dargestellt. Die Abbildungen 5.17 enthalten in Klammern ebenfalls die Gewichte der Einzelmessungen innerhalb der (korrelierten) Mittelwertbildung. Man erkennt, dass die LEP2 Resultate zusammen ein Gewicht von ca. 50% haben, wie es auch nach den Ergebnissen des letzten Abschnittes zu erwarten war. Die kombinierte α_s Messung aus allen LEP Daten erzielt somit für die verschiedenen Methoden eine relative Genauigkeit zwischen 2.7% und 5%. Dieses Ergebnis ist kaum genauer als das der LEP2 Messungen alleine, da in beiden Fällen die theoretischen Unsicherheiten den Fehler dominieren.

Abbildung 5.17: Mittelung aller DELPHI α_s Werte aus Verteilungen und Mittelwerten. Dargestellt sind die Ergebnisse der verschiedenen Energien mit ihren statistischen (innerer Fehlerbalken) und totalen Fehlern. Ebenfalls abgebildet ist das Ergebnis einer ungewichteten Mittelung, der gewichteten (aber unkorrelierten) Mittelung, sowie der korreliert-gewichteten Kombination. Das Band gibt die Streuung der Einzelmessungen an. In Klammern sind die Gewichte der korrelierten Mittelung angegeben.

Abbildung 5.18: Energieabhängigkeit der starken Kopplung aus Anpassungen der Theorie in fester Ordnung und logR kombiniert an Verteilungen. Angegeben sind statistischer (innerer Fehlerbalken) und totaler Fehler der Einzelmessungen. Das Band gibt QCD Evolution des α_s Wertes wieder der sich aus der Mittelung dieser Messungen ergibt. Die gestrichelte Linie ist das Ergebnis der $1/\log E_{\rm cm}$ Anpassung.

Abbildung 5.19: Energieabhängigkeit der starken Kopplung aus Anpassungen der NLLA Theorie an Verteilungen sowie aus Mittelwerten mit potenzartigen Korrekturen. Angegeben sind statistischer (innerer Fehlerbalken) und totaler Fehler der Einzelmessungen. Das Band gibt QCD Evolution des α_s Wertes wieder der sich aus der Mittelung dieser Messungen ergibt. Die gestrichelte Linie ist das Ergebnis der 1/log $E_{\rm cm}$ Anpassung.

5.5 Messung der β Funktion

Während die starke Kopplung α_s ein freier Parameter der Theorie ist, legt die QCD ihre Energieabhängigkeit vollkommen fest. Die Skalenabhängigkeit wird, wie in Abschnitt 1.2.2 erläutert, durch die β Funktion beschrieben. Die Messung der β Funktion stellt damit einen fundamentalen Test der QCD dar. Wie in Abschnitt 1.6 diskutiert, haben z.Bsp. supersymmetrische Erweiterungen des Standardmodells unmittelbare Auswirkung auf die Skalenabhängigkeit der Kopplung.

Im Folgenden diskutieren wir zwei Methoden, die β Funktion zu bestimmen. Im ersten Verfahren wird direkt die Energieabhängigkeit der α_s Werte untersucht. Die zweite Methode basiert auf der in Abschnitt 1.4.7 vorgestellten Renormierungsgruppen invarianten (RGI) Störungstheorie.

5.5.1 Methode 1: Energieabhängigkeit der starken Kopplung

Die QCD macht für die Skalenabhängigkeit der (inversen) starken Kopplung folgende Vorhersage:

$$\frac{d\alpha_s^{-1}}{d\log E_{\rm cm}} = 2b_0 \left(1 + \frac{b_1}{b_0}\alpha_s + \cdots\right)$$
(5.17)

Die ersten b_i lauten in der QCD: $b_0 = \frac{33-2N_f}{12\pi}$ und $b_1 = \frac{153-19N_f}{24\pi^2}$. In einem Szenario mit leichten⁷ Gluinos erwartet man hingegen: $b_0^{SUSY} = \frac{27-2N_f}{12\pi}$ und $b_1^{SUSY} = \frac{81-19N_f}{24\pi^2}$ [43].

In führender Ordnung ist die logarithmische Ableitung von α_s^{-1} also einfach durch $2b_0$ gegeben. Die Korrektur in zweiter Ordnung trägt eine geringe Abhängigkeit von α_s bei. Mit $\alpha_s = 0.11$ (d.h. $\Lambda_{QCD} = 230$ MeV und $E_{\rm cm} = 150$ GeV, der mittleren Energie unserer Analyse) findet man:

$$\frac{d\alpha_s^{-1}}{d\log E_{\rm cm}} = \begin{cases} 1.27 & (\rm QCD)\\ 0.89 & (\rm QCD+Gluinos) \end{cases}$$
(5.18)

Eine Anpassung der Funktion $1/(b \log E_{\rm cm} + c)$ an die α_s Werte als Funktion der Schwerpunktsenergie liefert also unmittelbar die logarithmische Ableitung der starken Kopplung.

Die Auswahl der Daten, die nicht aus dieser Analyse stammen, ist bereits in Abschnitt 5.4 beschrieben worden. Die Anpassung berücksichtigt die systematischen Korrelationen zwischen den Messungen bei verschiedenen Energien

 $^{^{7}}Leicht$ bedeutet, dass ihr Effekt im gesamten betrachteten Energiebereich wirksam ist. Die direkte Suche nach Gluinos lässt tatsächlich noch einen Massenbereich von ≤ 5 GeV offen [8].

verwendete Theorie	$\frac{d\alpha_s^{-1}}{d\log E_{\rm cm}} \pm { m stat} \pm { m sys}$	$\pm tot$	χ^2/ndf	$N_F \pm \text{tot}$
$\mathcal{O}(lpha_s^2)$	$1.27 \pm 0.15 \pm 0.33$	0.36	0.29	$5.0 {\pm} 2.9$
NLLA	$1.40 \pm 0.17 \pm 0.44$	0.47	0.83	4.0 ± 3.8
$\mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$	$1.32 \pm 0.11 \pm 0.27$	0.29	0.58	4.6 ± 2.3
Mittelwerte + pot.Korr.	$1.11 \pm 0.09 \pm 0.19$	0.21	1.25	$6.3 {\pm} 1.7$
QCD Erwartung	1.27			5
$\rm QCD+Gluinos$	0.89			8

Tabelle 5.9: Werte der logarithmischen Ableitung der starken Kopplung für die verschiedenen Methoden der α_s Bestimmung.

durch Einbeziehung der Kovarianzmatrix in der Definition der χ^2 Funktion. Der experimentell systematische Fehler aus Untergrundsubtraktion und ISR Korrektur korreliert jedoch lediglich die LEP2 Daten, die diese Fehlerquelle gemeinsam haben. Als Ansatz für die Kovarianz wurde $V_{ij} = \min(\Delta_i^2, \Delta_j^2)$ gewählt. Der statistische Fehler zwischen den Energien ist selbstverständlich statistisch unkorreliert.

In den Abbildungen 5.18 und 5.19 sind die Messungen zusammen mit den angepassten Funktionen dargestellt. Die numerischen Ergebnisse sind in Tabelle 5.9 angegeben. Die Ergebnisse streuen um den Wert der QCD Erwartung, wobei die Messung aus Mittelwerten mit potenzartigen Korrekturen den kleinsten Fehler aufweist. Das ungewichtete Mittel der Einzelmessungen beträgt 1.28 ± 0.12 (RMS).

Aus den Werten für die logarithmische Steigung lässt sich mit Beziehung 5.17 unmittelbar der entsprechende Werte für die Anzahl der Flavour (N_F) berechnen. Es gilt:

$$N_F = \frac{153\alpha_s + 66\pi - 12\pi^2 \frac{d\alpha_s^{-1}}{d\log Q}}{4\pi + 19\alpha_s}$$
(5.19)

Diese Werte sind ebenfalls in Tabelle 5.9 angegeben. Der QCD Erwartung entspricht hier $N_F = 5$. Dem Szenario mit leichten Gluinos entspricht dagegen eine effektive Anzahl von $N_F = 8$.

5.5.2 Methode 2: RGI Verfahren

Die vorherigen Kapitel haben deutlich gemacht, dass eine Bestimmung von α_s mit großen theoretischen und systematischen Unsicherheiten behaftet ist. Versucht man die β Funktion aus diesen Messwerten zu bestimmen, wird trotz hoher Korrelation dieser Fehler das Ergebnis davon beeinträchtigt. Die in Abschnitt 1.4.7 vorgestellte Renormierungsgruppen invariante Störungstheorie vermeidet diese Komplikationen. Sie gestattet eine Messung der β -Funktion direkt aus der Energieabhängigkeit von z.Bsp. Mittelwerten von Ereignisformobservablen. Dabei wird, wie in Abschnitt 1.4.7 beschieben, jede Renormierungsschemenabhängigkeit vermieden. An dieser Stelle datieren wir die Analyse [2] lediglich auf, sodass wir für weitere Details auf diese Arbeit verweisen.

Hadronisierungseffekte können bei diesem Verfahren im Prinzip durch potenzartige Korrekturen berücksichtigt werden (siehe Abschnitt 1.5.2). In [2] wurde jedoch gezeigt, dass die Größe dieser Hadronisierungskorrekturen mit Null verträglich ist. Eine Anpassung der reinen RGI Vorhersage an die Mittelwerte verschiedener Ereignisformgrößen, ist Abbildung 5.20 zu entnehmen. Die numerischen Resultate dieser Anpassungen enthält Tabelle 5.10. Man erkennt, dass die Anpassungen sowohl ein akzeptables χ^2 aufweisen, als auch auf konsistente α_s Werte führen. Aus der schweren Jetmasse lässt sich jedoch *nur* bei Anwendung der alternativen Definitionen ein konsistentes Ergebnis gewinnen. Es sei an dieser Stelle jedoch nochmals betont, dass hinsichtlich einer α_s Bestimmung das RGI Verfahren äquivalent zur ECH Skalenwahl ist (sie Abschnitt 1.4.4). In diesem Sinne stellen die Ergebnisse der α_s Anpassung einen Konsistenztest der RGI Methode dar. Zudem rechtfertigen die Ergebnisse die Vernachlässigung von potenzartigen Korrekturen.

Variable	α_s	χ^2/ndf
$\langle 1 - T \rangle$	0.1210 ± 0.0002	68/44
$\langle C \rangle$	0.1295 ± 0.0003	32/23
$\langle M_h^2/E_{vis}\rangle$ (p Def.)	0.1164 ± 0.0005	6.4/16
$\langle B_{\rm max} \rangle$	0.1244 ± 0.0003	35/23
$\langle B_{\rm sum} \rangle$	0.1208 ± 0.0002	31/23

Tabelle 5.10: α_s Werte aus Anpassung der RGI Vorhersage an Mittelwerte. Die Unsicherheit stammt aus dem Fit an die Daten mit totalem Fehler.

Im nächsten Schritt wenden wir das RGI Verfahren auf die Messung der β -Funktion an. Da für die Größe Thrust die günstigste Datenlage vorliegt, verwenden wir die in dieser Arbeit gewonnenen $\langle 1 - T \rangle$ Werte zusammen mit Niederenergiedaten und anderen LEP Messungen [73], um die Gleichung 1.50 anzupassen⁸. Die QCD Erwartung in zweiter Ordnung für diese Größe lautet⁹:

$$Q\frac{dR^{-1}}{dQ} = \begin{cases} 4.14 & (\text{QCD})\\ 2.76 & (\text{QCD}+\text{Gluinos}) \end{cases}$$
(5.20)

⁸Das Verfahren liefert für alle Observablen konsistente Ergebnisse, siehe dazu [2]

⁹In Abschnitt 5.5.1 betrug die Erwartung 1.27 (QCD) bzw. 0.89(QCD+Gluinos). Da im RGI Verfahren die Entwicklung in α_s/π ausgeführt wird, ergibt sich ein Unterschied von einem Faktor π in führender Ordnung. Zusätzlich ist der Effekt zweiter Ordnung größer als bei dem Verfahren aus Abschnitt 5.5.1.

Zur Messung der logarithmischen Steigung von R^{-1} muss also lediglich die Funktion $1/(b \log E_{\rm cm} + c)$ an die $R = \frac{(1-T)}{A}$ Daten angepasst werden. Durch Einbeziehung von Daten ab 12 GeV wird es erforderlich, den Effekt der b-Quark Produktion zu berücksichtigen. Diese Korrektur ist der Analyse [2] entnommen. Die Abbildung 5.21 (oben) zeigt die *b-Effekt korrigierten* Daten zusammen mit QCD Erwartung (volle Linie) und dem Ergebnis der Anpassung (gestrichelte Linie). Die punktierte Linie stellt die Skalenabhängigkeit im QCD+Gluino Szenario dar. Für die β Funktion gewinnen wir:

$$Q\frac{dR^{-1}}{dQ} = 4.21 \pm 0.18 \text{ (tot)}$$
(5.21)

Die Definition des Fehlers ist Arbeit [5] zu entnemmen. Ebenso wie im letzten Abschnitt beschrieben, kann die Skalenabhängigkeit in die Anzahl der Flavour N_F übersetzt werden. Unsere Messung entspricht:

$$N_F = 4.85 \pm 0.41 \tag{5.22}$$

Implikationen für Gluinos

Die Messung der logarithmischen Steigung von R^{-1} ist mehr als sieben Standardabweichungen von der Erwartung des QCD+Gluino Szenario entfernt. Damit können Gluionos in einem Massenbereich von ≤ 6 GeV, die also die Steigung im gesamten untersuchten Energiebereich beeinträchtigen würden, sicher ausgeschlossen werden. Gleichzeitig ist dieser Massenbereich auf Grundlage direkter Suche noch nicht ausgeschlossen worden [8].

Um zu untersuchen, ob massivere Gluinos, deren Auswirkung auf die Skalenabhängigkeit erst bei größeren Energien auftreten würde, mit den Daten verträglich sind, betrachten wir das χ^2/ndf der Anpassung der QCD+Gluino Erwartung als Funktion der unteren Grenze des Anpassungsbereiches¹⁰. Diese Größe ist, zusammen mit dem χ^2/ndf der Anpassung der QCD Erwartung, in Abbildung 5.21 (unten) dargestellt.

Man erkennt, dass sich die Qualität der Anpassung der QCD+Gluino Erwartung mit wachsender Energie deutlich verbessert. Jedoch bleibt die Beschreibung der Daten auch bis 130 GeV signifikant schlechter als für die QCD Erwartung. Ab 130 GeV besitzen die Daten keine Trennschärfe zwischen den beiden Vorhersagen.

Aus diesem Befund eine strenge untere Grenze für Gluinomassen anzugeben, ist jedoch schwierig. Bei der Interpretation des χ^2 muss etwa berücksichtigt werden, dass die systematischen Fehler der Daten teilweise korreliert sind. Als qualitative Abschätzung der unteren Massenschranke für diese hypothetischen

 $^{^{10}\}rm{Die}$ Funktion hat also die Steigung der QCD+Gluino Erwartung, und lediglich ihr off-set wird angepasst.

Teilchen kann aus dieser Messung eine Wert von 30–40 GeV gewonnen werden. Damit ergibt sich keine Verbesserung des bisherigen Limits aus direkter Suche von $m_{\tilde{g}} \geq 190 \text{ GeV}$ [8]. Diese untere Massengrenze ist jedoch von stärkeren Modellannahmen abhängig [8].

Abbildung 5.20: Anpassung der reinen RGI Vorhersage an die Mittelwerte verschiedener Ereignisformobservable. Jede Kurve besitzt nur einen freien Parameter. Für die Jetmasse liefert nur die "masselose" Definition ein konsistentes Ergebnis.

Abbildung 5.21: Oben: Messung der β Funktion mit der RGI Methode. Dargestellt sind, neben der Anpassung, ebenfalls die QCD sowie die QCD+Gluino Erwartung. Unten: χ^2/ndf bei Anpassung von QCD bzw. QCD+Gluino Erwartung als Funktion der unteren Grenze des Anpassungsbereiches.

Kapitel 6

Zusammenfassung und Vergleich mit anderen Resultaten

Aus den DELPHI Daten der Jahre 1997 bis 2000 wurden inklusive Verteilungen und Ereignisformgrössen von 183 bis 207 GeV bestimmt. Der Vergleich mit Monte Carlo Modellen ergibt eine gute Übereinstimmung.

Mit den Größen ξ_p und ξ^* wurde das Konzept der lokalen Parton Hadron Dualität (LPHD) überprüft. In beiden Fällen erlauben MLLA Rechnungen eine qualitativ befriedigende Parametrisierung der hadronischen Observablen. Die Werte des effektiven Skalenparamters Λ_{eff} liegen für diese Tests bei 200 MeV. Dies ist ein Hinweis darauf, dass Kohärenzeffekte auf Partonniveau auch nach der Fragmentation auf Hadronniveau manifest sind.

6.1 Bestimmung der starken Kopplung

Aus den Ereignisformgrößen Thrust, C Parameter, schwere Jetmasse, maximale und summierte Jetbreite wurde die starke Kopplung α_s bestimmt. Dabei wurden vier verschiedene Methoden angewendet: An die Verteilungen wurden, nach einer MC-Hadronisierungskorrektur, Vorhersagen in $\mathcal{O}(\alpha_s^2)$, NLLA sowie $\mathcal{O}(\alpha_s^2)$ +NLLA angepasst. Für die Mittelwerte dieser Observablen wurde die Vorhersage in $\mathcal{O}(\alpha_s^2)$ mit potenzartigen Korrekturen nach Dokshitzer et al. angewendet. Die α_s Werte der verschiedenen Observablen bei derselben Energie wurden für jede Methode unter Berücksichtigung statistischer und systematischer Korrelationen gemittelt. Für die Daten bei 89.5, 91.2 und 93 GeV aus [1] wurden die selben Anpassungen durchgeführt. Für die Mittelwerte wurde aus den Daten bei 44, 66 und 76 GeV[2] ebenfalls α_s bestimmt.

Setzt man die Richtigkeit der QCD Skalenabhängigkeit voraus, können diese Messungen zu einem einzigen Wert für α_s kombiniert werden. Das Ergebnis dieser Mittelung der α_s Werte aus *allen* LEP1 und LEP2 Daten ist Tabelle 6.1

Theorie	$\alpha_s(M_Z)$	stat.	sys.exp.	Had.	Skala	tot
$\mathcal{O}(\alpha_s^2)$	0.1157	0.0008	0.0016	0.0016	0.0022	0.0032
NLLA	0.1093	0.0012	0.0020	0.0011	0.0050	0.0056
$\mathcal{O}(\alpha_s^2) + \text{NLLA (logR)}$	0.1205	0.0010	0.0018	0.0013	0.0048	0.0054
Mittelwerte mit Pot.Korr.	0.1184	0.0004	0.0008	0.0008	0.0031	0.0033

zu entnehmen. Das Gewicht der LEP2 Daten bei dieser Mittelung beträgt ca. 50%.

Tabelle 6.1: Ergebnis der Mittelung aller α_s Werte von DELPHI bei LEP1 und LEP2. Bei α_s aus Mittelwerten mit potenzartigen Korrekturen bezeichnet "Hadronisierungsfehler" den Effekt der μ_I Variation.

6.1.1 Vergleich mit anderen α_s Messungen

Abbildung 6.1 vergleicht die Ergebnisse dieser Analyse (LEP1+LEP2 Kombination für $\mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha_s^2)$ +NLLA (logR) und Mittelwerte mit potenzartigen Korrekturen) mit den Ergebnissen anderer aktueller α_s Messungen bei LEP.

In [65] hat die OPAL Kollaboration ihre LEP1 Messung von α_s aus Ereignisformgrößen aufdatiert. Die Änderungen in Bezug auf [66] beziehen sich auf die Verwendung der neuesten Berechnungen für die Jetbreiten und der Definition des logR matching in Übereinkunft mit der LEP QCD Arbeitsgruppe. Das ALEPH Resultat [67] aus Ereignisformgrößen kombiniert, ebenso wie unsere Analyse, alle Daten aus LEP1 und LEP2.

Vierjetartige Endzustände werden in den Arbeiten [52, 68, 69] verwendet. Die Resultate der OPAL und ALEPH Kollaboration verwenden dazu $\mathcal{O}(\alpha_s^3)$ +NLLA kombinierte Theorie, die DELPHI Messung $\mathcal{O}(\alpha_s^3)$ Theorie mit experimentell optimierter Skala. Schließlich ist ebenfalls das α_s Resultat aus QCD Korrekturen bei Anpassung der elektroschwachen Theorie dargestellt [70]. Diese Messungen sind konsistent und streuen ca. 2% um den Mittelwert von 0.1185.

6.2 Messung der β Funktion

Aus den α_s Werten bei verschiedenen Energien kann die Skalenabhängigkeit der starken Kopplung gemessen werden. Die Vorhersage der QCD bzw. des QCD+Gluino Szenario lauten:

$$\frac{d\alpha_s^{-1}}{d\log E_{\rm cm}} = \begin{cases} 1.27 & (\rm QCD)\\ 0.89 & (\rm QCD+Gluinos) \end{cases}$$
(6.1)

verwendete Theorie	$\frac{d\alpha_s^{-1}}{d\log E_{\rm cm}} \pm { m stat} \pm { m sys}$	\pm tot	χ^2/ndf
$\mathcal{O}(lpha_s^2)$	$1.27 \pm 0.15 \pm 0.33$	0.36	0.29
NLLA	$1.40 \pm 0.17 \pm 0.44$	0.47	0.83
$\mathcal{O}(\alpha_s^2) + \text{NLLA} \ (\log R)$	$1.32 \pm 0.11 \pm 0.27$	0.29	0.58
Mittelwerte + pot.Korr.	$1.11 \pm 0.09 \pm 0.19$	0.21	1.25
QCD Erwartung	1.27		
QCD+Gluinos	0.89		

Tabelle 6.2: Werte der logarithmischen Ableitung der starken Kopplung für die verschiedenen Methoden der α_s Bestimmung.

Tabelle 6.2 enthält die Ergebnisse dieser Anpassung. Die Resultate streuen um die QCD Erwartung mit einem Mittelwert von 1.28 und einer Standardabweichung von 0.12. Die kleinste Unsicherheit besitzt das Ergebnis aus der Analyse von Mittelwerten mit potenzartigen Korrekturen. Sein Fehler liegt aber immer noch bei ca. 20%.

Eine bedeutend größere Genauigkeit erzielt hier die Renormierungsgruppen invarianten Störungstheorie (RGI). Mit ihr kann die Skalenabhängigkeit der QCD direkt aus der Energieabhängigkeit von inklusiven Größen, wie Mittelwerten von Ereignisformobservablen, bestimmt werden. Diese Messung ergibt für die Größe $R = \langle 1 - T \rangle / A$ unter Einbeziehung von Niederenergiedaten ab 12 GeV:

$$Q\frac{dR^{-1}}{dQ} = 4.21 \pm 0.18 \tag{6.2}$$

Die QCD bzw. QCD+Gluino Erwartung beträgt für diese Observable 4.14 bzw. 2.76.

6.2.1 Vergleich mit anderen Messungen

Die Werte für die logarithmische Ableitung von α_s^{-1} bzw. R^{-1} können unmittelbar in die Flavouranzahl N_F übersetzt werden. Dies erleichtert den Vergleich dieser Messungen untereinander und mit anderen Resultaten. Abbildung 6.2 zeigt die Ergebnisse dieser Arbeit, zusammen mit den Resultaten der DELPHI Vierjet Analyse [52], einer entsprechenden L3 Messung [71] und dem Ergebnis [72] aus einer Kombination von päzisen α_s Messungen in unterschiedlichen Prozessen. Das auf dem RGI Verfahren basierende Resultat erzielt hier die höchste Genauigkeit.

Abbildung 6.1: Vergleich verschiedener α_s Messungen bei LEP

Abbildung 6.2: Vergleich verschiedener N_F Messungen

Anhang A

Inklusive Verteilungen

Abbildung A.1: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 183 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 183 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung A.2: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 189 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 189 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

ŝ

Abbildung A.3: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 192 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 192 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

. .

0 0

Abbildung A.4: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 196 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 196 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung A.5: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 200 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 200 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

0 0

Abbildung A.6: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 202 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 202 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung A.7: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 205 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 205 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung A.8: Differentieller Wirkungsquerschnitt in ξ_p , Rapidität (y_t) und transversalem Impuls $(p_t^{\text{in}} \text{ und } p_t^{\text{out}})$ bei 207 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Energieentwicklung zwischen 91 und 207 GeV dargestellt. Die untere durchgezogene Linie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Anhang B

Ereignisformverteilungen

Abbildung B.1: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 183 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.2: Differentieller Wirkungsquerschnitt in B_{\max} , B_{\sup} , C und M_{high}^2/E_{vis}^2 bei 183 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.3: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 189 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.4: Differentieller Wirkungsquerschnitt in B_{\max} , B_{\sup} , C und M_{high}^2/E_{vis}^2 bei 189 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.5: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 192 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.6: Differentieller Wirkungsquerschnitt in B_{\max} , B_{\sup} , C und M_{high}^2/E_{vis}^2 bei 192 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.7: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 196 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.8: Differentieller Wirkungsquerschnitt in B_{\max} , B_{sum} , C und M_{high}^2/E_{vis}^2 bei 196 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.9: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 200 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.10: Differentieller Wirkungsquerschnitt in B_{\max} , B_{\sup} , C und M_{high}^2/E_{vis}^2 bei 200 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.11: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 202 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.12: Differentieller Wirkungsquerschnitt in B_{\max} , B_{sum} , C und M_{high}^2/E_{vis}^2 bei 202 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.13: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 205 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.14: Differentieller Wirkungsquerschnitt in B_{\max} , B_{sum} , C und M_{high}^2/E_{vis}^2 bei 205 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.15: Differentieller Wirkungsquerschnitt in 1 - T, Major, Minor und Oblateness bei 207 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Abbildung B.16: Differentieller Wirkungsquerschnitt in B_{\max} , B_{\sup} , C und M_{high}^2/E_{vis}^2 bei 207 GeV. Neben dem Vergleich mit verschiedenen Monte Carlo Generatoren ist die Akzeptanzkorrektur und Abweichung zwischen Daten und Monte Carlo dargestellt. Die untere Histogrammlinie der mittleren Abbildungen gibt die Grösse des 4 Fermion Untergrundes an.

Anhang C

Tabellen der inklusiven Verteilungen

y_t	$\frac{1}{N} \frac{dn}{dy_t} (183 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dy_t} (189 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dy_t} (192 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dy_t} (196 \text{ GeV})$
0.250	$7.60 \pm 0.19 \pm 0.50$	$7.53 \pm 0.13 \pm 0.50$	$6.83 \pm 0.29 \pm 0.45$	$7.33 \pm 0.19 \pm 0.48$
0.750	$8.46 \pm 0.19 \pm 0.40$	$8.16 \pm 0.12 \pm 0.39$	$8.31 \pm 0.29 \pm 0.40$	$8.44 \pm 0.19 \pm 0.41$
1.250	$8.25 \pm 0.16 \pm 0.26$	$7.86 \pm 0.11 \pm 0.25$	$8.12 \pm 0.25 \pm 0.25$	$8.06 \pm 0.16 \pm 0.25$
1.750	$7.63 \pm 0.15 \pm 0.15$	$7.43 \pm 0.10 \pm 0.15$	$7.98 \pm 0.23 \pm 0.16$	$7.50 \pm 0.15 \pm 0.15$
2.250	$6.95 \pm 0.14 \pm 0.11$	$7.00\pm$ 0.09 \pm 0.11	$7.07 \pm 0.21 \pm 0.11$	$7.10\pm~0.14\pm~0.12$
2.750	$5.83 \pm 0.12 \pm 0.08$	$5.98 \pm 0.08 \pm 0.08$	$6.34 \pm 0.19 \pm 0.09$	$5.96 \pm 0.12 \pm 0.08$
3.250	$4.52 \pm 0.10 \pm 0.04$	$4.49 \pm 0.07 \pm 0.04$	$4.34 \pm 0.15 \pm 0.04$	$4.54 \pm 0.10 \pm 0.05$
3.750	$2.74 \pm 0.08 \pm 0.01$	$2.95 \pm 0.06 \pm 0.01$	$2.88 \pm 0.13 \pm 0.01$	$3.09 \pm 0.09 \pm 0.02$
4.250	$1.47 \pm 0.06 \pm 0.01$	$1.49 \pm 0.04 \pm 0.02$	$1.68 \pm 0.10 \pm 0.02$	$1.64 \pm \ 0.07 \pm \ 0.02$
5.000	$0.40 \pm 0.02 \pm 0.02$	$0.36 \pm 0.01 \pm 0.02$	$0.35 \pm 0.03 \pm 0.02$	$0.45 \pm 0.02 \pm 0.02$
y_t	$\frac{1}{N}\frac{dn}{dy_t}$ (200 GeV)	$\frac{1}{N} \frac{dn}{dy_t} (202 \text{ GeV})$	$\frac{1}{N}\frac{dn}{dy_t}(205 \text{ GeV})$	$\frac{1}{N}\frac{dn}{dy_t}(207 \text{ GeV})$
y_t 0.250	$\frac{\frac{1}{N} \frac{dn}{dy_{t}} (200 \text{ GeV})}{7.36 \pm 0.19 \pm 0.49}$	$\frac{\frac{1}{N}\frac{dn}{dy_{t}}(202 \text{ GeV})}{8.23 \pm 0.28 \pm 0.54}$	$\frac{\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})}{6.80 \pm 0.20 \pm 0.45}$	$\frac{\frac{1}{N} \frac{dn}{dy_{t}} (207 \text{ GeV})}{5.91 \pm 0.18 \pm 0.39}$
y_t 0.250 0.750	$\frac{1}{N} \frac{dn}{dy_{t}} (200 \text{ GeV})$ $7.36 \pm 0.19 \pm 0.49$ $7.85 \pm 0.19 \pm 0.39$	$\frac{\frac{1}{N} \frac{dn}{dy_{t}} (202 \text{ GeV})}{8.23 \pm 0.28 \pm 0.54}$ 7.64 \pm 0.26 \pm 0.38	$\frac{\frac{1}{N}\frac{dn}{dy_{t}}(205 \text{ GeV})}{6.80 \pm 0.20 \pm 0.45}$ 7.99 \pm 0.20 \pm 0.40	$\frac{\frac{1}{N}\frac{dn}{dy_t}(207 \text{ GeV})}{5.91\pm 0.18\pm 0.39}$ 6.82\pm 0.18\pm 0.35
y_t 0.250 0.750 1.250	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25	$\frac{\frac{1}{N}\frac{dn}{dy_t}(202 \text{ GeV})}{8.23\pm 0.28\pm 0.54}$ 7.64\pm 0.26\pm 0.38 8.67\pm 0.23\pm 0.27	$\frac{\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})}{6.80 \pm 0.20 \pm 0.45}$ 7.99 \pm 0.20 \pm 0.40 8.40 \pm 0.17 \pm 0.26	$\frac{\frac{1}{N}\frac{dn}{dy_t}(207 \text{ GeV})}{5.91\pm 0.18\pm 0.39}$ 6.82\pm 0.18\pm 0.35 7.78\pm 0.15\pm 0.24
y_t 0.250 0.750 1.250 1.750	$\frac{1}{N} \frac{dn}{dy_{t}} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16	$\frac{\frac{1}{N}\frac{dn}{dy_t}(202 \text{ GeV})}{8.23\pm 0.28\pm 0.54}$ 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18	$\frac{\frac{1}{N} \frac{dn}{dy_{t}} (205 \text{ GeV})}{6.80 \pm 0.20 \pm 0.45}$ 7.99 \pm 0.20 \pm 0.40 8.40 \pm 0.17 \pm 0.26 7.94 \pm 0.15 \pm 0.16	$\frac{1}{N} \frac{dn}{dy_t} (207 \text{ GeV})$ 5.91± 0.18± 0.39 6.82± 0.18± 0.35 7.78± 0.15± 0.24 7.75± 0.13± 0.16
$\begin{array}{c} y_t \\ 0.250 \\ 0.750 \\ 1.250 \\ 1.750 \\ 2.250 \end{array}$	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16 7.16± 0.13± 0.12	$\frac{\frac{1}{N}\frac{dn}{dy_{t}}(202 \text{ GeV})}{8.23\pm 0.28\pm 0.54}$ 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18 7.49± 0.19± 0.12	$\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})$ $6.80 \pm 0.20 \pm 0.45$ $7.99 \pm 0.20 \pm 0.40$ $8.40 \pm 0.17 \pm 0.26$ $7.94 \pm 0.15 \pm 0.16$ $7.24 \pm 0.14 \pm 0.12$	$\frac{\frac{1}{N}\frac{dn}{dy_t}(207 \text{ GeV})}{5.91\pm 0.18\pm 0.39}$ $6.82\pm 0.18\pm 0.35$ $7.78\pm 0.15\pm 0.24$ $7.75\pm 0.13\pm 0.16$ $7.09\pm 0.12\pm 0.12$
$yt \\ 0.250 \\ 0.750 \\ 1.250 \\ 1.750 \\ 2.250 \\ 2.750 \\ 2.750 \\ 0.000 \\$	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16 7.16± 0.13± 0.12 6.16± 0.12± 0.09	$\frac{1}{N} \frac{dn}{dy_t} (202 \text{ GeV})$ 8.23± 0.28± 0.54 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18 7.49± 0.19± 0.12 6.03± 0.16± 0.08	$\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})$ $6.80 \pm 0.20 \pm 0.45$ $7.99 \pm 0.20 \pm 0.40$ $8.40 \pm 0.17 \pm 0.26$ $7.94 \pm 0.15 \pm 0.16$ $7.24 \pm 0.14 \pm 0.12$ $6.35 \pm 0.12 \pm 0.09$	$\frac{1}{N} \frac{dn}{dy_t} (207 \text{ GeV})$ 5.91± 0.18± 0.39 6.82± 0.18± 0.35 7.78± 0.15± 0.24 7.75± 0.13± 0.16 7.09± 0.12± 0.12 6.21± 0.11± 0.09
$\begin{array}{c} y_t \\ 0.250 \\ 0.750 \\ 1.250 \\ 1.750 \\ 2.250 \\ 2.750 \\ 3.250 \end{array}$	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16 7.16± 0.13± 0.12 6.16± 0.12± 0.09 4.69± 0.10± 0.05	$\frac{1}{N} \frac{dn}{dy_t} (202 \text{ GeV})$ 8.23± 0.28± 0.54 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18 7.49± 0.19± 0.12 6.03± 0.16± 0.08 4.65± 0.14± 0.05	$\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})$ $6.80 \pm 0.20 \pm 0.45$ $7.99 \pm 0.20 \pm 0.40$ $8.40 \pm 0.17 \pm 0.26$ $7.94 \pm 0.15 \pm 0.16$ $7.24 \pm 0.14 \pm 0.12$ $6.35 \pm 0.12 \pm 0.09$ $5.04 \pm 0.11 \pm 0.05$	$\frac{1}{N} \frac{dn}{dy_t} (207 \text{ GeV})$ 5.91± 0.18± 0.39 6.82± 0.18± 0.35 7.78± 0.15± 0.24 7.75± 0.13± 0.16 7.09± 0.12± 0.12 6.21± 0.11± 0.09 4.71± 0.09± 0.05
$\begin{array}{c} yt \\ 0.250 \\ 0.750 \\ 1.250 \\ 1.750 \\ 2.250 \\ 2.750 \\ 3.250 \\ 3.750 \end{array}$	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16 7.16± 0.13± 0.12 6.16± 0.12± 0.09 4.69± 0.10± 0.05 3.06± 0.08± 0.02	$\frac{1}{N} \frac{dn}{dy_t} (202 \text{ GeV})$ 8.23± 0.28± 0.54 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18 7.49± 0.19± 0.12 6.03± 0.16± 0.08 4.65± 0.14± 0.05 2.96± 0.11± 0.01	$\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})$ 6.80± 0.20± 0.45 7.99± 0.20± 0.40 8.40± 0.17± 0.26 7.94± 0.15± 0.16 7.24± 0.14± 0.12 6.35± 0.12± 0.09 5.04± 0.11± 0.05 3.24± 0.09± 0.02	$\frac{1}{N} \frac{dn}{dy_t} (207 \text{ GeV})$ 5.91± 0.18± 0.39 6.82± 0.18± 0.35 7.78± 0.15± 0.24 7.75± 0.13± 0.16 7.09± 0.12± 0.12 6.21± 0.11± 0.09 4.71± 0.09± 0.05 3.12± 0.08± 0.02
$\begin{array}{c} yt \\ 0.250 \\ 0.750 \\ 1.250 \\ 1.750 \\ 2.250 \\ 2.750 \\ 3.250 \\ 3.750 \\ 4.250 \end{array}$	$\frac{1}{N} \frac{dn}{dy_t} (200 \text{ GeV})$ 7.36± 0.19± 0.49 7.85± 0.19± 0.39 8.09± 0.16± 0.25 8.13± 0.15± 0.16 7.16± 0.13± 0.12 6.16± 0.12± 0.09 4.69± 0.10± 0.05 3.06± 0.08± 0.02 1.61± 0.06± 0.02	$\frac{1}{N} \frac{dn}{dy_t} (202 \text{ GeV})$ 8.23± 0.28± 0.54 7.64± 0.26± 0.38 8.67± 0.23± 0.27 8.81± 0.21± 0.18 7.49± 0.19± 0.12 6.03± 0.16± 0.08 4.65± 0.14± 0.05 2.96± 0.11± 0.01 1.66± 0.09± 0.02	$\frac{1}{N} \frac{dn}{dy_t} (205 \text{ GeV})$ $6.80 \pm 0.20 \pm 0.45$ $7.99 \pm 0.20 \pm 0.40$ $8.40 \pm 0.17 \pm 0.26$ $7.94 \pm 0.15 \pm 0.16$ $7.24 \pm 0.14 \pm 0.12$ $6.35 \pm 0.12 \pm 0.09$ $5.04 \pm 0.11 \pm 0.05$ $3.24 \pm 0.09 \pm 0.02$ $1.52 \pm 0.06 \pm 0.02$	$\frac{1}{N} \frac{dn}{dy_t} (207 \text{ GeV})$ 5.91± 0.18± 0.39 6.82± 0.18± 0.35 7.78± 0.15± 0.24 7.75± 0.13± 0.16 7.09± 0.12± 0.12 6.21± 0.11± 0.09 4.71± 0.09± 0.05 3.12± 0.08± 0.02 1.65± 0.06± 0.02

