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Abstract

A search for heavy neutral lepton production in K+ decays using a data sample collected
with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper
limits at the 10−7 to 10−6 level are established on the elements of the extended neutrino
mixing matrix |Ue4|2 and |Uµ4|2 for heavy neutral lepton mass in the ranges 170–448 MeV/c2

and 250–373 MeV/c2, respectively. This improves on the previous limits from HNL produc-
tion searches over the whole mass range considered for |Ue4|2, and above 300 MeV/c2 for
|Uµ4|2.
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Perugia, Italy
G. Anzivino, F. Brizioli, E. Imbergamo, R. Lollini, C. Santoni

INFN, Sezione di Perugia, Perugia, Italy
M. Barbanera 12, P. Cenci, B. Checcucci, V. Duk 9, P. Lubrano, M. Lupi 7, M. Pepe, M. Piccini

Dipartimento di Fisica dell’Università e INFN, Sezione di Pisa, Pisa, Italy
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Introduction

Non-zero masses and mixing of the Standard Model (SM) neutrinos are now firmly established.
However many SM extensions have been proposed, involving massive “sterile” neutrinos, also
called heavy neutral leptons (HNLs), which mix with the ordinary light “active” neutrinos. For
example, the Neutrino Minimal Standard Model (νMSM) postulates three HNLs, explaining
dark matter and baryon asymmetry of the universe in a way consistent with the results of
neutrino oscillation experiments [1]. One of these HNLs with the expected mass of O(10 keV/c2)
is a dark matter candidate, while the others are expected to have masses of O(1 GeV/c2).

Mixing between HNLs (denoted N below) and active light neutrinos gives rise to HNL
production in meson decays, including K+ → ℓ+N (ℓ = e, µ). The branching fraction of the
latter decay is determined by the HNL mass mN and mixing parameter |Uℓ4|2 as follows [2, 3]:

B(K+ → ℓ+N) = B(K+ → ℓ+ν) · ρℓ(mN ) · |Uℓ4|2. (1)

Here B(K+ → ℓ+ν) is the measured branching fraction of the SM leptonic decay (including
inner bremsstrahlung), and ρℓ(mN ) is a kinematic factor:

ρℓ(mN ) =
(x+ y)− (x− y)2

x(1− x)2
· λ1/2(1, x, y),

with x = (mℓ/mK)2, y = (mN/mK)2 and λ(a, b, c) = a2+b2+c2−2(ab+bc+ac). By definition,
ρℓ(0) = 1. Numerically, the product B(K+ → ℓ+ν) · ρℓ(mN ) is O(1) over most of the allowed
mN range. However it drops to zero at the kinematic limit mN = mK −mℓ and, in the positron
case, reduces to B(K+ → e+ν) = 1.582(7)× 10−5 [4] for mN → 0 due to helicity suppression.

A search for K+ → ℓ+N decays in HNL mass range 170–448 MeV/c2 using a data sample
collected with a minimum bias trigger by the NA62 experiment at CERN during the first physics
data-taking in 2015 is reported here. The obtained upper limits on |Uℓ4|2 complement, and
improve on, those obtained in earlier HNL production searches in pion and kaon decays [5–9].

1 Beam, detector and data sample

The layout of the NA62 beamline and detector [10] is shown schematically in Fig. 1. A secondary
positive hadron beam with a central momentum of 75 GeV/c and 1% momentum spread (rms)
is derived from primary 400 GeV/c protons extracted from the CERN SPS and interacting with
a beryllium target in spills of 3 s effective duration at nominal intensity of 1.1× 1012 protons/s.
Beam kaons are tagged with a 70 ps time resolution by a differential Cherenkov counter (KTAG)
with nitrogen radiator at 1.73 bar pressure contained in a 5 m long vessel. Beam particle
momenta are measured by a silicon pixel detector (GTK, under commissioning in 2015 and not
used for this analysis). Inelastic interactions of beam particles with the last of the three GTK
stations are detected by an array of scintillator hodoscopes (CHANTI). The beam is delivered
into a vacuum tank containing a 75 m long fiducial decay volume (FV) starting 2.6 m downstream
of the last GTK station. The beam transverse size at the FV entrance is 53× 24 mm2, and the
beam divergence in 2015 was 0.22 (0.11) mrad in the horizontal (vertical) plane. The nominal
instantaneous particle rate at the FV entrance is 750 MHz, mainly due to π+ (70%), protons
(23%) and K+ (6%). The fraction of kaons decaying in the FV is 13%, leading to 6 MHz
nominal K+ decay rate. The beam is accompanied by a flux of muons produced by K+ and π+

