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We compute the decay widths for the neutral and singly-charged Higgs bosons in the Georgi-Machacek
model into the final states γγ, Zγ, and Wγ. These decays are most phenomenologically interesting for the
fermiophobic custodial fiveplet statesH0

5 andH
�
5 when theirmasses are below threshold for decays intoWW,

ZZ, or WZ. We study the allowed branching ratios into these final states using scans over the allowed
parameter space, and show how the model can be constrained by LEP searches for a fermiophobic Higgs
boson decaying to two photons. The calculation involves evaluating one-loop diagrams in which the loop
contains particles with two different masses, some of which do not appear in the existing literature. We give
results for these diagrams in a form convenient for numerical implementation using the LOOPTOOLS package.
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I. INTRODUCTION

Since the discovery of a Standard Model (SM)-like
Higgs boson at the CERN Large Hadron Collider (LHC)
[1], there has been considerable interest in models with
extended Higgs sectors to be used as benchmarks for
LHC searches for physics beyond the SM. One such
model is the Georgi-Machacek (GM) model [2,3], which
adds isospin-triplet scalar fields to the SM in a way that
preserves custodial SU(2) symmetry. This model is
interesting because the isospin triplets can make a
non-negligible contribution to electroweak symmetry
breaking. Its phenomenology has been studied exten-
sively [4–34], and its parameter space has been con-
strained using the perturbativity and vacuum stability
of the scalar potential [8,15,23], the electroweak
oblique parameters [16,17,21,27], Z-pole and B-physics
observables [7,15,21,27], and direct collider searches
[25,35–39]. The GM model has also been incorporated
into Little Higgs [40,41], supersymmetric [42–44], and
neutrino seesaw [26] models. Extensions with an addi-
tional isospin doublet [45] and a singlet scalar dark
matter candidate [46] have also been considered, as have
generalizations of the model to include higher-isospin
scalars [13,37,47–49].

The most distinct phenomenological feature of the GM
model is the presence of a custodial fiveplet of scalars,
ðHþþ

5 ; Hþ
5 ; H

0
5; H

−
5 ; H

−−
5 Þ. These scalars are fermiophobic

and couple at tree level to W or Z boson pairs with a
strength proportional to the isospin-triplet scalar fields’
vacuum expectation value (vev). Direct searches at the
LHC for these custodial-fiveplet scalars have so far focused
on scalar masses above 200 GeV [35,38,39] (see also
Refs. [50,51]), where they decay predominantly into pairs
of on-shell vector bosons. For lower masses, the tree-level
decays are forced off shell and the loop-induced decays of
H�

5 → W�γ and H0
5 → γγ; Zγ can become important.

These final states offer sensitive new experimental probes.
The diphoton decay mode can also be used to take
advantage of existing limits on the production of scalars
decaying to photon pairs from the CERN Large Electron-
Positron (LEP) collider [52] and the LHC [53].
Our goal in this paper is to compute the loop-induced

decay widths of the scalars in the GMmodel and study their
behavior over the model’s parameter space, focusing on
scalar masses below 200 GeV. This is made nontrivial by
the fact that some diagrams appear in the decays H0

5 → Zγ
and H�

5 → W�γ that have not previously been computed
in the literature. Some of these new diagrams also appear
in the custodial-triplet scalar decay H�

3 → W�γ; we
discuss this process for completeness although it is of
less phenomenological interest because decays of H�

3 to
fermion pairs tend to dominate its branching ratios.
The challenge is diagrams in which the loop contains

particles with two different masses. Such “heterogeneous”
loop diagrams are forbidden by gauge invariance in the
familiar decays of the SM Higgs boson to two photons or
two gluons; they are absent in the SM Higgs decay to Zγ
due to custodial symmetry. Heterogeneous diagrams appear
in two Higgs doublet models in the decay H� → W�γ;
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these have been computed inRefs. [54–56].1 In the twoHiggs
doublet model, the contributing diagrams involve top and
bottomquarks,H� andaneutral scalarh0 orH0, andW� anda
neutral scalarh0 orH0.Explicit results for these loopdiagrams
have been given in Ref. [56] as integrals over Feynman
parameters. For ease of numerical implementation, we recal-
culate them here in terms of the one-loop Passarino-Veltman
integrals [59] in the notation used by the LOOPTOOLS package
[60]. Our results agree with those of Ref. [56].
The GM model admits additional heterogeneous dia-

grams not present in two Higgs doublet models. These
include diagrams that involve W� and Z, Z and H�

5 , W
�

and H��
5 , and W� and H�

5 . These contribute to the decays
Hþ

5 → Wþγ, Hþ
3 → Wþγ, and H0

5 → Zγ. By contributing
to H0

5 → Zγ, the new diagrams can affect the branching
ratio of H0

5 → γγ (though we find that the effect is
numerically small). We compute these new loop diagrams
and give explicit results as integrals over Feynman param-
eters as well as in terms of the one-loop Passarino-Veltman
integrals in the notation used by the LOOPTOOLS package.
With the new loop diagrams in hand, we implement the

full one-loop decays H0
5 → Zγ, H�

5 → W�γ, and H�
3 →

W�γ into a private code based on GMCALC 1.2.0 [61] (all
other decays to γγ and Zγ are already implemented in the
public version of the code) and perform parameter scans to
study the allowed range of branching ratios after imposing
the theoretical and experimental constraints on the model.
We show that a large fraction of the parameter space withH5

masses below about 110 GeV is excluded by LEP searches
for fermiophobic Higgs production in eþe− → ZH0

5 with
H0

5 → γγ [52]. Our results for the H0
5 → γγ branching ratio

can also be combined with scalar pair-production cross
sections to impose limits from LHC diphoton searches as in
Ref. [53]; we leave this to future work. These one-loop
decays will be included in GMCALC 1.3.0 and higher.
This paper is organized as follows. In Sec. II we present the

results of the one-loop diagram calculations for the decays of
theGMscalars toVγ. InSec. IIIwe assemble the familiar loop
contributions with these new diagrams to compute the decay
amplitudes for neutral scalars into γγ and Zγ and for singly-
charged scalars into Wγ in the GM model. In Sec. IV we
present numerical scans over the viable GM parameter space
and apply the LEP limit on fermiophobic Higgs decays into
two photons to constrain the model. We summarize our
conclusions in Sec. V. For completeness, in Appendix A
we review the Lagrangian and physical spectrum of the GM
model, in Appendix B we collect the Feynman rules for the
GMmodel scalars thatweuse in this paper, and inAppendixC
we summarize the LOOPTOOLS conventions for the one-loop
Passarino-Veltman integrals used in our results. Finally in

Appendix D we give some details of the calculations in the ’t
Hooft-Feynman gauge of processes involving Goldstone
bosons or ghosts.

II. ONE-LOOP DIAGRAMS FOR SCALAR
DECAYS TO Vγ

The decay amplitude for HiðkþqÞ→VνðkÞγμðqÞ (where
V ¼ γ, Z,W) is forced by electromagnetic gauge invariance
to take the form [56]

M ¼ Γμνε�μðqÞε�νðkÞ; with

Γμν ¼ ðgμνk · q − kμqνÞSþ iϵμναβkαqβ ~S; ð1Þ

where q and k are the momenta and εμðqÞ and ενðkÞ are the
polarization vectors of the photon and the gauge boson V,
respectively. The resulting decay partial width is

ΓðHi → VγÞ ¼ m3
Hi

32πηV

�
1 −

M2
V

m2
Hi

�
3

ðjSj2 þ j ~Sj2Þ; ð2Þ

where V ¼ γ, Z, or Wþ. Here ηV is a symmetry factor
that accounts for identical particles in the final state, with
ηγ ¼ 2 and ηZ ¼ ηW ¼ 1.
In calculating the scalar form factor S, we follow the

approachusedbyRef. [56] for the calculationof theone-loop
amplitudes contributing to Hþ → Wþγ in the Yukawa-
aligned two Higgs doublet model (2HDM) [62]. Ref. [56]
employed the clever strategy of computing only the coef-
ficient of kμqν in order to determine the form factor S.
Neglecting all terms proportional to gμν significantly reduces
the complexity of the calculations, as it reduces the number
of Feynman diagrams that must be considered to those
illustrated in Fig. 1 and removes the need for renormaliza-
tion. The pseudoscalar form factor ~S receives contributions
only from fermions in the loop as shown in the first diagram
of Fig. 1.
To fix the signs of the charges of the particles appearing

in the triangle diagrams of Fig. 1, we adopt the convention
that Hi is the incoming parent scalar and V is an outgoing
final-state vector boson. The particle in the loop with
subscript 1 propagates from the Hi vertex to the V vertex,
while the particle in the loop with subscript 2 propagates
from the V vertex, through the photon vertex, back to theHi
vertex.
The first diagram in Fig. 1 has been computed inRef. [56].