ξ_p	$\frac{1}{N} \frac{dn}{d\xi_p} (183 \text{ GeV})$	$\frac{1}{N} \frac{dn}{d\xi_p} (189 \text{ GeV})$	$\frac{1}{N} \frac{dn}{d\xi_p} (192 \text{ GeV})$	$\frac{1}{N} \frac{dn}{d\xi_p} (196 \text{ GeV})$
0.200	$0.05 \pm 0.01 \pm 0.01$	$0.04 \pm 0.01 \pm 0.01$	$0.05 \pm 0.01 \pm 0.01$	$0.05 \pm 0.01 \pm 0.01$
0.600	$0.28 \pm 0.03 \pm 0.01$	$0.26 \pm 0.02 \pm 0.01$	$0.23 \pm 0.04 \pm 0.01$	$0.25 \pm 0.03 \pm 0.01$
1.000	$0.76 \pm 0.05 \pm 0.01$	$0.71 \pm 0.03 \pm 0.01$	$0.61 \pm 0.07 \pm 0.01$	$0.81 \pm 0.05 \pm 0.01$
1.400	$1.72 \pm 0.08 \pm 0.03$	$1.60 \pm 0.05 \pm 0.03$	$1.77 \pm 0.12 \pm 0.03$	$1.65 \pm 0.08 \pm 0.03$
1.800	$2.62 \pm 0.10 \pm 0.05$	$2.68 \pm 0.07 \pm 0.05$	$2.53 \pm 0.15 \pm 0.05$	$2.61 \pm 0.10 \pm 0.05$
2.200	$3.69 \pm 0.12 \pm 0.07$	$3.80 \pm 0.08 \pm 0.08$	$3.55 \pm 0.17 \pm 0.07$	$3.70 \pm 0.12 \pm 0.07$
2.600	$5.14 \pm 0.14 \pm 0.13$	$4.80 \pm 0.09 \pm 0.12$	$5.12 \pm 0.21 \pm 0.13$	$4.98 \pm 0.13 \pm 0.12$
3.000	$6.17 \pm 0.15 \pm 0.10$	$5.98 \pm 0.10 \pm 0.10$	$6.06 \pm 0.22 \pm 0.10$	$5.90 \pm 0.15 \pm 0.10$
3.400	$6.92 \pm 0.16 \pm 0.13$	$6.77 \pm 0.10 \pm 0.13$	$6.78 \pm 0.24 \pm 0.13$	$7.11 \pm 0.16 \pm 0.13$
3.800	$7.37 \pm 0.16 \pm 0.13$	$7.34 \pm 0.11 \pm 0.13$	$7.70 \pm 0.26 \pm 0.13$	$7.34 \pm 0.16 \pm 0.13$
4.200	$7.53 \pm 0.17 \pm 0.16$	$7.63 \pm 0.11 \pm 0.17$	$7.98 \pm 0.26 \pm 0.17$	$7.56 \pm 0.17 \pm 0.16$
4.600	$7.19 \pm 0.17 \pm 0.11$	$7.13 \pm 0.11 \pm 0.11$	$7.16 \pm 0.25 \pm 0.11$	$7.30 \pm 0.17 \pm 0.11$
5.000	$6.55 \pm 0.16 \pm 0.13$	$6.42 \pm 0.10 \pm 0.13$	$6.46 \pm 0.24 \pm 0.13$	$6.61 \pm 0.16 \pm 0.13$
5.400	$5.00 \pm 0.14 \pm 0.09$	$5.09 \pm 0.09 \pm 0.09$	$5.01 \pm 0.21 \pm 0.09$	$4.96 \pm 0.14 \pm 0.09$
5.800	$3.41 \pm 0.11 \pm 0.08$	$3.30 \pm 0.07 \pm 0.08$	$3.47 \pm 0.18 \pm 0.09$	$3.49 \pm 0.12 \pm 0.09$
6.200	$1.69 \pm 0.12 \pm 0.22$	$1.93 \pm 0.08 \pm 0.25$	$1.90 \pm 0.17 \pm 0.25$	$2.18 \pm 0.12 \pm 0.28$
ξ_p	$\frac{\frac{1}{N}\frac{dn}{d\xi_p}}{(200 \text{ GeV})}$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$
ξ_p 0.200	$\frac{\frac{1}{N} \frac{dn}{d\xi_p}}{0.04 \pm 0.01 \pm 0.01}$	$\frac{\frac{1}{N}}{\frac{dn}{d\xi_p}} (202 \text{ GeV}) \\ 0.03 \pm 0.01 \pm 0.01$	$\frac{\frac{1}{N}}{\frac{dn}{d\xi_p}} (205 \text{ GeV}) \\ 0.03 \pm 0.01 \pm 0.01$	$\frac{\frac{1}{N}}{\frac{dn}{d\xi_p}} (207 \text{ GeV}) \\ 0.04 \pm 0.01 \pm 0.01$
ξ_p 0.200 0.600	$\frac{\frac{1}{N} \frac{dn}{d\xi_p} (200 \text{ GeV})}{0.04 \pm 0.01 \pm 0.01}$ 0.27 \pm 0.03 \pm 0.01	$\frac{\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})}{0.03 \pm 0.01 \pm 0.01}$ $0.18 \pm 0.03 \pm 0.01$	$\frac{\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})}{0.03 \pm 0.01 \pm 0.01}$ $0.24 \pm 0.03 \pm 0.01$	$\frac{\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})}{0.04 \pm 0.01 \pm 0.01}$ $0.22 \pm 0.02 \pm 0.01$
ξ_p 0.200 0.600 1.000	$\frac{\frac{dn}{N}}{\frac{d\xi_p}{d\xi_p}} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ 0.04± 0.01± 0.01 0.22± 0.02± 0.01 0.82± 0.05± 0.01
ξ_p 0.200 0.600 1.000 1.400	$\frac{1}{N} \frac{dn}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$
ξ_p 0.200 0.600 1.000 1.400 1.800	$\frac{1}{N} \frac{dn}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ \end{array}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$ $3.74 \pm 0.11 \pm 0.08$
$\frac{\xi_p}{0.200}$ 0.600 1.000 1.400 1.800 2.200 2.600	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$ $3.74 \pm 0.11 \pm 0.08$ $4.62 \pm 0.12 \pm 0.12$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ \end{array}$	$\frac{1}{N} \frac{dn}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$ $3.74 \pm 0.11 \pm 0.08$ $4.62 \pm 0.12 \pm 0.12$ $5.75 \pm 0.13 \pm 0.10$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ \end{array}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$ $3.74 \pm 0.11 \pm 0.08$ $4.62 \pm 0.12 \pm 0.12$ $5.75 \pm 0.13 \pm 0.10$ $6.57 \pm 0.14 \pm 0.12$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ \end{array}$	$\frac{1}{N} \frac{dn}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04\pm 0.01\pm 0.01$ $0.22\pm 0.02\pm 0.01$ $0.82\pm 0.05\pm 0.01$ $1.50\pm 0.07\pm 0.03$ $2.39\pm 0.08\pm 0.05$ $3.74\pm 0.11\pm 0.08$ $4.62\pm 0.12\pm 0.12$ $5.75\pm 0.13\pm 0.10$ $6.57\pm 0.14\pm 0.12$ $7.19\pm 0.15\pm 0.13$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ 4.200 \\ \end{bmatrix}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.69 \pm 0.17 \pm 0.17$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$ $7.77 \pm 0.23 \pm 0.17$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.17$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04\pm 0.01\pm 0.01$ $0.22\pm 0.02\pm 0.01$ $0.82\pm 0.05\pm 0.01$ $1.50\pm 0.07\pm 0.03$ $2.39\pm 0.08\pm 0.05$ $3.74\pm 0.11\pm 0.08$ $4.62\pm 0.12\pm 0.12$ $5.75\pm 0.13\pm 0.10$ $6.57\pm 0.14\pm 0.12$ $7.19\pm 0.15\pm 0.13$ $7.20\pm 0.15\pm 0.16$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ 4.200 \\ 4.600 \\ \end{bmatrix}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.69 \pm 0.17 \pm 0.17$ $7.46 \pm 0.17 \pm 0.11$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$ $7.77 \pm 0.23 \pm 0.17$ $7.94 \pm 0.23 \pm 0.12$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.17$ $6.79 \pm 0.16 \pm 0.10$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04\pm 0.01\pm 0.01$ $0.22\pm 0.02\pm 0.01$ $0.82\pm 0.05\pm 0.01$ $1.50\pm 0.07\pm 0.03$ $2.39\pm 0.08\pm 0.05$ $3.74\pm 0.11\pm 0.08$ $4.62\pm 0.12\pm 0.12$ $5.75\pm 0.13\pm 0.10$ $6.57\pm 0.14\pm 0.12$ $7.19\pm 0.15\pm 0.13$ $7.20\pm 0.15\pm 0.16$ $7.11\pm 0.15\pm 0.11$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ 4.200 \\ 4.600 \\ 5.000 \\ \end{bmatrix}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.69 \pm 0.17 \pm 0.17$ $7.46 \pm 0.17 \pm 0.11$ $6.72 \pm 0.16 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$ $7.77 \pm 0.23 \pm 0.17$ $7.94 \pm 0.23 \pm 0.12$ $6.68 \pm 0.22 \pm 0.13$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.17$ $6.79 \pm 0.16 \pm 0.10$ $6.85 \pm 0.16 \pm 0.14$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04\pm 0.01\pm 0.01$ $0.22\pm 0.02\pm 0.01$ $0.82\pm 0.05\pm 0.01$ $1.50\pm 0.07\pm 0.03$ $2.39\pm 0.08\pm 0.05$ $3.74\pm 0.11\pm 0.08$ $4.62\pm 0.12\pm 0.12$ $5.75\pm 0.13\pm 0.10$ $6.57\pm 0.14\pm 0.12$ $7.19\pm 0.15\pm 0.13$ $7.20\pm 0.15\pm 0.11$ $6.27\pm 0.14\pm 0.13$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ 4.200 \\ 4.600 \\ 5.000 \\ 5.400 \\ \end{array}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.46 \pm 0.17 \pm 0.11$ $6.72 \pm 0.16 \pm 0.13$ $5.28 \pm 0.14 \pm 0.10$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$ $7.77 \pm 0.23 \pm 0.17$ $7.94 \pm 0.23 \pm 0.12$ $6.68 \pm 0.22 \pm 0.13$ $5.76 \pm 0.20 \pm 0.11$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $0.71 \pm 0.05 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.17$ $6.79 \pm 0.16 \pm 0.10$ $6.85 \pm 0.16 \pm 0.14$ $5.87 \pm 0.15 \pm 0.11$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04\pm 0.01\pm 0.01$ $0.22\pm 0.02\pm 0.01$ $0.82\pm 0.05\pm 0.01$ $1.50\pm 0.07\pm 0.03$ $2.39\pm 0.08\pm 0.05$ $3.74\pm 0.11\pm 0.08$ $4.62\pm 0.12\pm 0.12$ $5.75\pm 0.13\pm 0.10$ $6.57\pm 0.14\pm 0.12$ $7.19\pm 0.15\pm 0.13$ $7.20\pm 0.15\pm 0.11$ $6.27\pm 0.14\pm 0.13$ $5.26\pm 0.13\pm 0.10$
$\frac{\xi_p}{0.200} \\ 0.600 \\ 1.000 \\ 1.400 \\ 1.800 \\ 2.200 \\ 2.600 \\ 3.000 \\ 3.400 \\ 3.800 \\ 4.200 \\ 4.600 \\ 5.000 \\ 5.400 \\ 5.800 \\ \end{array}$	$\frac{1}{N} \frac{d}{d\xi_p} (200 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.27 \pm 0.03 \pm 0.01$ $0.73 \pm 0.05 \pm 0.01$ $1.51 \pm 0.07 \pm 0.03$ $2.59 \pm 0.10 \pm 0.05$ $3.81 \pm 0.12 \pm 0.08$ $5.07 \pm 0.13 \pm 0.13$ $5.99 \pm 0.14 \pm 0.10$ $6.78 \pm 0.15 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.48 \pm 0.16 \pm 0.13$ $7.46 \pm 0.17 \pm 0.11$ $6.72 \pm 0.16 \pm 0.13$ $5.28 \pm 0.14 \pm 0.10$ $3.71 \pm 0.12 \pm 0.09$	$\frac{1}{N} \frac{dn}{d\xi_p} (202 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.18 \pm 0.03 \pm 0.01$ $0.83 \pm 0.07 \pm 0.01$ $1.62 \pm 0.10 \pm 0.03$ $2.66 \pm 0.13 \pm 0.05$ $3.78 \pm 0.16 \pm 0.08$ $5.00 \pm 0.18 \pm 0.12$ $6.29 \pm 0.20 \pm 0.11$ $7.01 \pm 0.22 \pm 0.13$ $8.05 \pm 0.23 \pm 0.14$ $7.77 \pm 0.23 \pm 0.12$ $6.68 \pm 0.22 \pm 0.13$ $5.76 \pm 0.20 \pm 0.11$ $3.56 \pm 0.16 \pm 0.09$	$\frac{1}{N} \frac{dn}{d\xi_p} (205 \text{ GeV})$ $0.03 \pm 0.01 \pm 0.01$ $0.24 \pm 0.03 \pm 0.01$ $1.55 \pm 0.08 \pm 0.03$ $2.67 \pm 0.10 \pm 0.05$ $3.86 \pm 0.12 \pm 0.08$ $5.18 \pm 0.14 \pm 0.13$ $6.13 \pm 0.15 \pm 0.11$ $6.76 \pm 0.16 \pm 0.13$ $7.63 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.13$ $7.65 \pm 0.17 \pm 0.11$ $6.79 \pm 0.16 \pm 0.10$ $6.85 \pm 0.16 \pm 0.14$ $5.87 \pm 0.15 \pm 0.11$ $3.77 \pm 0.12 \pm 0.09$	$\frac{1}{N} \frac{dn}{d\xi_p} (207 \text{ GeV})$ $0.04 \pm 0.01 \pm 0.01$ $0.22 \pm 0.02 \pm 0.01$ $0.82 \pm 0.05 \pm 0.01$ $1.50 \pm 0.07 \pm 0.03$ $2.39 \pm 0.08 \pm 0.05$ $3.74 \pm 0.11 \pm 0.08$ $4.62 \pm 0.12 \pm 0.12$ $5.75 \pm 0.13 \pm 0.10$ $6.57 \pm 0.14 \pm 0.12$ $7.19 \pm 0.15 \pm 0.13$ $7.20 \pm 0.15 \pm 0.11$ $6.27 \pm 0.14 \pm 0.13$ $5.26 \pm 0.13 \pm 0.10$ $3.41 \pm 0.11 \pm 0.08$

p_{\perp}^{in}	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\ln}} $ (192 GeV)	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}}$ (196 GeV)
0.063	$52.43 \pm 0.80 \pm 1.01$	$52.81 \pm 0.53 \pm 1.03$	$52.67 \pm 1.21 \pm 1.03$	$53.89 \pm 0.81 \pm 1.06$
0.250	$34.48 \pm 0.45 \pm 0.66$	$34.25 \pm 0.30 \pm 0.66$	$35.15 \pm 0.68 \pm 0.68$	$34.64 \pm 0.45 \pm 0.67$
0.525	$15.63 \pm 0.28 \pm 0.36$	$15.60 \pm 0.18 \pm 0.36$	$15.75 \pm 0.42 \pm 0.36$	$15.56 \pm 0.28 \pm 0.36$
0.775	$8.62 \pm 0.26 \pm 0.22$	$8.56 \pm 0.17 \pm 0.22$	$8.52 \pm 0.39 \pm 0.22$	$8.33 \pm 0.25 \pm 0.21$
1.000	$5.81 \pm 0.19 \pm 0.14$	$5.35 \pm 0.12 \pm 0.13$	$5.30 \pm 0.28 \pm 0.13$	$5.57 \pm 0.19 \pm 0.13$
1.250	$3.69 \pm 0.16 \pm 0.11$	$3.58 \pm 0.10 \pm 0.12$	$3.57 \pm 0.23 \pm 0.12$	$3.59 \pm 0.16 \pm 0.12$
1.688	$2.08 \pm 0.07 \pm 0.06$	$1.99 \pm 0.05 \pm 0.06$	$2.22 \pm 0.12 \pm 0.07$	$2.08 \pm 0.08 \pm 0.06$
2.500	$0.92 \pm 0.04 \pm 0.03$	$0.90 \pm 0.03 \pm 0.03$	$0.90 \pm 0.06 \pm 0.03$	$0.95 \pm 0.04 \pm 0.03$
3.500	$0.36 \pm 0.03 \pm 0.02$	$0.39 \pm 0.02 \pm 0.02$	$0.38 \pm 0.04 \pm 0.02$	$0.46 \pm 0.03 \pm 0.03$
5.000	$0.17 \pm 0.01 \pm 0.01$	$0.16 \pm 0.01 \pm 0.01$	$0.18 \pm \ 0.02 \pm \ 0.01$	$0.17 \pm 0.01 \pm 0.01$
7.000	$0.06 \pm 0.01 \pm 0.00$	$0.06 \pm 0.01 \pm 0.00$	$0.08 \pm 0.01 \pm 0.01$	$0.06 \pm 0.01 \pm 0.00$
10.000	$0.01 \pm 0.00 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00$	$0.01 \pm 0.01 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00$
p_{\perp}^{in}	$\frac{\frac{1}{N}\frac{dn}{dp_{\perp}^{\rm in}}}{200 {\rm GeV}}$	$\frac{1}{N}\frac{dn}{dp_{\perp}^{\rm in}} \left(202 \ {\rm GeV}\right)$	$\frac{1}{N}\frac{dn}{dp_{\perp}^{\rm in}} \left(205 \ {\rm GeV}\right)$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\rm in}} \left(207 \ {\rm GeV} \right)$
p_{\perp}^{in} 0.063	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}}}{54.94 \pm 0.79 \pm 1.09}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}}}{54.83 \pm 1.09 \pm 1.08}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}}}{56.95 \pm 0.83 \pm 1.14} (205 \text{ GeV})$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (207 \text{ GeV})}{53.58 \pm 0.72 \pm 1.07}$
p ⁱⁿ 0.063 0.250	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ 54.94± 0.79± 1.09 35.20± 0.44± 0.68	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})}{54.83 \pm 1.09 \pm 1.08}$ 36.31 \pm 0.61 \pm 0.71	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (205 \text{ GeV})}{56.95 \pm 0.83 \pm 1.14}$ 35.58 \pm 0.45 \pm 0.69	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (207 \text{ GeV})}{53.58 \pm 0.72 \pm 1.07}$ $34.05 \pm 0.40 \pm 0.66$
$\begin{array}{c} p_{\perp}^{in} \\ 0.063 \\ 0.250 \\ 0.525 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})}{54.83 \pm 1.09 \pm 1.08}$ 36.31 \pm 0.61 \pm 0.71 15.99 \pm 0.38 \pm 0.37	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (205 \text{ GeV})}{56.95 \pm 0.83 \pm 1.14}$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$
$\begin{array}{c} p_{\perp}^{\rm in} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$ $8.63 \pm 0.25 \pm 0.22$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})}{54.83 \pm 1.09 \pm 1.08}$ $36.31 \pm 0.61 \pm 0.71$ $15.99 \pm 0.38 \pm 0.37$ $9.03 \pm 0.35 \pm 0.23$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}}}{\frac{dn}{dp_{\perp}^{\text{in}}}} (205 \text{ GeV})$ $56.95 \pm 0.83 \pm 1.14$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$ $8.06 \pm 0.25 \pm 0.21$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$
$\begin{array}{c} p_{\perp}^{\text{in}} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$ $8.63 \pm 0.25 \pm 0.22$ $5.30 \pm 0.18 \pm 0.13$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (205 \text{ GeV})$ $56.95 \pm 0.83 \pm 1.14$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$ $8.06 \pm 0.25 \pm 0.21$ $5.29 \pm 0.19 \pm 0.13$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$ $5.26 \pm 0.17 \pm 0.13$
$\begin{array}{c} p^{in}_{\perp} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ 54.94± 0.79± 1.09 35.20± 0.44± 0.68 15.49± 0.27± 0.36 8.63± 0.25± 0.22 5.30± 0.18± 0.13 3.74± 0.16± 0.13	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\rm in}} (205 \text{ GeV})$ $56.95 \pm 0.83 \pm 1.14$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$ $8.06 \pm 0.25 \pm 0.21$ $5.29 \pm 0.19 \pm 0.13$ $3.75 \pm 0.16 \pm 0.14$	$\frac{1}{N} \frac{dn}{dp_{1}^{\text{in}}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$ $5.26 \pm 0.17 \pm 0.13$ $3.33 \pm 0.14 \pm 0.13$
$\begin{array}{c} p_{\perp}^{\text{in}} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \\ 1.688 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ 54.94± 0.79± 1.09 35.20± 0.44± 0.68 15.49± 0.27± 0.36 8.63± 0.25± 0.22 5.30± 0.18± 0.13 3.74± 0.16± 0.13 2.22± 0.08± 0.07	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14 2.26± 0.11± 0.07	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (205 \text{ GeV})$ $56.95 \pm 0.83 \pm 1.14$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$ $8.06 \pm 0.25 \pm 0.21$ $5.29 \pm 0.19 \pm 0.13$ $3.75 \pm 0.16 \pm 0.14$ $2.14 \pm 0.08 \pm 0.06$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$ $5.26 \pm 0.17 \pm 0.13$ $3.33 \pm 0.14 \pm 0.13$ $1.97 \pm 0.07 \pm 0.06$
$\begin{array}{c} p_{\perp}^{\text{in}} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \\ 1.688 \\ 2.500 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ 54.94± 0.79± 1.09 35.20± 0.44± 0.68 15.49± 0.27± 0.36 8.63± 0.25± 0.22 5.30± 0.18± 0.13 3.74± 0.16± 0.13 2.22± 0.08± 0.07 0.90± 0.04± 0.03	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14 2.26± 0.11± 0.07 0.99± 0.06± 0.04	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (205 \text{ GeV})$ 56.95± 0.83± 1.14 35.58± 0.45± 0.69 16.06± 0.28± 0.37 8.06± 0.25± 0.21 5.29± 0.19± 0.13 3.75± 0.16± 0.14 2.14± 0.08± 0.06 0.94± 0.05± 0.04	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ 53.58± 0.72± 1.07 34.05± 0.40± 0.66 15.13± 0.25± 0.35 7.91± 0.23± 0.20 5.26± 0.17± 0.13 3.33± 0.14± 0.13 1.97± 0.07± 0.06 0.86± 0.04± 0.03
$\begin{array}{c} p_{\perp}^{\rm in} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \\ 1.688 \\ 2.500 \\ 3.500 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$ $8.63 \pm 0.25 \pm 0.22$ $5.30 \pm 0.18 \pm 0.13$ $3.74 \pm 0.16 \pm 0.13$ $2.22 \pm 0.08 \pm 0.07$ $0.90 \pm 0.04 \pm 0.03$ $0.40 \pm 0.03 \pm 0.02$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14 2.26± 0.11± 0.07 0.99± 0.06± 0.04 0.44± 0.04± 0.03	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (205 \text{ GeV})$ 56.95± 0.83± 1.14 35.58± 0.45± 0.69 16.06± 0.28± 0.37 8.06± 0.25± 0.21 5.29± 0.19± 0.13 3.75± 0.16± 0.14 2.14± 0.08± 0.06 0.94± 0.05± 0.04 0.39± 0.03± 0.02	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ 53.58± 0.72± 1.07 34.05± 0.40± 0.66 15.13± 0.25± 0.35 7.91± 0.23± 0.20 5.26± 0.17± 0.13 3.33± 0.14± 0.13 1.97± 0.07± 0.06 0.86± 0.04± 0.03 0.35± 0.03± 0.02
$\begin{array}{c} p_{\perp}^{\rm in} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \\ 1.688 \\ 2.500 \\ 3.500 \\ 5.000 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$ $8.63 \pm 0.25 \pm 0.22$ $5.30 \pm 0.18 \pm 0.13$ $3.74 \pm 0.16 \pm 0.13$ $2.22 \pm 0.08 \pm 0.07$ $0.90 \pm 0.04 \pm 0.03$ $0.40 \pm 0.03 \pm 0.02$ $0.18 \pm 0.01 \pm 0.01$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14 2.26± 0.11± 0.07 0.99± 0.06± 0.04 0.44± 0.04± 0.03 0.19± 0.02± 0.01	$\frac{1}{N} \frac{dn}{dp_{1}^{\text{in}}} (205 \text{ GeV})$ 56.95± 0.83± 1.14 35.58± 0.45± 0.69 16.06± 0.28± 0.37 8.06± 0.25± 0.21 5.29± 0.19± 0.13 3.75± 0.16± 0.14 2.14± 0.08± 0.06 0.94± 0.05± 0.04 0.39± 0.03± 0.02 0.16± 0.01± 0.01	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$ $5.26 \pm 0.17 \pm 0.13$ $3.33 \pm 0.14 \pm 0.13$ $1.97 \pm 0.07 \pm 0.06$ $0.86 \pm 0.04 \pm 0.03$ $0.35 \pm 0.03 \pm 0.02$ $0.14 \pm 0.01 \pm 0.01$
$\begin{array}{c} p_{\perp}^{in} \\ 0.063 \\ 0.250 \\ 0.525 \\ 0.775 \\ 1.000 \\ 1.250 \\ 1.688 \\ 2.500 \\ 3.500 \\ 5.000 \\ 7.000 \end{array}$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (200 \text{ GeV})$ $54.94 \pm 0.79 \pm 1.09$ $35.20 \pm 0.44 \pm 0.68$ $15.49 \pm 0.27 \pm 0.36$ $8.63 \pm 0.25 \pm 0.22$ $5.30 \pm 0.18 \pm 0.13$ $3.74 \pm 0.16 \pm 0.13$ $2.22 \pm 0.08 \pm 0.07$ $0.90 \pm 0.04 \pm 0.03$ $0.40 \pm 0.03 \pm 0.02$ $0.18 \pm 0.01 \pm 0.01$ $0.08 \pm 0.01 \pm 0.01$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{in}}} (202 \text{ GeV})$ 54.83± 1.09± 1.08 36.31± 0.61± 0.71 15.99± 0.38± 0.37 9.03± 0.35± 0.23 6.11± 0.27± 0.15 3.81± 0.21± 0.14 2.26± 0.11± 0.07 0.99± 0.06± 0.04 0.44± 0.04± 0.03 0.19± 0.02± 0.01 0.06± 0.01± 0.01	$\frac{1}{N} \frac{dn}{dp_{1}^{\text{in}}} (205 \text{ GeV})$ $56.95 \pm 0.83 \pm 1.14$ $35.58 \pm 0.45 \pm 0.69$ $16.06 \pm 0.28 \pm 0.37$ $8.06 \pm 0.25 \pm 0.21$ $5.29 \pm 0.19 \pm 0.13$ $3.75 \pm 0.16 \pm 0.14$ $2.14 \pm 0.08 \pm 0.06$ $0.94 \pm 0.05 \pm 0.04$ $0.39 \pm 0.03 \pm 0.02$ $0.16 \pm 0.01 \pm 0.01$ $0.06 \pm 0.01 \pm 0.01$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{1n}} (207 \text{ GeV})$ $53.58 \pm 0.72 \pm 1.07$ $34.05 \pm 0.40 \pm 0.66$ $15.13 \pm 0.25 \pm 0.35$ $7.91 \pm 0.23 \pm 0.20$ $5.26 \pm 0.17 \pm 0.13$ $3.33 \pm 0.14 \pm 0.13$ $1.97 \pm 0.07 \pm 0.06$ $0.86 \pm 0.04 \pm 0.03$ $0.35 \pm 0.03 \pm 0.02$ $0.14 \pm 0.01 \pm 0.01$ $0.05 \pm 0.01 \pm 0.00$

p_{\perp}^{out}	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (196 \text{ GeV})$
0.100	$68.64 \pm 0.72 \pm 1.08$	$68.34 \pm 0.48 \pm 1.08$	$70.66 \pm 1.10 \pm 1.12$	$69.81 \pm 0.72 \pm 1.11$
0.300	$34.76 \pm 0.51 \pm 0.79$	$34.11 \pm 0.33 \pm 0.77$	$33.90 \pm 0.77 \pm 0.77$	$34.57 \pm 0.51 \pm 0.78$
0.500	$15.43 \pm 0.34 \pm 0.40$	$15.18 \pm 0.23 \pm 0.39$	$16.08 \pm 0.54 \pm 0.42$	$14.91 \pm 0.34 \pm 0.39$
0.725	$6.27 \pm 0.20 \pm 0.17$	$6.61 \pm 0.14 \pm 0.18$	$5.84 \pm 0.30 \pm 0.16$	$6.60 \pm 0.21 \pm 0.18$
1.025	$2.75 \pm 0.12 \pm 0.10$	$2.58 \pm 0.08 \pm 0.10$	$2.61 \pm 0.18 \pm 0.10$	$2.71 \pm 0.12 \pm 0.10$
1.400	$0.95 \pm 0.07 \pm 0.04$	$0.96 \pm 0.05 \pm 0.05$	$1.07 \pm 0.11 \pm 0.05$	$0.98 \pm 0.07 \pm 0.05$
1.800	$0.46 \pm 0.05 \pm 0.03$	$0.43 \pm 0.03 \pm 0.03$	$0.44 \pm 0.08 \pm 0.03$	$0.48 \pm 0.06 \pm 0.04$
2.500	$0.19 \pm 0.02 \pm 0.01$	$0.14 \pm 0.01 \pm 0.01$	$0.11 \pm 0.03 \pm 0.01$	$0.18 \pm 0.03 \pm 0.01$
p_{\perp}^{out}	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} \left(207 \text{ GeV}\right)$
p_{\perp}^{out} 0.100	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (207 \text{ GeV})}{68.43 \pm 0.65 \pm 1.09}$
p_{\perp}^{out} 0.100 0.300	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ ut}} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ \text{ut}}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$ $36.15 \pm 0.70 \pm 0.82$	$\frac{\frac{1}{N}\frac{dn}{dp_{\perp}^{\circ ut}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ 3 5.24 \pm 0.52 \pm 0.80	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (207 \text{ GeV})}{68.43 \pm 0.65 \pm 1.09}$ 33.98 \pm 0.46 \pm 0.77
$\begin{array}{c} p_{\perp}^{\text{out}} \\ 0.100 \\ 0.300 \\ 0.500 \end{array}$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ} ut} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$ $15.13 \pm 0.34 \pm 0.39$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ} \text{ut}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$ $36.15 \pm 0.70 \pm 0.82$ $16.02 \pm 0.47 \pm 0.42$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ} \text{ut}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ $3 5.24 \pm 0.52 \pm 0.80$ $15.70 \pm 0.36 \pm 0.41$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (207 \text{ GeV})}{68.43 \pm 0.65 \pm 1.09}$ $33.98 \pm 0.46 \pm 0.77$ $14.32 \pm 0.31 \pm 0.37$
$\begin{array}{c} p_{\perp}^{\rm out} \\ 0.100 \\ 0.300 \\ 0.500 \\ 0.725 \end{array}$	$\frac{\frac{1}{N} \frac{dn}{dp_{2}^{\circ} ut} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$ $15.13 \pm 0.34 \pm 0.39$ $6.61 \pm 0.21 \pm 0.18$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\circ} u^{\pm}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$ $36.15 \pm 0.70 \pm 0.82$ $16.02 \pm 0.47 \pm 0.42$ $6.98 \pm 0.29 \pm 0.19$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{o} u^{\pm}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ $3 5.24 \pm 0.52 \pm 0.80$ $15.70 \pm 0.36 \pm 0.41$ $6.85 \pm 0.22 \pm 0.19$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{out}} (207 \text{ GeV})}{68.43 \pm 0.65 \pm 1.09}$ $33.98 \pm 0.46 \pm 0.77$ $14.32 \pm 0.31 \pm 0.37$ $6.44 \pm 0.19 \pm 0.18$
$\begin{array}{c} p_{\perp}^{\text{out}} \\ 0.100 \\ 0.300 \\ 0.500 \\ 0.725 \\ 1.025 \end{array}$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{ut}}} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$ $15.13 \pm 0.34 \pm 0.39$ $6.61 \pm 0.21 \pm 0.18$ $2.79 \pm 0.12 \pm 0.11$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{out}}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$ $36.15 \pm 0.70 \pm 0.82$ $16.02 \pm 0.47 \pm 0.42$ $6.98 \pm 0.29 \pm 0.19$ $2.74 \pm 0.17 \pm 0.11$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{out}}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ $3 5.24 \pm 0.52 \pm 0.80$ $15.70 \pm 0.36 \pm 0.41$ $6.85 \pm 0.22 \pm 0.19$ $2.65 \pm 0.12 \pm 0.10$	$\frac{1}{N} \frac{dn}{dp_{p}^{\text{out}}} (207 \text{ GeV})$ $68.43 \pm 0.65 \pm 1.09$ $33.98 \pm 0.46 \pm 0.77$ $14.32 \pm 0.31 \pm 0.37$ $6.44 \pm 0.19 \pm 0.18$ $2.22 \pm 0.11 \pm 0.09$
$\begin{array}{c} p_{\perp}^{\text{out}} \\ 0.100 \\ 0.300 \\ 0.500 \\ 0.725 \\ 1.025 \\ 1.400 \end{array}$	$\frac{\frac{1}{N} \frac{dn}{dp_{2}^{\text{out}}} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$ $15.13 \pm 0.34 \pm 0.39$ $6.61 \pm 0.21 \pm 0.18$ $2.79 \pm 0.12 \pm 0.11$ $1.05 \pm 0.07 \pm 0.05$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{ut}}} (202 \text{ GeV})}{71.53 \pm 0.98 \pm 1.14}$ $36.15 \pm 0.70 \pm 0.82$ $16.02 \pm 0.47 \pm 0.42$ $6.98 \pm 0.29 \pm 0.19$ $2.74 \pm 0.17 \pm 0.11$ $1.29 \pm 0.11 \pm 0.07$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{ut}}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ $3 5.24 \pm 0.52 \pm 0.80$ $15.70 \pm 0.36 \pm 0.41$ $6.85 \pm 0.22 \pm 0.19$ $2.65 \pm 0.12 \pm 0.10$ $1.19 \pm 0.08 \pm 0.06$	$\frac{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (207 \text{ GeV})}{\frac{1}{N} \frac{dn}{dp_{\perp}^{\text{out}}} (207 \text{ GeV})}$ $68.43 \pm 0.65 \pm 1.09$ $33.98 \pm 0.46 \pm 0.77$ $14.32 \pm 0.31 \pm 0.37$ $6.44 \pm 0.19 \pm 0.18$ $2.22 \pm 0.11 \pm 0.09$ $0.91 \pm 0.07 \pm 0.05$
$\begin{array}{c} p_{\perp}^{\text{out}} \\ 0.100 \\ 0.300 \\ 0.500 \\ 0.725 \\ 1.025 \\ 1.400 \\ 1.800 \end{array}$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{ut}} (200 \text{ GeV})}{70.62 \pm 0.71 \pm 1.12}$ $34.77 \pm 0.50 \pm 0.79$ $15.13 \pm 0.34 \pm 0.39$ $6.61 \pm 0.21 \pm 0.18$ $2.79 \pm 0.12 \pm 0.11$ $1.05 \pm 0.07 \pm 0.05$ $0.50 \pm 0.06 \pm 0.04$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{ut}}} (202 \text{ GeV})}{\frac{1}{N} \frac{dp_2^{\text{ut}}}{dp_2^{\text{ut}}} (202 \text{ GeV})}$ $71.53 \pm 0.98 \pm 1.14$ $36.15 \pm 0.70 \pm 0.82$ $16.02 \pm 0.70 \pm 0.82$ $16.02 \pm 0.47 \pm 0.42$ $6.98 \pm 0.29 \pm 0.19$ $2.74 \pm 0.17 \pm 0.11$ $1.29 \pm 0.11 \pm 0.07$ $0.61 \pm 0.09 \pm 0.05$	$\frac{\frac{1}{N} \frac{dn}{dp_2^{\text{ut}}} (205 \text{ GeV})}{70.94 \pm 0.73 \pm 1.13}$ $3 5.24 \pm 0.52 \pm 0.80$ $15.70 \pm 0.36 \pm 0.41$ $6.85 \pm 0.22 \pm 0.19$ $2.65 \pm 0.12 \pm 0.10$ $1.19 \pm 0.08 \pm 0.06$ $0.49 \pm 0.06 \pm 0.04$	$\frac{1}{N} \frac{dn}{dp_{p^{\text{out}}}^{0}} (207 \text{ GeV})$ $68.43 \pm 0.65 \pm 1.09$ $33.98 \pm 0.46 \pm 0.77$ $14.32 \pm 0.31 \pm 0.37$ $6.44 \pm 0.19 \pm 0.18$ $2.22 \pm 0.11 \pm 0.09$ $0.91 \pm 0.07 \pm 0.05$ $0.48 \pm 0.06 \pm 0.04$