decays upstream of the vacuum tank (the beam halo), with 3 MHz nominal rate in the detector
acceptance. Central holes in detectors downstream of the FV and a beam pipe traversing most
of these detectors allow the undecayed beam particles to continue their path in vacuum. The
beam intensity during the 2015 run was typically O(1%) of the nominal value.
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Figure 1: Schematic side view of the NA62 beamline and detector.

The momenta of charged K+ decay products are measured by a magnetic spectrometer
(STRAW) located in the vacuum tank downstream of the FV. The spectrometer consists of four
tracking chambers made of straw tubes, and a dipole magnet located between the second and
the third chamber providing a horizontal momentum kick of approximately 270 MeV/c. The
spectrometer momentum resolution is σp/p = (0.30 ⊕ 0.005 · p)%, where the momentum p is
expressed in GeV/c.

A 27X0 thick quasi-homogeneous liquid krypton (LKr) electromagnetic calorimeter, built for
the earlier NA48 experiment [11] and equipped with a new readout system, is used for photon
detection. The calorimeter has an active volume of 7 m3, and is segmented transversally into
13248 projective ∼ 2×2 cm2 cells. Its energy resolution in the NA62 conditions is σE/E =
(4.8/

√
E ⊕ 11/E ⊕ 0.9)%, where E is expressed in GeV. To achieve hermetic acceptance for

photons emitted in K+ decays in the FV at angles up to 50 mrad, the LKr calorimeter is
supplemented by annular lead glass large-angle veto (LAV) detectors installed in 12 positions
along and downstream of the FV, and two lead/scintillator sampling calorimeters (intermediate-
ring calorimeter, IRC, and small-angle calorimeter, SAC) located close to the beam axis.

A ring-imaging Cherenkov detector (RICH) consisting of a 17.5 m long vessel filled with neon
at atmospheric pressure is used for identification of charged K+ decay products. Its Cherenkov
threshold for muons is 9.5 GeV/c, and it provides timing measurement for tracks above thresh-
old to better than 100 ps precision. The LKr calorimeter, a hadronic iron/scintillator sampling
calorimeter formed of two modules (MUV1,2) and a scintillator-tile muon detector (MUV3)
located behind an 80 cm thick iron wall are also used for particle identification. A plastic
scintillator hodoscope (CHOD) built for the NA48 experiment, located in front of the calorime-
ters, provides a fast trigger with efficiency above 99% and track-timing measurement to 200 ps
precision.

The data sample used for this analysis is obtained from 1.2 × 104 SPS spills recorded in
5 days of operation in 2015 at beam intensity varying from 0.4% to 1.3% of the nominal value
with a minimum-bias trigger scheme. The low-level hardware trigger required a CHOD signal
(downscaled typically by a factor of 3) to collect K+ decays to muons (which account for 67% of
the decay rate), and a CHOD signal in anti-coincidence with a MUV3 signal (not downscaled)
to collect decays with no muons in the final state. The high-level software trigger required a
kaon signal in the KTAG detector within ±10 ns of the low-level trigger signal. Loose timing
conditions are used in this analysis because the accidental rates are small, due to the low beam
intensity.
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2 Event selection

Assuming |Uℓ4|2 < 10−4 and considering HNL decays into SM particles [12], the smallest possible
average decay length of a HNL produced in the K+ → ℓ+N decays in NA62 conditions exceeds
10 km. Under the above assumption, HNL decays in flight in the 156 m long volume from
the start of the FV to the last detector (SAC) can be neglected, and the K+ → ℓ+N decay is
characterized by a single detected track in the final state, similarly to the SM K+ → ℓ+ν decay.
The principal selection criteria are listed below.

• A single positively charged track reconstructed in the spectrometer with momentum in the
range 5–70 GeV/c is required. Additional spectrometer tracks and LKr energy deposition
clusters not geometrically compatible with the track are not allowed within ±100 ns of the
track time measured by the CHOD. Activity in the large-angle and small-angle photon veto
detectors and the CHANTI detector within ±10 ns of the track time is not allowed. Track
impact points in the straw chambers, LKr calorimeter, CHOD and MUV1–3 detectors
should be within their fiducial geometrical acceptances.