The second diagram has been computed in Ref. [56] for the
special case that Hi and s2 have the same mass. The fourth
diagram has been computed in Ref. [56] for the special case
that X2 and V have the same mass. To our knowledge, the
remaining diagrams have not appeared in the literature.
Inwhat followswegive our results for each diagram in the

context of the GM model. The results given in terms of
integrals over Feynman parameters were computed in
Unitarity gauge, while the results given in terms of

1Heterogeneous diagrams contributing to neutral Higgs boson
decays to Zγ involving fermions and vector bosons in the loops
have been computed in Refs. [57] and [58], respectively. These
contributions do not appear in the GM model.
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LOOPTOOLS functions were computed in ’t Hooft-Feynman
gauge including all relevant additional diagrams involving
Goldstone bosons or ghosts. We used dimensional regulari-
zation to handle divergences, which cancel in the final
results. The LOOPTOOLS conventions for the three-point
integrals are summarized in Appendix C. In each case we
checked numerically that the two approaches agree towithin
the (percent-level) precision of our numerical integration
over the Feynman parameters.
The decays of the scalars H0

5 → Zγ, H0
3 → Zγ, and

Hþ
5 → Wþγ have also been checked numerically using

MADGRAPH5_AMC@NLO [63] with the GM model renor-
malized by NLOCT [64]. It should be noted that these tools
compute the full amplitude, including the coefficient of the
gμν term in Eq. (1), and so the electroweak renormalization
of the model including tadpole and mixing counterterms is
needed to obtain finite results. Again, the numerical results
agree at the percent level. The decay Hþ

3 → Wþγ has not
been checked using MADGRAPH5_AMC@NLO because
further development in the handling of contributions with
on-shell cuts is still needed.

A. Fermion loop diagram

The first diagram in Fig. 1 contributes to Hþ
3 → Wþγ

with f1 ¼ t, f2 ¼ b, and with f1 ¼ b̄, f2 ¼ t̄. The calcu-
lation is exactly as in Ref. [56] with a translation from
the Yukawa-aligned 2HDM coupling notation to the
appropriate cot θH dependence in the GM model (see
Appendix A). The appropriate couplings are as given for
the Type I 2HDM in Ref. [56] with cot β → tan θH, i.e.,

ςu ¼ tan θH; ςd ¼ tan θH: ð3Þ

This yields the fermion loop contributions to the scalar
and pseudoscalar form factors as integrals over Feynman
parameters x and z [56],

SHþ
3
Wγ ⊃ A

Hþ
3
Wγ

ff0 ¼ αemNcjVtbj2
2πvsW

tan θH

Z
1

0

dx
Z

1

0

dz
If
Δf

;

ð4Þ

~SHþ
3
Wγ ⊃ ~A

Hþ
3
Wγ

ff0 ¼ αemNcjVtbj2
2πvsW

tan θH

Z
1

0

dx
Z

1

0

dz
~If
Δf

;

ð5Þ

where αem is the electromagnetic fine structure constant,
Nc ¼ 3 is the number of colors, v ¼ ð1= ffiffiffi

2
p

GFÞ1=2 ≃
246 GeV is the SM Higgs vacuum expectation value
(vev), Vtb is the appropriate element of the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix, and
sW ¼ sin θW is the sine of the weak mixing angle. In the
integrals we define

Δf ¼ M2
Wxðx − 1Þ þm2

bð1 − xÞ þm2
t x

þ ðM2
W −m2

3Þxzð1 − xÞ; ð6Þ

with m3 being the mass of Hþ
3 , and

If ¼ ½QtxþQbð1 − xÞ�
× ½−m2

t xð2xz − 2zþ 1Þ þm2
bð1 − xÞð1 − 2xzÞ�; ð7Þ

~If ¼ ½QtxþQbð1 − xÞ�½m2
t xþm2

bð1 − xÞ�: ð8Þ

The fermion electric charges are Qt¼2=3 and Qb ¼ −1=3.