162

Anhang D

Tabellen der Ereignisformverteilungen

(1 - T)	$\frac{1}{N} \frac{dN}{d(1-T)} (183 \text{ GeV})$	$\frac{1}{N}\frac{dN}{d(1-T)}$ (189 GeV)	$\frac{1}{N} \frac{dN}{d(1-T)} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{d(1-T)}$ (196 GeV)
0.005	$8.91 \pm 1.12 \pm 1.92$	$6.94 \pm 0.61 \pm 1.50$	$8.84 \pm 1.71 \pm 1.91$	$10.21 \pm 1.15 \pm 2.20$
0.015	$20.03 \pm 1.42 \pm 0.38$	$23.11 \pm 0.95 \pm 0.44$	$22.08 \pm 2.38 \pm 0.43$	$21.97 \pm 1.45 \pm 0.43$
0.025	$14.83 \pm 1.30 \pm 0.28$	$15.35 \pm 0.81 \pm 0.32$	$14.66 \pm 1.96 \pm 0.32$	$14.38 \pm 1.23 \pm 0.33$
0.035	$11.29 \pm 1.14 \pm 0.32$	$10.13 \pm 0.67 \pm 0.30$	$10.10 \pm 1.67 \pm 0.30$	$9.98 \pm 1.03 \pm 0.31$
0.045	$7.44 \pm 0.90 \pm 0.26$	$7.36 \pm 0.56 \pm 0.26$	$8.65 \pm 1.56 \pm 0.31$	$6.58 \pm 0.84 \pm 0.24$
0.055	$6.31 \pm 0.84 \pm 0.30$	$7.01 \pm 0.54 \pm 0.36$	$5.23 \pm 1.17 \pm 0.28$	$5.38 \pm 0.77 \pm 0.30$
0.065	$4.68 \pm 0.70 \pm 0.05$	$5.40 \pm 0.47 \pm 0.06$	$3.92 \pm 1.03 \pm 0.04$	$5.84 \pm 0.81 \pm 0.07$
0.075	$3.19 \pm 0.61 \pm 0.15$	$3.38 \pm 0.38 \pm 0.16$	$3.70 \pm 1.00 \pm 0.18$	$4.21 \pm 0.66 \pm 0.20$
0.085	$1.36 \pm 0.38 \pm 0.09$	$2.27 \pm 0.31 \pm 0.16$	$4.14 \pm 1.00 \pm 0.31$	$1.44 \pm \ 0.42 \pm \ 0.11$
0.095	$3.49 \pm 0.56 \pm 0.15$	$2.47 \pm 0.31 \pm 0.11$	$3.07 \pm 0.83 \pm 0.14$	$3.62 \pm 0.59 \pm 0.17$
0.110	$2.48 \pm 0.34 \pm 0.13$	$2.30 \pm 0.21 \pm 0.13$	$2.79 \pm 0.57 \pm 0.17$	$1.91 \pm 0.31 \pm 0.12$
0.130	$2.05 \pm 0.30 \pm 0.06$	$1.11 \pm 0.16 \pm 0.04$	$1.53 \pm 0.41 \pm 0.05$	$1.56 \pm 0.28 \pm 0.05$
0.150	$0.75 \pm 0.21 \pm 0.06$	$0.89 \pm 0.14 \pm 0.08$	$0.77 \pm 0.33 \pm 0.07$	$1.10\pm~0.24\pm~0.09$
0.170	$0.62 \pm 0.20 \pm 0.05$	$1.10 \pm 0.15 \pm 0.11$	$0.49 \pm 0.31 \pm 0.05$	$0.17\pm~0.16\pm~0.02$
0.190	$0.84 \pm 0.22 \pm 0.06$	$0.64 \pm 0.13 \pm 0.05$	$0.96 \pm 0.35 \pm 0.08$	$0.89 \pm 0.23 \pm 0.07$
0.220	$0.46 \pm 0.14 \pm 0.10$	$0.33 \pm 0.09 \pm 0.08$	$0.41 \pm 0.22 \pm 0.11$	$0.32\pm~0.16\pm~0.09$
0.260	$0.26 \pm 0.11 \pm 0.03$	$0.27 \pm 0.09 \pm 0.03$	$0.04 \pm 0.21 \pm 0.01$	$0.34\pm~0.16\pm~0.05$
0.300	$0.08 \pm 0.10 \pm 0.03$	$0.20 \pm 0.08 \pm 0.10$	$-0.22 \pm 0.15 \pm 0.11$	$0.45 \pm 0.15 \pm 0.24$
0.340	$0.38 \pm 0.08 \pm 0.10$	$0.09 \pm 0.05 \pm 0.03$	$0.07 \pm 0.14 \pm 0.02$	$0.27 \pm 0.10 \pm 0.09$
(1 - T)	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$
(1 - T) 0.005	$\frac{\frac{1}{N} \frac{dN}{d(1-T)}}{9.03 \pm 1.01 \pm 1.95} (200 \text{ GeV})$	$\frac{\frac{1}{N} \frac{dN}{d(1-T)}}{9.36 \pm 1.40 \pm 2.02}$	$\frac{\frac{1}{N} \frac{dN}{d(1-T)}}{8.84 \pm 1.05 \pm 1.91} (205 \text{ GeV})$	$\frac{\frac{1}{N}\frac{dN}{d(1-T)}}{10.16\pm0.83\pm2.19}$
(1 - T) 0.005 0.015	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})}{9.03 \pm 1.01 \pm 1.95}$ $24.32 \pm 1.48 \pm 0.48$	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})}{9.36 \pm 1.40 \pm 2.02}$ 21.77 \pm 1.96 \pm 0.43	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})}{8.84 \pm 1.05 \pm 1.91}$ $23.10 \pm 1.51 \pm 0.46$	$\frac{\frac{1}{N}\frac{dN}{d(1-T)} (207 \text{ GeV})}{10.16 \pm 0.83 \pm 2.19}$ $20.98 \pm 1.10 \pm 0.42$
(1 - T) 0.005 0.015 0.025	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})}{9.03 \pm 1.01 \pm 1.95}$ $24.32 \pm 1.48 \pm 0.48$ $16.72 \pm 1.29 \pm 0.41$	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})}{9.36 \pm 1.40 \pm 2.02}$ 21.77 \pm 1.96 \pm 0.43 13.77 \pm 1.64 \pm 0.34	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})}{8.84 \pm 1.05 \pm 1.91}$ $23.10 \pm 1.51 \pm 0.46$ $15.98 \pm 1.32 \pm 0.42$	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})}{10.16 \pm 0.83 \pm 2.19}$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$
(1 - T) 0.005 0.015 0.025 0.035	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25	$\frac{\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})}{9.36 \pm 1.40 \pm 2.02}$ 21.77 \pm 1.96 \pm 0.43 13.77 \pm 1.64 \pm 0.34 10.50 \pm 1.49 \pm 0.34	$\frac{\frac{1}{N}\frac{dN}{d(1-T)}(205 \text{ GeV})}{8.84\pm 1.05\pm 1.91}$ $23.10\pm 1.51\pm 0.46$ $15.98\pm 1.32\pm 0.42$ $11.70\pm 1.13\pm 0.39$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$
(1 - T) 0.005 0.015 0.025 0.035 0.045	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ $8.84 \pm 1.05 \pm 1.91$ $23.10 \pm 1.51 \pm 0.46$ $15.98 \pm 1.32 \pm 0.42$ $11.70 \pm 1.13 \pm 0.39$ $8.54 \pm 0.96 \pm 0.32$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$ $7.80 \pm 0.71 \pm 0.29$
(1 - T) 0.005 0.015 0.025 0.035 0.045 0.055	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ $8.84 \pm 1.05 \pm 1.91$ $23.10 \pm 1.51 \pm 0.46$ $15.98 \pm 1.32 \pm 0.42$ $11.70 \pm 1.13 \pm 0.39$ $8.54 \pm 0.96 \pm 0.32$ $5.23 \pm 0.78 \pm 0.32$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$ $7.80 \pm 0.71 \pm 0.29$ $5.21 \pm 0.60 \pm 0.33$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$ $7.80 \pm 0.71 \pm 0.29$ $5.21 \pm 0.60 \pm 0.33$ $4.30 \pm 0.53 \pm 0.05$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ $8.84 \pm 1.05 \pm 1.91$ $23.10 \pm 1.51 \pm 0.46$ $15.98 \pm 1.32 \pm 0.42$ $11.70 \pm 1.13 \pm 0.39$ $8.54 \pm 0.96 \pm 0.32$ $5.23 \pm 0.78 \pm 0.32$ $4.65 \pm 0.70 \pm 0.05$ $2.54 \pm 0.53 \pm 0.12$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$ $7.80 \pm 0.71 \pm 0.29$ $5.21 \pm 0.60 \pm 0.33$ $4.30 \pm 0.53 \pm 0.05$ $3.05 \pm 0.44 \pm 0.15$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ $8.84 \pm 1.05 \pm 1.91$ $23.10 \pm 1.51 \pm 0.46$ $15.98 \pm 1.32 \pm 0.42$ $11.70 \pm 1.13 \pm 0.39$ $8.54 \pm 0.96 \pm 0.32$ $5.23 \pm 0.78 \pm 0.32$ $4.65 \pm 0.70 \pm 0.05$ $2.54 \pm 0.53 \pm 0.12$ $2.40 \pm 0.50 \pm 0.22$	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16 \pm 0.83 \pm 2.19$ $20.98 \pm 1.10 \pm 0.42$ $15.42 \pm 0.99 \pm 0.42$ $10.73 \pm 0.83 \pm 0.36$ $7.80 \pm 0.71 \pm 0.29$ $5.21 \pm 0.60 \pm 0.33$ $4.30 \pm 0.53 \pm 0.05$ $3.05 \pm 0.44 \pm 0.15$ $3.54 \pm 0.43 \pm 0.34$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.55\pm 0.42\pm 0.17$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.065 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$ $1.01\pm 0.19\pm 0.09$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10 0.90± 0.23± 0.10	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06 1.51± 0.39± 0.17	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07 0.55± 0.23± 0.07	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ 10.16± 0.83± 2.19 20.98± 1.10± 0.42 15.42± 0.99± 0.42 10.73± 0.83± 0.36 7.80± 0.71± 0.29 5.21± 0.60± 0.33 4.30± 0.53± 0.05 3.05± 0.44± 0.15 3.54± 0.43± 0.34 3.55± 0.42± 0.17 1.87± 0.24± 0.13 1.53± 0.22± 0.06 1.01± 0.19± 0.09 1.00± 0.20± 0.13
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \\ 0.190 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10 0.90± 0.23± 0.10 0.75± 0.24± 0.07	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06 1.51± 0.39± 0.17 1.30± 0.37± 0.12	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07 0.55± 0.23± 0.07 0.61± 0.27± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$ $1.01\pm 0.19\pm 0.09$ $1.00\pm 0.20\pm 0.13$ $0.49\pm 0.19\pm 0.05$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \\ 0.190 \\ 0.220 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10 0.90± 0.23± 0.10 0.75± 0.24± 0.07 0.35± 0.16± 0.11	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06 1.51± 0.39± 0.17 1.30± 0.37± 0.12 0.19± 0.21± 0.06	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07 0.61± 0.27± 0.06 0.22± 0.18± 0.07	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$ $1.01\pm 0.19\pm 0.09$ $1.00\pm 0.20\pm 0.13$ $0.49\pm 0.19\pm 0.05$ $0.52\pm 0.14\pm 0.18$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \\ 0.190 \\ 0.220 \\ 0.260 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10 0.90± 0.23± 0.10 0.75± 0.24± 0.07 0.35± 0.16± 0.11 0.28± 0.16± 0.04	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06 1.51± 0.39± 0.17 1.30± 0.37± 0.12 0.19± 0.21± 0.06 0.16± 0.21± 0.02	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07 0.55± 0.23± 0.07 0.61± 0.27± 0.06 0.22± 0.18± 0.07 0.12± 0.16± 0.02	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.54\pm 0.43\pm 0.34$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$ $1.01\pm 0.19\pm 0.09$ $1.00\pm 0.20\pm 0.13$ $0.49\pm 0.19\pm 0.05$ $0.52\pm 0.14\pm 0.18$ $0.41\pm 0.14\pm 0.16$
$\begin{array}{c} (1-T) \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \\ 0.190 \\ 0.220 \\ 0.260 \\ 0.300 \end{array}$	$\frac{1}{N} \frac{dN}{d(1-T)} (200 \text{ GeV})$ 9.03± 1.01± 1.95 24.32± 1.48± 0.48 16.72± 1.29± 0.41 7.99± 0.89± 0.25 7.62± 0.85± 0.28 5.14± 0.74± 0.30 4.26± 0.66± 0.05 3.06± 0.55± 0.15 2.39± 0.48± 0.20 3.31± 0.54± 0.16 2.07± 0.30± 0.13 1.68± 0.26± 0.06 1.12± 0.23± 0.10 0.90± 0.23± 0.10 0.75± 0.24± 0.07 0.35± 0.16± 0.11 0.28± 0.16± 0.04 0.27± 0.14± 0.16	$\frac{1}{N} \frac{dN}{d(1-T)} (202 \text{ GeV})$ 9.36± 1.40± 2.02 21.77± 1.96± 0.43 13.77± 1.64± 0.34 10.50± 1.49± 0.34 6.81± 1.24± 0.25 6.19± 1.07± 0.36 4.95± 0.92± 0.06 5.07± 0.94± 0.25 3.18± 0.77± 0.27 3.27± 0.77± 0.15 1.89± 0.42± 0.12 1.67± 0.38± 0.06 0.71± 0.31± 0.06 1.51± 0.39± 0.17 1.30± 0.37± 0.12 0.19± 0.21± 0.06 0.16± 0.21± 0.02 -0.13± 0.17± 0.07	$\frac{1}{N} \frac{dN}{d(1-T)} (205 \text{ GeV})$ 8.84± 1.05± 1.91 23.10± 1.51± 0.46 15.98± 1.32± 0.42 11.70± 1.13± 0.39 8.54± 0.96± 0.32 5.23± 0.78± 0.32 4.65± 0.70± 0.05 2.54± 0.53± 0.12 2.40± 0.50± 0.22 2.25± 0.48± 0.11 2.51± 0.35± 0.17 1.34± 0.27± 0.05 0.82± 0.24± 0.07 0.55± 0.23± 0.07 0.61± 0.27± 0.06 0.22± 0.18± 0.07 0.12± 0.16± 0.02 0.04± 0.14± 0.02	$\frac{1}{N} \frac{dN}{d(1-T)} (207 \text{ GeV})$ $10.16\pm 0.83\pm 2.19$ $20.98\pm 1.10\pm 0.42$ $15.42\pm 0.99\pm 0.42$ $10.73\pm 0.83\pm 0.36$ $7.80\pm 0.71\pm 0.29$ $5.21\pm 0.60\pm 0.33$ $4.30\pm 0.53\pm 0.05$ $3.05\pm 0.44\pm 0.15$ $3.55\pm 0.42\pm 0.17$ $1.87\pm 0.24\pm 0.13$ $1.53\pm 0.22\pm 0.06$ $1.01\pm 0.19\pm 0.09$ $1.00\pm 0.20\pm 0.13$ $0.49\pm 0.19\pm 0.05$ $0.52\pm 0.14\pm 0.18$ $0.41\pm 0.14\pm 0.16$ $0.07\pm 0.10\pm 0.04$

Major	$\frac{1}{N}\frac{dN}{dM}(183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM} (192 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dM}$ (196 GeV)
0.010	$0.07 \pm 0.07 \pm 0.00$	$0.00 \pm 0.05 \pm 0.00$	$0.52 \pm 0.22 \pm 0.00$	$1.14 \pm 0.14 \pm 0.00$
0.030	$2.83 \pm 0.31 \pm 0.39$	$2.15 \pm 0.16 \pm 0.29$	$3.02 \pm 0.50 \pm 0.41$	$2.39 \pm 0.27 \pm 0.33$
0.045	$5.29 \pm 0.64 \pm 0.23$	$5.42 \pm 0.40 \pm 0.24$	$4.23 \pm 0.90 \pm 0.19$	$7.68 \pm 0.76 \pm 0.34$
0.055	$5.70 \pm 0.78 \pm 0.11$	$6.31 \pm 0.48 \pm 0.13$	$6.08 \pm 1.20 \pm 0.12$	$7.64 \pm 0.87 \pm 0.16$
0.065	$8.39 \pm 0.93 \pm 0.14$	$6.36 \pm 0.51 \pm 0.11$	$7.12 \pm 1.39 \pm 0.13$	$7.01 \pm 0.82 \pm 0.14$
0.075	$5.69 \pm 0.81 \pm 0.15$	$6.88 \pm 0.56 \pm 0.18$	$6.22 \pm 1.32 \pm 0.16$	$5.60 \pm 0.77 \pm 0.15$
0.090	$5.16 \pm 0.55 \pm 0.12$	$5.11 \pm 0.35 \pm 0.13$	$5.42 \pm 0.91 \pm 0.14$	$5.08 \pm 0.54 \pm 0.13$
0.110	$4.06 \pm 0.52 \pm 0.13$	$4.52 \pm 0.32 \pm 0.15$	$4.03 \pm 0.75 \pm 0.13$	$4.29 \pm 0.50 \pm 0.14$
0.130	$3.71 \pm 0.46 \pm 0.09$	$4.51 \pm 0.32 \pm 0.11$	$4.10 \pm 0.80 \pm 0.10$	$3.57 \pm 0.45 \pm 0.08$
0.150	$3.84 \pm 0.47 \pm 0.09$	$2.83 \pm 0.25 \pm 0.07$	$3.40 \pm 0.68 \pm 0.09$	$3.21 \pm 0.42 \pm 0.08$
0.180	$2.44 \pm 0.26 \pm 0.08$	$2.55 \pm 0.17 \pm 0.08$	$2.45 \pm 0.42 \pm 0.08$	$2.32 \pm 0.26 \pm 0.07$
0.220	$1.53 \pm 0.20 \pm 0.06$	$1.93 \pm 0.14 \pm 0.07$	$2.08 \pm 0.36 \pm 0.08$	$1.45 \pm 0.20 \pm 0.06$
0.260	$1.33 \pm 0.18 \pm 0.07$	$1.03 \pm 0.11 \pm 0.06$	$1.34\pm 0.29\pm 0.09$	$1.25 \pm 0.19 \pm 0.09$
0.300	$1.05 \pm 0.16 \pm 0.06$	$1.06 \pm 0.10 \pm 0.06$	$1.09 \pm 0.26 \pm 0.06$	$1.21 \pm 0.17 \pm 0.07$
0.340	$1.08 \pm 0.16 \pm 0.04$	$0.66 \pm 0.09 \pm 0.03$	$0.67 \pm 0.22 \pm 0.03$	$0.81 \pm 0.16 \pm 0.03$
0.380	$0.52 \pm 0.13 \pm 0.04$	$0.48 \pm 0.08 \pm 0.04$	$0.32 \pm 0.19 \pm 0.03$	$0.51 \pm 0.14 \pm 0.04$
0.420	$0.18 \pm 0.11 \pm 0.02$	$0.39 \pm 0.09 \pm 0.05$	$0.71 \pm 0.24 \pm 0.09$	$0.46 \pm 0.15 \pm 0.06$
0.460	$0.43 \pm 0.13 \pm 0.19$	$0.18 \pm 0.08 \pm 0.09$	$-0.24 \pm 0.15 \pm 0.13$	$0.37 \pm 0.15 \pm 0.21$
0.500	$0.32 \pm 0.13 \pm 0.05$	$0.29 \pm 0.08 \pm 0.05$	$0.05 \pm 0.19 \pm 0.01$	$0.09 \pm 0.13 \pm 0.02$
0.540	$0.04 \pm 0.09 \pm 0.00$	$0.25 \pm 0.07 \pm 0.03$	$0.15 \pm 0.18 \pm 0.02$	$0.03 \pm 0.10 \pm 0.00$
0.580	$0.08 \pm 0.06 \pm 0.07$	$-0.04 \pm 0.04 \pm 0.03$	$0.05 \pm 0.11 \pm 0.04$	$0.34 \pm 0.11 \pm 0.27$
<u> </u>				
Major	$\frac{1}{N}\frac{dN}{dM}(200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dM}(205 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dM}(207 \text{ GeV})$
Major 0.010	$\frac{\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})}{0.00 \pm 0.12 \pm 0.00}$	$\frac{\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})}{0.00 \pm 0.09 \pm 0.00}$	$\frac{\frac{1}{N} \frac{dN}{dM}}{0.11 \pm 0.07 \pm 0.00}$	$\frac{\frac{1}{N} \frac{dN}{dM}}{0.00 \pm 0.09 \pm 0.00} (207 \text{ GeV})$
Major 0.010 0.030	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV}) \\ 0.00 \pm 0.09 \pm 0.00 \\ 2.68 \pm 0.22 \pm 0.37 $
Major 0.010 0.030 0.045	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23 7.07± 0.70± 0.32	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ $0.11\pm 0.07\pm 0.00$ $2.34\pm 0.28\pm 0.32$ $4.35\pm 0.58\pm 0.20$	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30
Major 0.010 0.030 0.045 0.055	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23 7.07± 0.70± 0.32 7.37± 0.77± 0.15	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.36 \pm 0.34 \pm 0.32$ $7.14 \pm 0.97 \pm 0.32$ $7.98 \pm 1.16 \pm 0.16$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ $0.11 \pm 0.07 \pm 0.00$ $2.34 \pm 0.28 \pm 0.32$ $4.35 \pm 0.58 \pm 0.20$ $7.50 \pm 0.85 \pm 0.16$	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14
Major 0.010 0.030 0.045 0.055 0.065	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.36 \pm 0.34 \pm 0.32$ $7.14 \pm 0.97 \pm 0.32$ $7.98 \pm 1.16 \pm 0.16$ $6.68 \pm 1.14 \pm 0.14$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ $0.11 \pm 0.07 \pm 0.00$ $2.34 \pm 0.28 \pm 0.32$ $4.35 \pm 0.58 \pm 0.20$ $7.50 \pm 0.85 \pm 0.16$ $7.39 \pm 0.87 \pm 0.16$	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$
Major 0.010 0.030 0.045 0.055 0.065 0.075	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.36 \pm 0.34 \pm 0.32$ $7.14 \pm 0.97 \pm 0.32$ $7.98 \pm 1.16 \pm 0.16$ $6.68 \pm 1.14 \pm 0.14$ $3.96 \pm 0.92 \pm 0.10$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ $0.11\pm 0.07\pm 0.00$ $2.34\pm 0.28\pm 0.32$ $4.35\pm 0.58\pm 0.20$ $7.50\pm 0.85\pm 0.16$ $7.39\pm 0.87\pm 0.16$ $6.07\pm 0.84\pm 0.16$	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00\pm 0.09\pm 0.00$ $2.36\pm 0.34\pm 0.32$ $7.14\pm 0.97\pm 0.32$ $7.98\pm 1.16\pm 0.16$ $6.68\pm 1.14\pm 0.14$ $3.96\pm 0.92\pm 0.10$ $4.64\pm 0.69\pm 0.13$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.36 \pm 0.34 \pm 0.32$ $7.14 \pm 0.97 \pm 0.32$ $7.98 \pm 1.16 \pm 0.16$ $6.68 \pm 1.14 \pm 0.14$ $3.96 \pm 0.92 \pm 0.10$ $4.64 \pm 0.69 \pm 0.13$ $4.57 \pm 0.72 \pm 0.15$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ $0.11\pm 0.07\pm 0.00$ $2.34\pm 0.28\pm 0.32$ $4.35\pm 0.58\pm 0.20$ $7.50\pm 0.85\pm 0.16$ $7.39\pm 0.87\pm 0.16$ $6.07\pm 0.84\pm 0.16$ $5.46\pm 0.57\pm 0.16$ $4.92\pm 0.53\pm 0.17$	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$ $4.81 \pm 0.40 \pm 0.16$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00\pm 0.09\pm 0.00$ $2.36\pm 0.34\pm 0.32$ $7.14\pm 0.97\pm 0.32$ $7.98\pm 1.16\pm 0.16$ $6.68\pm 1.14\pm 0.14$ $3.96\pm 0.92\pm 0.10$ $4.64\pm 0.69\pm 0.13$ $4.57\pm 0.72\pm 0.15$ $3.87\pm 0.61\pm 0.09$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$ $4.81 \pm 0.40 \pm 0.16$ $4.33 \pm 0.39 \pm 0.10$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.85$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ $0.00\pm 0.09\pm 0.00$ $2.36\pm 0.34\pm 0.32$ $7.14\pm 0.97\pm 0.32$ $7.98\pm 1.16\pm 0.16$ $6.68\pm 1.14\pm 0.14$ $3.96\pm 0.92\pm 0.10$ $4.64\pm 0.69\pm 0.13$ $4.57\pm 0.72\pm 0.15$ $3.87\pm 0.61\pm 0.09$ $2.80\pm 0.54\pm 0.07$	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$ $4.81 \pm 0.40 \pm 0.16$ $4.33 \pm 0.39 \pm 0.10$ $3.03 \pm 0.32 \pm 0.08$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.442 0.662	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.66	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.08
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$ $1.05 \pm 0.16 \pm 0.08$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$ $4.81 \pm 0.40 \pm 0.16$ $4.33 \pm 0.39 \pm 0.10$ $3.03 \pm 0.32 \pm 0.08$ $1.94 \pm 0.18 \pm 0.08$ $1.27 \pm 0.14 \pm 0.10$
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$ $1.05 \pm 0.16 \pm 0.08$ $0.88 \pm 0.15 \pm 0.05$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ $0.00 \pm 0.09 \pm 0.00$ $2.68 \pm 0.22 \pm 0.37$ $6.57 \pm 0.55 \pm 0.30$ $6.83 \pm 0.60 \pm 0.14$ $5.92 \pm 0.62 \pm 0.13$ $6.00 \pm 0.63 \pm 0.16$ $5.08 \pm 0.42 \pm 0.15$ $4.81 \pm 0.40 \pm 0.16$ $4.33 \pm 0.39 \pm 0.10$ $3.03 \pm 0.32 \pm 0.08$ $1.94 \pm 0.18 \pm 0.06$ $2.04 \pm 0.18 \pm 0.08$ $1.27 \pm 0.14 \pm 0.10$ 1.18 ± 0.03
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300 0.340	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$ $1.05 \pm 0.16 \pm 0.08$ $0.88 \pm 0.15 \pm 0.05$ $0.77 \pm 0.15 \pm 0.03$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06 2.04± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 4.5000000000000000000000000000000000000
Major 0.010 0.030 0.045 0.055 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300 0.340 0.380	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$ $1.05 \pm 0.16 \pm 0.08$ $0.88 \pm 0.15 \pm 0.05$ $0.77 \pm 0.15 \pm 0.03$ $0.73 \pm 0.16 \pm 0.07$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02 0.43± 0.20± 0.04	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02 0.63± 0.18± 0.06	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06 2.04± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 0.59± 0.13± 0.06
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300 0.340 0.380 0.380 0.420	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ $0.00 \pm 0.12 \pm 0.00$ $1.69 \pm 0.23 \pm 0.23$ $7.07 \pm 0.70 \pm 0.32$ $7.37 \pm 0.77 \pm 0.15$ $6.57 \pm 0.81 \pm 0.13$ $7.09 \pm 0.85 \pm 0.19$ $5.81 \pm 0.55 \pm 0.16$ $4.23 \pm 0.47 \pm 0.14$ $3.86 \pm 0.45 \pm 0.09$ $2.84 \pm 0.38 \pm 0.08$ $2.18 \pm 0.24 \pm 0.07$ $1.87 \pm 0.22 \pm 0.07$ $1.05 \pm 0.16 \pm 0.08$ $0.88 \pm 0.15 \pm 0.05$ $0.77 \pm 0.15 \pm 0.03$ $0.73 \pm 0.16 \pm 0.07$ $0.45 \pm 0.15 \pm 0.06$	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02 0.43± 0.20± 0.04 0.25± 0.20± 0.04	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02 0.63± 0.18± 0.06 0.17± 0.15± 0.03 0.14± 0.242	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06 2.04± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 0.59± 0.13± 0.07 0.32± 0.22
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300 0.340 0.380 0.420 0.460	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23 7.07± 0.70± 0.32 7.37± 0.77± 0.15 6.57± 0.81± 0.13 7.09± 0.85± 0.19 5.81± 0.55± 0.16 4.23± 0.47± 0.14 3.86± 0.45± 0.09 2.84± 0.38± 0.08 2.18± 0.24± 0.07 1.87± 0.22± 0.07 1.05± 0.16± 0.08 0.88± 0.15± 0.05 0.77± 0.15± 0.03 0.73± 0.16± 0.07 0.45± 0.15± 0.06 0.14± 0.14± 0.08	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02 0.43± 0.20± 0.04 0.25± 0.20± 0.04 0.49± 0.23± 0.30	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02 0.63± 0.18± 0.06 0.17± 0.15± 0.03 -0.14± 0.14± 0.09 2.124	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 0.59± 0.13± 0.06 0.47± 0.13± 0.22 0.32± 0.12± 0.22
Major 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300 0.340 0.380 0.420 0.460 0.500	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23 7.07± 0.70± 0.32 7.37± 0.77± 0.15 6.57± 0.81± 0.13 7.09± 0.85± 0.19 5.81± 0.55± 0.16 4.23± 0.47± 0.14 3.86± 0.45± 0.09 2.84± 0.38± 0.08 2.18± 0.24± 0.07 1.87± 0.22± 0.07 1.05± 0.16± 0.08 0.88± 0.15± 0.05 0.77± 0.15± 0.03 0.73± 0.16± 0.07 0.45± 0.15± 0.06 0.14± 0.14± 0.08	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02 0.43± 0.20± 0.04 0.25± 0.20± 0.04 0.49± 0.23± 0.30 0.41± 0.21± 0.08	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02 0.63± 0.18± 0.06 0.17± 0.15± 0.03 -0.14± 0.14± 0.09 0.12± 0.14± 0.02	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06 2.04± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 0.59± 0.13± 0.06 0.47± 0.13± 0.07 0.32± 0.12± 0.22 0.19± 0.11± 0.04
$\begin{array}{c} Major\\ 0.010\\ 0.030\\ 0.045\\ 0.055\\ 0.065\\ 0.075\\ 0.090\\ 0.110\\ 0.130\\ 0.150\\ 0.180\\ 0.220\\ 0.260\\ 0.300\\ 0.340\\ 0.380\\ 0.420\\ 0.380\\ 0.420\\ 0.460\\ 0.500\\ 0.540\\ 0.540\\ 0.540\\ 0.540\\ 0.500\\ 0.500\\ 0.$	$\frac{1}{N} \frac{dN}{dM} (200 \text{ GeV})$ 0.00± 0.12± 0.00 1.69± 0.23± 0.23 7.07± 0.70± 0.32 7.37± 0.77± 0.15 6.57± 0.81± 0.13 7.09± 0.85± 0.19 5.81± 0.55± 0.16 4.23± 0.47± 0.14 3.86± 0.45± 0.09 2.84± 0.38± 0.08 2.18± 0.24± 0.07 1.87± 0.22± 0.07 1.05± 0.16± 0.08 0.88± 0.15± 0.05 0.77± 0.15± 0.03 0.73± 0.16± 0.07 0.45± 0.15± 0.06 0.14± 0.14± 0.08 0.26± 0.14± 0.05 0.11± 0.11± 0.01	$\frac{1}{N} \frac{dN}{dM} (202 \text{ GeV})$ 0.00± 0.09± 0.00 2.36± 0.34± 0.32 7.14± 0.97± 0.32 7.98± 1.16± 0.16 6.68± 1.14± 0.14 3.96± 0.92± 0.10 4.64± 0.69± 0.13 4.57± 0.72± 0.15 3.87± 0.61± 0.09 2.80± 0.54± 0.07 2.64± 0.37± 0.08 2.15± 0.32± 0.09 1.99± 0.29± 0.15 0.74± 0.21± 0.05 0.60± 0.20± 0.02 0.43± 0.20± 0.04 0.25± 0.20± 0.04 0.49± 0.23± 0.30 0.41± 0.21± 0.08 0.05± 0.14± 0.01	$\frac{1}{N} \frac{dN}{dM} (205 \text{ GeV})$ 0.11± 0.07± 0.00 2.34± 0.28± 0.32 4.35± 0.58± 0.20 7.50± 0.85± 0.16 7.39± 0.87± 0.16 6.07± 0.84± 0.16 5.46± 0.57± 0.16 4.92± 0.53± 0.17 4.39± 0.49± 0.10 2.69± 0.41± 0.07 2.78± 0.28± 0.09 1.44± 0.20± 0.06 1.46± 0.19± 0.12 1.14± 0.18± 0.07 0.61± 0.16± 0.02 0.63± 0.18± 0.06 0.17± 0.15± 0.03 -0.14± 0.14± 0.02 -0.12± 0.09± 0.02 0.08± 0.29± 0.22	$\frac{1}{N} \frac{dN}{dM} (207 \text{ GeV})$ 0.00± 0.09± 0.00 2.68± 0.22± 0.37 6.57± 0.55± 0.30 6.83± 0.60± 0.14 5.92± 0.62± 0.13 6.00± 0.63± 0.16 5.08± 0.42± 0.15 4.81± 0.40± 0.16 4.33± 0.39± 0.10 3.03± 0.32± 0.08 1.94± 0.18± 0.06 2.04± 0.18± 0.08 1.27± 0.14± 0.10 1.18± 0.13± 0.08 0.48± 0.11± 0.02 0.59± 0.13± 0.06 0.47± 0.13± 0.07 0.32± 0.12± 0.22 0.19± 0.11± 0.04 0.05± 0.08± 0.01

Minor	$\frac{1}{N}\frac{dN}{dm}$ (183 GeV)	$\frac{1}{N} \frac{dN}{dm}$ (189 GeV)	$\frac{1}{N}\frac{dN}{dm}$ (192 GeV)	$\frac{1}{N}\frac{dN}{dm}$ (196 GeV)
0.010	$0.39 \pm 0.16 \pm 0.83$	$0.35 \pm 0.10 \pm 0.76$	$0.67 \pm 0.35 \pm 1.44$	$0.60 \pm 0.20 \pm 1.29$
0.030	$8.02 \pm 0.64 \pm 0.12$	$8.63 \pm 0.40 \pm 0.13$	$8.86 \pm 1.01 \pm 0.13$	$9.54 \pm 0.64 \pm 0.15$
0.045	$16.17 \pm 1.28 \pm 0.29$	$15.11 \pm 0.77 \pm 0.27$	$14.65 \pm 1.90 \pm 0.26$	$16.61 \pm 1.27 \pm 0.30$
0.055	$14.07 \pm 1.25 \pm 0.38$	$14.07 \pm 0.79 \pm 0.38$	$15.96 \pm 2.13 \pm 0.43$	$13.08 \pm 1.20 \pm 0.35$
0.065	$13.19 \pm 1.23 \pm 0.43$	$12.03 \pm 0.75 \pm 0.39$	$10.85 \pm 1.78 \pm 0.35$	$11.20 \pm 1.16 \pm 0.36$
0.075	$8.07 \pm 1.02 \pm 0.36$	$9.23 \pm 0.68 \pm 0.44$	$7.79 \pm 1.56 \pm 0.38$	$8.33 \pm 1.05 \pm 0.42$
0.090	$6.17 \pm \ 0.63 \pm \ 0.14$	$6.42 \pm 0.40 \pm 0.15$	$6.20 \pm 1.00 \pm 0.14$	$5.59 \pm 0.61 \pm 0.13$
0.110	$3.08 \pm 0.44 \pm 0.08$	$3.51 \pm 0.30 \pm 0.09$	$4.09 \pm 0.78 \pm 0.11$	$4.09 \pm 0.52 \pm 0.11$
0.130	$2.04 \pm 0.36 \pm 0.06$	$2.11 \pm 0.23 \pm 0.06$	$2.40 \pm 0.58 \pm 0.08$	$2.09 \pm 0.36 \pm 0.07$
0.150	$1.99 \pm 0.31 \pm 0.11$	$0.83 \pm 0.16 \pm 0.05$	$1.17 \pm 0.43 \pm 0.08$	$1.55 \pm 0.31 \pm 0.11$
0.180	$1.26 \pm 0.15 \pm 0.15$	$0.64 \pm 0.09 \pm 0.08$	$0.56 \pm 0.22 \pm 0.07$	$0.78 \pm 0.16 \pm 0.10$
0.220	$0.10\pm~0.07\pm~0.03$	$0.12 \pm 0.06 \pm 0.03$	$-0.41 \pm 0.09 \pm 0.11$	$0.16 \pm 0.10 \pm 0.04$
0.260	$0.28 \pm 0.06 \pm 0.12$	$0.46 \pm 0.05 \pm 0.21$	$0.54 \pm 0.14 \pm 0.26$	$-0.04 \pm 0.07 \pm 0.02$
0.300	$0.27 \pm 0.05 \pm 0.61$	$-0.05 \pm 0.03 \pm 0.14$	$0.16 \pm 0.09 \pm 0.41$	$-0.05 \pm 0.06 \pm 0.15$
Minor	$\frac{1}{N}\frac{dN}{dm}$ (200 GeV)	$\frac{1}{N}\frac{dN}{dm}$ (202 GeV)	$\frac{1}{N}\frac{dN}{dm}$ (205 GeV)	$\frac{1}{N}\frac{dN}{dm}$ (207 GeV)
Minor 0.010	$\frac{\frac{1}{N}\frac{dN}{dm}}{0.52\pm0.18\pm1.11}$	$\frac{\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})}{0.25 \pm 0.18 \pm 0.53}$	$\frac{\frac{1}{N}\frac{dN}{dm}}{0.31\pm0.16\pm0.66}$	$\frac{\frac{1}{N}\frac{dN}{dm}}{0.54\pm0.15\pm1.15}$
Minor 0.010 0.030	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV}) \\ 0.52 \pm 0.18 \pm 1.11 \\ 9.47 \pm 0.63 \pm 0.15$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV}) \\ 0.25 \pm 0.18 \pm 0.53 \\ 11.15 \pm 0.93 \pm 0.18$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV}) \\ 0.31 \pm 0.16 \pm 0.66 \\ 9.64 \pm 0.66 \pm 0.15 $	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV}) \\ 0.54 \pm 0.15 \pm 1.15 \\ 10.64 \pm 0.52 \pm 0.17 $
Minor 0.010 0.030 0.045	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$
Minor 0.010 0.030 0.045 0.055	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ $0.31 \pm 0.16 \pm 0.66$ $9.64 \pm 0.66 \pm 0.15$ $17.42 \pm 1.34 \pm 0.32$ $13.88 \pm 1.24 \pm 0.38$	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$
Minor 0.010 0.030 0.045 0.055 0.065	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$	$\frac{1}{N}\frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32 13.88± 1.24± 0.38 10.91± 1.17± 0.36	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$
Minor 0.010 0.030 0.045 0.055 0.065 0.075	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ 0.52± 0.18± 1.11 9.47± 0.63± 0.15 15.20± 1.15± 0.28 14.74± 1.22± 0.40 13.63± 1.23± 0.44 8.10± 0.98± 0.42	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$	$\frac{1}{N}\frac{dN}{dm} (205 \text{ GeV})$ $0.31 \pm 0.16 \pm 0.66$ $9.64 \pm 0.66 \pm 0.15$ $17.42 \pm 1.34 \pm 0.32$ $13.88 \pm 1.24 \pm 0.38$ $10.91 \pm 1.17 \pm 0.36$ $9.05 \pm 1.07 \pm 0.50$	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$ $8.10 \pm 0.98 \pm 0.42$ $5.20 \pm 0.56 \pm 0.12$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ $0.31 \pm 0.16 \pm 0.66$ $9.64 \pm 0.66 \pm 0.15$ $17.42 \pm 1.34 \pm 0.32$ $13.88 \pm 1.24 \pm 0.38$ $10.91 \pm 1.17 \pm 0.36$ $9.05 \pm 1.07 \pm 0.50$ $6.16 \pm 0.65 \pm 0.14$	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$ $8.10 \pm 0.98 \pm 0.42$ $5.20 \pm 0.56 \pm 0.12$ $3.10 \pm 0.43 \pm 0.08$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ $0.31 \pm 0.16 \pm 0.66$ $9.64 \pm 0.66 \pm 0.15$ $17.42 \pm 1.34 \pm 0.32$ $13.88 \pm 1.24 \pm 0.38$ $10.91 \pm 1.17 \pm 0.36$ $9.05 \pm 1.07 \pm 0.50$ $6.16 \pm 0.65 \pm 0.14$ $2.71 \pm 0.45 \pm 0.08$	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$ $8.10 \pm 0.98 \pm 0.42$ $5.20 \pm 0.56 \pm 0.12$ $3.10 \pm 0.43 \pm 0.08$ $2.17 \pm 0.37 \pm 0.07$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$ $1.68 \pm 0.50 \pm 0.06$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ $0.31 \pm 0.16 \pm 0.66$ $9.64 \pm 0.66 \pm 0.15$ $17.42 \pm 1.34 \pm 0.32$ $13.88 \pm 1.24 \pm 0.38$ $10.91 \pm 1.17 \pm 0.36$ $9.05 \pm 1.07 \pm 0.50$ $6.16 \pm 0.65 \pm 0.14$ $2.71 \pm 0.45 \pm 0.08$ $1.50 \pm 0.35 \pm 0.05$	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$ $2.29 \pm 0.29 \pm 0.08$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$ $8.10 \pm 0.98 \pm 0.42$ $5.20 \pm 0.56 \pm 0.12$ $3.10 \pm 0.43 \pm 0.08$ $2.17 \pm 0.37 \pm 0.07$ $1.88 \pm 0.32 \pm 0.14$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$ $1.68 \pm 0.50 \pm 0.06$ $1.36 \pm 0.40 \pm 0.10$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32 13.88± 1.24± 0.38 10.91± 1.17± 0.36 9.05± 1.07± 0.50 6.16± 0.65± 0.14 2.71± 0.45± 0.08 1.50± 0.35± 0.05 1.11± 0.31± 0.09	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$ $2.29 \pm 0.29 \pm 0.08$ $1.50 \pm 0.24 \pm 0.12$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52\pm 0.18\pm 1.11$ $9.47\pm 0.63\pm 0.15$ $15.20\pm 1.15\pm 0.28$ $14.74\pm 1.22\pm 0.40$ $13.63\pm 1.23\pm 0.44$ $8.10\pm 0.98\pm 0.42$ $5.20\pm 0.56\pm 0.12$ $3.10\pm 0.43\pm 0.08$ $2.17\pm 0.37\pm 0.07$ $1.88\pm 0.32\pm 0.14$ $0.28\pm 0.14\pm 0.04$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$ $1.68 \pm 0.50 \pm 0.06$ $1.36 \pm 0.40 \pm 0.10$ $1.34 \pm 0.24 \pm 0.19$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32 13.88± 1.24± 0.38 10.91± 1.17± 0.36 9.05± 1.07± 0.50 6.16± 0.65± 0.14 2.71± 0.45± 0.08 1.50± 0.35± 0.05 1.11± 0.31± 0.09 0.88± 0.18± 0.13	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$ $2.29 \pm 0.29 \pm 0.08$ $1.50 \pm 0.24 \pm 0.12$ $0.49 \pm 0.12 \pm 0.07$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52 \pm 0.18 \pm 1.11$ $9.47 \pm 0.63 \pm 0.15$ $15.20 \pm 1.15 \pm 0.28$ $14.74 \pm 1.22 \pm 0.40$ $13.63 \pm 1.23 \pm 0.44$ $8.10 \pm 0.98 \pm 0.42$ $5.20 \pm 0.56 \pm 0.12$ $3.10 \pm 0.43 \pm 0.08$ $2.17 \pm 0.37 \pm 0.07$ $1.88 \pm 0.32 \pm 0.14$ $0.28 \pm 0.14 \pm 0.04$ $0.46 \pm 0.12 \pm 0.12$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$ $1.68 \pm 0.50 \pm 0.06$ $1.36 \pm 0.40 \pm 0.10$ $1.34 \pm 0.24 \pm 0.19$ $0.02 \pm 0.14 \pm 0.00$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32 13.88± 1.24± 0.38 10.91± 1.17± 0.36 9.05± 1.07± 0.50 6.16± 0.65± 0.14 2.71± 0.45± 0.08 1.50± 0.35± 0.05 1.11± 0.31± 0.09 0.88± 0.18± 0.13 0.26± 0.13± 0.07	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$ $2.29 \pm 0.29 \pm 0.08$ $1.50 \pm 0.24 \pm 0.12$ $0.49 \pm 0.12 \pm 0.07$ $0.52 \pm 0.10 \pm 0.14$
Minor 0.010 0.030 0.045 0.055 0.065 0.075 0.090 0.110 0.130 0.150 0.180 0.220 0.260	$\frac{1}{N} \frac{dN}{dm} (200 \text{ GeV})$ $0.52\pm 0.18\pm 1.11$ $9.47\pm 0.63\pm 0.15$ $15.20\pm 1.15\pm 0.28$ $14.74\pm 1.22\pm 0.40$ $13.63\pm 1.23\pm 0.44$ $8.10\pm 0.98\pm 0.42$ $5.20\pm 0.56\pm 0.12$ $3.10\pm 0.43\pm 0.08$ $2.17\pm 0.37\pm 0.07$ $1.88\pm 0.32\pm 0.14$ $0.28\pm 0.14\pm 0.04$ $0.46\pm 0.12\pm 0.12$ $0.27\pm 0.08\pm 0.13$	$\frac{1}{N} \frac{dN}{dm} (202 \text{ GeV})$ $0.25 \pm 0.18 \pm 0.53$ $11.15 \pm 0.93 \pm 0.18$ $14.73 \pm 1.64 \pm 0.27$ $13.49 \pm 1.67 \pm 0.37$ $10.82 \pm 1.59 \pm 0.35$ $8.64 \pm 1.41 \pm 0.46$ $5.49 \pm 0.81 \pm 0.12$ $3.80 \pm 0.68 \pm 0.10$ $1.68 \pm 0.50 \pm 0.06$ $1.36 \pm 0.40 \pm 0.10$ $1.34 \pm 0.24 \pm 0.19$ $0.02 \pm 0.14 \pm 0.00$ $0.23 \pm 0.12 \pm 0.12$	$\frac{1}{N} \frac{dN}{dm} (205 \text{ GeV})$ 0.31± 0.16± 0.66 9.64± 0.66± 0.15 17.42± 1.34± 0.32 13.88± 1.24± 0.38 10.91± 1.17± 0.36 9.05± 1.07± 0.50 6.16± 0.65± 0.14 2.71± 0.45± 0.08 1.50± 0.35± 0.05 1.11± 0.31± 0.09 0.88± 0.18± 0.13 0.26± 0.13± 0.07 -0.41± 0.08± 0.21	$\frac{1}{N} \frac{dN}{dm} (207 \text{ GeV})$ $0.54 \pm 0.15 \pm 1.15$ $10.64 \pm 0.52 \pm 0.17$ $15.39 \pm 0.95 \pm 0.28$ $14.91 \pm 1.00 \pm 0.41$ $10.60 \pm 0.90 \pm 0.35$ $7.95 \pm 0.79 \pm 0.45$ $5.77 \pm 0.47 \pm 0.13$ $3.05 \pm 0.36 \pm 0.09$ $2.29 \pm 0.29 \pm 0.08$ $1.50 \pm 0.24 \pm 0.12$ $0.49 \pm 0.12 \pm 0.07$ $0.52 \pm 0.10 \pm 0.14$ $-0.70 \pm 0.06 \pm 0.37$