• The kaon decay vertex is reconstructed as the point of closest approach of the track and
the beam axis (the latter is monitored with fully reconstructed K+ → π+π+π− decays),
taking into account the measured stray magnetic field map in the vacuum tank. The
reconstructed closest distance of approach (CDA) between the track and beam axis should
be less than 25 mm, as determined by the beam transverse size.

• To suppress beam halo background from K+ decays upstream of the KTAG and beam π+

decays, the presence of a kaon signal in the KTAG is required within ±10 ns of the track
time measured by the CHOD.

• Beam halo background from K+ → µ+ν decays over the approximately 30 m long path
between the KTAG and the last GTK station (with the muon deflected by magnetic
fields and scattered in magnet yokes and collimators before reaching the vacuum tank) is
suppressed by geometrical conditions established by studies of upstream K+ decays. For
the K+ → e+N selection, the reconstructed vertex position is required to be at least 10 m
downstream of the start of the FV. For the K+ → µ+N selection, the minimal required
distance between the decay vertex and the start of the FV depends on the muon emission
angle with respect to the beam axis and lies in the range 10–33 m.

• Positrons and muons are identified by the ratio of energy deposit, E, in the LKr calorime-
ter to momentum, p, measured by the spectrometer: 0.9 < E/p < 1.15 and E/p < 0.2,
respectively. No signals in MUV1–3 detectors within ±20 ns of the track time and ge-
ometrically consistent with e+ candidate tracks (accounting for detector granularity and
multiple scattering) are allowed; MUV1–3 signals are required for µ+ candidate tracks.
Additionally, an identification algorithm based on the RICH hit pattern is applied for
tracks with p < 40 GeV/c.

The squared missing mass is computed as m2
miss = (PK − Pℓ)

2, where PK and Pℓ are the
kaon and lepton 4-momenta, respectively. PK is obtained from the beam average 3-momentum
(monitored with K+ → π+π+π− decays) in the K+ mass hypothesis, while Pℓ is evaluated from
the reconstructed track 3-momentum in the corresponding ℓ+ mass hypothesis.

Simulation of particle interactions with the detector and its response is performed with a
Monte Carlo (MC) simulation package based on the Geant4 toolkit [13]. The m2

miss spectra
of the selected events from both data and simulation are displayed in Fig. 2. Signals from
the SM leptonic decays K+ → ℓ+ν are observed as peaks at m2

miss = 0 with m2
miss resolutions

of 4.9 (4.7) × 10−3 GeV2/c4 in the e+ (µ+) case. These resolutions are dominated by the
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Figure 2: Distributions of the m2
miss variable for data and simulated events passing the (a) e+

and (b) µ+ selections. The bin widths are 0.004 GeV2/c4. Pairs of vertical lines in each plot
indicate the boundaries of the SM and HNL signal regions. The HNL signal regions defined
in Section 2 correspond approximately to 0.03–0.20 GeV2/c4 and 0.06–0.14 GeV2/c4 in m2

miss

values in the e+ and µ+ case, respectively.

momentum spread and divergence of the beam, and are reproduced by MC simulations to
1% relative precision. The SM and HNL signal regions are defined in the e+ (µ+) case as
|m2

miss| < 0.014 (0.020) GeV2/c4 and 170 (250) < mmiss < 448 (373) MeV/c2, respectively. The
search for K+ → ℓ+N decays consists of a search for peaks above background in the HNL signal
regions.

3 Measurement principle

The K+ → ℓ+N decay rates are measured with respect to the rates of the normalization SM
K+ → ℓ+ν decays with similar topologies and known branching fractions. The expected numbers
of K+ → ℓ+N signal events N ℓ

S are related to the assumed branching fractions B(K+ → ℓ+N)
and acceptances AN

ℓ of the K+ → ℓ+N selections as

N ℓ
S = N ℓ

K · B(K+ → ℓ+N) ·AN
ℓ . (2)

Here N ℓ
K are the numbers of K+ decays in the FV, computed from the numbers Nℓ of selected

data events with m2
miss in the SM signal region:

N e
K =

Ne

Ae
e · B(K+ → e+ν) +Aµ

e · B(K+ → µ+ν)
= (3.00± 0.11)× 108

and

Nµ
K =

Nµ

Aµ
µ · B(K+ → µ+ν)