FIG. 1. One-loop Feynman diagrams contributing to the process Hi → Vγ in the GM model. Here V ¼ γ, Z or W�, f1;2 denote
fermions, s1;2 denote scalars, and X1;2 denote W or Z bosons.
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In terms of the LOOPTOOLS functions [60] (see
Appendix C for conventions), the fermion loop contribu-
tions are given by

A
Hþ

3
Wγ

ff0 ¼ A
Hþ

3
Wγ

tbb þ A
Hþ

3
Wγ

btt ; ~A
Hþ

3
Wγ

ff0 ¼ ~A
Hþ

3
Wγ

tbb þ ~A
Hþ

3
Wγ

btt ;

ð9Þ

where

A
Hþ

3
Wγ

tbb ¼ αemNcjVtbj2
2πvsW

tan θHQb

×½m2
t ð2C12 þ 2C22 þ 3C2 þ C1 þ C0Þ

−m2
bð2C12 þ 2C22 þ C2 − C1Þ�

ðk2; q2; m2
3;m

2
t ; m2

b; m
2
bÞ; ð10Þ

A
Hþ

3
Wγ

btt ¼ αemNcjVtbj2
2πvsW

tan θHQt

× ½−m2
bð2C12 þ 2C22 þ 3C2 þ C1 þ C0Þ

þm2
t ð2C12 þ 2C22 þ C2 − C1Þ�

ðk2; q2; m2
3;m

2
b; m

2
t ; m2

t Þ; ð11Þ

~A
Hþ

3
Wγ

tbb ¼ αemNcjVtbj2
2πvsW

tan θHQb

× ½−m2
t ðC1 þ C2 þ C0Þ þm2

bðC1 þ C2Þ�
ðk2; q2; m2

3;m
2
t ; m2

b; m
2
bÞ; ð12Þ

~A
Hþ

3
Wγ

btt ¼ αemNcjVtbj2
2πvsW

tan θHQt

× ½−m2
bðC1 þ C2 þ C0Þ þm2

t ðC1 þ C2Þ�
ðk2; q2; m2

3;m
2
b; m

2
t ; m2

t Þ; ð13Þ

where k2 ¼ M2
W and q2 ¼ 0 are the final-state particles’

invariant masses.
We can obtain a check of these formulas by artificially

setting mb ¼ mt ≡mf. In this limit the Hþ t̄b coupling
becomes purely pseudoscalar and the CP-even form factor

A
Hþ

3
Wγ

ff0 vanishes, while the CP-odd form factor reduces to

~A
Hþ

3
Wγ

ff0 ¼ αemNcjVtbj2
2πvsW

tan θHðQb þQtÞ½−m2
fC0�

ðk2; q2; m2
3;m

2
f; m

2
f; m

2
fÞ

¼ αemNcjVtbj2
2πvsW

tan θHðQb þQtÞI2ðτf; λfÞ; ð14Þ

where in this case τf ¼ 4m2
f=m

2
3, λf ¼ 4m2

f=k
2, and I2 is

the function that appears in the usual calculation of the
fermion loop contribution to a CP-odd scalar decaying to
Zγ [6] [see Eq. (39)].

B. Scalar loop diagram

The second diagram in Fig. 1 contributes with two
different scalar masses in the loop to Hþ

3 → Wþγ. (For
H0

5 → Zγ andHþ
5 → Wþγ the scalar loop diagrams involve

three scalars with the same masses.) We define triple-scalar
and vector-scalar-scalar couplings, with all particles incom-
ing, in terms of the Feynman rules such that the triple-scalar
vertex Feynman rule is −iCHis�1s2

and the vector-scalar-
scalar vertex Feynman rule is ieCV�s1s�2

ðp1 − p2Þμ, where
p1 and p2 are the incoming momenta of s1 and s�2,
respectively, and V� is the incoming particle corresponding
to outgoing vector boson V. The photon coupling to two
scalars is fixed by the Feynman rule ie2Qsðps − ps� Þμ,
where ps is the incoming momentum of the incoming
scalar s, ps� is the incoming momentum of outgoing scalar
s (or incoming s�), andQs is the electric charge in units of e
of the scalar s. Explicit formulas for these couplings in the
GM model are given in Appendix B.
The form factor is given as an integral over Feynman

parameters by

SHiVγ⊃AHiVγ
s1s2s2

¼−
αemQs2

π
CHis�1s2

CV�s1s�2

Z
1

0

dx
Z

1

0

dz
IHiVγ
s1s2s2

Δs1s2s2

; ð15Þ

where

Δs1s2s2 ¼ −M2
Vxð1 − xÞ þm2

s1ð1 − xÞ þm2
s2x

þ xzð1 − xÞðM2
V −m2

Hi
Þ;