Oblateness	$\frac{1}{N} \frac{dN}{dQ} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dQ} (189 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dO}$ (192 GeV)	$\frac{1}{N}\frac{dN}{dO}$ (196 GeV)
0.010	$11.79 \pm 0.74 \pm 0.88$	$11.63 \pm 0.45 \pm 0.87$	$12.41 \pm 1.21 \pm 0.93$	$12.82 \pm 0.76 \pm 0.96$
0.030	$9.27 \pm 0.75 \pm 0.12$	$9.08 \pm 0.45 \pm 0.12$	$8.31 \pm 1.08 \pm 0.11$	$9.41 \pm 0.72 \pm 0.12$
0.050	$5.99 \pm 0.60 \pm 0.15$	$6.70 \pm 0.39 \pm 0.18$	$6.77 \pm 0.99 \pm 0.19$	$6.57 \pm 0.60 \pm 0.19$
0.070	$4.99 \pm 0.52 \pm 0.13$	$4.40 \pm 0.31 \pm 0.11$	$3.86 \pm 0.75 \pm 0.10$	$4.08 \pm 0.47 \pm 0.11$
0.090	$3.34 \pm 0.43 \pm 0.11$	$4.00 \pm 0.29 \pm 0.14$	$4.26 \pm 0.74 \pm 0.16$	$3.38 \pm 0.42 \pm 0.13$
0.110	$3.15 \pm 0.41 \pm 0.12$	$2.82 \pm 0.25 \pm 0.11$	$3.36 \pm 0.68 \pm 0.13$	$2.13 \pm 0.35 \pm 0.09$
0.130	$1.88 \pm 0.32 \pm 0.05$	$1.90\pm$ $0.20\pm$ 0.05	$2.20\pm$ 0.53 \pm 0.06	$1.78 \pm 0.33 \pm 0.05$
0.150	$1.47 \pm 0.29 \pm 0.02$	$1.46 \pm 0.18 \pm 0.02$	$1.60\pm 0.45\pm 0.02$	$1.26 \pm 0.29 \pm 0.02$
0.170	$1.20 \pm 0.25 \pm 0.07$	$1.59 \pm 0.18 \pm 0.09$	$1.27 \pm 0.43 \pm 0.07$	$1.29 \pm 0.29 \pm 0.07$
0.190	$1.14 \pm 0.25 \pm 0.07$	$1.21 \pm 0.16 \pm 0.07$	$1.40\pm$ $0.41\pm$ 0.09	$1.82 \pm 0.31 \pm 0.12$
0.220	$1.30 \pm 0.18 \pm 0.06$	$0.77 \pm 0.10 \pm 0.04$	$0.93 \pm 0.26 \pm 0.04$	$1.04 \pm 0.18 \pm 0.05$
0.260	$0.65 \pm 0.15 \pm 0.03$	$0.39 \pm 0.09 \pm 0.02$	$0.51 \pm 0.22 \pm 0.03$	$0.63 \pm 0.15 \pm 0.03$
0.300	$0.33 \pm 0.12 \pm 0.04$	$0.37 \pm 0.08 \pm 0.05$	$0.35 \pm 0.21 \pm 0.05$	$0.40 \pm 0.14 \pm 0.06$
0.340	$0.25 \pm 0.11 \pm 0.04$	$0.25 \pm 0.08 \pm 0.04$	$0.11 \pm 0.18 \pm 0.02$	$0.12 \pm 0.12 \pm 0.02$
0.380	$0.05 \pm 0.09 \pm 0.01$	$0.29 \pm 0.08 \pm 0.05$	$0.08 \pm 0.16 \pm 0.01$	$0.26 \pm 0.13 \pm 0.05$
0.420	$0.12 \pm 0.09 \pm 0.02$	$0.10\pm~0.06\pm~0.01$	$0.14\pm~0.15\pm~0.02$	$0.19 \pm 0.11 \pm 0.03$
Oblateness	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dO}$ (205 GeV)	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$
Oblateness 0.010	$\frac{\frac{1}{N} \frac{dN}{dO}}{12.30 \pm 0.72 \pm 0.92}$	$\frac{\frac{1}{N}}{\frac{dN}{dO}} (202 \text{ GeV})$ 12.49± 1.01± 0.93	$\frac{\frac{1}{N} \frac{dN}{dO}}{11.21 \pm 0.73 \pm 0.84}$	$\frac{\frac{1}{N}\frac{dN}{dO}(207 \text{ GeV})}{11.60 \pm 0.56 \pm 0.87}$
Oblateness 0.010 0.030	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ 12.30± 0.72± 0.92 9.90± 0.71± 0.13	$\frac{\frac{1}{N}\frac{dN}{dO}(202 \text{ GeV})}{12.49\pm 1.01\pm 0.93}$ 7.88\pm 0.90\pm 0.10	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13	$\frac{\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})}{11.60 \pm 0.56 \pm 0.87}$ $9.39 \pm 0.56 \pm 0.13$
Oblateness 0.010 0.030 0.050	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$
Oblateness 0.010 0.030 0.050 0.070	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$
Oblateness 0.010 0.030 0.050 0.070 0.090	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ 11.60± 0.56± 0.87 9.39± 0.56± 0.13 6.38± 0.46± 0.21 4.99± 0.40± 0.14 2.83± 0.31± 0.12
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ $11.21 \pm 0.73 \pm 0.84$ $9.45 \pm 0.73 \pm 0.13$ $7.66 \pm 0.65 \pm 0.25$ $4.66 \pm 0.51 \pm 0.13$ $3.58 \pm 0.45 \pm 0.15$ $2.82 \pm 0.41 \pm 0.11$	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$ $2.77 \pm 0.36 \pm 0.07$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ $11.21 \pm 0.73 \pm 0.84$ $9.45 \pm 0.73 \pm 0.13$ $7.66 \pm 0.65 \pm 0.25$ $4.66 \pm 0.51 \pm 0.13$ $3.58 \pm 0.45 \pm 0.15$ $2.82 \pm 0.41 \pm 0.11$ $2.05 \pm 0.34 \pm 0.06$	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$ $2.77 \pm 0.36 \pm 0.07$ $1.69 \pm 0.30 \pm 0.03$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ $11.21 \pm 0.73 \pm 0.84$ $9.45 \pm 0.73 \pm 0.13$ $7.66 \pm 0.65 \pm 0.25$ $4.66 \pm 0.51 \pm 0.13$ $3.58 \pm 0.45 \pm 0.15$ $2.82 \pm 0.41 \pm 0.11$ $2.05 \pm 0.34 \pm 0.06$ $1.82 \pm 0.31 \pm 0.03$	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$ $2.77 \pm 0.36 \pm 0.07$ $1.69 \pm 0.30 \pm 0.03$ $1.05 \pm 0.24 \pm 0.06$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.08	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$ $2.77 \pm 0.36 \pm 0.07$ $1.69 \pm 0.30 \pm 0.03$ $1.05 \pm 0.24 \pm 0.06$ $0.54 \pm 0.20 \pm 0.04$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.08 1.30± 0.28± 0.10	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$ $1.19 \pm 0.21 \pm 0.09$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190 0.220	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ $12.30 \pm 0.72 \pm 0.92$ $9.90 \pm 0.71 \pm 0.13$ $6.40 \pm 0.57 \pm 0.20$ $4.84 \pm 0.49 \pm 0.13$ $3.03 \pm 0.40 \pm 0.12$ $1.98 \pm 0.33 \pm 0.08$ $2.77 \pm 0.36 \pm 0.07$ $1.69 \pm 0.30 \pm 0.03$ $1.05 \pm 0.24 \pm 0.06$ $0.54 \pm 0.20 \pm 0.04$ $0.91 \pm 0.17 \pm 0.04$	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10 0.75± 0.24± 0.04	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.08 1.30± 0.28± 0.10 1.22± 0.20± 0.06	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$ $1.19 \pm 0.21 \pm 0.09$ $0.66 \pm 0.13 \pm 0.03$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190 0.220 0.260	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ 12.30± 0.72± 0.92 9.90± 0.71± 0.13 6.40± 0.57± 0.20 4.84± 0.49± 0.13 3.03± 0.40± 0.12 1.98± 0.33± 0.08 2.77± 0.36± 0.07 1.69± 0.30± 0.03 1.05± 0.24± 0.06 0.54± 0.20± 0.04 0.91± 0.17± 0.04 0.68± 0.16± 0.04	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10 0.75± 0.24± 0.04 0.86± 0.24± 0.05	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.08 1.30± 0.28± 0.10 1.22± 0.20± 0.06 0.27± 0.15± 0.02	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$ $1.19 \pm 0.21 \pm 0.09$ $0.66 \pm 0.13 \pm 0.03$ $0.91 \pm 0.15 \pm 0.05$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190 0.220 0.260 0.300	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ 12.30± 0.72± 0.92 9.90± 0.71± 0.13 6.40± 0.57± 0.20 4.84± 0.49± 0.13 3.03± 0.40± 0.12 1.98± 0.33± 0.08 2.77± 0.36± 0.07 1.69± 0.30± 0.03 1.05± 0.24± 0.06 0.54± 0.20± 0.04 0.91± 0.17± 0.04 0.68± 0.16± 0.04 0.47± 0.15± 0.08	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10 0.75± 0.24± 0.04 0.86± 0.24± 0.05 0.40± 0.20± 0.07	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.08 1.30± 0.28± 0.10 1.22± 0.20± 0.06 0.27± 0.15± 0.02 0.21± 0.15± 0.04	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$ $1.19 \pm 0.21 \pm 0.09$ $0.66 \pm 0.13 \pm 0.03$ $0.91 \pm 0.15 \pm 0.05$ $0.30 \pm 0.12 \pm 0.06$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.220 0.260 0.300 0.340	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ 12.30± 0.72± 0.92 9.90± 0.71± 0.13 6.40± 0.57± 0.20 4.84± 0.49± 0.13 3.03± 0.40± 0.12 1.98± 0.33± 0.08 2.77± 0.36± 0.07 1.69± 0.30± 0.03 1.05± 0.24± 0.06 0.54± 0.20± 0.04 0.91± 0.17± 0.04 0.68± 0.16± 0.04 0.47± 0.15± 0.08 0.40± 0.14± 0.07	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10 0.75± 0.24± 0.04 0.86± 0.24± 0.05 0.40± 0.20± 0.07 0.46± 0.21± 0.08	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.10 1.22± 0.20± 0.06 0.27± 0.15± 0.02 0.21± 0.15± 0.04 -0.15± 0.11± 0.03	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ $11.60 \pm 0.56 \pm 0.87$ $9.39 \pm 0.56 \pm 0.13$ $6.38 \pm 0.46 \pm 0.21$ $4.99 \pm 0.40 \pm 0.14$ $2.83 \pm 0.31 \pm 0.12$ $2.77 \pm 0.31 \pm 0.11$ $2.15 \pm 0.25 \pm 0.06$ $1.91 \pm 0.26 \pm 0.03$ $1.90 \pm 0.25 \pm 0.11$ $1.19 \pm 0.21 \pm 0.09$ $0.66 \pm 0.13 \pm 0.03$ $0.91 \pm 0.15 \pm 0.05$ $0.30 \pm 0.12 \pm 0.06$ $0.25 \pm 0.11 \pm 0.04$
Oblateness 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.170 0.190 0.220 0.260 0.300 0.340 0.380	$\frac{1}{N} \frac{dN}{dO} (200 \text{ GeV})$ 12.30± 0.72± 0.92 9.90± 0.71± 0.13 6.40± 0.57± 0.20 4.84± 0.49± 0.13 3.03± 0.40± 0.12 1.98± 0.33± 0.08 2.77± 0.36± 0.07 1.69± 0.30± 0.03 1.05± 0.24± 0.06 0.54± 0.20± 0.04 0.91± 0.17± 0.04 0.68± 0.16± 0.04 0.47± 0.15± 0.08 0.40± 0.14± 0.07 0.12± 0.12± 0.03	$\frac{1}{N} \frac{dN}{dO} (202 \text{ GeV})$ 12.49± 1.01± 0.93 7.88± 0.90± 0.10 7.28± 0.84± 0.23 3.96± 0.63± 0.11 3.20± 0.57± 0.13 4.18± 0.61± 0.17 1.89± 0.44± 0.05 1.78± 0.44± 0.03 1.20± 0.37± 0.07 1.47± 0.39± 0.10 0.75± 0.24± 0.04 0.86± 0.24± 0.05 0.40± 0.20± 0.07 0.46± 0.21± 0.08 0.12± 0.16± 0.03	$\frac{1}{N} \frac{dN}{dO} (205 \text{ GeV})$ 11.21± 0.73± 0.84 9.45± 0.73± 0.13 7.66± 0.65± 0.25 4.66± 0.51± 0.13 3.58± 0.45± 0.15 2.82± 0.41± 0.11 2.05± 0.34± 0.06 1.82± 0.31± 0.03 1.31± 0.28± 0.10 1.22± 0.20± 0.06 0.27± 0.15± 0.02 0.21± 0.15± 0.04 -0.15± 0.11± 0.03 0.15± 0.13± 0.03	$\frac{1}{N} \frac{dN}{dO} (207 \text{ GeV})$ 11.60± 0.56± 0.87 9.39± 0.56± 0.13 6.38± 0.46± 0.21 4.99± 0.40± 0.14 2.83± 0.31± 0.12 2.77± 0.31± 0.11 2.15± 0.25± 0.06 1.91± 0.26± 0.03 1.90± 0.25± 0.11 1.19± 0.21± 0.09 0.66± 0.13± 0.03 0.91± 0.15± 0.05 0.30± 0.12± 0.06 0.25± 0.11± 0.04 0.03± 0.08± 0.01

$B_{\rm max}$	$\frac{1}{N} \frac{dN}{dB_{\max}}$ (183 GeV)	$\frac{1}{N} \frac{dN}{dB_{\max}}$ (189 GeV)	$\frac{1}{N} \frac{dN}{dB_{\max}}$ (192 GeV)	$\frac{1}{N} \frac{dN}{dB_{\max}}$ (196 GeV)
0.005	$0.20 \pm 0.15 \pm 0.71$	$0.76 \pm 0.14 \pm 2.72$	$1.25 \pm 0.50 \pm 4.47$	$0.75 \pm 0.31 \pm 2.67$
0.015	$12.48 \pm 0.97 \pm 0.66$	$9.37 \pm 0.52 \pm 0.50$	$11.15 \pm 1.43 \pm 0.59$	$9.98 \pm 0.86 \pm 0.53$
0.025	$14.61 \pm 1.28 \pm 0.17$	$14.66 \pm 0.77 \pm 0.18$	$12.88 \pm 1.87 \pm 0.17$	$18.14 \pm 1.36 \pm 0.24$
0.035	$12.76 \pm 1.20 \pm 0.30$	$13.04 \pm 0.77 \pm 0.31$	$13.53 \pm 2.03 \pm 0.32$	$11.38 \pm 1.09 \pm 0.27$
0.045	$8.39 \pm 1.02 \pm 0.25$	$11.51 \pm 0.72 \pm 0.35$	$12.09 \pm 1.83 \pm 0.37$	$9.39 \pm 1.07 \pm 0.29$
0.055	$9.01 \pm 1.00 \pm 0.16$	$8.93 \pm 0.63 \pm 0.16$	$6.44 \pm 1.30 \pm 0.11$	$9.75 \pm 1.02 \pm 0.17$
0.065	$7.37 \pm 0.90 \pm 0.24$	$7.20 \pm 0.56 \pm 0.24$	$7.79 \pm 1.45 \pm 0.27$	$6.59 \pm 0.83 \pm 0.23$
0.075	$7.71\pm~0.90\pm~0.25$	$5.42 \pm 0.49 \pm 0.18$	$7.05 \pm 1.37 \pm 0.23$	$5.01 \pm 0.75 \pm 0.17$
0.090	$3.37 \pm 0.44 \pm 0.14$	$4.39 \pm 0.29 \pm 0.19$	$3.66 \pm 0.71 \pm 0.16$	$3.91 \pm 0.46 \pm 0.18$
0.110	$3.92 \pm 0.43 \pm 0.15$	$3.28 \pm 0.26 \pm 0.13$	$3.77 \pm 0.66 \pm 0.15$	$2.97 \pm 0.41 \pm 0.13$
0.130	$1.66 \pm 0.29 \pm 0.10$	$2.02 \pm 0.21 \pm 0.14$	$3.28 \pm 0.64 \pm 0.25$	$2.22 \pm 0.34 \pm 0.18$
0.155	$1.95 \pm 0.26 \pm 0.06$	$1.25 \pm 0.14 \pm 0.04$	$1.19 \pm 0.34 \pm 0.04$	$1.52 \pm 0.24 \pm 0.06$
0.185	$0.84 \pm 0.21 \pm 0.10$	$0.97 \pm 0.14 \pm 0.13$	$0.82 \pm 0.33 \pm 0.11$	$1.02 \pm 0.23 \pm 0.15$
0.220	$0.34 \pm 0.16 \pm 0.06$	$0.30 \pm 0.11 \pm 0.06$	$0.08 \pm 0.25 \pm 0.02$	$0.49 \pm 0.20 \pm 0.11$
0.260	$0.16 \pm \ 0.13 \pm \ 0.04$	$0.15 \pm 0.09 \pm 0.04$	$-0.19 \pm 0.19 \pm 0.06$	$0.24 \pm 0.17 \pm 0.08$
B_{\max}	$\frac{1}{N} \frac{dN}{dB_{\text{max}}}$ (200 GeV)	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$
B _{max} 0.005	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}}}{1.06 \pm 0.27 \pm 3.77}$	$\frac{\frac{1}{N}}{\frac{dN}{dB_{\rm max}}} (202 \text{ GeV}) \\ 0.44 \pm 0.18 \pm 1.57$	$\frac{\frac{1}{N} \frac{dN}{dB_{\max}}}{0.91 \pm 0.25 \pm 3.24}$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}}}{1.19 \pm 0.23 \pm 4.23}$
B _{max} 0.005 0.015	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}}}{1.06 \pm 0.27 \pm 3.77}$ $10.83 \pm 0.85 \pm 0.57$	$\frac{\frac{1}{N}\frac{dN}{dB_{\text{max}}}}{0.44\pm0.18\pm1.57}$ $11.04\pm1.19\pm0.59$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})}{0.91 \pm 0.25 \pm 3.24}$ $8.79 \pm 0.81 \pm 0.47$	$\frac{\frac{1}{N}\frac{dN}{dB_{\max}}}{1.19\pm0.23\pm4.23}$ $11.24\pm0.68\pm0.60$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dB_{max}}}{1.06 \pm 0.27 \pm 3.77}$ $\frac{10.83 \pm 0.85 \pm 0.57}{15.48 \pm 1.24 \pm 0.22}$	$\frac{\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})}{0.44 \pm 0.18 \pm 1.57}$ $\frac{11.04 \pm 1.19 \pm 0.59}{15.80 \pm 1.73 \pm 0.22}$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})}{0.91 \pm 0.25 \pm 3.24}$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})}{1.19 \pm 0.23 \pm 4.23}$ $\frac{11.24 \pm 0.68 \pm 0.60}{14.91 \pm 0.96 \pm 0.23}$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dB_{max}}}{1.06 \pm 0.27 \pm 3.77}$ $1.083 \pm 0.85 \pm 0.57$ $15.48 \pm 1.24 \pm 0.22$ $15.74 \pm 1.24 \pm 0.38$	$\frac{\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})}{0.44 \pm 0.18 \pm 1.57}$ $11.04 \pm 1.19 \pm 0.59$ $15.80 \pm 1.73 \pm 0.22$ $10.39 \pm 1.50 \pm 0.25$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})}{0.91 \pm 0.25 \pm 3.24}$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})}{1.19 \pm 0.23 \pm 4.23}$ $\frac{11.24 \pm 0.68 \pm 0.60}{14.91 \pm 0.96 \pm 0.23}$ $12.60 \pm 0.92 \pm 0.32$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})}{1.06\pm 0.27\pm 3.77}$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})}{0.91 \pm 0.25 \pm 3.24}$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$	$\frac{\frac{1}{N} \frac{dN}{dB_{\max}} (205 \text{ GeV})}{0.91 \pm 0.25 \pm 3.24}$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$	$\frac{1}{N} \frac{dN}{dB_{\text{max}}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$ $4.36 \pm 0.37 \pm 0.23$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \\ 0.110 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$ $2.98\pm 0.37\pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$ $4.06\pm 0.59\pm 0.18$	$\frac{1}{N} \frac{dN}{dB_{max}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$ $2.82 \pm 0.39 \pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{max}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$ $4.36 \pm 0.37 \pm 0.23$ $3.08 \pm 0.31 \pm 0.15$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \\ 0.110 \\ 0.130 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$ $2.98\pm 0.37\pm 0.13$ $2.33\pm 0.35\pm 0.20$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$ $4.06\pm 0.59\pm 0.18$ $2.70\pm 0.51\pm 0.23$	$\frac{1}{N} \frac{dN}{dB_{max}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$ $2.82 \pm 0.39 \pm 0.13$ $2.63 \pm 0.36 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{max}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$ $4.36 \pm 0.37 \pm 0.23$ $3.08 \pm 0.31 \pm 0.15$ $2.08 \pm 0.25 \pm 0.20$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.155 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$ $2.98\pm 0.37\pm 0.13$ $2.33\pm 0.35\pm 0.20$ $1.54\pm 0.23\pm 0.06$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$ $4.06\pm 0.59\pm 0.18$ $2.70\pm 0.51\pm 0.23$ $1.80\pm 0.36\pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{max}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$ $2.82 \pm 0.39 \pm 0.13$ $2.63 \pm 0.36 \pm 0.24$ $1.56 \pm 0.26 \pm 0.06$	$\frac{1}{N} \frac{dN}{dB_{max}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$ $4.36 \pm 0.37 \pm 0.23$ $3.08 \pm 0.31 \pm 0.15$ $2.08 \pm 0.25 \pm 0.20$ $1.69 \pm 0.20 \pm 0.07$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.155 \\ 0.185 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$ $2.98\pm 0.37\pm 0.13$ $2.33\pm 0.35\pm 0.20$ $1.54\pm 0.23\pm 0.06$ $1.11\pm 0.24\pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$ $4.06\pm 0.59\pm 0.18$ $2.70\pm 0.51\pm 0.23$ $1.80\pm 0.36\pm 0.07$ $1.15\pm 0.35\pm 0.18$	$\frac{1}{N} \frac{dN}{dB_{max}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$ $2.82 \pm 0.39 \pm 0.13$ $2.63 \pm 0.36 \pm 0.24$ $1.56 \pm 0.26 \pm 0.06$ $0.44 \pm 0.23 \pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{max}} (207 \text{ GeV})$ $1.19 \pm 0.23 \pm 4.23$ $11.24 \pm 0.68 \pm 0.60$ $14.91 \pm 0.96 \pm 0.23$ $12.60 \pm 0.92 \pm 0.32$ $11.30 \pm 0.87 \pm 0.34$ $8.42 \pm 0.76 \pm 0.15$ $6.85 \pm 0.67 \pm 0.26$ $5.02 \pm 0.57 \pm 0.17$ $4.36 \pm 0.37 \pm 0.23$ $3.08 \pm 0.31 \pm 0.15$ $2.08 \pm 0.25 \pm 0.20$ $1.69 \pm 0.20 \pm 0.07$ $0.49 \pm 0.17 \pm 0.08$
$\begin{array}{c} B_{\rm max} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.155 \\ 0.185 \\ 0.220 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{max}} (200 \text{ GeV})$ $1.06\pm 0.27\pm 3.77$ $10.83\pm 0.85\pm 0.57$ $15.48\pm 1.24\pm 0.22$ $15.74\pm 1.24\pm 0.38$ $8.57\pm 0.96\pm 0.26$ $8.50\pm 0.91\pm 0.15$ $7.38\pm 0.85\pm 0.27$ $4.86\pm 0.69\pm 0.16$ $3.73\pm 0.43\pm 0.18$ $2.98\pm 0.37\pm 0.13$ $2.33\pm 0.35\pm 0.20$ $1.54\pm 0.23\pm 0.06$ $1.11\pm 0.24\pm 0.17$ $0.44\pm 0.19\pm 0.10$	$\frac{1}{N} \frac{dN}{dB_{max}} (202 \text{ GeV})$ $0.44\pm 0.18\pm 1.57$ $11.04\pm 1.19\pm 0.59$ $15.80\pm 1.73\pm 0.22$ $10.39\pm 1.50\pm 0.25$ $11.20\pm 1.49\pm 0.34$ $9.08\pm 1.33\pm 0.16$ $6.96\pm 1.20\pm 0.25$ $5.26\pm 1.02\pm 0.18$ $3.85\pm 0.61\pm 0.19$ $4.06\pm 0.59\pm 0.18$ $2.70\pm 0.51\pm 0.23$ $1.80\pm 0.36\pm 0.07$ $1.15\pm 0.35\pm 0.18$ $0.20\pm 0.26\pm 0.05$	$\frac{1}{N} \frac{dN}{dB_{max}} (205 \text{ GeV})$ $0.91 \pm 0.25 \pm 3.24$ $8.79 \pm 0.81 \pm 0.47$ $15.31 \pm 1.28 \pm 0.23$ $12.96 \pm 1.23 \pm 0.32$ $11.78 \pm 1.17 \pm 0.36$ $9.66 \pm 1.02 \pm 0.17$ $6.88 \pm 0.88 \pm 0.26$ $6.97 \pm 0.88 \pm 0.24$ $3.85 \pm 0.45 \pm 0.20$ $2.82 \pm 0.39 \pm 0.13$ $2.63 \pm 0.36 \pm 0.24$ $1.56 \pm 0.26 \pm 0.06$ $0.44 \pm 0.23 \pm 0.07$ $0.00 \pm 0.20 \pm 0.00$	$\frac{1}{N} \frac{dN}{dB_{max}} (207 \text{ GeV})$ $1.19\pm 0.23\pm 4.23$ $11.24\pm 0.68\pm 0.60$ $14.91\pm 0.96\pm 0.23$ $12.60\pm 0.92\pm 0.32$ $11.30\pm 0.87\pm 0.34$ $8.42\pm 0.76\pm 0.15$ $6.85\pm 0.67\pm 0.26$ $5.02\pm 0.57\pm 0.17$ $4.36\pm 0.31\pm 0.15$ $2.08\pm 0.25\pm 0.20$ $1.69\pm 0.20\pm 0.07$ $0.49\pm 0.17\pm 0.08$ $0.61\pm 0.17\pm 0.16$

$B_{ m sum}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\rm sum}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{sum}}$ (196 GeV)
0.005	$0.00 \pm 0.10 \pm 0.00$	$0.00 \pm 0.08 \pm 0.00$	$1.03 \pm 0.43 \pm 0.00$	$0.00 \pm 0.26 \pm 0.00$
0.015	$0.54 \pm 0.21 \pm 0.30$	$0.95 \pm 0.16 \pm 0.54$	$0.29 \pm 0.25 \pm 0.17$	$0.66 \pm 0.28 \pm 0.37$
0.025	$8.15 \pm 0.78 \pm 0.47$	$5.21 \pm 0.38 \pm 0.30$	$6.62 \pm 1.09 \pm 0.39$	$5.58 \pm 0.60 \pm 0.33$
0.035	$7.99 \pm 0.88 \pm 0.18$	$9.32 \pm 0.56 \pm 0.21$	$9.43 \pm 1.45 \pm 0.21$	$13.54 \pm 1.08 \pm 0.31$
0.045	$12.42 \pm 1.16 \pm 0.30$	$11.29 \pm 0.69 \pm 0.28$	$11.25 \pm 1.73 \pm 0.29$	$10.87 \pm 1.06 \pm 0.28$
0.055	$8.80 \pm 0.98 \pm 0.15$	$10.25 \pm 0.68 \pm 0.18$	$9.87 \pm 1.69 \pm 0.17$	$8.99 \pm 0.98 \pm 0.16$
0.065	$8.93 \pm 1.06 \pm 0.32$	$8.12 \pm 0.62 \pm 0.30$	$8.95 \pm 1.64 \pm 0.35$	$8.61 \pm 0.99 \pm 0.34$
0.075	$6.00 \pm 0.88 \pm 0.16$	$7.50 \pm 0.60 \pm 0.20$	$5.32 \pm 1.25 \pm 0.14$	$6.01 \pm 0.85 \pm 0.16$
0.085	$7.84 \pm 0.93 \pm 0.40$	$6.90 \pm 0.55 \pm 0.38$	$8.18 \pm 1.54 \pm 0.46$	$6.73 \pm 0.87 \pm 0.40$
0.095	$5.30 \pm 0.78 \pm 0.13$	$5.78 \pm 0.50 \pm 0.14$	$5.93 \pm 1.27 \pm 0.15$	$4.87 \pm 0.74 \pm 0.13$
0.105	$4.48 \pm 0.74 \pm 0.13$	$4.48 \pm 0.46 \pm 0.13$	$3.05 \pm 0.97 \pm 0.09$	$4.46 \pm 0.74 \pm 0.13$
0.120	$3.34 \pm 0.43 \pm 0.09$	$3.97 \pm 0.29 \pm 0.11$	$4.48 \pm 0.79 \pm 0.13$	$3.52 \pm 0.45 \pm 0.11$
0.140	$3.18 \pm 0.40 \pm 0.13$	$2.56 \pm 0.24 \pm 0.10$	$2.99 \pm 0.60 \pm 0.12$	$2.59 \pm 0.38 \pm 0.11$
0.160	$2.22 \pm 0.34 \pm 0.13$	$2.00 \pm 0.20 \pm 0.13$	$3.41 \pm 0.64 \pm 0.24$	$2.27 \pm 0.34 \pm 0.17$
0.180	$1.95 \pm 0.30 \pm 0.09$	$1.55 \pm 0.19 \pm 0.07$	$0.84 \pm 0.37 \pm 0.04$	$2.24 \pm 0.33 \pm 0.10$
0.200	$1.51 \pm 0.29 \pm 0.09$	$1.47 \pm 0.18 \pm 0.09$	$0.76 \pm 0.37 \pm 0.05$	$0.89 \pm 0.27 \pm 0.06$
0.225	$0.52 \pm 0.18 \pm 0.04$	$0.91 \pm 0.13 \pm 0.09$	$1.13 \pm 0.35 \pm 0.11$	$1.08 \pm 0.24 \pm 0.11$
0.255	$0.76 \pm 0.21 \pm 0.32$	$0.26 \pm 0.12 \pm 0.12$	$0.61 \pm 0.33 \pm 0.31$	$0.31 \pm 0.21 \pm 0.17$
0.285	$0.42 \pm 0.17 \pm 0.08$	$0.60 \pm 0.13 \pm 0.12$	$-0.61 \pm 0.20 \pm 0.13$	$0.72 \pm 0.22 \pm 0.17$
0.315	$0.23 \pm 0.11 \pm 0.05$	$0.07 \pm 0.08 \pm 0.01$	$0.49 \pm 0.25 \pm 0.10$	$0.25 \pm 0.15 \pm 0.05$
0.345	$0.22 \pm \ 0.05 \pm \ 0.29$	$-0.04 \pm 0.03 \pm 0.12$	$0.01 \pm 0.08 \pm 0.03$	$-0.06 \pm 0.05 \pm 0.25$
$B_{ m sum}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\rm sum}} (207 \text{ GeV})$
B _{sum} 0.005	$\frac{\frac{1}{N}}{\frac{dN}{dB_{sum}}} (200 \text{ GeV})$ 0.00± 0.24± 0.00	$\frac{\frac{1}{N}}{\frac{dN}{dB_{\rm sum}}} (202 \text{ GeV}) \\ 0.00 \pm 0.00 \pm 0.00$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})}{0.00 \pm 0.14 \pm 0.00}$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})}{0.00 \pm 0.16 \pm 0.00}$
$B_{sum} = 0.005 = 0.015$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})}{0.00 \pm 0.24 \pm 0.00}$ $0.50 \pm 0.22 \pm 0.29$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})}{0.00 \pm 0.00 \pm 0.00 \pm 0.00}$ $0.96 \pm 0.31 \pm 0.54$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})}{0.00 \pm 0.14 \pm 0.00}$ $0.83 \pm 0.27 \pm 0.47$	$\frac{\frac{1}{N}\frac{dN}{dB_{sum}}(207 \text{ GeV})}{0.00\pm 0.16\pm 0.00}$ $0.68\pm 0.19\pm 0.39$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})}{0.00 \pm 0.24 \pm 0.00}$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})}{0.00 \pm 0.00 \pm 0.00 \pm 0.00}$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})}{0.00 \pm 0.14 \pm 0.00}$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (207 \text{ GeV})}{0.00 \pm 0.16 \pm 0.00}$ $\frac{0.68 \pm 0.19 \pm 0.39}{7.03 \pm 0.53 \pm 0.42}$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})}{0.00 \pm 0.24 \pm 0.00}$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})}{0.00 \pm 0.00 \pm 0.00 \pm 0.00}$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})}{0.00 \pm 0.14 \pm 0.00}$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (207 \text{ GeV})}{0.00 \pm 0.16 \pm 0.00}$ $\frac{0.68 \pm 0.19 \pm 0.39}{7.03 \pm 0.53 \pm 0.42}$ $11.70 \pm 0.76 \pm 0.27$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})}{0.00 \pm 0.00 \pm 0.00 \pm 0.00}$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})}{0.00 \pm 0.14 \pm 0.00}$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$	$\frac{\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})}{0.00 \pm 0.16 \pm 0.00}$ $\frac{0.68 \pm 0.19 \pm 0.39}{7.03 \pm 0.53 \pm 0.42}$ $\frac{11.70 \pm 0.76 \pm 0.27}{9.60 \pm 0.79 \pm 0.27}$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{sym}}} (207 \text{ GeV})}{0.00 \pm 0.16 \pm 0.00}$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$	$\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$	$\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.045 \\ 0.065 \\ 0.075 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.22$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.22$ $6.12 \pm 0.82 \pm 0.38$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$	$\frac{1}{N} \frac{dN}{dB_{\text{sum}}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.22$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$	$\frac{1}{N} \frac{dN}{dB_{\text{sym}}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.180 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.7$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$ $1.48 \pm 0.24 \pm 0.07$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.180 \\ 0.200 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$ $1.52 \pm 0.29 \pm 0.07$ $1.05 \pm 0.26 \pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$ $1.33 \pm 0.40 \pm 0.08$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$ $0.95 \pm 0.30 \pm 0.06$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$ $1.48 \pm 0.24 \pm 0.09$
$\begin{array}{c} B_{sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.180 \\ 0.200 \\ 0.225 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$ $1.52 \pm 0.29 \pm 0.07$ $1.05 \pm 0.26 \pm 0.07$ $1.21 \pm 0.24 \pm 0.13$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$ $1.33 \pm 0.40 \pm 0.08$ $1.30 \pm 0.36 \pm 0.15$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$ $0.95 \pm 0.30 \pm 0.06$ $0.31 \pm 0.23 \pm 0.04$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$ $1.48 \pm 0.24 \pm 0.07$ $1.45 \pm 0.24 \pm 0.09$ $1.04 \pm 0.20 \pm 0.13$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.180 \\ 0.200 \\ 0.225 \\ 0.255 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$ $1.52 \pm 0.29 \pm 0.07$ $1.05 \pm 0.26 \pm 0.07$ $1.21 \pm 0.24 \pm 0.13$ $0.80 \pm 0.23 \pm 0.46$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$ $1.33 \pm 0.40 \pm 0.08$ $1.30 \pm 0.36 \pm 0.15$ $0.49 \pm 0.32 \pm 0.29$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$ $0.95 \pm 0.30 \pm 0.06$ $0.31 \pm 0.23 \pm 0.04$ $0.66 \pm 0.26 \pm 0.42$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$ $1.48 \pm 0.24 \pm 0.09$ $1.04 \pm 0.20 \pm 0.13$ $0.46 \pm 0.19 \pm 0.30$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.180 \\ 0.200 \\ 0.225 \\ 0.255 \\ 0.285 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.84 \pm 0.45 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$ $1.52 \pm 0.29 \pm 0.07$ $1.05 \pm 0.26 \pm 0.07$ $1.21 \pm 0.24 \pm 0.13$ $0.80 \pm 0.23 \pm 0.46$ $0.25 \pm 0.20 \pm 0.06$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$ $1.33 \pm 0.40 \pm 0.08$ $1.30 \pm 0.36 \pm 0.15$ $0.49 \pm 0.32 \pm 0.29$ $-0.28 \pm 0.25 \pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$ $0.95 \pm 0.30 \pm 0.06$ $0.31 \pm 0.23 \pm 0.04$ $0.66 \pm 0.26 \pm 0.42$ $-0.27 \pm 0.20 \pm 0.07$	$\frac{1}{N} \frac{dN}{dB_{sum}} (207 \text{ GeV})$ $0.00 \pm 0.16 \pm 0.00$ $0.68 \pm 0.19 \pm 0.39$ $7.03 \pm 0.53 \pm 0.42$ $11.70 \pm 0.76 \pm 0.27$ $9.60 \pm 0.79 \pm 0.27$ $9.51 \pm 0.79 \pm 0.18$ $8.46 \pm 0.76 \pm 0.38$ $8.04 \pm 0.76 \pm 0.22$ $6.76 \pm 0.68 \pm 0.45$ $5.40 \pm 0.62 \pm 0.15$ $3.61 \pm 0.47 \pm 0.11$ $3.28 \pm 0.35 \pm 0.12$ $3.19 \pm 0.31 \pm 0.13$ $2.24 \pm 0.26 \pm 0.20$ $1.48 \pm 0.24 \pm 0.09$ $1.04 \pm 0.20 \pm 0.13$ $0.46 \pm 0.19 \pm 0.30$ $0.37 \pm 0.17 \pm 0.10$
$\begin{array}{c} B_{\rm sum} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.105 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.120 \\ 0.140 \\ 0.160 \\ 0.225 \\ 0.225 \\ 0.255 \\ 0.285 \\ 0.315 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{sum}} (200 \text{ GeV})$ $0.00 \pm 0.24 \pm 0.00$ $0.50 \pm 0.22 \pm 0.29$ $6.08 \pm 0.62 \pm 0.36$ $11.86 \pm 0.96 \pm 0.27$ $10.39 \pm 1.00 \pm 0.28$ $11.77 \pm 1.10 \pm 0.22$ $7.68 \pm 0.90 \pm 0.32$ $7.95 \pm 0.90 \pm 0.32$ $6.12 \pm 0.82 \pm 0.38$ $4.00 \pm 0.67 \pm 0.11$ $3.69 \pm 0.62 \pm 0.11$ $3.69 \pm 0.62 \pm 0.13$ $2.85 \pm 0.36 \pm 0.12$ $2.07 \pm 0.32 \pm 0.17$ $1.52 \pm 0.29 \pm 0.07$ $1.21 \pm 0.24 \pm 0.13$ $0.80 \pm 0.23 \pm 0.46$ $0.25 \pm 0.20 \pm 0.06$ $0.19 \pm 0.14 \pm 0.04$	$\frac{1}{N} \frac{dN}{dB_{sum}} (202 \text{ GeV})$ $0.00 \pm 0.00 \pm 0.00$ $0.96 \pm 0.31 \pm 0.54$ $6.27 \pm 0.83 \pm 0.37$ $12.36 \pm 1.39 \pm 0.28$ $10.04 \pm 1.41 \pm 0.27$ $7.84 \pm 1.23 \pm 0.14$ $7.94 \pm 1.38 \pm 0.33$ $6.13 \pm 1.14 \pm 0.17$ $6.32 \pm 1.13 \pm 0.39$ $6.11 \pm 1.14 \pm 0.17$ $5.56 \pm 1.11 \pm 0.17$ $4.28 \pm 0.64 \pm 0.14$ $3.13 \pm 0.53 \pm 0.13$ $2.93 \pm 0.54 \pm 0.24$ $0.87 \pm 0.35 \pm 0.04$ $1.30 \pm 0.36 \pm 0.15$ $0.49 \pm 0.32 \pm 0.29$ $-0.28 \pm 0.25 \pm 0.07$ $-0.22 \pm 0.18 \pm 0.04$	$\frac{1}{N} \frac{dN}{dB_{sum}} (205 \text{ GeV})$ $0.00 \pm 0.14 \pm 0.00$ $0.83 \pm 0.27 \pm 0.47$ $5.67 \pm 0.63 \pm 0.34$ $10.35 \pm 0.96 \pm 0.24$ $11.98 \pm 1.11 \pm 0.33$ $9.31 \pm 1.06 \pm 0.18$ $9.19 \pm 1.04 \pm 0.40$ $8.05 \pm 0.97 \pm 0.22$ $6.61 \pm 0.88 \pm 0.43$ $6.43 \pm 0.85 \pm 0.18$ $4.11 \pm 0.70 \pm 0.12$ $3.66 \pm 0.45 \pm 0.13$ $2.32 \pm 0.36 \pm 0.10$ $2.77 \pm 0.37 \pm 0.24$ $1.51 \pm 0.32 \pm 0.07$ $0.95 \pm 0.30 \pm 0.04$ $0.66 \pm 0.26 \pm 0.42$ $-0.27 \pm 0.20 \pm 0.07$ $0.14 \pm 0.16 \pm 0.03$	$ \frac{1}{N} \frac{dN}{dB_{\rm sym}} (207 \text{ GeV}) \\ 0.00 \pm 0.16 \pm 0.00 \\ 0.68 \pm 0.19 \pm 0.39 \\ 7.03 \pm 0.53 \pm 0.42 \\ 11.70 \pm 0.76 \pm 0.27 \\ 9.60 \pm 0.79 \pm 0.27 \\ 9.51 \pm 0.79 \pm 0.18 \\ 8.46 \pm 0.76 \pm 0.38 \\ 8.04 \pm 0.76 \pm 0.22 \\ 6.76 \pm 0.68 \pm 0.45 \\ 5.40 \pm 0.62 \pm 0.15 \\ 3.61 \pm 0.47 \pm 0.11 \\ 3.28 \pm 0.35 \pm 0.12 \\ 3.19 \pm 0.31 \pm 0.13 \\ 2.24 \pm 0.26 \pm 0.20 \\ 1.48 \pm 0.24 \pm 0.07 \\ 1.45 \pm 0.24 \pm 0.09 \\ 1.04 \pm 0.20 \pm 0.13 \\ 0.46 \pm 0.19 \pm 0.30 \\ 0.37 \pm 0.17 \pm 0.10 \\ -0.22 \pm 0.10 \pm 0.04 \\ \end{cases} $