= (1.06± 0.02)× 108,

where Aℓ2
ℓ1

is the acceptance of the K+ → ℓ+1 ν selection (with m2
miss in the SM signal region)

for the K+ → ℓ+2 ν decay evaluated with MC simulations, and B(K+ → ℓ+ν) is the branching
fraction of the K+ → ℓ+ν decay [4]. The inputs to the computation of N ℓ

K are summarized in

8



Table 1: Inputs to the computation of the numbers N ℓ
K of kaon decays in the FV: numbers of

selected data events in the SM signal region, acceptances evaluated with MC simulations and
their statistical errors (notation is defined in the text), and K+ → ℓ+ν branching fractions [4].

K+ → e+ν selection K+ → µ+ν selection

Number of data events Nℓ 1767 2.403× 107

Acceptance Aµ
ℓ (1.30± 0.17)× 10−6 0.3579± 0.0001

Acceptance Ae
ℓ 0.3197± 0.0008 –

B(K+ → ℓ+ν) (1.582± 0.007)× 10−5 0.6356± 0.0011

Table 1. The number of K+ decays in the µ+ case is smaller than that in the e+ case due to
the downscaling factor of typically 3 applied to the muon trigger chain.

The above approach relies on first-order cancellation between signal, normalization and back-
ground yields of the effects of residual detector inefficiencies, trigger efficiencies and random veto
not fully accounted for by the MC simulation.

The background in the K+ → e+ν sample from K+ → µ+ν decays, due to both µ+ mis-
identification and decay in flight, is taken into account in the computation of N e

K . This back-
ground is dominated by µ+ mis-identification due to ‘catastrophic’ bremsstrahlung in the LKr
calorimeter at track momenta p > 40 GeV/c, where identification relies on calorimetry only as
the RICH does not provide useful information. The probability of a muon having E/p > 0.90
in the LKr calorimeter has been measured in a dedicated study to be Pµe ∼ 10−5, and found to
be reproduced by simulation to 10% relative precision [14]. The background in the K+ → µ+ν
sample is negligible.

The quoted uncertainty on N e
K receives contributions from the statistical error (2.4%), preci-

sion on the simulation (evaluated by stability checks versus variation of the selection conditions
and considering the precision on Pµe simulation, 2.0%), MC statistical precision on the accep-
tance for the K+ → µ+ν background (1.9%) and the external parameter B(K+ → e+ν) (0.4%),
combined in quadrature to obtain a total relative error of 3.7%. The uncertainty on Nµ

K receives
two contributions of similar size: due to the precision of the simulation (evaluated by variation of
the selection conditions) and due to the external input B(K+ → µ+ν), combined in quadrature
to obtain a total relative error of 1.9%.

4 Background estimates with MC simulations

The HNL search procedure, presented in Section 5, is based on a data-driven background esti-
mation method, but this is only valid provided there are no peaking background structures in
the HNL mass region. Backgrounds to HNL production have been estimated by MC simulations
(Fig. 2) to understand qualitatively their contributions and to optimize the event selection. The
results of these simulation studies, reported below, justify the adopted procedure.

4.1 Backgrounds to K+ → e+N

The principal background to K+ → e+N decays comes from the K+ → µ+ν decay followed by
muon decay in flight µ+ → e+νν̄. It is characterized by a broader CDA distribution than the
signal, and is suppressed by the CDA and vertex position selection criteria (Section 2). The CDA
selection criterion and therefore the background level are determined by the beam transverse
size. The background due to K+ → µ+ν decays with muon mis-identification (Section 3) is
constrained to low m2

miss values outside the HNL signal region.
Beam pion decays π+ → e+ν, as well as π+ → µ+ν followed by muon decay in flight, con-

tribute to the background via π+ mis-identification by the KTAG due to accidental coincidence
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with a beam kaon not decaying in the FV. The contribution from direct π+ mis-identification
by the KTAG is negligible. Pion mis-identification probability for the employed KTAG–CHOD
timing condition, averaged over the data sample, is computed to be (0.9 ± 0.1syst)% from the
beam K+ rate measured via the rate of out-of-time K+ signals in the KTAG. This estimate is
consistent with the number of observed π+ → e+ν decays in the (Pπ −Pe)

2 spectrum, where Pπ

is the beam pion 4-momentum.
Backgrounds from all other major K+ decays with branching fractions above 1%, and all

K+ decays to positrons and branching fractions above 10−5 [4] have been considered. The
m2

miss spectra of the estimated background components are displayed in Fig. 2a, showing good
agreement with the data spectrum.