B_{diff}	$\frac{1}{N} \frac{dN}{dB_{diff}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{diff}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{diff}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (196 \text{ GeV})$
0.005	$27.25 \pm 1.62 \pm 1.60$	$27.92 \pm 1.01 \pm 1.64$	$29.69 \pm 2.62 \pm 1.74$	$28.94 \pm 1.64 \pm 1.70$
0.015	$17.42 \pm 1.39 \pm 0.16$	$18.11 \pm 0.85 \pm 0.18$	$17.91 \pm 2.23 \pm 0.19$	$17.04 \pm 1.31 \pm 0.19$
0.025	$10.77 \pm 1.08 \pm 0.34$	$11.81 \pm 0.72 \pm 0.37$	$10.01 \pm 1.65 \pm 0.32$	$12.08 \pm 1.12 \pm 0.38$
0.035	$8.41 \pm 0.95 \pm 0.13$	$8.39 \pm 0.60 \pm 0.13$	$6.50 \pm 1.27 \pm 0.10$	$7.99 \pm 0.94 \pm 0.13$
0.045	$7.52 \pm 0.92 \pm 0.19$	$6.48 \pm 0.51 \pm 0.17$	$7.96 \pm 1.48 \pm 0.22$	$5.76 \pm 0.81 \pm 0.16$
0.055	$5.65 \pm 0.77 \pm 0.31$	$4.76 \pm 0.46 \pm 0.28$	$5.13 \pm 1.17 \pm 0.31$	$6.37 \pm 0.82 \pm 0.40$
0.065	$4.52 \pm 0.73 \pm 0.18$	$3.96 \pm 0.41 \pm 0.17$	$3.96 \pm 1.09 \pm 0.18$	$3.70 \pm 0.64 \pm 0.17$
0.075	$3.00\pm$ $0.57\pm$ 0.17	$3.03 \pm 0.38 \pm 0.18$	$2.50 \pm 0.86 \pm 0.15$	$2.45 \pm 0.54 \pm 0.14$
0.085	$2.28 \pm 0.54 \pm 0.10$	$3.21 \pm 0.39 \pm 0.17$	$2.71 \pm 0.86 \pm 0.15$	$2.77 \pm 0.57 \pm 0.16$
0.095	$2.15 \pm \ 0.47 \pm \ 0.12$	$2.95 \pm 0.34 \pm 0.19$	$5.27 \pm 1.12 \pm 0.36$	$1.90 \pm 0.48 \pm 0.14$
0.110	$1.46 \pm 0.30 \pm 0.07$	$1.31 \pm 0.19 \pm 0.06$	$2.52 \pm 0.57 \pm 0.12$	$1.37 \pm 0.31 \pm 0.07$
0.130	$1.61 \pm 0.31 \pm 0.03$	$1.08 \pm 0.18 \pm 0.02$	$0.81 \pm 0.39 \pm 0.01$	$1.86 \pm 0.35 \pm 0.03$
0.150	$1.24\pm~0.31\pm~0.22$	$0.69 \pm 0.16 \pm 0.14$	$1.16 \pm 0.48 \pm 0.24$	$0.93 \pm 0.28 \pm 0.20$
0.170	$0.50\pm~0.24\pm~0.06$	$0.60 \pm 0.16 \pm 0.07$	$-0.04 \pm 0.31 \pm 0.01$	$0.23 \pm 0.24 \pm 0.03$
0.190	$0.00\pm~0.17\pm~0.01$	$0.31 \pm 0.15 \pm 0.06$	$-0.02 \pm 0.33 \pm 0.01$	$0.30 \pm 0.26 \pm 0.07$
0.220	$0.15 \pm 0.13 \pm 0.03$	$0.13 \pm 0.09 \pm 0.03$	$-0.35 \pm 0.15 \pm 0.09$	$0.38 \pm 0.18 \pm 0.11$
0.260	$0.07 \pm 0.09 \pm 0.03$	$0.03 \pm 0.06 \pm 0.01$	$0.10 \pm 0.19 \pm 0.04$	$0.03 \pm 0.10 \pm 0.01$
$B_{ m diff}$	$\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (202 \ {\rm GeV})$	$\frac{1}{N} \frac{dN}{dB_{diff}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (207 \text{ GeV})$
$B_{ m diff}$ 0.005	$\frac{\frac{1}{N}}{\frac{dN}{dB_{\rm diff}}} (200 \text{ GeV})$ 30.79± 1.63± 1.81	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (202 \text{ GeV}) 30.43 \pm 2.24 \pm 1.79$	$\frac{\frac{1}{N} \frac{dN}{dB_{\rm diff}} (205 \text{ GeV})}{25.82 \pm 1.56 \pm 1.52}$	$\frac{\frac{1}{N} \frac{dN}{dB_{\rm diff}} (207 \text{ GeV})}{28.75 \pm 1.25 \pm 1.69}$
$B_{ m diff}$ 0.005 0.015	$\frac{1}{N} \frac{dN}{dB_{\text{Aiff}}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22	$\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20	$\frac{\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (205 \text{ GeV})}{25.82 \pm 1.56 \pm 1.52}$ $18.67 \pm 1.40 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{\text{aliff}}} (207 \text{ GeV})$ 28.75± 1.25± 1.69 17.23± 1.02± 0.23
$B_{ m diff}$ 0.005 0.015 0.025	$\frac{\frac{1}{N}}{\frac{dN}{dB_{\rm diff}}} \frac{dN}{(200 \text{ GeV})}$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$	$\frac{\frac{1}{N} \frac{dN}{dB_{Aiff}} (202 \text{ GeV})}{30.43 \pm 2.24 \pm 1.79}$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$	$\frac{\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})}{25.82 \pm 1.56 \pm 1.52}$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$	$\frac{\frac{1}{N} \frac{dN}{dB_{\rm diff}} (207 \text{ GeV})}{28.75 \pm 1.25 \pm 1.69}$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$
$B_{ m diff}$ 0.005 0.015 0.025 0.035	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$	$\frac{\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})}{30.43 \pm 2.24 \pm 1.79}$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$	$\frac{\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})}{25.82 \pm 1.56 \pm 1.52}$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$	$\frac{\frac{1}{N} \frac{dN}{dB_{Aiff}} (207 \text{ GeV})}{28.75 \pm 1.25 \pm 1.69}$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$	$\frac{\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})}{30.43 \pm 2.24 \pm 1.79}$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$ $7.44 \pm 1.20 \pm 0.22$	$\frac{\frac{1}{N}\frac{dN}{dB_{Aiff}}(205 \text{ GeV})}{25.82\pm 1.56\pm 1.52}$ 18.67± 1.40± 0.24 12.92± 1.18± 0.41 9.26± 0.99± 0.15 6.65± 0.84± 0.21	$\frac{\frac{1}{N}\frac{dN}{dB_{\rm diff}}(207~{\rm GeV})}{28.75\pm1.25\pm1.69}$ 17.23±1.02±0.23 11.75±0.84±0.38 8.78±0.76±0.14 6.80±0.66±0.22
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$ $5.30 \pm 0.72 \pm 0.34$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (202 \text{ GeV})$ $30.43 \pm 2.24 \pm 1.79$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$ $7.44 \pm 1.20 \pm 0.22$ $4.79 \pm 0.99 \pm 0.31$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$ $5.30 \pm 0.72 \pm 0.34$ $3.29 \pm 0.60 \pm 0.16$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (202 \text{ GeV})$ $30.43 \pm 2.24 \pm 1.79$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$ $7.44 \pm 1.20 \pm 0.22$ $4.79 \pm 0.99 \pm 0.31$ $3.43 \pm 0.83 \pm 0.17$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$	$\frac{1}{N} \frac{dN}{dB_{\text{diff}}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{\rm Aiff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$ $5.30 \pm 0.72 \pm 0.34$ $3.29 \pm 0.60 \pm 0.16$ $2.49 \pm 0.53 \pm 0.15$	$\frac{1}{N} \frac{dN}{dB_{AHH}} (202 \text{ GeV})$ $30.43 \pm 2.24 \pm 1.79$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$ $7.44 \pm 1.20 \pm 0.22$ $4.79 \pm 0.99 \pm 0.31$ $3.43 \pm 0.83 \pm 0.17$ $4.75 \pm 0.96 \pm 0.28$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$	$\frac{1}{N} \frac{dN}{dB_{AHF}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.065 \\ 0.065 \\ 0.075 \\ 0.085 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{\rm Aiff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$ $5.30 \pm 0.72 \pm 0.34$ $3.29 \pm 0.60 \pm 0.16$ $2.49 \pm 0.53 \pm 0.15$ $2.58 \pm 0.54 \pm 0.16$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (202 \text{ GeV})$ $30.43 \pm 2.24 \pm 1.79$ $16.32 \pm 1.79 \pm 0.20$ $9.98 \pm 1.39 \pm 0.32$ $6.59 \pm 1.13 \pm 0.10$ $7.44 \pm 1.20 \pm 0.22$ $4.79 \pm 0.99 \pm 0.31$ $3.43 \pm 0.83 \pm 0.17$ $4.75 \pm 0.96 \pm 0.28$ $3.72 \pm 0.87 \pm 0.24$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$ $2.29 \pm 0.41 \pm 0.16$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.065 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{\rm diff}} (200 {\rm ~GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$ $1.44 \pm 0.45 \pm 0.12$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$ $2.29 \pm 0.41 \pm 0.16$ $2.54 \pm 0.41 \pm 0.22$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{4iff}} (200 \text{ GeV})$ $30.79 \pm 1.63 \pm 1.81$ $18.20 \pm 1.30 \pm 0.22$ $10.41 \pm 0.99 \pm 0.33$ $7.17 \pm 0.82 \pm 0.11$ $6.84 \pm 0.83 \pm 0.20$ $5.30 \pm 0.72 \pm 0.34$ $3.29 \pm 0.60 \pm 0.16$ $2.49 \pm 0.53 \pm 0.15$ $2.58 \pm 0.54 \pm 0.16$ $2.48 \pm 0.55 \pm 0.19$ $1.88 \pm 0.32 \pm 0.10$	$\frac{1}{N} \frac{dN}{dB_{A\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$ $1.44 \pm 0.45 \pm 0.12$ $1.76 \pm 0.34 \pm 0.09$	$\frac{1}{N} \frac{dN}{dB_{4iff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$ $2.29 \pm 0.41 \pm 0.16$ $2.54 \pm 0.41 \pm 0.22$ $1.54 \pm 0.25 \pm 0.08$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19 1.88± 0.32± 0.10 1.78± 0.32± 0.03	$\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09 1.69± 0.45± 0.03	$\frac{1}{N} \frac{dN}{dB_{4iff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$ $1.44 \pm 0.45 \pm 0.12$ $1.76 \pm 0.34 \pm 0.09$ $1.03 \pm 0.30 \pm 0.02$	$\frac{1}{N} \frac{dN}{dB_{4iff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$ $2.29 \pm 0.41 \pm 0.16$ $2.54 \pm 0.41 \pm 0.22$ $1.54 \pm 0.25 \pm 0.08$ $1.37 \pm 0.25 \pm 0.03$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.085 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{4iff}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19 1.88± 0.32± 0.10 1.78± 0.32± 0.03 0.55± 0.25± 0.13	$\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09 1.69± 0.45± 0.03 1.06± 0.41± 0.25	$\frac{1}{N} \frac{dN}{dB_{4iff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$ $1.44 \pm 0.45 \pm 0.12$ $1.76 \pm 0.34 \pm 0.09$ $1.03 \pm 0.30 \pm 0.02$ $1.16 \pm 0.33 \pm 0.29$	$\frac{1}{N} \frac{dN}{dB_{Aiff}} (207 \text{ GeV})$ $28.75 \pm 1.25 \pm 1.69$ $17.23 \pm 1.02 \pm 0.23$ $11.75 \pm 0.84 \pm 0.38$ $8.78 \pm 0.76 \pm 0.14$ $6.80 \pm 0.66 \pm 0.22$ $4.86 \pm 0.56 \pm 0.34$ $2.97 \pm 0.46 \pm 0.16$ $3.91 \pm 0.49 \pm 0.24$ $2.29 \pm 0.41 \pm 0.16$ $2.54 \pm 0.41 \pm 0.22$ $1.54 \pm 0.25 \pm 0.08$ $1.37 \pm 0.25 \pm 0.03$ $0.88 \pm 0.23 \pm 0.23$
B _{diff} 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.110 0.130 0.150 0.170	$\frac{1}{N} \frac{dN}{dB_{4iff}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19 1.88± 0.32± 0.10 1.78± 0.32± 0.03 0.55± 0.25± 0.13 0.75± 0.29± 0.10	$\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09 1.69± 0.45± 0.03 1.06± 0.41± 0.25 0.76± 0.42± 0.10	$\frac{1}{N} \frac{dN}{dB_{4iff}} (205 \text{ GeV})$ 25.82± 1.56± 1.52 18.67± 1.40± 0.24 12.92± 1.18± 0.41 9.26± 0.99± 0.15 6.65± 0.84± 0.21 5.72± 0.81± 0.39 4.01± 0.67± 0.21 3.89± 0.66± 0.23 2.01± 0.49± 0.14 1.44± 0.45± 0.12 1.76± 0.34± 0.09 1.03± 0.30± 0.02 1.16± 0.33± 0.29 0.31± 0.28± 0.04	$\begin{array}{c} \frac{1}{N} \frac{dN}{dB_{\rm Aiff}} \left(207 \ {\rm GeV} \right) \\ 28.75 \pm 1.25 \pm 1.69 \\ 17.23 \pm 1.02 \pm 0.23 \\ 11.75 \pm 0.84 \pm 0.38 \\ 8.78 \pm 0.76 \pm 0.14 \\ 6.80 \pm 0.66 \pm 0.22 \\ 4.86 \pm 0.56 \pm 0.34 \\ 2.97 \pm 0.46 \pm 0.16 \\ 3.91 \pm 0.49 \pm 0.24 \\ 2.29 \pm 0.41 \pm 0.16 \\ 2.54 \pm 0.41 \pm 0.22 \\ 1.54 \pm 0.25 \pm 0.08 \\ 1.37 \pm 0.25 \pm 0.03 \\ 0.88 \pm 0.23 \pm 0.23 \\ 0.08 \pm 0.20 \pm 0.01 \end{array}$
$\begin{array}{c} B_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.065 \\ 0.075 \\ 0.095 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.170 \\ 0.190 \end{array}$	$\frac{1}{N} \frac{dN}{dB_{4iff}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19 1.88± 0.32± 0.10 1.78± 0.32± 0.03 0.55± 0.25± 0.13 0.75± 0.29± 0.10 0.36± 0.26± 0.09	$\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09 1.69± 0.45± 0.03 1.06± 0.41± 0.25 0.76± 0.42± 0.10 0.02± 0.33± 0.01	$\frac{1}{N} \frac{dN}{dB_{4iff}} (205 \text{ GeV})$ $25.82 \pm 1.56 \pm 1.52$ $18.67 \pm 1.40 \pm 0.24$ $12.92 \pm 1.18 \pm 0.41$ $9.26 \pm 0.99 \pm 0.15$ $6.65 \pm 0.84 \pm 0.21$ $5.72 \pm 0.81 \pm 0.39$ $4.01 \pm 0.67 \pm 0.21$ $3.89 \pm 0.66 \pm 0.23$ $2.01 \pm 0.49 \pm 0.14$ $1.44 \pm 0.45 \pm 0.12$ $1.76 \pm 0.34 \pm 0.09$ $1.03 \pm 0.30 \pm 0.02$ $1.16 \pm 0.33 \pm 0.29$ $0.31 \pm 0.28 \pm 0.04$ $0.03 \pm 0.27 \pm 0.01$	$\begin{array}{c} \frac{1}{N} \frac{dN}{dB_{\rm Aiff}} \left(207 \ {\rm GeV} \right) \\ 28.75 \pm 1.25 \pm 1.69 \\ 17.23 \pm 1.02 \pm 0.23 \\ 11.75 \pm 0.84 \pm 0.38 \\ 8.78 \pm 0.76 \pm 0.14 \\ 6.80 \pm 0.66 \pm 0.22 \\ 4.86 \pm 0.56 \pm 0.34 \\ 2.97 \pm 0.46 \pm 0.16 \\ 3.91 \pm 0.49 \pm 0.24 \\ 2.29 \pm 0.41 \pm 0.16 \\ 2.54 \pm 0.41 \pm 0.22 \\ 1.54 \pm 0.25 \pm 0.08 \\ 1.37 \pm 0.25 \pm 0.03 \\ 0.88 \pm 0.23 \pm 0.23 \\ 0.08 \pm 0.20 \pm 0.01 \\ 0.48 \pm 0.23 \pm 0.14 \end{array}$
B _{diff} 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.110 0.130 0.150 0.170 0.190 0.220	$\frac{1}{N} \frac{dN}{dB_{4iff}} (200 \text{ GeV})$ 30.79± 1.63± 1.81 18.20± 1.30± 0.22 10.41± 0.99± 0.33 7.17± 0.82± 0.11 6.84± 0.83± 0.20 5.30± 0.72± 0.34 3.29± 0.60± 0.16 2.49± 0.53± 0.15 2.58± 0.54± 0.16 2.48± 0.55± 0.19 1.88± 0.32± 0.10 1.78± 0.32± 0.03 0.55± 0.25± 0.13 0.75± 0.29± 0.10 0.36± 0.26± 0.09 0.30± 0.17± 0.09	$\frac{1}{N} \frac{dN}{dB_{4\rm iff}} (202 \text{ GeV})$ 30.43± 2.24± 1.79 16.32± 1.79± 0.20 9.98± 1.39± 0.32 6.59± 1.13± 0.10 7.44± 1.20± 0.22 4.79± 0.99± 0.31 3.43± 0.83± 0.17 4.75± 0.96± 0.28 3.72± 0.87± 0.24 2.71± 0.72± 0.21 1.84± 0.48± 0.09 1.69± 0.45± 0.03 1.06± 0.41± 0.25 0.76± 0.42± 0.10 0.02± 0.33± 0.01 0.03± 0.22± 0.01	$\begin{array}{c} \frac{1}{N} \frac{dN}{dB_{\rm Aiff}} (205~{\rm GeV}) \\ 25.82 \pm 1.56 \pm 1.52 \\ 18.67 \pm 1.40 \pm 0.24 \\ 12.92 \pm 1.18 \pm 0.41 \\ 9.26 \pm 0.99 \pm 0.15 \\ 6.65 \pm 0.84 \pm 0.21 \\ 5.72 \pm 0.81 \pm 0.39 \\ 4.01 \pm 0.67 \pm 0.21 \\ 3.89 \pm 0.66 \pm 0.23 \\ 2.01 \pm 0.49 \pm 0.14 \\ 1.44 \pm 0.45 \pm 0.12 \\ 1.76 \pm 0.34 \pm 0.09 \\ 1.03 \pm 0.30 \pm 0.02 \\ 1.16 \pm 0.33 \pm 0.29 \\ 0.31 \pm 0.28 \pm 0.04 \\ 0.03 \pm 0.27 \pm 0.01 \\ 0.16 \pm 0.19 \pm 0.05 \\ \end{array}$	$\begin{array}{c} \frac{1}{N} \frac{dN}{dB_{\rm Aiff}} \left(207 \ {\rm GeV} \right) \\ 28.75 \pm 1.25 \pm 1.69 \\ 17.23 \pm 1.02 \pm 0.23 \\ 11.75 \pm 0.84 \pm 0.38 \\ 8.78 \pm 0.76 \pm 0.14 \\ 6.80 \pm 0.66 \pm 0.22 \\ 4.86 \pm 0.56 \pm 0.34 \\ 2.97 \pm 0.46 \pm 0.16 \\ 3.91 \pm 0.49 \pm 0.24 \\ 2.29 \pm 0.41 \pm 0.16 \\ 2.54 \pm 0.41 \pm 0.22 \\ 1.54 \pm 0.25 \pm 0.03 \\ 0.88 \pm 0.23 \pm 0.23 \\ 0.08 \pm 0.20 \pm 0.01 \\ 0.48 \pm 0.23 \pm 0.14 \\ 0.36 \pm 0.14 \pm 0.12 \end{array}$

C	$\frac{1}{N} \frac{dN}{dG}$ (183 GeV)	$\frac{1}{N} \frac{dN}{dC}$ (189 GeV)	$\frac{1}{M} \frac{dN}{dG}$ (192 GeV)	$\frac{1}{N} \frac{dN}{dG}$ (196 GeV)
0.020	$1.15 \pm 0.20 \pm 0.46$	$0.85 \pm 0.11 \pm 0.34$	$1.32 \pm 0.33 \pm 0.53$	$1.51 \pm 0.23 \pm 0.60$
0.060	$4.58 \pm 0.34 \pm 0.06$	$5.00 \pm 0.22 \pm 0.07$	$4.70 \pm 0.55 \pm 0.07$	$5.05 \pm 0.35 \pm 0.08$
0.100	$3.64 \pm 0.32 \pm 0.08$	$3.85 \pm 0.20 \pm 0.09$	$3.67 \pm 0.50 \pm 0.09$	$3.58 \pm 0.31 \pm 0.09$
0.140	$2.83 \pm 0.29 \pm 0.06$	$2.83 \pm 0.18 \pm 0.06$	$2.97 \pm 0.45 \pm 0.06$	$2.74 \pm 0.27 \pm 0.06$
0.180	$2.42 \pm 0.26 \pm 0.08$	$2.25 \pm 0.16 \pm 0.08$	$2.43 \pm 0.41 \pm 0.09$	$2.11 \pm 0.23 \pm 0.08$
0.220	$1.91 \pm 0.22 \pm 0.05$	$1.74 \pm 0.14 \pm 0.04$	$1.48 \pm 0.32 \pm 0.04$	$1.43 \pm 0.20 \pm 0.04$
0.260	$1.15 \pm 0.19 \pm 0.05$	$1.43 \pm 0.12 \pm 0.06$	$1.14 \pm 0.28 \pm 0.05$	$1.43 \pm 0.20 \pm 0.07$
0.300	$1.09 \pm 0.17 \pm 0.04$	$1.28 \pm 0.11 \pm 0.05$	$1.00 \pm 0.26 \pm 0.04$	$1.20 \pm 0.18 \pm 0.06$
0.340	$0.93 \pm 0.15 \pm 0.03$	$0.85 \pm 0.10 \pm 0.03$	$1.26 \pm 0.27 \pm 0.04$	$0.93 \pm 0.16 \pm 0.03$
0.380	$0.64 \pm 0.12 \pm 0.03$	$0.71 \pm 0.09 \pm 0.03$	$1.25 \pm 0.26 \pm 0.06$	$0.56 \pm 0.13 \pm 0.03$
0.420	$0.83 \pm 0.14 \pm 0.06$	$0.58 \pm 0.08 \pm 0.05$	$0.53 \pm 0.19 \pm 0.04$	$0.90 \pm 0.14 \pm 0.08$
0.460	$0.73 \pm 0.13 \pm 0.04$	$0.57 \pm 0.08 \pm 0.04$	$1.30 \pm 0.26 \pm 0.09$	$0.66 \pm 0.13 \pm 0.05$
0.500	$0.53 \pm 0.11 \pm 0.02$	$0.53 \pm 0.07 \pm 0.02$	$0.32 \pm 0.15 \pm 0.01$	$0.51 \pm 0.11 \pm 0.02$
0.540	$0.67 \pm 0.13 \pm 0.13$	$0.30 \pm 0.06 \pm 0.06$	$0.22 \pm 0.14 \pm 0.05$	$0.34 \pm 0.11 \pm 0.08$
0.580	$0.29 \pm 0.10 \pm 0.02$	$0.68 \pm 0.08 \pm 0.05$	$0.31 \pm 0.15 \pm 0.02$	$0.27 \pm 0.10 \pm 0.02$
0.620	$0.30 \pm 0.10 \pm 0.01$	$0.34 \pm 0.07 \pm 0.02$	$0.34 \pm 0.16 \pm 0.02$	$0.46 \pm 0.12 \pm 0.02$
0.660	$0.09 \pm 0.09 \pm 0.01$	$0.34 \pm 0.07 \pm 0.06$	$0.25 \pm 0.16 \pm 0.05$	$0.11 \pm 0.10 \pm 0.02$
0.700	$0.42 \pm 0.12 \pm 0.14$	$0.10 \pm 0.07 \pm 0.04$	$0.45 \pm 0.20 \pm 0.18$	$0.35 \pm 0.14 \pm 0.15$
0.740	$0.43 \pm 0.12 \pm 0.02$	$0.23 \pm 0.08 \pm 0.01$	$-0.04 \pm 0.16 \pm 0.00$	$0.09 \pm 0.12 \pm 0.01$
0.780	$0.19 \pm 0.10 \pm 0.05$	$0.14 \pm 0.07 \pm 0.04$	$-0.26 \pm 0.14 \pm 0.07$	$0.54 \pm 0.14 \pm 0.16$
0.820	$-0.08 \pm 0.06 \pm 0.03$	$-0.10 \pm 0.04 \pm 0.04$	$0.07 \pm 0.14 \pm 0.03$	$0.64 \pm 0.12 \pm 0.26$
0.860	$-0.05 \pm 0.04 \pm 0.10$	$0.06 \pm 0.04 \pm 0.11$	$-0.15 \pm 0.09 \pm 0.31$	$-0.10 \pm 0.07 \pm 0.21$
0.900	$0.26 \pm 0.05 \pm 0.22$	$0.55 \pm 0.04 \pm 0.47$	$0.06 \pm 0.09 \pm 0.05$	$-0.46 \pm 0.04 \pm 0.40$
С	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dC}$ (202 GeV)	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dC}$ (207 GeV)
C 0.020	$\frac{\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})}{1.11 \pm 0.19 \pm 0.44}$	$\frac{\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})}{1.10 \pm 0.24 \pm 0.44}$	$\frac{\frac{1}{N}\frac{dN}{dC}(205 \text{ GeV})}{1.31\pm 0.20\pm 0.52}$	$\frac{\frac{1}{N}\frac{dN}{dC}(207 \text{ GeV})}{1.38 \pm 0.16 \pm 0.55}$
C 0.020 0.060	$\frac{\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})}{1.11 \pm 0.19 \pm 0.44}$ 5.27 \pm 0.34 \pm 0.34 \pm 0.08	$\frac{\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})}{1.10 \pm 0.24 \pm 0.44}$ 5.60 \pm 0.49 \pm 0.09	$\frac{\frac{1}{N}\frac{dN}{dC}(205 \text{ GeV})}{1.31\pm 0.20\pm 0.52}$ $4.91\pm 0.34\pm 0.08$	$\frac{\frac{1}{N}\frac{dN}{dC}(207 \text{ GeV})}{1.38 \pm 0.16 \pm 0.55}$ $4.88 \pm 0.26 \pm 0.08$
C 0.020 0.060 0.100	$\frac{\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})}{1.11 \pm 0.19 \pm 0.44}$ 5.27 \pm 0.34 \pm 0.34 4.28 \pm 0.32 \pm 0.11	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$	$\frac{\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})}{1.38 \pm 0.16 \pm 0.55}$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$
C 0.020 0.060 0.100 0.140 0.180	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.220 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$ $1.64 \pm 0.20 \pm 0.04$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.220 \\ 0.260 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$ $1.64 \pm 0.20 \pm 0.04$ $1.19 \pm 0.17 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$ $1.39 \pm 0.26 \pm 0.07$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.220 \\ 0.260 \\ 0.300 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$ $1.64 \pm 0.20 \pm 0.04$ $1.19 \pm 0.17 \pm 0.06$ $1.04 \pm 0.16 \pm 0.05$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$ $1.39 \pm 0.26 \pm 0.07$ $1.37 \pm 0.23 \pm 0.07$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.220 \\ 0.260 \\ 0.300 \\ 0.340 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$ $1.64 \pm 0.20 \pm 0.04$ $1.19 \pm 0.17 \pm 0.06$ $1.04 \pm 0.16 \pm 0.05$ $0.78 \pm 0.15 \pm 0.03$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$ $1.39 \pm 0.26 \pm 0.07$ $1.37 \pm 0.23 \pm 0.07$ $0.99 \pm 0.22 \pm 0.03$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$
C 0.020 0.060 0.100 0.140 0.220 0.260 0.260 0.300 0.340 0.380	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11\pm 0.19\pm 0.44$ $5.27\pm 0.34\pm 0.08$ $4.28\pm 0.32\pm 0.11$ $3.06\pm 0.27\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.64\pm 0.20\pm 0.04$ $1.19\pm 0.17\pm 0.06$ $1.04\pm 0.16\pm 0.05$ $0.78\pm 0.15\pm 0.03$ $0.83\pm 0.13\pm 0.04$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$
C 0.020 0.060 0.100 0.140 0.220 0.260 0.300 0.340 0.380 0.380 0.420	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11 \pm 0.19 \pm 0.44$ $5.27 \pm 0.34 \pm 0.08$ $4.28 \pm 0.32 \pm 0.11$ $3.06 \pm 0.27 \pm 0.06$ $1.65 \pm 0.21 \pm 0.06$ $1.64 \pm 0.20 \pm 0.04$ $1.19 \pm 0.17 \pm 0.06$ $1.04 \pm 0.16 \pm 0.05$ $0.78 \pm 0.15 \pm 0.03$ $0.83 \pm 0.13 \pm 0.04$ $0.66 \pm 0.13 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$ $1.39 \pm 0.26 \pm 0.07$ $1.37 \pm 0.23 \pm 0.07$ $0.99 \pm 0.22 \pm 0.03$ $0.87 \pm 0.21 \pm 0.05$ $0.99 \pm 0.20 \pm 0.09$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.220 \\ 0.260 \\ 0.300 \\ 0.340 \\ 0.380 \\ 0.420 \\ 0.460 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ $1.10 \pm 0.24 \pm 0.44$ $5.60 \pm 0.49 \pm 0.09$ $3.20 \pm 0.39 \pm 0.08$ $2.33 \pm 0.36 \pm 0.05$ $2.70 \pm 0.36 \pm 0.10$ $1.52 \pm 0.29 \pm 0.04$ $1.39 \pm 0.26 \pm 0.07$ $1.37 \pm 0.23 \pm 0.07$ $0.99 \pm 0.22 \pm 0.03$ $0.87 \pm 0.21 \pm 0.05$ $0.99 \pm 0.20 \pm 0.09$ $0.71 \pm 0.18 \pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.04$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.04$ $0.37 \pm 0.11 \pm 0.02$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \\ \hline 0.540 \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02 0.52± 0.11± 0.13	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.04$ $0.37 \pm 0.11 \pm 0.02$ $0.62 \pm 0.13 \pm 0.17$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$
$\begin{array}{c} C \\ 0.020 \\ 0.060 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.220 \\ 0.260 \\ 0.300 \\ 0.340 \\ 0.380 \\ 0.420 \\ 0.460 \\ 0.500 \\ 0.540 \\ 0.580 \end{array}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02 0.52± 0.11± 0.13 0.21± 0.09± 0.02	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09 0.44± 0.18± 0.03	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.04$ $0.37 \pm 0.11 \pm 0.02$ $0.62 \pm 0.13 \pm 0.17$ $0.28 \pm 0.11 \pm 0.02$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ 0.30 ± 0.02
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \\ \hline 0.540 \\ \hline 0.580 \\ \hline 0.620 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11\pm 0.19\pm 0.44$ $5.27\pm 0.34\pm 0.08$ $4.28\pm 0.32\pm 0.11$ $3.06\pm 0.27\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.64\pm 0.20\pm 0.04$ $1.19\pm 0.17\pm 0.06$ $1.04\pm 0.16\pm 0.05$ $0.78\pm 0.15\pm 0.03$ $0.83\pm 0.13\pm 0.04$ $0.66\pm 0.13\pm 0.06$ $0.73\pm 0.13\pm 0.06$ $0.55\pm 0.11\pm 0.02$ $0.52\pm 0.11\pm 0.13$ $0.21\pm 0.09\pm 0.02$ $0.50\pm 0.12\pm 0.03$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09 0.44± 0.18± 0.03 0.80± 0.20± 0.04	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.02$ $0.62 \pm 0.13 \pm 0.17$ $0.28 \pm 0.11 \pm 0.02$ $0.31 \pm 0.13 \pm 0.02$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ 0.30 ± 0.02 $0.40 \pm 0.10 \pm 0.02$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.140 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.580 \\ \hline 0.580 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11\pm 0.19\pm 0.44$ $5.27\pm 0.34\pm 0.08$ $4.28\pm 0.32\pm 0.11$ $3.06\pm 0.27\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.64\pm 0.20\pm 0.04$ $1.19\pm 0.17\pm 0.06$ $1.04\pm 0.16\pm 0.05$ $0.78\pm 0.15\pm 0.03$ $0.83\pm 0.13\pm 0.04$ $0.66\pm 0.13\pm 0.06$ $0.73\pm 0.13\pm 0.06$ $0.55\pm 0.11\pm 0.02$ $0.52\pm 0.11\pm 0.13$ $0.21\pm 0.09\pm 0.02$ $0.50\pm 0.12\pm 0.03$ $0.27\pm 0.12\pm 0.06$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09 0.44± 0.18± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.04$ $0.37 \pm 0.11 \pm 0.02$ $0.62 \pm 0.13 \pm 0.17$ $0.28 \pm 0.11 \pm 0.02$ $0.31 \pm 0.13 \pm 0.02$ $-0.10 \pm 0.10 \pm 0.02$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ 0.30 ± 0.02 $0.40 \pm 0.10 \pm 0.02$ $0.36 \pm 0.10 \pm 0.09$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.140 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.580 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline 0.700 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11\pm 0.19\pm 0.44$ $5.27\pm 0.34\pm 0.08$ $4.28\pm 0.32\pm 0.11$ $3.06\pm 0.27\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.64\pm 0.20\pm 0.04$ $1.19\pm 0.17\pm 0.06$ $1.04\pm 0.16\pm 0.05$ $0.78\pm 0.15\pm 0.03$ $0.83\pm 0.13\pm 0.04$ $0.66\pm 0.13\pm 0.06$ $0.73\pm 0.13\pm 0.06$ $0.55\pm 0.11\pm 0.02$ $0.52\pm 0.11\pm 0.13$ $0.21\pm 0.09\pm 0.02$ $0.50\pm 0.12\pm 0.03$ $0.27\pm 0.12\pm 0.06$ $0.30\pm 0.13\pm 0.13$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09 0.44± 0.18± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03 0.07± 0.16± 0.03	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ $1.31 \pm 0.20 \pm 0.52$ $4.91 \pm 0.34 \pm 0.08$ $4.11 \pm 0.34 \pm 0.11$ $2.68 \pm 0.27 \pm 0.06$ $2.70 \pm 0.27 \pm 0.10$ $1.92 \pm 0.24 \pm 0.05$ $1.10 \pm 0.18 \pm 0.05$ $1.01 \pm 0.16 \pm 0.06$ $0.76 \pm 0.14 \pm 0.03$ $0.62 \pm 0.13 \pm 0.03$ $0.96 \pm 0.15 \pm 0.09$ $0.42 \pm 0.11 \pm 0.02$ $0.62 \pm 0.13 \pm 0.17$ $0.28 \pm 0.11 \pm 0.02$ $0.31 \pm 0.13 \pm 0.02$ $-0.10 \pm 0.10 \pm 0.02$ $0.31 \pm 0.15 \pm 0.15$	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ $0.30 \pm 0.10 \pm 0.02$ $0.40 \pm 0.10 \pm 0.02$ $0.36 \pm 0.10 \pm 0.09$ $0.33 \pm 0.11 \pm 0.16$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.140 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \\ \hline 0.540 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline 0.700 \\ \hline 0.740 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ $1.11\pm 0.19\pm 0.44$ $5.27\pm 0.34\pm 0.08$ $4.28\pm 0.32\pm 0.11$ $3.06\pm 0.27\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.65\pm 0.21\pm 0.06$ $1.64\pm 0.20\pm 0.04$ $1.19\pm 0.17\pm 0.06$ $1.04\pm 0.16\pm 0.05$ $0.78\pm 0.15\pm 0.03$ $0.83\pm 0.13\pm 0.04$ $0.66\pm 0.13\pm 0.06$ $0.73\pm 0.13\pm 0.06$ $0.55\pm 0.11\pm 0.02$ $0.52\pm 0.11\pm 0.13$ $0.21\pm 0.09\pm 0.02$ $0.50\pm 0.12\pm 0.03$ $0.27\pm 0.12\pm 0.06$ $0.30\pm 0.13\pm 0.13$ $0.09\pm 0.12\pm 0.01$	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.09 0.44± 0.18± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03 0.07± 0.16± 0.03 0.22± 0.19± 0.01	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ 1.31± 0.20± 0.52 4.91± 0.34± 0.08 4.11± 0.34± 0.11 2.68± 0.27± 0.06 2.70± 0.27± 0.10 1.92± 0.24± 0.05 1.10± 0.18± 0.05 1.01± 0.16± 0.06 0.76± 0.14± 0.03 0.62± 0.13± 0.03 0.96± 0.15± 0.09 0.42± 0.11± 0.04 0.37± 0.11± 0.02 0.62± 0.13± 0.17 0.28± 0.11± 0.02 0.31± 0.13± 0.02 0.31± 0.15± 0.15 0.05± 0.14± 0.00	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ 0.30 ± 0.02 $0.40 \pm 0.10 \pm 0.02$ $0.36 \pm 0.11 \pm 0.02$ $0.33 \pm 0.11 \pm 0.16$ $0.27 \pm 0.11 \pm 0.02$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \\ \hline 0.540 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline 0.700 \\ \hline 0.740 \\ \hline 0.780 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02 0.52± 0.11± 0.13 0.21± 0.09± 0.02 0.50± 0.12± 0.03 0.27± 0.12± 0.06 0.30± 0.13± 0.13 0.09± 0.12± 0.01 0.45± 0.14± 0.14	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03 0.07± 0.16± 0.03 0.22± 0.19± 0.01 -0.32± 0.14± 0.10	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ 1.31± 0.20± 0.52 4.91± 0.34± 0.08 4.11± 0.34± 0.11 2.68± 0.27± 0.06 2.70± 0.27± 0.10 1.92± 0.24± 0.05 1.10± 0.18± 0.05 1.01± 0.16± 0.06 0.76± 0.14± 0.03 0.62± 0.13± 0.03 0.96± 0.15± 0.09 0.42± 0.11± 0.04 0.37± 0.11± 0.02 0.62± 0.13± 0.17 0.28± 0.11± 0.02 0.31± 0.13± 0.02 0.31± 0.15± 0.15 0.05± 0.14± 0.00 0.17± 0.14± 0.06	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ $1.38 \pm 0.16 \pm 0.55$ $4.88 \pm 0.26 \pm 0.08$ $3.70 \pm 0.24 \pm 0.10$ $2.98 \pm 0.22 \pm 0.06$ $2.48 \pm 0.20 \pm 0.10$ $1.41 \pm 0.16 \pm 0.03$ $1.22 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $1.10 \pm 0.14 \pm 0.06$ $0.87 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.03$ $0.96 \pm 0.11 \pm 0.05$ $0.71 \pm 0.10 \pm 0.07$ $0.51 \pm 0.09 \pm 0.05$ $0.31 \pm 0.08 \pm 0.01$ $0.58 \pm 0.10 \pm 0.16$ 0.30 ± 0.02 $0.40 \pm 0.10 \pm 0.02$ $0.36 \pm 0.11 \pm 0.16$ $0.27 \pm 0.11 \pm 0.02$ $0.26 \pm 0.10 \pm 0.09$
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.500 \\ \hline 0.540 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline 0.700 \\ \hline 0.740 \\ \hline 0.780 \\ \hline 0.820 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02 0.52± 0.11± 0.13 0.21± 0.09± 0.02 0.50± 0.12± 0.03 0.27± 0.12± 0.06 0.30± 0.13± 0.13 0.09± 0.12± 0.01 0.45± 0.14± 0.14 -0.47± 0.08± 0.19	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03 0.07± 0.16± 0.03 0.22± 0.19± 0.01 -0.32± 0.14± 0.10 -0.15± 0.13± 0.06	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ 1.31± 0.20± 0.52 4.91± 0.34± 0.08 4.11± 0.34± 0.11 2.68± 0.27± 0.06 2.70± 0.27± 0.10 1.92± 0.24± 0.05 1.01± 0.18± 0.05 1.01± 0.16± 0.06 0.76± 0.14± 0.03 0.62± 0.13± 0.03 0.96± 0.15± 0.09 0.42± 0.11± 0.04 0.37± 0.11± 0.02 0.62± 0.13± 0.17 0.28± 0.11± 0.02 0.31± 0.13± 0.02 0.31± 0.15± 0.15 0.05± 0.14± 0.00 0.17± 0.14± 0.06 0.07± 0.11± 0.03	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ 1.38± 0.16± 0.55 4.88± 0.26± 0.08 3.70± 0.24± 0.10 2.98± 0.22± 0.06 2.48± 0.20± 0.10 1.41± 0.16± 0.03 1.22± 0.14± 0.06 1.10± 0.14± 0.06 0.87± 0.11± 0.03 0.96± 0.11± 0.05 0.71± 0.10± 0.07 0.51± 0.09± 0.05 0.31± 0.08± 0.01 0.58± 0.10± 0.16 0.30± 0.08± 0.02 0.40± 0.10± 0.02 0.36± 0.10± 0.09 0.33± 0.11± 0.16 0.27± 0.11± 0.02 0.26± 0.10± 0.09 -0.27± 0.07± 0.11
$\begin{tabular}{ c c c c c } \hline C \\ \hline 0.020 \\ \hline 0.060 \\ \hline 0.100 \\ \hline 0.140 \\ \hline 0.180 \\ \hline 0.220 \\ \hline 0.260 \\ \hline 0.260 \\ \hline 0.300 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.340 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.380 \\ \hline 0.420 \\ \hline 0.460 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.550 \\ \hline 0.540 \\ \hline 0.580 \\ \hline 0.620 \\ \hline 0.660 \\ \hline 0.700 \\ \hline 0.740 \\ \hline 0.780 \\ \hline 0.820 \\ \hline 0.860 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dC} (200 \text{ GeV})$ 1.11± 0.19± 0.44 5.27± 0.34± 0.08 4.28± 0.32± 0.11 3.06± 0.27± 0.06 1.65± 0.21± 0.06 1.64± 0.20± 0.04 1.19± 0.17± 0.06 1.04± 0.16± 0.05 0.78± 0.15± 0.03 0.83± 0.13± 0.04 0.66± 0.13± 0.06 0.73± 0.13± 0.06 0.55± 0.11± 0.02 0.52± 0.11± 0.13 0.21± 0.09± 0.02 0.50± 0.12± 0.03 0.27± 0.12± 0.06 0.30± 0.13± 0.13 0.09± 0.12± 0.01 0.45± 0.14± 0.14 -0.47± 0.08± 0.28	$\frac{1}{N} \frac{dN}{dC} (202 \text{ GeV})$ 1.10± 0.24± 0.44 5.60± 0.49± 0.09 3.20± 0.39± 0.08 2.33± 0.36± 0.05 2.70± 0.36± 0.10 1.52± 0.29± 0.04 1.39± 0.26± 0.07 1.37± 0.23± 0.07 0.99± 0.22± 0.03 0.87± 0.21± 0.05 0.99± 0.20± 0.09 0.71± 0.18± 0.06 0.29± 0.13± 0.01 0.34± 0.15± 0.03 0.80± 0.20± 0.04 0.13± 0.15± 0.03 0.07± 0.16± 0.03 0.22± 0.19± 0.01 -0.32± 0.14± 0.10 -0.15± 0.13± 0.06 0.11± 0.11± 0.21	$\frac{1}{N} \frac{dN}{dC} (205 \text{ GeV})$ 1.31± 0.20± 0.52 4.91± 0.34± 0.08 4.11± 0.34± 0.11 2.68± 0.27± 0.06 2.70± 0.27± 0.10 1.92± 0.24± 0.05 1.01± 0.18± 0.05 1.01± 0.16± 0.06 0.76± 0.14± 0.03 0.62± 0.13± 0.03 0.96± 0.15± 0.09 0.42± 0.11± 0.04 0.37± 0.11± 0.02 0.62± 0.13± 0.17 0.28± 0.11± 0.02 0.31± 0.13± 0.02 0.31± 0.15± 0.15 0.05± 0.14± 0.00 0.17± 0.14± 0.06 0.07± 0.11± 0.03 -0.54± 0.06± 1.09	$\frac{1}{N} \frac{dN}{dC} (207 \text{ GeV})$ 1.38± 0.16± 0.55 4.88± 0.26± 0.08 3.70± 0.24± 0.10 2.98± 0.22± 0.06 2.48± 0.20± 0.10 1.41± 0.16± 0.03 1.22± 0.14± 0.06 1.10± 0.14± 0.06 0.87± 0.11± 0.03 0.96± 0.11± 0.05 0.71± 0.10± 0.07 0.51± 0.09± 0.05 0.31± 0.08± 0.01 0.58± 0.10± 0.16 0.30± 0.08± 0.02 0.40± 0.10± 0.02 0.36± 0.10± 0.09 0.33± 0.11± 0.16 0.27± 0.11± 0.02 0.26± 0.10± 0.09 -0.27± 0.07± 0.11 -0.16± 0.06± 0.33

D	$\frac{1}{N} \frac{dN}{dD}$ (183 GeV)	$\frac{1}{N} \frac{dN}{dD}$ (189 GeV)	$\frac{1}{N} \frac{dN}{dD}$ (192 GeV)	$\frac{1}{N} \frac{dN}{dD} (196 \text{ GeV})$
0.010	$28.30 \pm 1.27 \pm 0.55$	$28.41 \pm 0.78 \pm 0.56$	$29.32 \pm 2.01 \pm 0.58$	$28.98 \pm 1.24 \pm 0.57$
0.030	$7.55 \pm 0.65 \pm 0.19$	$7.45 \pm 0.41 \pm 0.19$	$5.46 \pm 0.88 \pm 0.14$	$6.44 \pm 0.61 \pm 0.16$
0.050	$3.72 \pm 0.45 \pm 0.14$	$3.99 \pm 0.29 \pm 0.15$	$4.97 \pm 0.79 \pm 0.19$	$4.55 \pm 0.50 \pm 0.18$
0.070	$1.86 \pm 0.31 \pm 0.06$	$2.38 \pm 0.23 \pm 0.08$	$3.72 \pm 0.69 \pm 0.12$	$2.07 \pm 0.36 \pm 0.07$
0.090	$1.72 \pm 0.31 \pm 0.13$	$1.60\pm~0.19\pm~0.14$	$1.85 \pm 0.48 \pm 0.17$	$2.32 \pm 0.34 \pm 0.22$
0.110	$1.29 \pm 0.27 \pm 0.08$	$1.38 \pm 0.17 \pm 0.08$	$0.58 \pm 0.33 \pm 0.04$	$1.30 \pm 0.28 \pm 0.08$
0.130	$1.46 \pm 0.27 \pm 0.07$	$1.29\pm~0.16\pm~0.06$	$1.15 \pm 0.39 \pm 0.06$	$0.90 \pm 0.22 \pm 0.04$
0.150	$0.76 \pm 0.21 \pm 0.10$	$0.31 \pm 0.11 \pm 0.05$	$0.89 \pm 0.35 \pm 0.15$	$0.52 \pm 0.20 \pm 0.09$
0.180	$0.30 \pm 0.11 \pm 0.03$	$0.34 \pm 0.07 \pm 0.03$	$0.56 \pm 0.20 \pm 0.05$	$0.57 \pm 0.13 \pm 0.05$
0.220	$0.46 \pm 0.10 \pm 0.04$	$0.35 \pm 0.07 \pm 0.03$	$0.02 \pm 0.12 \pm 0.00$	$0.48 \pm 0.12 \pm 0.04$
0.260	$0.35 \pm 0.09 \pm 0.04$	$0.25 \pm 0.06 \pm 0.03$	$-0.07 \pm 0.11 \pm 0.01$	$0.16 \pm 0.09 \pm 0.02$
0.300	$0.26 \pm 0.07 \pm 0.04$	$0.02\pm~0.04\pm~0.00$	$0.05 \pm 0.11 \pm 0.01$	$0.33 \pm 0.09 \pm 0.05$
0.340	$0.56 \pm 0.08 \pm 0.27$	$0.07 \pm 0.04 \pm 0.03$	$-0.06 \pm 0.09 \pm 0.03$	$0.13 \pm 0.08 \pm 0.07$
0.380	$-0.04 \pm 0.04 \pm 0.02$	$0.14 \pm 0.04 \pm 0.09$	$0.27 \pm 0.12 \pm 0.18$	$0.20 \pm 0.07 \pm 0.13$
0.420	$0.16 \pm 0.05 \pm 0.07$	$-0.07 \pm 0.02 \pm 0.03$	$-0.12 \pm 0.06 \pm 0.06$	$-0.14 \pm 0.04 \pm 0.07$
0.460	$0.04 \pm 0.04 \pm 0.16$	$0.01 \pm 0.03 \pm 0.05$	$-0.07 \pm 0.06 \pm 0.33$	$0.06 \pm 0.06 \pm 0.30$
0.510	$-0.34 \pm 0.00 \pm 0.74$	$-0.01 \pm 0.02 \pm 0.03$	$0.06 \pm 0.06 \pm 0.15$	$0.03 \pm 0.04 \pm 0.10$
D	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dD}(202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dD}(207 \text{ GeV})$
D 0.010	$\frac{\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})}{30.09 \pm 1.22 \pm 0.59}$	$\frac{\frac{1}{N}\frac{dN}{dD}(202 \text{ GeV})}{28.77 \pm 1.68 \pm 0.57}$	$\frac{\frac{1}{N}\frac{dN}{dD}(205 \text{ GeV})}{30.40 \pm 1.28 \pm 0.60}$	$\frac{\frac{1}{N}\frac{dN}{dD}(207 \text{ GeV})}{30.45 \pm 0.98 \pm 0.60}$
D 0.010 0.030	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16
D 0.010 0.030 0.050	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ $28.77 \pm 1.68 \pm 0.57$ $7.65 \pm 0.87 \pm 0.19$ $4.26 \pm 0.65 \pm 0.16$	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13
D 0.010 0.030 0.050 0.070	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09
D 0.010 0.030 0.050 0.070 0.090	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ $28.77 \pm 1.68 \pm 0.57$ $7.65 \pm 0.87 \pm 0.19$ $4.26 \pm 0.65 \pm 0.16$ $2.15 \pm 0.50 \pm 0.07$ $1.75 \pm 0.43 \pm 0.18$	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22
D 0.010 0.030 0.050 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08
$\begin{array}{c} D \\ 0.010 \\ 0.030 \\ 0.050 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \end{array}$	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ $30.09 \pm 1.22 \pm 0.59$ $6.62 \pm 0.58 \pm 0.17$ $3.49 \pm 0.43 \pm 0.13$ $2.42 \pm 0.35 \pm 0.08$ $1.50 \pm 0.28 \pm 0.15$ $1.18 \pm 0.25 \pm 0.07$ $1.61 \pm 0.28 \pm 0.08$	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ $28.77 \pm 1.68 \pm 0.57$ $7.65 \pm 0.87 \pm 0.19$ $4.26 \pm 0.65 \pm 0.16$ $2.15 \pm 0.50 \pm 0.07$ $1.75 \pm 0.43 \pm 0.18$ $1.76 \pm 0.43 \pm 0.11$ $1.38 \pm 0.37 \pm 0.07$	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06
$\begin{array}{c} D \\ 0.010 \\ 0.030 \\ 0.050 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.150 \end{array}$	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ $30.09 \pm 1.22 \pm 0.59$ $6.62 \pm 0.58 \pm 0.17$ $3.49 \pm 0.43 \pm 0.13$ $2.42 \pm 0.35 \pm 0.08$ $1.50 \pm 0.28 \pm 0.15$ $1.18 \pm 0.25 \pm 0.07$ $1.61 \pm 0.28 \pm 0.08$ $0.78 \pm 0.21 \pm 0.14$	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ $28.77 \pm 1.68 \pm 0.57$ $7.65 \pm 0.87 \pm 0.19$ $4.26 \pm 0.65 \pm 0.16$ $2.15 \pm 0.50 \pm 0.07$ $1.75 \pm 0.43 \pm 0.18$ $1.76 \pm 0.43 \pm 0.11$ $1.38 \pm 0.37 \pm 0.07$ $0.45 \pm 0.27 \pm 0.08$	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14
$\begin{array}{c} D \\ 0.010 \\ 0.030 \\ 0.050 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.180 \end{array}$	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.180 0.220	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.180 0.220 0.260	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01 0.21± 0.08± 0.03
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.180 0.220 0.260 0.300	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01 -0.02± 0.07± 0.01	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05 0.37± 0.13± 0.06	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01 0.02± 0.08± 0.01	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01 0.21± 0.08± 0.03 0.21± 0.08± 0.03
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.220 0.260 0.300 0.340	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01 -0.02± 0.07± 0.01 0.37± 0.09± 0.22	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05 0.37± 0.13± 0.06 0.34± 0.11± 0.21	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01 0.02± 0.08± 0.01 0.53± 0.10± 0.34	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01 0.21± 0.08± 0.03 0.13± 0.06± 0.08
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.220 0.260 0.300 0.340 0.380	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01 -0.02± 0.07± 0.01 0.37± 0.09± 0.22 -0.08± 0.06± 0.06	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05 0.37± 0.13± 0.06 0.34± 0.11± 0.21 -0.29± 0.06± 0.21	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01 0.02± 0.08± 0.01 0.53± 0.10± 0.34 0.25± 0.09± 0.19	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01 0.21± 0.08± 0.03 0.21± 0.08± 0.03 0.13± 0.06± 0.08 0.19± 0.06± 0.15
D 0.010 0.030 0.050 0.070 0.090 0.110 0.130 0.150 0.220 0.260 0.300 0.340 0.380 0.420	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01 -0.02± 0.07± 0.01 0.37± 0.09± 0.22 -0.08± 0.06± 0.06 -0.53± 0.02± 0.26	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05 0.37± 0.13± 0.06 0.34± 0.11± 0.21 -0.29± 0.06± 0.21 -0.14± 0.06± 0.07	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01 0.02± 0.08± 0.01 0.53± 0.10± 0.34 0.25± 0.09± 0.19 -0.17± 0.04± 0.09	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.01 0.21± 0.08± 0.03 0.21± 0.08± 0.03 0.13± 0.06± 0.08 0.19± 0.06± 0.15 0.03± 0.05± 0.01
D 0.010 0.030 0.050 0.070 0.990 0.110 0.130 0.150 0.150 0.220 0.260 0.300 0.340 0.380 0.420 0.460	$\frac{1}{N} \frac{dN}{dD} (200 \text{ GeV})$ 30.09± 1.22± 0.59 6.62± 0.58± 0.17 3.49± 0.43± 0.13 2.42± 0.35± 0.08 1.50± 0.28± 0.15 1.18± 0.25± 0.07 1.61± 0.28± 0.08 0.78± 0.21± 0.14 0.33± 0.12± 0.03 0.40± 0.11± 0.03 0.06± 0.08± 0.01 -0.02± 0.07± 0.01 0.37± 0.09± 0.22 -0.08± 0.06± 0.06 -0.53± 0.02± 0.26 -0.48± 0.03± 2.55	$\frac{1}{N} \frac{dN}{dD} (202 \text{ GeV})$ 28.77± 1.68± 0.57 7.65± 0.87± 0.19 4.26± 0.65± 0.16 2.15± 0.50± 0.07 1.75± 0.43± 0.18 1.76± 0.43± 0.11 1.38± 0.37± 0.07 0.45± 0.27± 0.08 0.28± 0.16± 0.03 0.03± 0.13± 0.00 -0.34± 0.06± 0.05 0.37± 0.13± 0.06 0.34± 0.11± 0.21 -0.29± 0.06± 0.21 -0.14± 0.06± 0.07 1.39± 0.11± 7.54	$\frac{1}{N} \frac{dN}{dD} (205 \text{ GeV})$ 30.40± 1.28± 0.60 7.71± 0.66± 0.19 3.28± 0.44± 0.13 2.05± 0.37± 0.07 1.52± 0.30± 0.17 0.28± 0.20± 0.02 1.12± 0.29± 0.06 0.14± 0.17± 0.03 0.34± 0.13± 0.03 0.34± 0.13± 0.03 0.18± 0.11± 0.01 0.08± 0.10± 0.01 0.53± 0.10± 0.34 0.25± 0.09± 0.19 -0.17± 0.04± 0.09 0.38± 0.08± 2.25	$\frac{1}{N} \frac{dN}{dD} (207 \text{ GeV})$ 30.45± 0.98± 0.60 6.32± 0.47± 0.16 3.37± 0.33± 0.13 2.44± 0.28± 0.09 1.95± 0.26± 0.22 1.29± 0.22± 0.08 1.12± 0.20± 0.06 0.66± 0.17± 0.14 0.54± 0.10± 0.05 0.17± 0.08± 0.03 0.21± 0.08± 0.03 0.13± 0.06± 0.08 0.19± 0.06± 0.15 0.03± 0.05± 0.01 -0.08± 0.04± 0.50

$M_{ m h}^2/E_{ m vis}^2$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (189 {\rm GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (196 {\rm GeV})$
0.005	$14.64 \pm 1.47 \pm 1.56$	$13.64 \pm 0.87 \pm 1.45$	$14.96 \pm 2.33 \pm 1.59$	$15.59 \pm 1.46 \pm 1.66$
0.015	$23.54 \pm 1.53 \pm 0.59$	$25.20 \pm 0.98 \pm 0.68$	$23.93 \pm 2.40 \pm 0.67$	$26.42 \pm 1.55 \pm 0.76$
0.025	$14.65 \pm 1.24 \pm 0.36$	$15.56 \pm 0.77 \pm 0.40$	$16.22 \pm 2.03 \pm 0.42$	$14.09 \pm 1.18 \pm 0.37$
0.035	$10.90 \pm 1.05 \pm 0.21$	$10.71 \pm 0.65 \pm 0.22$	$7.19 \pm 1.32 \pm 0.15$	$8.90 \pm 0.94 \pm 0.19$
0.045	$7.66 \pm 0.87 \pm 0.42$	$6.84 \pm 0.52 \pm 0.39$	$7.55 \pm 1.37 \pm 0.44$	$5.94 \pm 0.81 \pm 0.35$
0.055	$4.56 \pm 0.67 \pm 0.17$	$4.77 \pm 0.43 \pm 0.17$	$6.47 \pm 1.27 \pm 0.24$	$4.79 \pm 0.70 \pm 0.18$
0.070	$3.17 \pm 0.39 \pm 0.17$	$3.97 \pm 0.27 \pm 0.24$	$3.80 \pm 0.67 \pm 0.24$	$4.35 \pm 0.44 \pm 0.29$
0.090	$2.14 \pm 0.32 \pm 0.08$	$2.01 \pm 0.20 \pm 0.08$	$2.84 \pm 0.56 \pm 0.11$	$1.85 \pm 0.33 \pm 0.07$
0.110	$2.04 \pm 0.30 \pm 0.06$	$1.48 \pm 0.18 \pm 0.05$	$3.30 \pm 0.57 \pm 0.10$	$1.65 \pm 0.29 \pm 0.05$
0.130	$1.36 \pm 0.27 \pm 0.06$	$1.34 \pm 0.17 \pm 0.06$	$0.46 \pm 0.31 \pm 0.02$	$1.39 \pm 0.26 \pm 0.06$
0.150	$0.64 \pm 0.21 \pm 0.02$	$0.71 \pm 0.15 \pm 0.02$	$0.99 \pm 0.37 \pm 0.03$	$0.86 \pm 0.25 \pm 0.03$
0.180	$0.79 \pm 0.17 \pm 0.15$	$0.48 \pm 0.09 \pm 0.11$	$0.41 \pm 0.23 \pm 0.10$	$0.49 \pm 0.16 \pm 0.12$
0.220	$0.08 \pm 0.11 \pm 0.01$	$0.23 \pm 0.09 \pm 0.03$	$0.06 \pm 0.20 \pm 0.01$	$0.35 \pm 0.16 \pm 0.04$
0.260	$0.21 \pm 0.11 \pm 0.01$	$0.11 \pm 0.08 \pm 0.00$	$-0.29 \pm 0.11 \pm 0.01$	$0.18 \pm 0.14 \pm 0.01$
0.300	$0.07 \pm 0.09 \pm 0.03$	$0.07 \pm 0.07 \pm 0.04$	$-0.04 \pm 0.14 \pm 0.02$	$-0.05 \pm 0.09 \pm 0.03$
$M_{ m h}^2/E_{ m vis}^2$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$
$M_{\rm h}^2/E_{ m vis}^2$ 0.005	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{17.09 \pm 1.45 \pm 1.82}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm b}}}{15.92 \pm 1.92 \pm 1.69}$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm b}}(205 \text{ GeV})}{15.34\pm 1.41\pm 1.63}$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{17.36\pm 1.12\pm 1.85}$
$\frac{M_{\rm h}^2/E_{\rm vis}^2}{0.005}$ 0.015	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})}{17.09 \pm 1.45 \pm 1.82}$ 25.74 \pm 1.51 \pm 0.77	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})}{15.34 \pm 1.41 \pm 1.63}$ $26.58 \pm 1.62 \pm 0.85$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$
$\frac{M_{\rm h}^2/E_{\rm vis}^2}{0.005}$ 0.015 0.025	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})}{17.36 \pm 1.12 \pm 1.85}$ 23.12 \pm 1.17 \pm 0.75 16.05 \pm 0.97 \pm 0.46
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2 \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{17.36\pm 1.12\pm 1.85}$ $23.12\pm 1.17\pm 0.75$ $16.05\pm 0.97\pm 0.46$ $8.83\pm 0.73\pm 0.20$
$\frac{M_{\rm h}^2/E_{\rm vis}^2}{0.005}$ 0.015 0.025 0.035 0.045	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$
$\frac{M_{\rm h}^2/E_{\rm vis}^2}{0.005}$ 0.015 0.025 0.035 0.045 0.055	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$ $4.49 \pm 0.69 \pm 0.16$	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$
$\frac{M_{\rm h}^2/E_{\rm vis}^2}{0.005}$ 0.015 0.025 0.035 0.045 0.055 0.070	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$ $4.49 \pm 0.69 \pm 0.16$ $3.41 \pm 0.41 \pm 0.25$	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2 \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$ $4.49 \pm 0.69 \pm 0.16$ $3.41 \pm 0.41 \pm 0.25$ $2.96 \pm 0.37 \pm 0.12$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2 \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$ $1.84 \pm 0.43 \pm 0.06$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$ $4.49 \pm 0.69 \pm 0.16$ $3.41 \pm 0.41 \pm 0.25$ $2.96 \pm 0.37 \pm 0.12$ $1.76 \pm 0.30 \pm 0.05$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2 \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{b}} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$ $1.11 \pm 0.24 \pm 0.05$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$ $1.84 \pm 0.43 \pm 0.06$ $1.84 \pm 0.42 \pm 0.08$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34 \pm 1.41 \pm 1.63$ $26.58 \pm 1.62 \pm 0.85$ $16.01 \pm 1.28 \pm 0.45$ $9.87 \pm 0.99 \pm 0.22$ $6.78 \pm 0.81 \pm 0.43$ $4.49 \pm 0.69 \pm 0.16$ $3.41 \pm 0.41 \pm 0.25$ $2.96 \pm 0.37 \pm 0.12$ $1.76 \pm 0.30 \pm 0.05$ $0.44 \pm 0.22 \pm 0.02$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$ $1.26 \pm 0.22 \pm 0.06$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2\\ 0.005\\ 0.015\\ 0.025\\ 0.035\\ 0.045\\ 0.055\\ 0.070\\ 0.090\\ 0.110\\ 0.130\\ 0.150\\ \end{array}$	$\frac{1}{N} \frac{dN}{dM_b} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$ $1.11 \pm 0.24 \pm 0.05$ $1.50 \pm 0.27 \pm 0.05$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$ $1.84 \pm 0.43 \pm 0.06$ $1.84 \pm 0.42 \pm 0.08$ $0.64 \pm 0.33 \pm 0.02$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34\pm 1.41\pm 1.63$ $26.58\pm 1.62\pm 0.85$ $16.01\pm 1.28\pm 0.45$ $9.87\pm 0.99\pm 0.22$ $6.78\pm 0.81\pm 0.43$ $4.49\pm 0.69\pm 0.16$ $3.41\pm 0.41\pm 0.25$ $2.96\pm 0.37\pm 0.12$ $1.76\pm 0.30\pm 0.05$ $0.44\pm 0.22\pm 0.02$ $0.77\pm 0.28\pm 0.03$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$ $1.26 \pm 0.22 \pm 0.06$ $0.73 \pm 0.20 \pm 0.03$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2\\ 0.005\\ 0.015\\ 0.025\\ 0.035\\ 0.045\\ 0.055\\ 0.070\\ 0.090\\ 0.110\\ 0.130\\ 0.150\\ 0.180 \end{array}$	$\frac{1}{N} \frac{dN}{dM_b} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$ $1.11 \pm 0.24 \pm 0.05$ $1.50 \pm 0.27 \pm 0.05$ $0.44 \pm 0.16 \pm 0.09$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$ $1.84 \pm 0.43 \pm 0.06$ $1.84 \pm 0.42 \pm 0.08$ $0.64 \pm 0.33 \pm 0.02$ $0.64 \pm 0.24 \pm 0.11$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34\pm 1.41\pm 1.63$ $26.58\pm 1.62\pm 0.85$ $16.01\pm 1.28\pm 0.45$ $9.87\pm 0.99\pm 0.22$ $6.78\pm 0.81\pm 0.43$ $4.49\pm 0.69\pm 0.16$ $3.41\pm 0.41\pm 0.25$ $2.96\pm 0.37\pm 0.12$ $1.76\pm 0.30\pm 0.05$ $0.44\pm 0.22\pm 0.02$ $0.77\pm 0.28\pm 0.03$ $0.35\pm 0.17\pm 0.11$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$ $1.26 \pm 0.22 \pm 0.06$ $0.73 \pm 0.20 \pm 0.03$ $0.35 \pm 0.13 \pm 0.11$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2\\ 0.005\\ 0.015\\ 0.025\\ 0.035\\ 0.045\\ 0.055\\ 0.070\\ 0.090\\ 0.110\\ 0.130\\ 0.150\\ 0.180\\ 0.220\\ \end{array}$	$\frac{1}{N} \frac{dN}{dM_b} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$ $1.11 \pm 0.24 \pm 0.05$ $1.50 \pm 0.27 \pm 0.05$ $0.44 \pm 0.16 \pm 0.09$ $0.02 \pm 0.14 \pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92 \pm 1.92 \pm 1.69$ $23.66 \pm 2.03 \pm 0.72$ $15.82 \pm 1.70 \pm 0.43$ $8.10 \pm 1.25 \pm 0.18$ $5.89 \pm 1.08 \pm 0.36$ $6.39 \pm 1.01 \pm 0.23$ $4.30 \pm 0.60 \pm 0.30$ $2.17 \pm 0.43 \pm 0.09$ $1.84 \pm 0.43 \pm 0.06$ $1.84 \pm 0.42 \pm 0.08$ $0.64 \pm 0.33 \pm 0.02$ $0.64 \pm 0.24 \pm 0.11$ $0.22 \pm 0.21 \pm 0.03$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34\pm 1.41\pm 1.63$ $26.58\pm 1.62\pm 0.85$ $16.01\pm 1.28\pm 0.45$ $9.87\pm 0.99\pm 0.22$ $6.78\pm 0.81\pm 0.43$ $4.49\pm 0.69\pm 0.16$ $3.41\pm 0.41\pm 0.25$ $2.96\pm 0.37\pm 0.12$ $1.76\pm 0.30\pm 0.05$ $0.44\pm 0.22\pm 0.02$ $0.77\pm 0.28\pm 0.03$ $0.35\pm 0.17\pm 0.11$ $-0.05\pm 0.15\pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$ $1.26 \pm 0.22 \pm 0.06$ $0.73 \pm 0.20 \pm 0.03$ $0.35 \pm 0.13 \pm 0.11$ $0.39 \pm 0.13 \pm 0.06$
$\begin{array}{c} M_{\rm h}^2/E_{\rm vis}^2\\ 0.005\\ 0.015\\ 0.025\\ 0.035\\ 0.045\\ 0.055\\ 0.070\\ 0.090\\ 0.110\\ 0.130\\ 0.150\\ 0.180\\ 0.220\\ 0.260\\ \end{array}$	$\frac{1}{N} \frac{dN}{dM_b} (200 \text{ GeV})$ $17.09 \pm 1.45 \pm 1.82$ $25.74 \pm 1.51 \pm 0.77$ $14.19 \pm 1.12 \pm 0.39$ $7.12 \pm 0.83 \pm 0.15$ $7.09 \pm 0.80 \pm 0.43$ $5.60 \pm 0.70 \pm 0.20$ $3.11 \pm 0.38 \pm 0.22$ $2.70 \pm 0.35 \pm 0.11$ $1.57 \pm 0.28 \pm 0.05$ $1.11 \pm 0.24 \pm 0.05$ $1.50 \pm 0.27 \pm 0.05$ $1.50 \pm 0.27 \pm 0.05$ $0.44 \pm 0.16 \pm 0.09$ $0.02 \pm 0.14 \pm 0.01$ $0.52 \pm 0.16 \pm 0.02$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ $15.92\pm 1.92\pm 1.69$ $23.66\pm 2.03\pm 0.72$ $15.82\pm 1.70\pm 0.43$ $8.10\pm 1.25\pm 0.18$ $5.89\pm 1.08\pm 0.36$ $6.39\pm 1.01\pm 0.23$ $4.30\pm 0.60\pm 0.30$ $2.17\pm 0.43\pm 0.09$ $1.84\pm 0.42\pm 0.08$ $0.64\pm 0.33\pm 0.02$ $0.64\pm 0.24\pm 0.11$ $0.22\pm 0.21\pm 0.03$ $0.20\pm 0.21\pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (205 \text{ GeV})$ $15.34\pm 1.41\pm 1.63$ $26.58\pm 1.62\pm 0.85$ $16.01\pm 1.28\pm 0.45$ $9.87\pm 0.99\pm 0.22$ $6.78\pm 0.81\pm 0.43$ $4.49\pm 0.69\pm 0.16$ $3.41\pm 0.41\pm 0.25$ $2.96\pm 0.37\pm 0.12$ $1.76\pm 0.30\pm 0.05$ $0.44\pm 0.22\pm 0.02$ $0.77\pm 0.28\pm 0.03$ $0.35\pm 0.17\pm 0.11$ $-0.05\pm 0.15\pm 0.01$ $0.27\pm 0.16\pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (207 \text{ GeV})$ $17.36 \pm 1.12 \pm 1.85$ $23.12 \pm 1.17 \pm 0.75$ $16.05 \pm 0.97 \pm 0.46$ $8.83 \pm 0.73 \pm 0.20$ $5.75 \pm 0.60 \pm 0.37$ $5.96 \pm 0.58 \pm 0.22$ $3.45 \pm 0.31 \pm 0.26$ $2.19 \pm 0.24 \pm 0.09$ $2.07 \pm 0.25 \pm 0.06$ $1.26 \pm 0.22 \pm 0.06$ $0.73 \pm 0.20 \pm 0.03$ $0.35 \pm 0.13 \pm 0.11$ $0.39 \pm 0.13 \pm 0.06$ $0.12 \pm 0.11 \pm 0.01$

$M_{ m h}^2/E_{ m vis}^2$ p Definition	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{h}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (196 \text{ GeV})$
0.005	$21.51 \pm 1.59 \pm 1.90$	$20.88 \pm 1.05 \pm 1.84$	$21.54 \pm 2.33 \pm 1.90$	$23.99 \pm 1.68 \pm 2.12$
0.015	$21.30 \pm 1.57 \pm 0.50$	$22.32 \pm 1.08 \pm 0.56$	$22.33 \pm 2.39 \pm 0.58$	$22.39 \pm 1.62 \pm 0.60$
0.025	$13.73 \pm 1.28 \pm 0.33$	$13.76 \pm 0.88 \pm 0.34$	$13.95 \pm 1.91 \pm 0.35$	$12.95 \pm 1.23 \pm 0.33$
0.035	$10.16 \pm 1.14 \pm 0.19$	$9.89 \pm 0.74 \pm 0.19$	$6.94 \pm 1.40 \pm 0.14$	$7.77 \pm 0.94 \pm 0.16$
0.045	$7.13 \pm 0.97 \pm 0.36$	$6.24 \pm 0.60 \pm 0.32$	$6.69 \pm 1.34 \pm 0.35$	$5.77 \pm 0.82 \pm 0.31$
0.055	$3.49 \pm 0.66 \pm 0.09$	$4.52 \pm 0.51 \pm 0.12$	$6.29 \pm 1.36 \pm 0.17$	$4.73 \pm 0.79 \pm 0.13$
0.070	$3.01 \pm 0.48 \pm 0.15$	$3.77 \pm 0.35 \pm 0.21$	$3.65 \pm 0.77 \pm 0.21$	$3.72 \pm 0.51 \pm 0.22$
0.090	$2.28 \pm 0.42 \pm 0.12$	$1.83 \pm 0.25 \pm 0.10$	$3.06 \pm 0.76 \pm 0.16$	$1.76 \pm 0.35 \pm 0.09$
0.110	$1.84 \pm 0.42 \pm 0.06$	$1.55 \pm 0.25 \pm 0.05$	$2.63 \pm 0.75 \pm 0.09$	$1.63 \pm 0.40 \pm 0.05$
0.130	$1.29 \pm 0.35 \pm 0.05$	$1.10 \pm 0.21 \pm 0.04$	$0.43 \pm 0.36 \pm 0.02$	$1.35 \pm 0.40 \pm 0.05$
0.150	$0.63 \pm 0.26 \pm 0.03$	$0.69 \pm 0.17 \pm 0.03$	$1.03 \pm 0.54 \pm 0.04$	$0.80 \pm 0.27 \pm 0.03$
0.180	$0.67 \pm 0.18 \pm 0.14$	$0.46 \pm 0.11 \pm 0.11$	$0.38 \pm 0.27 \pm 0.09$	$0.45 \pm 0.18 \pm 0.12$
0.220	$0.07 \pm 0.11 \pm 0.01$	$0.20 \pm 0.08 \pm 0.02$	$0.06 \pm 0.21 \pm 0.01$	$0.35 \pm 0.16 \pm 0.04$
0.260	$0.22 \pm 0.13 \pm 0.01$	$0.13 \pm 0.08 \pm 0.01$	$-0.27 \pm 0.10 \pm 0.02$	$0.18 \pm 0.12 \pm 0.01$
0.300	$0.06 \pm 0.06 \pm 0.03$	$0.05 \pm 0.03 \pm 0.03$	$-0.04 \pm 0.08 \pm 0.02$	$-0.05 \pm 0.09 \pm 0.03$
$M_{\rm h}^2/E_{ m vi}^2$ p Definition	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$
$M_{ m h}^2/E_{ m vis}^2$ p Definition 0.005	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{23.77 \pm 1.61 \pm 2.10}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{22.24 \pm 2.15 \pm 1.96}$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}}{22.14\pm1.58\pm1.95}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{24.01 \pm 1.41 \pm 2.12}$
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ 0.015	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})}{23.77 \pm 1.61 \pm 2.10}$ $23.45 \pm 1.59 \pm 0.66$	$\frac{\frac{1}{N}}{\frac{dN}{dM_{h}}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63	$\frac{\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})}{22.14 \pm 1.58 \pm 1.95}$ $23.50 \pm 1.58 \pm 0.69$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})}{24.01 \pm 1.41 \pm 2.12}$ $20.98 \pm 1.27 \pm 0.63$
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005} \\ 0.015 \\ 0.025$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{23.77 \pm 1.61 \pm 2.10}$ 23.45 \pm 1.59 \pm 0.66 12.60 \pm 1.17 \pm 0.32	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(202 \text{ GeV})}{22.24 \pm 2.15 \pm 1.96}$ 22.37 \pm 2.13 \pm 0.63 13.10 \pm 1.58 \pm 0.34	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205 \text{ GeV})}{22.14 \pm 1.58 \pm 1.95}$ $23.50 \pm 1.58 \pm 0.69$ $14.13 \pm 1.23 \pm 0.37$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{24.01 \pm 1.41 \pm 2.12}$ 20.98 \pm 1.27 \pm 0.63 15.99 \pm 1.17 \pm 0.42
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ 0.015 0.025 0.035	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(202 \text{ GeV})}{22.24 \pm 2.15 \pm 1.96}$ 22.37 \pm 2.13 \pm 0.63 13.10 \pm 1.58 \pm 0.34 6.80 \pm 1.15 \pm 0.14	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205 \text{ GeV})}{22.14\pm1.58\pm1.95}$ $23.50\pm1.58\pm0.69$ $14.13\pm1.23\pm0.37$ $10.04\pm1.10\pm0.21$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ 0.015 0.025 0.035 0.045	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ $23.77 \pm 1.61 \pm 2.10$ $23.45 \pm 1.59 \pm 0.66$ $12.60 \pm 1.17 \pm 0.32$ $7.21 \pm 0.87 \pm 0.15$ $6.60 \pm 0.89 \pm 0.36$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(202 \text{ GeV})}{22.24\pm2.15\pm1.96}$ 22.37±2.13±0.63 13.10±1.58±0.34 6.80±1.15±0.14 6.42±1.14±0.36	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(205 \text{ GeV})}{22.14\pm1.58\pm1.95}$ $23.50\pm1.58\pm0.69$ $14.13\pm1.23\pm0.37$ $10.04\pm1.10\pm0.21$ $5.30\pm0.80\pm0.30$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ 0.015 0.025 0.035 0.045 0.055	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \ {\rm p} \ {\rm Definition}}{0.005} \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77±1.61±2.10 23.45±1.59±0.66 12.60±1.17±0.32 7.21±0.87±0.15 6.60±0.89±0.36 5.06±0.78±0.14 2.72±0.42±0.17	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23
$\frac{M_{\rm h}^2/E_{\rm vis}^2~{\rm p~Definition}}{0.005}$ $\frac{0.015}{0.025}$ 0.035 0.045 0.055 0.070 0.090	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (200 \text{ GeV})$ 23.77±1.61±2.10 23.45±1.59±0.66 12.60±1.17±0.32 7.21±0.87±0.15 6.60±0.89±0.36 5.06±0.78±0.14 2.72±0.42±0.17 2.65±0.44±0.14	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(205 \text{ GeV})}{22.14\pm 1.58\pm 1.95}$ $23.50\pm 1.58\pm 0.69$ $14.13\pm 1.23\pm 0.37$ $10.04\pm 1.10\pm 0.21$ $5.30\pm 0.80\pm 0.30$ $4.30\pm 0.73\pm 0.12$ $3.26\pm 0.48\pm 0.22$ $2.93\pm 0.49\pm 0.16$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ $\frac{0.015}{0.025}$ 0.035 0.045 0.055 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205~{\rm GeV})}{22.14\pm1.58\pm1.95}$ $23.50\pm1.58\pm0.69$ $14.13\pm1.23\pm0.37$ $10.04\pm1.10\pm0.21$ $5.30\pm0.80\pm0.30$ $4.30\pm0.73\pm0.12$ $3.26\pm0.48\pm0.22$ $2.93\pm0.49\pm0.16$ $1.67\pm0.39\pm0.06$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ $\frac{0.015}{0.025}$ 0.035 0.045 0.055 0.070 0.090 0.110 0.130	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05 1.01± 0.33± 0.04	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07 1.65± 0.52± 0.06	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22 2.93± 0.49± 0.16 1.67± 0.39± 0.06 0.55± 0.27± 0.02	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07 0.87± 0.28± 0.03
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \ {\rm p} \ {\rm Definition}}{0.005} \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.150 \\ \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05 1.01± 0.33± 0.04 1.48± 0.41± 0.07	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07 1.65± 0.52± 0.06 0.83± 0.40± 0.04	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22 2.93± 0.49± 0.16 1.67± 0.39± 0.06 0.55± 0.27± 0.02 0.61± 0.25± 0.03	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07 0.87± 0.28± 0.03 0.82± 0.34± 0.04
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \ {\rm p} \ {\rm Definition}}{0.005} \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \\ 0.150 \\ 0.180 \\ 0.180 \\ 0.180 \\ 0.005 \\ 0$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05 1.01± 0.33± 0.04 1.48± 0.41± 0.07 0.38± 0.17± 0.11	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07 1.65± 0.52± 0.06 0.83± 0.40± 0.04 0.53± 0.29± 0.15	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22 2.93± 0.49± 0.16 1.67± 0.39± 0.06 0.55± 0.27± 0.02 0.61± 0.25± 0.03 0.31± 0.19± 0.09	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07 0.87± 0.28± 0.03 0.82± 0.34± 0.04 -0.10± 0.16± 0.03
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \ {\rm p} \ {\rm Definition}}{0.005}$ 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.130 0.150 0.180 0.220	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05 1.01± 0.33± 0.04 1.48± 0.41± 0.07 0.38± 0.17± 0.11 0.10± 0.17± 0.01	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07 1.65± 0.52± 0.06 0.83± 0.40± 0.04 0.53± 0.29± 0.15 0.21± 0.22± 0.03	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22 2.93± 0.49± 0.16 1.67± 0.39± 0.06 0.55± 0.27± 0.02 0.61± 0.25± 0.03 0.31± 0.19± 0.09 -0.02± 0.16± 0.00	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07 0.87± 0.28± 0.03 0.82± 0.34± 0.04 -0.10± 0.16± 0.03 0.09± 0.20± 0.01
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \text{ p Definition}}{0.005}$ $\frac{0.015}{0.025}$ $\frac{0.035}{0.045}$ $\frac{0.045}{0.055}$ $\frac{0.070}{0.090}$ $\frac{0.110}{0.130}$ $\frac{0.150}{0.180}$ $\frac{0.220}{0.260}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 23.77± 1.61± 2.10 23.45± 1.59± 0.66 12.60± 1.17± 0.32 7.21± 0.87± 0.15 6.60± 0.89± 0.36 5.06± 0.78± 0.14 2.72± 0.42± 0.17 2.65± 0.44± 0.14 1.57± 0.36± 0.05 1.01± 0.33± 0.04 1.48± 0.41± 0.07 0.38± 0.17± 0.11 0.10± 0.17± 0.01 0.41± 0.20± 0.03	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 22.24± 2.15± 1.96 22.37± 2.13± 0.63 13.10± 1.58± 0.34 6.80± 1.15± 0.14 6.42± 1.14± 0.36 6.22± 1.25± 0.17 3.85± 0.71± 0.25 1.82± 0.52± 0.10 1.92± 0.51± 0.07 1.65± 0.52± 0.06 0.83± 0.40± 0.04 0.53± 0.29± 0.15 0.21± 0.22± 0.03 0.22± 0.17± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 22.14± 1.58± 1.95 23.50± 1.58± 0.69 14.13± 1.23± 0.37 10.04± 1.10± 0.21 5.30± 0.80± 0.30 4.30± 0.73± 0.12 3.26± 0.48± 0.22 2.93± 0.49± 0.16 1.67± 0.39± 0.06 0.55± 0.27± 0.02 0.61± 0.25± 0.03 0.31± 0.19± 0.09 -0.02± 0.16± 0.00 0.24± 0.18± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 24.01± 1.41± 2.12 20.98± 1.27± 0.63 15.99± 1.17± 0.42 7.69± 0.82± 0.16 6.45± 0.79± 0.37 5.25± 0.70± 0.15 3.35± 0.42± 0.23 1.63± 0.33± 0.09 2.01± 0.38± 0.07 0.87± 0.28± 0.03 0.82± 0.34± 0.04 -0.10± 0.16± 0.03 0.09± 0.20± 0.01 -0.16± 0.12± 0.02