4.2 Backgrounds to K+ → µ+N

The largest component of the background toK+ → µ+N decays comes from theK+ → µ+νγ de-
cay, mainly due to photons emitted at angles greater than 50 mrad with respect to the beam axis
and escaping the LAV geometrical acceptance. It is simulated including inner bremsstrahlung
and structure-dependent processes as well as their interference [15]; decays with the photon
energy in the kaon rest frame Eγ below and above 10 MeV are simulated separately to increase
the MC statistics in the latter case.

Residual background due to K+ decays between the KTAG and the last GTK station,
which is suppressed by the cut on the vertex longitudinal position (Section 2), is estimated from
a dedicated simulation. Backgrounds from all other major K+ decays are also considered: the
largest of them is due to the K+ → π+π+π− decay.

The m2
miss spectra of the estimated background components are displayed in Fig. 2b; current

agreement with the data spectrum in the HNL signal region is marginal. Observation in the
data of a background component (not reproduced with MC simulation) with muons propagating
close to the yz plane (which is the bending plane of the GTK dipole magnets) suggests that the
data/MC disagreement in the HNL signal region is due to the limited precision on the beamline
simulation affecting the estimated background from upstream K+ decays. On the other hand,
the disagreement at negative m2

miss is due to the limited precision of the description of the
resolution, affected by the simulation of the beam momentum spectrum and divergence.

5 Search for HNL production

Mass scans are performed in the HNL signal regions with a step size of 1 MeV/c2. The event
selection employed for each HNL mass hypothesis involves an additional condition: the recon-
structed missing mass should be within ±1.5σℓ

m of the assumed HNL mass, where σℓ
m is the

mass resolution evaluated with MC simulations (Fig. 3a). The above width of the signal mass
window leads to near-optimal expected upper limits on B(K+ → ℓ+N) in the absence of sig-
nals across the whole HNL signal regions. A loose selection with a relaxed vertex longitudinal
position constraint (requiring the vertex to be in the FV) is applied in the K+ → e+N case for
mass hypotheses of 350 MeV/c2 and higher, reflecting the fact that the beam halo background
does not populate this mass range. Acceptances, AN

ℓ , of the selections (including the ±1.5σℓ
m

mass cut) as functions of HNL mass obtained with MC simulations are shown in Fig. 3b.
To certify that the missing mass resolution and therefore the signal acceptance are simulated

correctly outside the SM K+ → ℓ+ν peaks, the resolution on ∆m2
3π = (PK − P3)

2 − (P1 + P2)
2

in fully reconstructed K+ → π+π+π− decays, where Pi (i = 1, 2, 3) are the pion 4-momenta
reconstructed from the spectrometer information and PK is the kaon 4-momentum defined as
for the m2

miss computation (Section 2), has been studied as a function of (P1 +P2)
2. Given that

∆m2
3π = 0 by construction, the resolution on ∆m2

3π can be measured for both data and MC.
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Figure 3: (a) Missing mass resolution σℓ
m evaluated from MC simulations: values obtained for

a set of HNL masses with their statistical errors, and polynomial functions used to define the
HNL selection criterion. The corresponding resolution on the squared missing mass in the signal
regions is a few 10−3 GeV2/c4, and has a weak mass dependence. (b) Acceptances AN

ℓ of the
K+ → ℓ+N selections obtained from MC simulations; the dashed line corresponds to the loose
K+ → e+N selection applied for HNL masses of 350 MeV/c2 and above. Vertical arrows indicate
the extent of the HNL signal regions.

Data and MC resolutions have been found to agree within 1%. For the adopted ±1.5σℓ
m mass

window, 1% change on σℓ
m translates into 0.4% relative change on the signal acceptance.