$M_{\rm h}^2/E_{\rm vis}^2$ E Definition	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (196 \text{ GeV})$
0.005	$19.98 \pm 1.49 \pm 1.84$	$19.18 \pm 0.98 \pm 1.77$	$19.80 \pm 2.15 \pm 1.82$	$21.90 \pm 1.56 \pm 2.02$
0.015	$21.60 \pm 1.60 \pm 0.52$	$23.01 \pm 1.11 \pm 0.59$	$23.06 \pm 2.47 \pm 0.61$	$23.38 \pm 1.67 \pm 0.65$
0.025	$13.82 \pm 1.29 \pm 0.36$	$14.12 \pm 0.90 \pm 0.38$	$14.23 \pm 1.93 \pm 0.39$	$13.18 \pm 1.26 \pm 0.37$
0.035	$10.28 \pm 1.15 \pm 0.22$	$10.10 \pm 0.75 \pm 0.22$	$7.11 \pm 1.44 \pm 0.16$	$8.15 \pm 0.97 \pm 0.18$
0.045	$7.58 \pm 1.01 \pm 0.34$	$6.29 \pm 0.60 \pm 0.30$	$6.79 \pm 1.36 \pm 0.33$	$5.79 \pm 0.82 \pm 0.28$
0.055	$3.84 \pm 0.71 \pm 0.11$	$4.71 \pm 0.52 \pm 0.14$	$6.12 \pm 1.35 \pm 0.19$	$4.60 \pm 0.78 \pm 0.14$
0.070	$2.98 \pm 0.47 \pm 0.16$	$3.80 \pm 0.36 \pm 0.22$	$3.82 \pm 0.79 \pm 0.23$	$3.91 \pm 0.53 \pm 0.25$
0.090	$2.36 \pm 0.44 \pm 0.11$	$1.87 \pm 0.25 \pm 0.08$	$2.82 \pm 0.74 \pm 0.13$	$1.80 \pm 0.35 \pm 0.08$
0.110	$1.80 \pm 0.41 \pm 0.05$	$1.52 \pm 0.25 \pm 0.05$	$3.01 \pm 0.81 \pm 0.10$	$1.59 \pm 0.39 \pm 0.05$
0.130	$1.36 \pm 0.37 \pm 0.06$	$1.18 \pm 0.22 \pm 0.05$	$0.45 \pm 0.37 \pm 0.02$	$1.42 \pm 0.41 \pm 0.06$
0.150	$0.62 \pm 0.26 \pm 0.02$	$0.69 \pm 0.17 \pm 0.02$	$0.97 \pm 0.51 \pm 0.03$	$0.80 \pm 0.27 \pm 0.03$
0.180	$0.69 \pm 0.18 \pm 0.14$	$0.48 \pm 0.11 \pm 0.11$	$0.39 \pm 0.27 \pm 0.10$	$0.45 \pm 0.18 \pm 0.12$
0.220	$0.07 \pm 0.11 \pm 0.01$	$0.20 \pm 0.08 \pm 0.02$	$0.06 \pm 0.22 \pm 0.01$	$0.33 \pm 0.16 \pm 0.04$
0.260	$0.21 \pm 0.13 \pm 0.01$	$0.13 \pm 0.08 \pm 0.01$	$-0.26 \pm 0.10 \pm 0.01$	$0.20 \pm 0.12 \pm 0.01$
0.300	$0.07 \pm 0.07 \pm 0.03$	$0.05 \pm 0.03 \pm 0.03$	$-0.03 \pm 0.08 \pm 0.02$	$-0.05 \pm 0.09 \pm 0.03$
$M_{\rm h}^2/E_{ m vis}^2$ E Definition	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$
$\frac{M_{\rm h}^2/E_{\rm vis}^2 ~{\rm E~Definition}}{0.005}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})}{22.31 \pm 1.52 \pm 2.06}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{20.20 \pm 1.98 \pm 1.86}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{20.40 \pm 1.47 \pm 1.88}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}}}{22.24 \pm 1.32 \pm 2.05}$
$\frac{M_{\rm h}^2/E_{\rm vis}^2 \ {\rm E \ Definition}}{0.005} \\ 0.015$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ $22.31 \pm 1.52 \pm 2.06$ $24.01 \pm 1.62 \pm 0.69$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69	$\frac{\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})}{20.40 \pm 1.47 \pm 1.88}$ $24.17 \pm 1.63 \pm 0.74$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ $22.24 \pm 1.32 \pm 2.05$ $21.65 \pm 1.30 \pm 0.68$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{22.31\pm1.52\pm2.06}$ $24.01\pm1.62\pm0.69$ $12.53\pm1.17\pm0.36$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(202~{\rm GeV})}{20.20\pm1.98\pm1.86}$ 23.57±2.22±0.69 13.35±1.60±0.39	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205~{\rm GeV})}{20.40\pm1.47\pm1.88}$ 24.17±1.63±0.74 14.91±1.28±0.44	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{22.24\pm 1.32\pm 2.05}$ $21.65\pm 1.30\pm 0.68$ $16.52\pm 1.20\pm 0.50$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{22.31\pm 1.52\pm 2.06}$ $24.01\pm 1.62\pm 0.69$ $12.53\pm 1.17\pm 0.36$ $7.48\pm 0.89\pm 0.17$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ $20.20 \pm 1.98 \pm 1.86$ $23.57 \pm 2.22 \pm 0.69$ $13.35 \pm 1.60 \pm 0.39$ $7.08 \pm 1.18 \pm 0.16$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205 \text{ GeV})}{20.40\pm1.47\pm1.88}$ $24.17\pm1.63\pm0.74$ $14.91\pm1.28\pm0.44$ $9.93\pm1.09\pm0.22$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{22.24\pm 1.32\pm 2.05}$ $21.65\pm 1.30\pm 0.68$ $16.52\pm 1.20\pm 0.50$ $7.81\pm 0.82\pm 0.18$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{22.31\pm 1.52\pm 2.06}$ $24.01\pm 1.62\pm 0.69$ $12.53\pm 1.17\pm 0.36$ $7.48\pm 0.89\pm 0.17$ $6.73\pm 0.90\pm 0.34$	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(202 \text{ GeV})}{20.20\pm 1.98\pm 1.86}$ $23.57\pm 2.22\pm 0.69$ $13.35\pm 1.60\pm 0.39$ $7.08\pm 1.18\pm 0.16$ $6.51\pm 1.16\pm 0.33$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205 \text{ GeV})}{20.40\pm1.47\pm1.88}$ 24.17±1.63±0.74 14.91±1.28±0.44 9.93±1.09±0.22 5.48±0.82±0.28	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{22.24\pm 1.32\pm 2.05}$ $21.65\pm 1.30\pm 0.68$ $16.52\pm 1.20\pm 0.50$ $7.81\pm 0.82\pm 0.18$ $6.60\pm 0.81\pm 0.35$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200 \text{ GeV})}{22.31\pm 1.52\pm 2.06}$ 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(205 \text{ GeV})}{20.40\pm 1.47\pm 1.88}$ 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(207 \text{ GeV})}{22.24\pm 1.32\pm 2.05}$ 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\frac{1}{N}\frac{dN}{dM_{\rm h}}(200~{\rm GeV})}{22.31\pm1.52\pm2.06}$ 24.01±1.62±0.69 12.53±1.17±0.36 7.48±0.89±0.17 6.73±0.90±0.34 5.21±0.80±0.16 2.81±0.43±0.18	$\frac{1}{N} \frac{dN}{dM_{h}} (202 \text{ GeV})$ $20.20 \pm 1.98 \pm 1.86$ $23.57 \pm 2.22 \pm 0.69$ $13.35 \pm 1.60 \pm 0.39$ $7.08 \pm 1.18 \pm 0.16$ $6.51 \pm 1.16 \pm 0.33$ $5.94 \pm 1.23 \pm 0.18$ $4.04 \pm 0.73 \pm 0.27$	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(205 \text{ GeV})}{20.40\pm 1.47\pm 1.88}$ 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})}{22.24 \pm 1.32 \pm 2.05}$ $21.65 \pm 1.30 \pm 0.68$ $16.52 \pm 1.20 \pm 0.50$ $7.81 \pm 0.82 \pm 0.18$ $6.60 \pm 0.81 \pm 0.35$ $5.38 \pm 0.71 \pm 0.17$ $3.33 \pm 0.42 \pm 0.24$
$\begin{tabular}{ c c c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & {\rm E} \ {\rm Definition} \\ \hline 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ \hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12	$\frac{1}{N} \frac{dN}{dM_{\rm b}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(205 \text{ GeV})}{20.40\pm 1.47\pm 1.88}$ $24.17\pm 1.63\pm 0.74$ $14.91\pm 1.28\pm 0.44$ $9.93\pm 1.09\pm 0.22$ $5.48\pm 0.82\pm 0.28$ $4.40\pm 0.73\pm 0.14$ $3.31\pm 0.48\pm 0.23$ $2.93\pm 0.49\pm 0.14$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08
$\begin{tabular}{ c c c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & {\rm E} \ {\rm Definition} \\ \hline 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07	$\frac{\frac{1}{N}\frac{dN}{dM_{h}}(205 \text{ GeV})}{20.40\pm1.47\pm1.88}$ $24.17\pm1.63\pm0.74$ $14.91\pm1.28\pm0.44$ $9.93\pm1.09\pm0.22$ $5.48\pm0.82\pm0.28$ $4.40\pm0.73\pm0.14$ $3.31\pm0.48\pm0.23$ $2.93\pm0.49\pm0.14$ $1.63\pm0.39\pm0.06$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07
$\begin{tabular}{ c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & {\rm E} \ {\rm Definition} \\ \hline 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.045 \\ 0.055 \\ 0.070 \\ 0.090 \\ 0.110 \\ 0.130 \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05 0.96± 0.33± 0.04	$\frac{1}{N} \frac{dN}{dM_{h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07 1.62± 0.51± 0.07	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 20.40± 1.47± 1.88 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23 2.93± 0.49± 0.14 1.63± 0.39± 0.06 0.56± 0.27± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07 0.95± 0.29± 0.04
$\begin{tabular}{ c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & E Definition \\\hline 0.005 & 0.015 & 0.025 & 0.035 & 0.045 & 0.055 & 0.070 & 0.090 & 0.110 & 0.130 & 0.150 \\\hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05 0.96± 0.33± 0.04 1.52± 0.41± 0.05	$\frac{1}{N} \frac{dN}{dM_{h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07 1.62± 0.51± 0.07 0.76± 0.40± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 20.40± 1.47± 1.88 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23 2.93± 0.49± 0.14 1.63± 0.39± 0.06 0.56± 0.27± 0.02 0.69± 0.27± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07 0.95± 0.29± 0.04 0.78± 0.33± 0.03
$\begin{tabular}{ c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & E Definition \\\hline 0.005 & 0.015 & 0.025 & 0.035 & 0.045 & 0.055 & 0.070 & 0.090 & 0.110 & 0.130 & 0.150 & 0.180 \\\hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05 0.96± 0.33± 0.04 1.52± 0.41± 0.05 0.39± 0.17± 0.11	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07 1.62± 0.51± 0.07 0.76± 0.40± 0.02 0.57± 0.29± 0.16	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 20.40± 1.47± 1.88 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23 2.93± 0.49± 0.14 1.63± 0.39± 0.06 0.56± 0.27± 0.02 0.69± 0.27± 0.02 0.31± 0.19± 0.10	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07 0.95± 0.29± 0.04 0.78± 0.33± 0.03 -0.09± 0.16± 0.03
$\begin{tabular}{ c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & E Definition \\\hline 0.005 & 0.015 & 0.025 & 0.035 & 0.045 & 0.055 & 0.070 & 0.090 & 0.110 & 0.130 & 0.150 & 0.180 & 0.220 \\\hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05 0.96± 0.33± 0.04 1.52± 0.41± 0.05 0.39± 0.17± 0.11 0.08± 0.17± 0.01	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07 1.62± 0.51± 0.07 0.76± 0.40± 0.02 0.57± 0.29± 0.16 0.21± 0.22± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 20.40± 1.47± 1.88 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23 2.93± 0.49± 0.14 1.63± 0.39± 0.06 0.56± 0.27± 0.02 0.69± 0.27± 0.02 0.31± 0.19± 0.10 -0.03± 0.16± 0.00	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07 0.95± 0.29± 0.04 0.78± 0.33± 0.03 -0.09± 0.16± 0.03 0.10± 0.20± 0.01
$\begin{tabular}{ c c c c c }\hline $M_{\rm h}^2/E_{\rm vis}^2$ & E Definition \\\hline 0.005 & 0.015 & 0.025 & 0.035 & 0.045 & 0.055 & 0.070 & 0.090 & 0.110 & 0.130 & 0.150 & 0.180 & 0.220 & 0.260 \\\hline \end{tabular}$	$\frac{1}{N} \frac{dN}{dM_{\rm h}} (200 \text{ GeV})$ 22.31± 1.52± 2.06 24.01± 1.62± 0.69 12.53± 1.17± 0.36 7.48± 0.89± 0.17 6.73± 0.90± 0.34 5.21± 0.80± 0.16 2.81± 0.43± 0.18 2.63± 0.43± 0.12 1.62± 0.37± 0.05 0.96± 0.33± 0.04 1.52± 0.41± 0.05 0.39± 0.17± 0.11 0.08± 0.17± 0.01 0.44± 0.21± 0.02	$\frac{1}{N} \frac{dN}{dM_{h}} (202 \text{ GeV})$ 20.20± 1.98± 1.86 23.57± 2.22± 0.69 13.35± 1.60± 0.39 7.08± 1.18± 0.16 6.51± 1.16± 0.33 5.94± 1.23± 0.18 4.04± 0.73± 0.27 1.90± 0.54± 0.09 1.93± 0.51± 0.07 1.62± 0.51± 0.07 0.76± 0.40± 0.02 0.57± 0.29± 0.16 0.21± 0.22± 0.02 0.21± 0.17± 0.01	$\frac{1}{N} \frac{dN}{dM_{h}} (205 \text{ GeV})$ 20.40± 1.47± 1.88 24.17± 1.63± 0.74 14.91± 1.28± 0.44 9.93± 1.09± 0.22 5.48± 0.82± 0.28 4.40± 0.73± 0.14 3.31± 0.48± 0.23 2.93± 0.49± 0.14 1.63± 0.39± 0.06 0.56± 0.27± 0.02 0.69± 0.27± 0.02 0.31± 0.19± 0.10 -0.03± 0.16± 0.00 0.25± 0.19± 0.01	$\frac{1}{N} \frac{dN}{dM_{h}} (207 \text{ GeV})$ 22.24± 1.32± 2.05 21.65± 1.30± 0.68 16.52± 1.20± 0.50 7.81± 0.82± 0.18 6.60± 0.81± 0.35 5.38± 0.71± 0.17 3.33± 0.42± 0.24 1.70± 0.34± 0.08 1.98± 0.38± 0.07 0.95± 0.29± 0.04 0.78± 0.33± 0.03 -0.09± 0.16± 0.03 0.10± 0.20± 0.01 -0.17± 0.12± 0.01

$M_{ m l}^2/E_{ m vis}^2$	$\frac{1}{N} \frac{dN}{dM_1} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (196 \text{ GeV})$
0.005	$53.34 \pm 2.77 \pm 1.50$	$53.47 \pm 1.74 \pm 1.51$	$53.02 \pm 4.33 \pm 1.51$	$54.93 \pm 2.77 \pm 1.57$
0.015	$28.24 \pm 1.57 \pm 1.40$	$28.67 \pm 1.00 \pm 1.42$	$30.75 \pm 2.58 \pm 1.53$	$31.46 \pm 1.64 \pm 1.57$
0.025	$11.81 \pm 0.92 \pm 1.10$	$9.02 \pm 0.55 \pm 0.88$	$8.42 \pm 1.37 \pm 0.85$	$7.60 \pm 0.87 \pm 0.79$
0.035	$2.71 \pm 0.42 \pm 0.38$	$2.54 \pm 0.28 \pm 0.35$	$6.57 \pm 0.97 \pm 0.91$	$1.28 \pm 0.41 \pm 0.18$
0.045	$1.46 \pm 0.23 \pm 0.69$	$3.98 \pm 0.20 \pm 1.88$	$1.15 \pm 0.35 \pm 0.54$	$2.92 \pm 0.33 \pm 1.39$
$M_{\rm l}^2/E_{ m vis}^2$	$\frac{1}{N} \frac{dN}{dM_1} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_1} (207 \text{ GeV})$
$\frac{M_{\rm l}^2/E_{\rm vis}^2}{0.005}$	$\frac{\frac{1}{N}\frac{dN}{dM_1}(200 \text{ GeV})}{56.12 \pm 2.69 \pm 1.61}$	$\frac{\frac{1}{N} \frac{dN}{dM_1}}{\frac{55.99 \pm 3.78 \pm 1.61}}$	$\frac{\frac{1}{N} \frac{dN}{dM_1}}{205 \text{ GeV}}$ 57.09\pm 2.88\pm 1.65	$\frac{\frac{1}{N} \frac{dN}{dM_1}}{207 \text{ GeV}}$ 59.32± 2.21± 1.72
$\frac{M_{\rm l}^2/E_{\rm vis}^2}{0.005} \\ 0.015$	$\frac{\frac{1}{N} \frac{dN}{dM_1} (200 \text{ GeV})}{56.12 \pm 2.69 \pm 1.61}$ 27.33 \pm 1.52 \pm 1.37	$\frac{\frac{1}{N} \frac{dN}{dM_1} (202 \text{ GeV})}{55.99 \pm 3.78 \pm 1.61}$ 25.99 \pm 2.12 \pm 1.30	$\frac{\frac{1}{N} \frac{dN}{dM_1} (205 \text{ GeV})}{57.09 \pm 2.88 \pm 1.65}$ 25.70 \pm 1.58 \pm 1.29	$\frac{\frac{1}{N} \frac{dN}{dM_1} (207 \text{ GeV})}{59.32 \pm 2.21 \pm 1.72}$ 25.14 \pm 1.19 \pm 1.27
$\frac{M_{\rm l}^2/E_{\rm vis}^2}{0.005} \\ 0.015 \\ 0.025$	$\frac{1}{N} \frac{dN}{dM_1} (200 \text{ GeV})$ 56.12±2.69±1.61 27.33±1.52±1.37 11.40±0.94±1.22	$\frac{1}{N} \frac{dN}{dM_1} (202 \text{ GeV})$ 55.99± 3.78± 1.61 25.99± 2.12± 1.30 11.14± 1.32± 1.20	$\frac{1}{N} \frac{dN}{dM_1} (205 \text{ GeV})$ 57.09± 2.88± 1.65 25.70± 1.58± 1.29 7.28± 0.89± 0.82	$\frac{\frac{1}{N} \frac{dN}{dM_1} (207 \text{ GeV})}{59.32 \pm 2.21 \pm 1.72}$ 25.14 \pm 1.19 \pm 1.27 7.22 \pm 0.66 \pm 0.82
$\begin{array}{c} M_{\rm l}^2/E_{\rm vis}^2 \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \end{array}$	$\frac{1}{N} \frac{dN}{dM_1} (200 \text{ GeV})$ $56.12 \pm 2.69 \pm 1.61$ $27.33 \pm 1.52 \pm 1.37$ $11.40 \pm 0.94 \pm 1.22$ $2.02 \pm 0.43 \pm 0.28$	$\frac{1}{N} \frac{dN}{dM_1} (202 \text{ GeV})$ 55.99± 3.78± 1.61 25.99± 2.12± 1.30 11.14± 1.32± 1.20 6.32± 0.83± 0.88	$\frac{1}{N} \frac{dN}{dM_1} (205 \text{ GeV})$ 57.09± 2.88± 1.65 25.70± 1.58± 1.29 7.28± 0.89± 0.82 3.56± 0.55± 0.49	$\frac{1}{N} \frac{dN}{dM_1} (207 \text{ GeV})$ 59.32± 2.21± 1.72 25.14± 1.19± 1.27 7.22± 0.66± 0.82 3.75± 0.41± 0.52

$M_{\rm diff}$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (192 { m GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (196 { m GeV})$
0.005	$40.98 \pm 2.04 \pm 1.63$	$41.02 \pm 1.26 \pm 1.63$	$40.57 \pm \ 3.17 \pm \ 1.62$	$43.72 \pm 2.04 \pm 1.75$
0.015	$16.64 \pm 1.33 \pm 0.39$	$19.18 \pm 0.87 \pm 0.46$	$17.43 \pm 2.13 \pm 0.42$	$17.79 \pm 1.36 \pm 0.43$
0.025	$11.74 \pm 1.12 \pm 0.19$	$9.52 \pm 0.64 \pm 0.15$	$10.38 \pm 1.65 \pm 0.17$	$7.32 \pm 0.89 \pm 0.12$
0.035	$6.51 \pm 0.86 \pm 0.29$	$6.65 \pm 0.53 \pm 0.30$	$7.34 \pm 1.39 \pm 0.33$	$6.30 \pm 0.85 \pm 0.29$
0.050	$3.73 \pm 0.46 \pm 0.16$	$3.83 \pm 0.29 \pm 0.17$	$4.55 \pm 0.79 \pm 0.21$	$4.50 \pm 0.50 \pm 0.21$
0.070	$2.33 \pm 0.36 \pm 0.10$	$2.58 \pm 0.24 \pm 0.13$	$3.13 \pm 0.65 \pm 0.16$	$2.33 \pm 0.37 \pm 0.13$
0.100	$1.55 \pm 0.21 \pm 0.02$	$1.25 \pm 0.13 \pm 0.02$	$1.67 \pm 0.34 \pm 0.02$	$1.31 \pm 0.20 \pm 0.02$
0.140	$0.70 \pm 0.16 \pm 0.05$	$0.62 \pm 0.10 \pm 0.05$	$0.62 \pm 0.25 \pm 0.05$	$0.68 \pm 0.17 \pm 0.06$
0.180	$0.39 \pm 0.15 \pm 0.07$	$0.31 \pm 0.09 \pm 0.07$	$0.15 \pm 0.21 \pm 0.03$	$0.42 \pm 0.16 \pm 0.10$
0.225	$0.05 \pm 0.09 \pm 0.01$	$0.18 \pm 0.08 \pm 0.02$	$-0.17 \pm 0.13 \pm 0.02$	$0.26 \pm 0.14 \pm 0.03$
0.275	$0.14 \pm 0.10 \pm 0.02$	$0.07 \pm 0.06 \pm 0.01$	$-0.04 \pm 0.13 \pm 0.01$	$0.01 \pm 0.10 \pm 0.00$
$M_{ m diff}$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (202 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (205 {\rm GeV})$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (207 \text{ GeV})$
$M_{ m diff}$ 0.005	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm diff}} (200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (202 \text{ GeV}) 40.70 \pm 2.69 \pm 1.63$	$\frac{\frac{1}{N}}{\frac{dN}{dM_{\rm diff}}} (205 \text{ GeV}) 43.94 \pm 2.08 \pm 1.77$	$\frac{\frac{1}{N}}{\frac{dN}{dM_{\rm diff}}} (207 \text{ GeV}) 44.31 \pm 1.58 \pm 1.79$
$M_{ m diff}$ 0.005 0.015	$\frac{\frac{1}{N}\frac{dN}{dM_{\text{diff}}}(200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$ $15.46 \pm 1.22 \pm 0.37$	$\frac{\frac{1}{N}\frac{dN}{dM_{\text{Aiff}}}(202 \text{ GeV})}{40.70 \pm 2.69 \pm 1.63}$ $20.11 \pm 1.92 \pm 0.49$	$\frac{\frac{1}{N}\frac{dN}{dM_{\text{diff}}}(205 \text{ GeV})}{43.94\pm 2.08\pm 1.77}$ $17.57\pm 1.36\pm 0.43$	$\frac{\frac{1}{N}\frac{dN}{dM_{\text{diff}}}(207 \text{ GeV})}{44.31\pm 1.58\pm 1.79}$ $16.16\pm 1.01\pm 0.40$
$M_{ m diff}$ 0.005 0.015 0.025	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (202 \text{ GeV})}{40.70 \pm 2.69 \pm 1.63}$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (205 \text{ GeV})}{43.94 \pm 2.08 \pm 1.77}$ $17.57 \pm 1.36 \pm 0.43$ $10.17 \pm 1.04 \pm 0.18$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm diff}} \left(207 \text{ GeV} \right)}{44.31 \pm 1.58 \pm 1.79}$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$
$M_{ m diff}$ 0.005 0.015 0.025 0.035	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{aiff}}} (202 \text{ GeV})}{40.70 \pm 2.69 \pm 1.63}$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (205 \text{ GeV})}{43.94 \pm 2.08 \pm 1.77}$ $17.57 \pm 1.36 \pm 0.43$ $10.17 \pm 1.04 \pm 0.18$ $7.16 \pm 0.87 \pm 0.33$	$\frac{\frac{1}{N} \frac{dN}{dM_{\rm diff}} \left(207 \text{ GeV} \right)}{44.31 \pm 1.58 \pm 1.79}$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{aiff}}} (202 \text{ GeV})}{40.70 \pm 2.69 \pm 1.63}$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (205 \text{ GeV})}{43.94 \pm 2.08 \pm 1.77}$ $17.57 \pm 1.36 \pm 0.43$ $10.17 \pm 1.04 \pm 0.18$ $7.16 \pm 0.87 \pm 0.33$ $3.58 \pm 0.46 \pm 0.18$	$\frac{\frac{1}{N} \frac{dN}{dM_{4:\rm ff}} (207 \text{ GeV})}{44.31 \pm 1.58 \pm 1.79}$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$ $3.95 \pm 0.36 \pm 0.20$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \\ 0.070 \end{array}$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})}{45.49 \pm 2.00 \pm 1.82}$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$ $1.88 \pm 0.33 \pm 0.11$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{aiff}}} (202 \text{ GeV})}{40.70 \pm 2.69 \pm 1.63}$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$ $2.52 \pm 0.50 \pm 0.15$	$\frac{\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (205 \text{ GeV})}{43.94 \pm 2.08 \pm 1.77}$ $17.57 \pm 1.36 \pm 0.43$ $10.17 \pm 1.04 \pm 0.18$ $7.16 \pm 0.87 \pm 0.33$ $3.58 \pm 0.46 \pm 0.18$ $2.91 \pm 0.39 \pm 0.19$	$\frac{\frac{1}{N}}{\frac{dM}{dM_{4:ff}}} \frac{dN}{(207 \text{ GeV})}$ $44.31 \pm 1.58 \pm 1.79$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$ $3.95 \pm 0.36 \pm 0.20$ $2.22 \pm 0.28 \pm 0.15$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \\ 0.070 \\ 0.100 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{diff}} (200 \text{ GeV})$ $45.49 \pm 2.00 \pm 1.82$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$ $1.88 \pm 0.33 \pm 0.11$ $1.62 \pm 0.21 \pm 0.02$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (202 \text{ GeV})$ $40.70 \pm 2.69 \pm 1.63$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$ $2.52 \pm 0.50 \pm 0.15$ $1.55 \pm 0.30 \pm 0.02$	$\frac{\frac{1}{N} \frac{dN}{dM_{diff}} (205 \text{ GeV})}{43.94 \pm 2.08 \pm 1.77}$ $17.57 \pm 1.36 \pm 0.43$ $10.17 \pm 1.04 \pm 0.18$ $7.16 \pm 0.87 \pm 0.33$ $3.58 \pm 0.46 \pm 0.18$ $2.91 \pm 0.39 \pm 0.19$ $1.08 \pm 0.19 \pm 0.02$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (207 \text{ GeV})$ $44.31 \pm 1.58 \pm 1.79$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$ $3.95 \pm 0.36 \pm 0.20$ $2.22 \pm 0.28 \pm 0.15$ $1.58 \pm 0.17 \pm 0.02$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \\ 0.070 \\ 0.100 \\ 0.140 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})$ $45.49 \pm 2.00 \pm 1.82$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$ $1.88 \pm 0.33 \pm 0.11$ $1.62 \pm 0.21 \pm 0.02$ $0.88 \pm 0.17 \pm 0.08$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (202 \text{ GeV})$ $40.70 \pm 2.69 \pm 1.63$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$ $2.52 \pm 0.50 \pm 0.15$ $1.55 \pm 0.30 \pm 0.02$ $0.95 \pm 0.26 \pm 0.09$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (205 \text{ GeV})$ $43.94\pm 2.08\pm 1.77$ $17.57\pm 1.36\pm 0.43$ $10.17\pm 1.04\pm 0.18$ $7.16\pm 0.87\pm 0.33$ $3.58\pm 0.46\pm 0.18$ $2.91\pm 0.39\pm 0.19$ $1.08\pm 0.19\pm 0.02$ $0.68\pm 0.19\pm 0.06$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (207 \text{ GeV})$ $44.31\pm 1.58\pm 1.79$ $16.16\pm 1.01\pm 0.40$ $9.59\pm 0.79\pm 0.17$ $6.13\pm 0.61\pm 0.28$ $3.95\pm 0.36\pm 0.20$ $2.22\pm 0.28\pm 0.15$ $1.58\pm 0.17\pm 0.02$ $0.64\pm 0.14\pm 0.06$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \\ 0.070 \\ 0.100 \\ 0.140 \\ 0.180 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})$ $45.49 \pm 2.00 \pm 1.82$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$ $1.88 \pm 0.33 \pm 0.11$ $1.62 \pm 0.21 \pm 0.02$ $0.88 \pm 0.17 \pm 0.08$ $0.36 \pm 0.16 \pm 0.09$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (202 \text{ GeV})$ $40.70 \pm 2.69 \pm 1.63$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$ $2.52 \pm 0.50 \pm 0.15$ $1.55 \pm 0.30 \pm 0.02$ $0.95 \pm 0.26 \pm 0.09$ $0.45 \pm 0.23 \pm 0.12$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (205 \text{ GeV})$ $43.94\pm 2.08\pm 1.77$ $17.57\pm 1.36\pm 0.43$ $10.17\pm 1.04\pm 0.18$ $7.16\pm 0.87\pm 0.33$ $3.58\pm 0.46\pm 0.18$ $2.91\pm 0.39\pm 0.19$ $1.08\pm 0.19\pm 0.02$ $0.68\pm 0.19\pm 0.06$ $0.14\pm 0.16\pm 0.04$	$\frac{1}{N} \frac{dN}{dM_{\rm diff}} (207 \text{ GeV})$ $44.31 \pm 1.58 \pm 1.79$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$ $3.95 \pm 0.36 \pm 0.20$ $2.22 \pm 0.28 \pm 0.15$ $1.58 \pm 0.17 \pm 0.02$ $0.64 \pm 0.14 \pm 0.06$ $0.35 \pm 0.13 \pm 0.10$
$\begin{array}{c} M_{\rm diff} \\ 0.005 \\ 0.015 \\ 0.025 \\ 0.035 \\ 0.050 \\ 0.070 \\ 0.100 \\ 0.140 \\ 0.180 \\ 0.225 \end{array}$	$\frac{1}{N} \frac{dN}{dM_{\text{diff}}} (200 \text{ GeV})$ $45.49 \pm 2.00 \pm 1.82$ $15.46 \pm 1.22 \pm 0.37$ $8.95 \pm 0.91 \pm 0.15$ $6.10 \pm 0.81 \pm 0.28$ $4.32 \pm 0.47 \pm 0.21$ $1.88 \pm 0.33 \pm 0.11$ $1.62 \pm 0.21 \pm 0.02$ $0.88 \pm 0.17 \pm 0.08$ $0.36 \pm 0.16 \pm 0.09$ $0.05 \pm 0.12 \pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (202 \text{ GeV})$ $40.70 \pm 2.69 \pm 1.63$ $20.11 \pm 1.92 \pm 0.49$ $7.80 \pm 1.21 \pm 0.13$ $5.51 \pm 1.11 \pm 0.25$ $4.69 \pm 0.66 \pm 0.23$ $2.52 \pm 0.50 \pm 0.15$ $1.55 \pm 0.30 \pm 0.02$ $0.95 \pm 0.26 \pm 0.09$ $0.45 \pm 0.23 \pm 0.12$ $0.07 \pm 0.17 \pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{\text{Aiff}}} (205 \text{ GeV})$ $43.94\pm 2.08\pm 1.77$ $17.57\pm 1.36\pm 0.43$ $10.17\pm 1.04\pm 0.18$ $7.16\pm 0.87\pm 0.33$ $3.58\pm 0.46\pm 0.18$ $2.91\pm 0.39\pm 0.19$ $1.08\pm 0.19\pm 0.02$ $0.68\pm 0.19\pm 0.06$ $0.14\pm 0.16\pm 0.04$ $0.01\pm 0.13\pm 0.01$	$\frac{1}{N} \frac{dN}{dM_{4iff}} (207 \text{ GeV})$ $44.31 \pm 1.58 \pm 1.79$ $16.16 \pm 1.01 \pm 0.40$ $9.59 \pm 0.79 \pm 0.17$ $6.13 \pm 0.61 \pm 0.28$ $3.95 \pm 0.36 \pm 0.20$ $2.22 \pm 0.28 \pm 0.15$ $1.58 \pm 0.17 \pm 0.02$ $0.64 \pm 0.14 \pm 0.06$ $0.35 \pm 0.13 \pm 0.10$ $0.10 \pm 0.10 \pm 0.01$