In each HNL mass hypothesis considered, the background is evaluated from sidebands of the
data mmiss distribution. The number of expected background events Nexp within the ±1.5σℓ

m

HNL search window is estimated from a least-squares fit to the data mmiss spectrum with a bin
width of 5 MeV/c2 using third order polynomial functions in the 100–460 (200–385) MeV/c2

range for the e+ (µ+) case. Mass bins overlapping with the ±1.5σℓ
m wide HNL search window

are excluded from the fit to avoid bias caused by possible HNL signals. Statistical uncertainties
δNexp on the background estimates Nexp are computed by propagation of statistical errors on the
fit function parameters: they are typically about 10% in relative terms. Systematic uncertainties
onNexp due to the choice of background fit function, estimated by using fourth order polynomials
for the fits, are negligible (typically 1%).

In each HNL mass hypothesis, the total number of observed events Nobs within the ±1.5σℓ
m

HNL search window, the number of expected background events Nexp and its uncertainty δNexp

are used to compute confidence intervals for the number of observed K+ → ℓ+N decays N ℓ
S .

The Rolke-López method [16] assuming Poissonian (Gaussian) distributions for the numbers of
observed (expected) events is used. The procedure has been tested and found to be unbiased
in the presence of artificially injected statistically significant K+ → ℓ+N signals. The values
of Nexp, δNexp and Nobs in each HNL mass hypothesis considered are shown in Fig. 4. The
maximum value of the local signal significance computed as

z = (Nobs −Nexp)/
√

Nobs + (δNexp)2

is 2.2, for the e+ case with mN = 283 MeV/c2. In the absence of statistically significant HNL
production signals, upper limits on N ℓ

S are established; the expected and observed limits at 90%
CL are shown in Fig. 4. Perfect knowledge of the background (δNexp = 0) would improve these
limits typically by 30%.
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Figure 4: For each NHL mass hypothesis, numbers of expected (Nexp) and observed (Nobs)
events, together with the uncertainty on Nexp (δNexp, as shown by the blue band); expected and
observed upper limits at 90% CL on the numbers of K+ → ℓ+N events N ℓ

S obtained from these
inputs. (a) K+ → e+N analysis; (b): K+ → µ+N analysis. For completeness, the squared mass
scale is also shown. The legend shown in Figure (b) refers to both panels.
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the limits established by earlier HNL production searches in π+ decays: TRIUMF (1992) [5],
PIENU (2017) [6] and K+ decays: KEK (1984) [7], E949 (2015) [8], NA62-2007 (2017) [9].

Single event sensitivities (SES) defined as the values of B(K+ → ℓ+N) and the mixing
parameter |Uℓ4|2 corresponding to the observation of one signal event,

BSES(K
+ → ℓ+N) =

1

N ℓ
K ·AN

ℓ

and |Uℓ4|2SES =
BSES(K

+ → ℓ+N)

B(K+ → ℓ+ν) · ρℓ(mN )
,

are displayed as functions of HNL mass in Fig. 5a. They are O(10−8), and those in the positron
case are smaller than those in the muon case due to N e

K being larger than Nµ
K .

Upper limits on the branching fraction B(K+ → ℓ+N) in each HNL mass hypothesis are
computed from those on N ℓ

S using eq. (2); the expected and observed limits at 90% CL are
shown in Fig. 5b. Upper limits on the mixing parameter |Uℓ4|2 in each HNL mass hypothesis
are computed from those on B(K+ → ℓ+N) according to eq. (1). These limits depend on the
external inputs B(K+ → ℓ+ν) only in the e+ case due to the background subtraction in the
N e

K computation. Systematic uncertainties on the limits are, in relative terms, of the same
magnitude as those on N ℓ

K (Section 3).
The obtained upper limits on |Uℓ4|2 at 90% CL together with the limits from previous HNL

production searches in π+ [5, 6] and K+ [7–9] decays are shown in Fig. 6. The reported result
improves the existing limits on both |Ue4|2 (over the whole mass range considered) and |Uµ4|2
(above 300 MeV/c2).

Summary

A search for HNL production inK+ → ℓ+N decays has been performed with NA62 data recorded
in 2015 at ∼ 1% of the nominal beam intensity with a minimum bias trigger. Upper limits on the
HNL mixing parameters |Ue4|2 and |Uµ4|2 in the ranges 170–448 MeV/c2 and 250–373 MeV/c2,
respectively, have been established at the level between 10−7 and 10−6. This improves on the
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previous limits from HNL production searches over the whole mass range considered for |Ue4|2
(and extends the mass range in which the limits exist), and above mN = 300 MeV/c2 for |Uµ4|2.
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