Sphericity	$\frac{1}{N} \frac{dN}{dS} (183 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dS} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dS} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dS}$ (196 GeV)
0.005	$36.70 \pm 1.89 \pm 1.30$	$33.39 \pm 1.12 \pm 1.19$	$35.99 \pm 2.96 \pm 1.28$	$37.57 \pm 1.86 \pm 1.34$
0.015	$13.73 \pm 1.29 \pm 0.32$	$16.67 \pm 0.86 \pm 0.41$	$13.80 \pm 2.00 \pm 0.34$	$16.47 \pm 1.36 \pm 0.42$
0.025	$8.97 \pm 1.04 \pm 0.26$	$9.44 \pm 0.66 \pm 0.29$	$9.92 \pm 1.69 \pm 0.31$	$8.01 \pm 0.96 \pm 0.26$
0.035	$7.21 \pm 0.91 \pm 0.20$	$5.64 \pm 0.53 \pm 0.16$	$6.87 \pm 1.37 \pm 0.19$	$4.70 \pm 0.76 \pm 0.13$
0.045	$3.96 \pm 0.68 \pm 0.09$	$4.62 \pm 0.45 \pm 0.11$	$4.33 \pm 1.09 \pm 0.10$	$4.07 \pm 0.67 \pm 0.10$
0.055	$3.81 \pm 0.64 \pm 0.18$	$4.09 \pm 0.41 \pm 0.22$	$3.55 \pm 1.00 \pm 0.20$	$4.48 \pm 0.72 \pm 0.26$
0.070	$2.71 \pm 0.39 \pm 0.10$	$3.10 \pm 0.26 \pm 0.12$	$2.45 \pm 0.60 \pm 0.10$	$2.49 \pm 0.39 \pm 0.10$
0.090	$1.77 \pm 0.33 \pm 0.05$	$1.87 \pm 0.20 \pm 0.06$	$1.72\pm~0.50\pm~0.06$	$1.25 \pm 0.27 \pm 0.05$
0.110	$0.98 \pm 0.24 \pm 0.05$	$1.15 \pm 0.17 \pm 0.07$	$1.51 \pm 0.47 \pm 0.10$	$1.04 \pm 0.27 \pm 0.07$
0.140	$1.02 \pm 0.17 \pm 0.03$	$0.91 \pm 0.10 \pm 0.03$	$1.30 \pm 0.29 \pm 0.04$	$0.92 \pm 0.17 \pm 0.03$
0.180	$0.61 \pm 0.14 \pm 0.03$	$0.71 \pm 0.09 \pm 0.04$	$0.72 \pm 0.23 \pm 0.04$	$1.09 \pm 0.17 \pm 0.06$
0.225	$0.61 \pm 0.11 \pm 0.06$	$0.35 \pm 0.07 \pm 0.04$	$0.22 \pm 0.13 \pm 0.02$	$0.45 \pm 0.11 \pm 0.05$
0.275	$0.20 \pm 0.08 \pm 0.02$	$0.24 \pm 0.05 \pm 0.02$	$0.23 \pm 0.13 \pm 0.02$	$0.24 \pm 0.09 \pm 0.02$
0.325	$0.21 \pm 0.08 \pm 0.20$	$0.03 \pm 0.04 \pm 0.03$	$0.14 \pm 0.12 \pm 0.16$	$0.28 \pm 0.10 \pm 0.33$
0.375	$0.21 \pm 0.07 \pm 0.02$	$0.17 \pm 0.05 \pm 0.02$	$0.00\pm~0.10\pm~0.00$	$0.05 \pm 0.07 \pm 0.01$
0.450	$0.15 \pm 0.05 \pm 0.03$	$0.13 \pm 0.03 \pm 0.03$	$0.14 \pm \ 0.08 \pm \ 0.04$	$0.11 \pm 0.05 \pm 0.03$
0.550	$0.01 \pm 0.03 \pm 0.00$	$0.07 \pm 0.03 \pm 0.03$	$0.17 \pm \ 0.09 \pm \ 0.08$	$0.13 \pm 0.05 \pm 0.06$
Sphericity	$\frac{1}{N}\frac{dN}{dS}(200 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dS}$ (202 GeV)	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$
Sphericity 0.005	$\frac{\frac{1}{N}\frac{dN}{dS}(200 \text{ GeV})}{36.45 \pm 1.78 \pm 1.30}$	$\frac{\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})}{35.21 \pm 2.43 \pm 1.26}$	$\frac{\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})}{35.16 \pm 1.85 \pm 1.26}$	$\frac{\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})}{36.83 \pm 1.44 \pm 1.32}$
Sphericity 0.005 0.015	$\frac{\frac{1}{N}\frac{dN}{dS}(200 \text{ GeV})}{36.45 \pm 1.78 \pm 1.30}$ $17.42 \pm 1.34 \pm 0.46$	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34	$\frac{\frac{1}{N}\frac{dN}{dS}(205 \text{ GeV})}{35.16\pm 1.85\pm 1.26}$ $16.50\pm 1.38\pm 0.46$	$\frac{\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})}{36.83 \pm 1.44 \pm 1.32}$ $15.60 \pm 1.02 \pm 0.44$
Sphericity 0.005 0.015 0.025	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30
Sphericity 0.005 0.015 0.025 0.035	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17
Sphericity 0.005 0.015 0.025 0.035 0.045	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ $36.83 \pm 1.44 \pm 1.32$ $15.60 \pm 1.02 \pm 0.44$ $8.64 \pm 0.77 \pm 0.30$ $6.11 \pm 0.65 \pm 0.17$ $4.94 \pm 0.57 \pm 0.12$ $3.53 \pm 0.49 \pm 0.23$
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03 0.47± 0.10± 0.06	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03 0.76± 0.17± 0.09	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04 0.43± 0.12± 0.05	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04 0.46± 0.09± 0.06
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.275	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03 0.47± 0.10± 0.06 0.27± 0.09± 0.02	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03 0.76± 0.17± 0.09 0.24± 0.14± 0.02	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04 0.43± 0.12± 0.05 0.34± 0.11± 0.03	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04 0.46± 0.09± 0.06 0.37± 0.09± 0.04
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.275 0.325	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03 0.47± 0.10± 0.06 0.27± 0.09± 0.02 0.31± 0.09± 0.40	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03 0.76± 0.17± 0.09 0.24± 0.14± 0.22 0.30± 0.13± 0.39	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04 0.43± 0.12± 0.05 0.34± 0.11± 0.03 0.10± 0.09± 0.13	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04 0.46± 0.09± 0.06 0.37± 0.09± 0.04 0.36± 0.08± 0.52
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.275 0.325 0.375	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03 0.47± 0.10± 0.06 0.27± 0.09± 0.02 0.31± 0.09± 0.40 0.16± 0.09± 0.02	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03 0.76± 0.17± 0.09 0.24± 0.14± 0.02 0.30± 0.13± 0.39 0.11± 0.11± 0.01	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04 0.43± 0.12± 0.05 0.34± 0.11± 0.03 0.10± 0.09± 0.13 0.24± 0.10± 0.02	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04 0.46± 0.09± 0.06 0.37± 0.09± 0.04 0.36± 0.08± 0.52 0.23± 0.08± 0.02
Sphericity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.325 0.375 0.375 0.450	$\frac{1}{N} \frac{dN}{dS} (200 \text{ GeV})$ 36.45± 1.78± 1.30 17.42± 1.34± 0.46 8.46± 0.93± 0.28 5.14± 0.77± 0.15 4.28± 0.70± 0.10 3.44± 0.60± 0.21 2.02± 0.33± 0.08 2.22± 0.34± 0.09 0.87± 0.23± 0.06 1.06± 0.17± 0.03 0.56± 0.13± 0.03 0.47± 0.10± 0.06 0.27± 0.09± 0.02 0.31± 0.09± 0.40 0.16± 0.09± 0.02 0.22± 0.06± 0.06	$\frac{1}{N} \frac{dN}{dS} (202 \text{ GeV})$ 35.21± 2.43± 1.26 12.79± 1.67± 0.34 10.18± 1.45± 0.34 6.92± 1.23± 0.20 5.77± 1.08± 0.14 3.06± 0.83± 0.19 3.01± 0.55± 0.13 1.81± 0.45± 0.07 1.72± 0.41± 0.12 0.80± 0.23± 0.02 0.51± 0.18± 0.03 0.76± 0.17± 0.09 0.24± 0.14± 0.02 0.30± 0.13± 0.39 0.11± 0.11± 0.01 -0.11± 0.06± 0.03	$\frac{1}{N} \frac{dN}{dS} (205 \text{ GeV})$ 35.16± 1.85± 1.26 16.50± 1.38± 0.46 9.68± 1.05± 0.33 6.09± 0.88± 0.17 5.36± 0.76± 0.13 2.81± 0.58± 0.18 3.00± 0.41± 0.13 1.56± 0.32± 0.07 0.95± 0.26± 0.07 0.86± 0.17± 0.03 0.77± 0.15± 0.04 0.43± 0.12± 0.05 0.34± 0.11± 0.03 0.10± 0.09± 0.13 0.24± 0.10± 0.02 0.00± 0.05± 0.00	$\frac{1}{N} \frac{dN}{dS} (207 \text{ GeV})$ 36.83± 1.44± 1.32 15.60± 1.02± 0.44 8.64± 0.77± 0.30 6.11± 0.65± 0.17 4.94± 0.57± 0.12 3.53± 0.49± 0.23 2.64± 0.30± 0.12 2.08± 0.26± 0.09 0.99± 0.19± 0.08 0.72± 0.12± 0.02 0.62± 0.11± 0.04 0.46± 0.09± 0.06 0.37± 0.09± 0.04 0.36± 0.08± 0.52 0.23± 0.08± 0.02 0.07± 0.04± 0.02
Planarity	$\frac{1}{N} \frac{dN}{dP}$ (183 GeV)	$\frac{1}{N} \frac{dN}{dP} (189 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dP} (192 \text{ GeV})$	$\frac{1}{N} \frac{dN}{dP} (196 \text{ GeV})$
---	--	--	---	---
0.005	$50.98 \pm 2.37 \pm 0.70$	$50.90 \pm 1.46 \pm 0.73$	$51.41 \pm 3.71 \pm 0.75$	$51.46 \pm 2.32 \pm 0.76$
0.015	$12.41 \pm 1.19 \pm 0.28$	$13.17 \pm 0.76 \pm 0.30$	$11.55 \pm 1.83 \pm 0.26$	$12.91 \pm 1.18 \pm 0.29$
0.025	$7.66 \pm 0.89 \pm 0.25$	$7.05 \pm 0.55 \pm 0.23$	$9.07 \pm 1.54 \pm 0.29$	$5.67 \pm 0.82 \pm 0.18$
0.035	$4.62 \pm 0.73 \pm 0.13$	$4.90 \pm 0.45 \pm 0.14$	$4.09 \pm 1.03 \pm 0.12$	$4.84 \pm 0.74 \pm 0.15$
0.045	$4.12 \pm 0.67 \pm 0.13$	$3.60 \pm 0.40 \pm 0.12$	$2.55 \pm 0.90 \pm 0.09$	$2.60 \pm 0.56 \pm 0.09$
0.055	$1.23 \pm 0.40 \pm 0.09$	$2.25 \pm 0.32 \pm 0.18$	$2.74 \pm 0.86 \pm 0.24$	$2.11 \pm 0.52 \pm 0.19$
0.070	$1.76\pm0.30\pm0.04$	$1.59 \pm 0.20 \pm 0.04$	$2.35 \pm 0.56 \pm 0.07$	$1.65 \pm 0.33 \pm 0.05$
0.090	$1.38 \pm 0.28 \pm 0.06$	$1.14 \pm 0.17 \pm 0.05$	$1.66 \pm 0.48 \pm 0.07$	$1.52 \pm 0.31 \pm 0.07$
0.110	$0.57 \pm 0.20 \pm 0.05$	$0.88 \pm 0.15 \pm 0.09$	$0.45 \pm 0.31 \pm 0.04$	$1.19 \pm 0.27 \pm 0.12$
0.140	$0.80 \pm 0.15 \pm 0.08$	$0.53 \pm 0.09 \pm 0.05$	$0.35 \pm 0.20 \pm 0.04$	$0.51 \pm 0.14 \pm 0.05$
0.180	$0.31 \pm 0.11 \pm 0.04$	$0.31 \pm 0.07 \pm 0.04$	$0.38 \pm 0.20 \pm 0.05$	$0.38 \pm 0.13 \pm 0.06$
0.225	$0.28 \pm 0.09 \pm 0.10$	$0.03 \pm 0.05 \pm 0.01$	$0.05 \pm 0.13 \pm 0.02$	$0.26 \pm 0.11 \pm 0.12$
0.275	$0.16 \pm \ 0.08 \pm \ 0.02$	$0.20 \pm 0.06 \pm 0.03$	$0.27 \pm 0.15 \pm 0.05$	$0.01 \pm 0.08 \pm 0.00$
0.325	$-0.03 \pm 0.05 \pm 0.00$	$0.10\pm~0.05\pm~0.01$	$0.10\pm$ $0.12\pm$ 0.01	$0.30 \pm 0.09 \pm 0.03$
0.375	$0.14 \pm 0.06 \pm 0.03$	$0.11 \pm 0.04 \pm 0.03$	$0.01 \pm 0.09 \pm 0.01$	$0.09 \pm 0.06 \pm 0.03$
Planarity	$\frac{1}{N}\frac{dN}{dP}(200 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dP}(202 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dP}$ (205 GeV)	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$
Planarity 0.005	$\frac{\frac{1}{N}\frac{dN}{dP}(200 \text{ GeV})}{53.98 \pm 2.27 \pm 0.82}$	$\frac{\frac{1}{N}\frac{dN}{dP}(202 \text{ GeV})}{51.24 \pm 3.12 \pm 0.78}$	$\frac{\frac{1}{N}\frac{dN}{dP}(205 \text{ GeV})}{52.88 \pm 2.37 \pm 0.83}$	$\frac{\frac{1}{N}\frac{dN}{dP}(207 \text{ GeV})}{52.00 \pm 1.80 \pm 0.83}$
Planarity 0.005 0.015	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27	$\frac{\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})}{51.24 \pm 3.12 \pm 0.78}$ $12.12 \pm 1.59 \pm 0.28$	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29	$\frac{\frac{1}{N}\frac{dN}{dP}(207 \text{ GeV})}{52.00 \pm 1.80 \pm 0.83}$ $11.91 \pm 0.90 \pm 0.27$
Planarity 0.005 0.015 0.025	$\frac{\frac{1}{N}\frac{dN}{dP}(200 \text{ GeV})}{53.98 \pm 2.27 \pm 0.82}$ $11.79 \pm 1.11 \pm 0.27$ $6.09 \pm 0.81 \pm 0.20$	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22
Planarity 0.005 0.015 0.025 0.035	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17
Planarity 0.005 0.015 0.025 0.035 0.045	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14
Planarity 0.005 0.015 0.025 0.035 0.045 0.055	$\frac{\frac{1}{N}\frac{dN}{dP}(200 \text{ GeV})}{\frac{53.98\pm}{2.27\pm}0.82}$ 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070	$\frac{\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})}{53.98 \pm 2.27 \pm 0.82}$ 11.79 ± 1.11 ± 0.27 6.09 ± 0.81 ± 0.20 4.62 ± 0.70 ± 0.14 3.39 ± 0.59 ± 0.13 1.91 ± 0.46 ± 0.18 1.51 ± 0.30 ± 0.05	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07 0.42± 0.13± 0.04	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13 0.38± 0.20± 0.04	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08 0.36± 0.15± 0.04	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10 0.62± 0.13± 0.07
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07 0.42± 0.13± 0.04 0.68± 0.15± 0.10	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13 0.38± 0.20± 0.04 0.68± 0.22± 0.10	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08 0.36± 0.15± 0.04 0.52± 0.16± 0.09	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10 0.62± 0.13± 0.07 0.60± 0.12± 0.10
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07 0.42± 0.13± 0.04 0.68± 0.15± 0.10 0.23± 0.10± 0.11	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13 0.38± 0.20± 0.04 0.68± 0.22± 0.10 0.20± 0.14± 0.10	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08 0.36± 0.15± 0.04 0.52± 0.16± 0.09 0.12± 0.11± 0.06	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10 0.62± 0.13± 0.07 0.60± 0.12± 0.10 0.24± 0.09± 0.13
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.275	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07 0.42± 0.13± 0.04 0.68± 0.15± 0.10 0.23± 0.10± 0.11 0.14± 0.09± 0.03	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13 0.38± 0.20± 0.04 0.68± 0.22± 0.10 0.20± 0.14± 0.10 -0.10± 0.10± 0.02	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08 0.36± 0.15± 0.04 0.52± 0.16± 0.09 0.12± 0.11± 0.06 -0.10± 0.08± 0.02	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10 0.62± 0.13± 0.07 0.60± 0.12± 0.10 0.24± 0.09± 0.13 0.13± 0.07± 0.03
Planarity 0.005 0.015 0.025 0.035 0.045 0.055 0.070 0.090 0.110 0.140 0.180 0.225 0.275 0.325	$\frac{1}{N} \frac{dN}{dP} (200 \text{ GeV})$ 53.98± 2.27± 0.82 11.79± 1.11± 0.27 6.09± 0.81± 0.20 4.62± 0.70± 0.14 3.39± 0.59± 0.13 1.91± 0.46± 0.18 1.51± 0.30± 0.05 1.59± 0.29± 0.07 0.74± 0.22± 0.07 0.42± 0.13± 0.04 0.68± 0.15± 0.10 0.23± 0.10± 0.11 0.14± 0.09± 0.03 -0.11± 0.06± 0.01	$\frac{1}{N} \frac{dN}{dP} (202 \text{ GeV})$ 51.24± 3.12± 0.78 12.12± 1.59± 0.28 8.36± 1.28± 0.27 5.05± 1.04± 0.16 3.21± 0.79± 0.12 3.81± 0.94± 0.37 1.75± 0.44± 0.06 0.69± 0.34± 0.03 1.31± 0.37± 0.13 0.38± 0.20± 0.04 0.68± 0.22± 0.10 0.20± 0.14± 0.10 -0.10± 0.10± 0.02 0.06± 0.10± 0.01	$\frac{1}{N} \frac{dN}{dP} (205 \text{ GeV})$ 52.88± 2.37± 0.83 12.43± 1.21± 0.29 7.73± 0.93± 0.25 4.72± 0.74± 0.15 3.74± 0.63± 0.15 2.10± 0.53± 0.22 1.10± 0.30± 0.04 1.93± 0.34± 0.09 0.81± 0.25± 0.08 0.36± 0.15± 0.04 0.52± 0.16± 0.09 0.12± 0.11± 0.06 -0.10± 0.08± 0.02 -0.06± 0.07± 0.01	$\frac{1}{N} \frac{dN}{dP} (207 \text{ GeV})$ 52.00± 1.80± 0.83 11.91± 0.90± 0.27 6.86± 0.66± 0.22 5.25± 0.58± 0.17 3.46± 0.48± 0.14 2.08± 0.38± 0.22 1.44± 0.24± 0.05 0.94± 0.21± 0.05 0.99± 0.20± 0.10 0.62± 0.13± 0.07 0.60± 0.12± 0.10 0.24± 0.09± 0.13 0.13± 0.07± 0.03 0.01± 0.05± 0.01

Aplanarity	$\frac{1}{N}\frac{dN}{dA}$ (183 GeV)	$\frac{1}{N}\frac{dN}{dA}$ (189 GeV)	$\frac{1}{N} \frac{dN}{dA} (192 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dA}$ (196 GeV)
0.002	$134.93 \pm 5.34 \pm 0.48$	$131.21 \pm 3.30 \pm 0.48$	$133.55 \pm 8.32 \pm 0.50$	$136.14 \pm 5.26 \pm 0.51$
0.007	$29.05 \pm 2.72 \pm 0.79$	$32.80 \pm 1.78 \pm 0.89$	$31.05 \pm 4.43 \pm 0.85$	$27.23 \pm 2.74 \pm 0.74$
0.013	$12.43 \pm 1.81 \pm 0.55$	$14.51 \pm 1.23 \pm 0.70$	$13.25 \pm 2.95 \pm 0.67$	$13.73 \pm 1.91 \pm 0.73$
0.018	$6.55 \pm 1.28 \pm 0.11$	$5.75 \pm 0.78 \pm 0.11$	$7.30\pm$ $2.12\pm$ 0.14	$8.59 \pm 1.45 \pm 0.17$
0.025	$3.81 \pm 0.67 \pm 0.21$	$3.24 \pm 0.41 \pm 0.20$	$3.36 \pm 1.03 \pm 0.22$	$3.17 \pm 0.69 \pm 0.22$
0.035	$2.16 \pm 0.48 \pm 0.18$	$1.13 \pm 0.27 \pm 0.10$	$1.27 \pm 0.71 \pm 0.11$	$1.55 \pm 0.48 \pm 0.13$
0.050	$1.05 \pm 0.22 \pm 0.10$	$0.44 \pm 0.12 \pm 0.04$	$0.87 \pm 0.37 \pm 0.09$	$1.02\pm~0.26\pm~0.10$
0.070	$0.24 \pm 0.11 \pm 0.06$	$0.28 \pm 0.09 \pm 0.08$	$0.50 \pm 0.28 \pm 0.15$	$0.10\pm~0.16\pm~0.03$
0.090	$0.38 \pm 0.11 \pm 0.08$	$0.12 \pm 0.07 \pm 0.03$	$0.10 \pm 0.18 \pm 0.02$	$0.64 \pm 0.16 \pm 0.15$
0.110	$-0.03 \pm 0.05 \pm 0.04$	$0.04 \pm 0.05 \pm 0.07$	$0.30 \pm 0.18 \pm 0.52$	$-1.03 \pm 0.07 \pm 1.87$
0.140	$0.20 \pm 0.05 \pm 0.18$	$-0.05 \pm 0.02 \pm 0.05$	$-0.23 \pm 0.00 \pm 0.24$	$-0.16 \pm 0.04 \pm 0.18$
Aplanarity	$\frac{1}{N}\frac{dN}{dA}(200 \text{ GeV})$	$\frac{1}{N}\frac{dN}{dA}$ (202 GeV)	$\frac{1}{N}\frac{dN}{dA}$ (205 GeV)	$\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})$
Aplanarity 0.002	$\frac{\frac{1}{N}\frac{dN}{dA}(200 \text{ GeV})}{136.50 \pm 5.10 \pm 0.52}$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm 7.08\pm 0.51}$	$\frac{\frac{1}{N}\frac{dN}{dA}(205 \text{ GeV})}{138.13 \pm 5.41 \pm 0.54}$	$\frac{\frac{1}{N}\frac{dN}{dA}(207 \text{ GeV})}{139.21 \pm 4.14 \pm 0.55}$
Aplanarity 0.002 0.007	$\frac{\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})}{136.50 \pm 5.10 \pm 0.52}$ $30.94 \pm 2.69 \pm 0.84$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm7.08\pm0.51}$ $34.05\pm4.04\pm0.93$	$\frac{\frac{1}{N}\frac{dN}{dA}(205 \text{ GeV})}{138.13\pm 5.41\pm 0.54}$ $28.79\pm 2.82\pm 0.78$	$\frac{\frac{1}{N}\frac{dN}{dA}(207 \text{ GeV})}{139.21 \pm 4.14 \pm 0.55}$ $29.67 \pm 2.16 \pm 0.81$
Aplanarity 0.002 0.007 0.013	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm 7.08\pm 0.51}$ $34.05\pm 4.04\pm 0.93$ $10.06\pm 2.26\pm 0.57$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$	$\frac{\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})}{139.21 \pm 4.14 \pm 0.55}$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$
Aplanarity 0.002 0.007 0.013 0.018	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm7.08\pm0.51}$ $34.05\pm4.04\pm0.93$ $10.06\pm2.26\pm0.57$ $5.31\pm1.77\pm0.11$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ 138.13± 5.41± 0.54 28.79± 2.82± 0.78 13.85± 1.94± 0.83 4.10± 1.20± 0.09	$\frac{\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})}{139.21 \pm 4.14 \pm 0.55}$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$ $7.35 \pm 1.09 \pm 0.17$
Aplanarity 0.002 0.007 0.013 0.018 0.025	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm7.08\pm0.51}$ $34.05\pm4.04\pm0.93$ $10.06\pm2.26\pm0.57$ $5.31\pm1.77\pm0.11$ $3.44\pm0.94\pm0.26$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ 138.13± 5.41± 0.54 28.79± 2.82± 0.78 13.85± 1.94± 0.83 4.10± 1.20± 0.09 2.40± 0.68± 0.19	$\frac{\frac{1}{N}\frac{dN}{dA}(207 \text{ GeV})}{139.21\pm 4.14\pm 0.55}$ 29.67± 2.16± 0.81 12.60± 1.42± 0.77 7.35± 1.09± 0.17 2.17± 0.50± 0.18
Aplanarity 0.002 0.007 0.013 0.018 0.025 0.035	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$ $2.29 \pm 0.52 \pm 0.20$	$\frac{\frac{1}{N}\frac{dN}{dA}(202 \text{ GeV})}{132.25\pm7.08\pm0.51}$ $34.05\pm4.04\pm0.93$ $10.06\pm2.26\pm0.57$ $5.31\pm1.77\pm0.11$ $3.44\pm0.94\pm0.26$ $2.27\pm0.72\pm0.20$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$ $4.10 \pm 1.20 \pm 0.09$ $2.40 \pm 0.68 \pm 0.19$ $1.97 \pm 0.53 \pm 0.17$	$\frac{\frac{1}{N}\frac{dN}{dA}(207 \text{ GeV})}{139.21\pm 4.14\pm 0.55}$ 29.67± 2.16± 0.81 12.60± 1.42± 0.77 7.35± 1.09± 0.17 2.17± 0.50± 0.18 1.00± 0.35± 0.09
Aplanarity 0.002 0.007 0.013 0.018 0.025 0.035 0.050	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$ $2.29 \pm 0.52 \pm 0.20$ $0.66 \pm 0.23 \pm 0.07$	$\frac{1}{N} \frac{dN}{dA} (202 \text{ GeV})$ $132.25 \pm 7.08 \pm 0.51$ $34.05 \pm 4.04 \pm 0.93$ $10.06 \pm 2.26 \pm 0.57$ $5.31 \pm 1.77 \pm 0.11$ $3.44 \pm 0.94 \pm 0.26$ $2.27 \pm 0.72 \pm 0.20$ $1.31 \pm 0.36 \pm 0.14$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$ $4.10 \pm 1.20 \pm 0.09$ $2.40 \pm 0.68 \pm 0.19$ $1.97 \pm 0.53 \pm 0.17$ $1.11 \pm 0.28 \pm 0.12$	$\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})$ $139.21 \pm 4.14 \pm 0.55$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$ $7.35 \pm 1.09 \pm 0.17$ $2.17 \pm 0.50 \pm 0.18$ $1.00 \pm 0.35 \pm 0.09$ $0.97 \pm 0.20 \pm 0.10$
Aplanarity 0.002 0.007 0.013 0.018 0.025 0.035 0.035 0.050 0.070	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$ $2.29 \pm 0.52 \pm 0.20$ $0.66 \pm 0.23 \pm 0.07$ $0.61 \pm 0.19 \pm 0.19$	$\frac{1}{N} \frac{dN}{dA} (202 \text{ GeV})$ $132.25 \pm 7.08 \pm 0.51$ $34.05 \pm 4.04 \pm 0.93$ $10.06 \pm 2.26 \pm 0.57$ $5.31 \pm 1.77 \pm 0.11$ $3.44 \pm 0.94 \pm 0.26$ $2.27 \pm 0.72 \pm 0.20$ $1.31 \pm 0.36 \pm 0.14$ $0.15 \pm 0.24 \pm 0.05$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$ $4.10 \pm 1.20 \pm 0.09$ $2.40 \pm 0.68 \pm 0.19$ $1.97 \pm 0.53 \pm 0.17$ $1.11 \pm 0.28 \pm 0.12$ $-0.12 \pm 0.16 \pm 0.04$	$\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})$ $139.21 \pm 4.14 \pm 0.55$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$ $7.35 \pm 1.09 \pm 0.17$ $2.17 \pm 0.50 \pm 0.18$ $1.00 \pm 0.35 \pm 0.09$ $0.97 \pm 0.20 \pm 0.10$ $0.32 \pm 0.14 \pm 0.11$
Aplanarity 0.002 0.007 0.013 0.018 0.025 0.035 0.050 0.050 0.070 0.090	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$ $2.29 \pm 0.52 \pm 0.20$ $0.66 \pm 0.23 \pm 0.07$ $0.61 \pm 0.19 \pm 0.19$ $-0.16 \pm 0.10 \pm 0.04$	$\frac{1}{N} \frac{dN}{dA} (202 \text{ GeV})$ $132.25 \pm 7.08 \pm 0.51$ $34.05 \pm 4.04 \pm 0.93$ $10.06 \pm 2.26 \pm 0.57$ $5.31 \pm 1.77 \pm 0.11$ $3.44 \pm 0.94 \pm 0.26$ $2.27 \pm 0.72 \pm 0.20$ $1.31 \pm 0.36 \pm 0.14$ $0.15 \pm 0.24 \pm 0.05$ $-1.79 \pm 0.13 \pm 0.43$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$ $4.10 \pm 1.20 \pm 0.09$ $2.40 \pm 0.68 \pm 0.19$ $1.97 \pm 0.53 \pm 0.17$ $1.11 \pm 0.28 \pm 0.12$ $-0.12 \pm 0.16 \pm 0.04$ $0.10 \pm 0.14 \pm 0.02$	$\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})$ $139.21 \pm 4.14 \pm 0.55$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$ $7.35 \pm 1.09 \pm 0.17$ $2.17 \pm 0.50 \pm 0.18$ $1.00 \pm 0.35 \pm 0.09$ $0.97 \pm 0.20 \pm 0.10$ $0.32 \pm 0.14 \pm 0.11$ $0.20 \pm 0.11 \pm 0.05$
Aplanarity 0.002 0.007 0.013 0.018 0.025 0.035 0.050 0.050 0.070 0.090 0.110	$\frac{1}{N} \frac{dN}{dA} (200 \text{ GeV})$ $136.50 \pm 5.10 \pm 0.52$ $30.94 \pm 2.69 \pm 0.84$ $13.47 \pm 1.84 \pm 0.75$ $3.27 \pm 1.03 \pm 0.07$ $3.21 \pm 0.65 \pm 0.24$ $2.29 \pm 0.52 \pm 0.20$ $0.66 \pm 0.23 \pm 0.07$ $0.61 \pm 0.19 \pm 0.19$ $-0.16 \pm 0.10 \pm 0.04$ $-0.34 \pm 0.09 \pm 0.65$	$\frac{1}{N} \frac{dN}{dA} (202 \text{ GeV})$ $132.25 \pm 7.08 \pm 0.51$ $34.05 \pm 4.04 \pm 0.93$ $10.06 \pm 2.26 \pm 0.57$ $5.31 \pm 1.77 \pm 0.11$ $3.44 \pm 0.94 \pm 0.26$ $2.27 \pm 0.72 \pm 0.20$ $1.31 \pm 0.36 \pm 0.14$ $0.15 \pm 0.24 \pm 0.05$ $-1.79 \pm 0.13 \pm 0.43$ $-0.17 \pm 0.13 \pm 0.33$	$\frac{1}{N} \frac{dN}{dA} (205 \text{ GeV})$ $138.13 \pm 5.41 \pm 0.54$ $28.79 \pm 2.82 \pm 0.78$ $13.85 \pm 1.94 \pm 0.83$ $4.10 \pm 1.20 \pm 0.09$ $2.40 \pm 0.68 \pm 0.19$ $1.97 \pm 0.53 \pm 0.17$ $1.11 \pm 0.28 \pm 0.12$ $-0.12 \pm 0.16 \pm 0.04$ $0.10 \pm 0.14 \pm 0.02$ $-0.05 \pm 0.11 \pm 0.10$	$\frac{1}{N} \frac{dN}{dA} (207 \text{ GeV})$ $139.21 \pm 4.14 \pm 0.55$ $29.67 \pm 2.16 \pm 0.81$ $12.60 \pm 1.42 \pm 0.77$ $7.35 \pm 1.09 \pm 0.17$ $2.17 \pm 0.50 \pm 0.18$ $1.00 \pm 0.35 \pm 0.09$ $0.97 \pm 0.20 \pm 0.10$ $0.32 \pm 0.14 \pm 0.11$ $0.20 \pm 0.11 \pm 0.05$ $-0.97 \pm 0.06 \pm 2.09$

Literaturverzeichnis

- [1] D. Wicke WUB–DIS 99–5
- [2] R. Reinhardt WUB–DIS 01–6
- [3] P. Abreu et al. DELPHI Coll. Energy dependence of eventshapes and of α_s at LEP2, Phys. Let. B456 (1999) 322
- [4] P. Abreu et al. DELPHI Coll. Energy dependence of inclusive spectra in e⁺e⁻ annihilation, Phys. Let. B459 (1999) 397
- [5] J. Abdallah et al. DELPHI Coll. A study of the energy evolution of eventshape distributions and their means with the DELPHI detector at LEP, CERN-EP 296
- [6] S. Glashow Nucl. Phys. 22 (1961) 579
 S. Weinberg Phys. Rev. Lett. 19 (1967) 1264
 A. Salam Phys. Rev. 127 (1962) 331
- [7] H. Fritsche, M. Gell-Mann, H. Leutwyler Phys. Lett. B 47 (1973) 365
 D. J. Gross, F. Wilczek Phys. Rev. D8 (1973) 3633
 D. J Gross, F. Wilczek Phys. Rev. D9 (1974) 980
 H. D. Politzer Phys. Rep. 14(1974) 129
- [8] D. E. Groom et al. Eur. Phys. J. C15 (2000) 1
- [9] R. K. Ellis, W. J. Stirling und B. R. Webber, QCD and collider physics, Cambridge University Press, 1996
- [10] D. T. Barclay und C. J. Maxwell, Testing Perturbative QCD, DTP-92/26
- [11] A. Petermann, Renormalisation Group and the Deep Structure of the Proton, Phys. Rep. 53, 3(1979) 157-248
- [12] E. Leader, E. Predazzi, An Introduction to Gauge Theories and Modern Particle Physics, Cambridge University Press 1996
- [13] B. Foster, Electron-Positron Annihilation Physics, Adam Hilger, Bristol and New York 1990

- [14] DELPHI Coll. P. Abreu et al. CERN-PPE/97-09
- [15] G. Hanson et al. Phys. Rev. Let. **35** (1975) 1609
- [16] G. Salam und D. Wicke Hadron masses and power corrections to event shapes, J. High Energy Phys. 5 (2001) 61
- [17] S. Hahn, A detailed study of perturbative QCD predictions in e^+e^- annihilation and a precise determination of $\alpha_s(M_Z)$, WUB-DIS 2000-6
- [18] S. Catani et al., Phys. Lett. B263(1991) 491
 S. Catani et al., Phys. Lett. B272(1991) 368
- [19] S. Catani et al., Phys. Lett. B295(1992) 269
 S. Catani et al., Nucl. Phys. B407(1993) 3
 Yu. L. Dokshitzer et al., J. High Energy Phys. 1(1998) 11
 S. Catani et al., Phys. Lett. B427(1998) 377
- [20] E. Gardi, Nucl. Phys., B622 (2002) 365
 E. Gardi und J. Rathsman, Nucl. Phys., B609 (2001) 123
- [21] P. M. Stevenson, Phys. Rev. D23 (1981) 2916
 P. M. Stevenson, Nucl. Phys. B231 (1984) 65
- [22] G. Grunnberg, Phys. Lett. B95(1980) 70
 G. Grunnberg, Phys. Rev. D29(1984) 2315
- [23] G. Salam, mündliche Mitteilung sowie hep-ph/0110213
- [24] A. Dhar und V. Gupta, New perturbative approach to renormalizable field theories, Phys. Rev. D29, (1984), 12
 A. Dhar und V. Gupta, Quantum chromodynamics predictions in renormalization scheme invariant perturbation theory, Pramana, Vol. 21 No. 3 (1983)
- [25] W. Celmaster und R. J. Gonzalves, Phys. Rev. D20 (1979) 1420
- [26] E. Gardi und J. Rathsman, mündliche Mitteilung sowie [20]
- [27] Yu. L. Dokshitzer, V. A. Khoze, S. I. Troyan, Phenemenology of the particle spectra in QCD jets in a modified leading logarithmic approximation, Z. Phys. C 55, 107-114 (1992)
- [28] Yu. L. Dokshitzer et al. Basics in Pertubativ QCD, Editions Frontieres, Gif-sur Yvette, 1991
- [29] C. P. Fong, B. R. Webber, Higher Order Corrections to Hadron Energy Distributions in Jets, Phys. Lett. B 229 3 (1989) 289-292
- [30] B. R. Webber, *Hadronization*, hep-ph/9411384

- [31] M. Schmelling, QCD results from the Study of Hadronic Z-Decays, Physica Scripta. Vol. 51, 683-713, 1995
- [32] V. Khoze, S. Lupia, W. Ochs, Soft particle production and QCD coherence, hep-ph/9610348 (1996)
- [33] G. Altarelli und G. Parisi, Nucl. Phys. B126 (1977) 296
- [34] T. Sjöstrand, QCD and Jets at LEP, CERN-TH-5902/90
- [35] L. Lönblad, Ariadne Version 4 A program for simulation of QCD cascades implementing the colour dipol model, Comp. Phys. Com. 71 (1992) 15
- [36] B. Anderson et al. Z. Phys. C20 (1983) 317
- [37] C. Peterson et al. Phys. Rev. Let. D27 (1983) 105
- [38] Yu. L. Dokshitzer und B. R. Webber Phys. Lett. B352 (1995) 451
- [39] Yu. L. Dokshitzer et al. Nucl. Phys. B511 (1997) 396
 Yu. L. Dokshitzer et al. JHEP 5 (1998) 3
- [40] Yu. L. Dokshitzer et al. Eur. Phys. J. C 3(1999) 1
- [41] M. Beneke, Phys. Lett. B307 (1993) 154
- [42] J. M. Campbell et al., Phys. Rev. Lett. 81(1998) 1568
- [43] U. Amaldi et al. Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B260 (1991), 447
- [44] R. Ehret, Die Bestimmung der Kopplungskonstanten α_s am LEP-Speicherring und Tests von großen Vereinigungstheorien, Dissertation Karlsruhe, 1995
- [45] K. Kleinknecht, Detektoren für Teilchenstrahlung, Teubner Studienbücher, Stuttgart, 1992
- [46] DELPHI Coll. P. Abreu et al., The Delphi detector at LEP, Nuclear Instruments and Methods A 303 (1991) 233
- [47] DELPHI Coll. P. Abreu et al., Performance of the DELPHI detector, Nuclear Instruments and Methods A 378 (1996) 57-100
- [48] DELPHI Coll., DELPHI data analyse program (DELANA) User Guide, DELPHI 89-44 PROG 137
- [49] P. Abreu et al. The estimation of the effective centre of mass energy in $q\bar{q}\gamma$ events from DELPHI, Nucl. Instrum. Meth., A 427 (487–494, 1999)

- [50] E. Accomando, A. Ballestrero, Comput. Phys. Commun. 94 (1996)
- [51] ALEPH Coll. Measurement of α_s at Centre-of-Mass Energies between 91 and 206 GeV, ALEPH 2001-062 (Contributed Paper for LP01 and EPS HEP 2001)
- [52] U. Flagmeyer et al., Measurement of the strong coupling α_s and its energy dependence from the four jet rate of hadronic events with the DELPHI Detector at LEP, DELPHI 2001–59 CONF 487, Konferenzbeitrag für EPS HEP 2001 (Budapest) und LP01 (Rom)
- [53] OPAL Coll. CERN–EP 99/178
- [54] L3 Coll. QCD studies in e⁺e⁻ annihilation from 30 to 189 GeV, CERN-EP 2000-064
- [55] V. Blobel, Datenauswertung in großen Experimenten der Hochenergiephysik, (21. Herbstschule für Hochenergiephysik 1989, Maria Laach)
- [56] V. Blobel, Unfolding methods in HEP experiments, DESY Report 84-118
- [57] DELPHI Coll. P. Abreu et al. Tuning and test of fragmentation models based on identified particles and precision event shape data, Z. Phys. C73 (1996) 11
- [58] O. Passon, Untersuchung der Energieabhängigkeit inklusiver Spekren in der e⁺e⁻ Annihilation, WUD 97-44
- [59] TASSO Coll. W Braunschweig et al. Z. Phys. C47 (1990) 187
 TOPAZ Coll. R. Itoh et al. Phys. Lett. B 345 (1995) 335
- [60] ALEPH Coll. R. Barate et al., Phys. Rep. 294 (1998) 1
- [61] L3 Coll. M. Acciarri et al., Phys. Lett. B 444 (1998) 569
- [62] G. Cowan, Statistical Data Analysis, Cambridge University Press, 1998
- [63] OPAL Coll. P. D. Acton et al. A determination of $\alpha_s(M_Z)$ at LEP using resummed QCD calculations, Z. Phys. C59,1(1993)
- [64] O. Biebel, persönliche Mitteilung
- [65] OPAL Coll., Updated measurement of α_s using event shape observables, OPAL PN512 (Juni, 2002)
- [66] OPAL Coll., P. D. Acton et al., Z.Phys. C59 (1993)
- [67] ALEPH Coll, Measurement of α_s at Centre-of-Mass Energies between 91 and 209 GeV, ALEPH 2002-012 (Juni, 2002)

- [68] OPAL Coll., G. Abbiendi et al., A Simultaneous Measurement of the QCD Colour Factors and the Strong Coupling, Eur. Phys. J. C20 (2001) 601–615
- [69] ALEPH Coll. A. Heister et al., Measurements of the Strong Coupling Constant and the QCD Colour Factors using Four-jet Observables from Hadronic Z Decays, CERN-EP-2002-029 (Mai 2002), Subm. to: Eur. Phys. J., C
- [70] LEP EWWG, D. Abbaneo et al., LEPEWWG Note 2002–01
- [71] L3 Coll., QCD Results at $192 \le \sqrt{s} \le 209 \text{ GeV}$, L3 note 2645 (März, 2001)
- [72] S. Bethke, Determination of the strong coupling α_s , J.Phys. G26 R27 (2000)
- [73] ALEPH Coll., D. Decamp et al. *Phys. Lett.* **B284** (1992) 163. ALEPH Coll., D. Buskulic et al. Z. Phys. C55 (1992) 209. AMY Coll., I.H. Park et al. *Phys. Rev.* Lett. **62** (1989) 1713. AMY Coll., Y.K. Li et al. Phys. Rev. **D41** (1990) 2675. CELLO Coll., H.J. Behrend et al. Z. Phys. C44 (1989) 63. HRS Coll., D. Bender et al. *Phys. Rev.* **D31** (1985) 1. P.A. Movilla Fernandez, et. al. and the JADE Coll. Eur. Phys. J. C1 (1998) 461. L3 Coll., B. Adeva et al. Z. Phys. C55 (1992) 39. Mark II Coll., A. Peterson et al. Phys. Rev. D37 (1988) 1. Mark II Coll., S. Bethke et al. Z. Phys. C43 (1989) 325. MARK J Coll., D. P. Barber et al. *Phys. Rev. Lett.* **43** (1979) 831. OPAL Coll., P. Acton et al. Z. Phys. C59 (1993) 1. PLUTO Coll., C. Berger et al. Z. Phys. C12 (1982) 297. SLD Coll., K. Abe et al. *Phys. Rev.* **D51** (1995) 962. TASSO Coll., W. Braunschweig et al. Phys. Lett. **B214** (1988) 293. TASSO Coll., W. Braunschweig et al. Z. Phys. C45 (1989) 11. TASSO Coll., W. Braunschweig et al. Z. Phys. C47 (1990) 187. TOPAZ Coll., I. Adachi et al. *Phys. Lett.* **B227** (1989) 495. TOPAZ Coll., K. Nagai et al. *Phys. Lett.* **B278** (1992) 506. TOPAZ Coll., Y. Ohnishi et al. *Phys. Lett.* **B313** (1993) 475.

Danksagung

Es ist mir eine Freude an dieser Stelle jenen meinen Dank auszusprechen, die in verschiedener Weise die Entstehung der Arbeit befördert haben. Da ist an erster Stelle mein Doktorvater Herr Prof. Dr. Jürgen Drees zu nennen, der beständig großes Interesse an dieser Analyse zeigte und durch seinen besonderen Führungsstil eine sehr positive Arbeitsatmosphäre in der gesamten Wuppertaler DELPHI Gruppe erzeugte. Ebenfalls ermöglichte er mir zahlreiche fruchtbare Aufenthalte am CERN sowie die Teilnahme an Konferenzen und Sommerschulen.

Desweiteren muss Klaus Hamacher erwähnt werden, dessen physikalische Intuition jedesmal neu meine Verblüffung erregt. Sein Büro verlässt man immer klüger als man es betreten hat (und dieser Zustand hält mindestens 10min. an).

Bei kleineren und größeren technischen Problemen bewiesen Helmut Wahlen (Physik und Reisekosten), Daniel Wicke (QCD), Helmut Kopka (Latex), Uwe Flagmeyer/Müller (allg. Erheiterung), Ralf Reinhardt (Guten Morgen!) und Siegfried Hahn (QCD) stets Geduld und Kompetenz. Schließlich möchte ich meiner Freundin Esther Neustadt danken, die unter Anderem zahlreiche Verstöße gegen die Regeln der deutschen Rechtschreibung beseitigte.