Is1s2s2 ¼ x2zð1 − xÞ: ð16Þ

This agrees with the corresponding result of Ref. [56] for
the special case ms2 ¼ mHi

.
In terms of the LOOPTOOLS functions, the scalar loop

contribution is given by

AHiVγ
s1s2s2 ¼ −

αemQs2

π
CHis�1s2

CV�s1s�2
½C12 þ C22 þ C2�

ðk2; q2; m2
Hi
;m2

s1 ; m
2
s2 ; m

2
s2Þ; ð17Þ

where k2 ¼ M2
V and q2 ¼ 0 are the final-state particles’

invariant masses.
In the limit ms1 ¼ ms2 ≡ms, this expression reduces to

AHiVγ
s1s2s2 ¼ −

αemQs2

π
CHis�1s2

CV�s1s�2

1

4m2
s
I1ðτs; λsÞ; ð18Þ

where in this case τs ¼ 4m2
s=m2

Hi
, λs ¼ 4m2

s=k2, and I1 is
the function that appears in the usual calculation of the
scalar loop contribution to a CP-even scalar decaying to Zγ
[6] [see Eq. (38)].
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C. Vector-scalar-scalar loop diagram

The third diagram in Fig. 1 contributes to Hþ
3 → Wþγ,

Hþ
5 → Wþγ, and H0

5 → Zγ. For this diagram we need the
scalar-vector-vector coupling, which is defined by the
Feynman rule ie2Cs�XV�gμν, again with all particles incom-
ing. Explicit expressions are given in Appendix B.
The form factor is given as an integral over Feynman

parameters by

SHiVγ⊃AHiVγ
Xss

¼−
α2emQs2CX�

1
His2Cs�

2
X1V�

M2
X1

Z
1

0

dx
Z

1

0

dz
IHiVγ
Xss

ΔXss
; ð19Þ

where

ΔXss ¼ −xð1 − xÞM2
V þ ð1 − xÞM2

X1
þ xm2

s2

− xzð1 − xÞðm2
Hi

−M2
VÞ;

IHiVγ
Xss ¼ x2z

�
2

3
x2ð1þ zÞ þ 2

3
xð1 − 2zÞ − 1

�
m2

Hi

þ x2ðz − 1Þ
�
2

3
xð2 − xÞðz − 2Þ þ 1

�
M2

V

þ x

�
2

3
ðzþ 1Þx2 − 5xþ 4

�
M2

X1

þ x2
�
−
2

3
ð1þ zÞxþ 1

�
m2

s2 : ð20Þ

In terms of the LOOPTOOLS functions, the vector-scalar-
scalar loop contribution is given by

AHiVγ
Xss ¼ −α2emQs2CX�

1
His2Cs�

2
X1V�

×

�
−2ðC12 þ C22 þ 2C1 þ 3C2 þ 2C0Þ

− 2

�
m2

Hi
−m2

s2

M2
X1

�
ðC12 þ C22 þ C2Þ

�

ðk2; q2; m2
Hi
;M2

X1
; m2

s2 ; m
2
s2Þ; ð21Þ

where k2 ¼ M2
V and q2 ¼ 0 are the final-state particles’

invariant masses.

D. Scalar-vector-vector loop diagram

The fourth diagram in Fig. 1 contributes to Hþ
3 → Wþγ,

Hþ
5 → Wþγ, and H0

5 → Zγ. The form factor is given as an
integral over Feynman parameters by

SHiVγ ⊃ AHiVγ
sXX ¼ α2emQX2

CX2His�1
Cs1X�

2
V�

2M2
X2

Z
1

0

dx
Z

1

0

dz
IHiVγ
sXX

ΔsXX
;

ð22Þ

where

ΔsXX ¼ −xð1 − xÞM2
V þ ð1 − xÞm2

s1 þ xM2
X2

− xzð1 − xÞðm2
Hi

−M2
VÞ;

IHiγV
sXX ¼

�
2

3
x4ðz − 2Þðz − 1Þ þ 4

3
x3ð2z2 − 3zþ 1Þ

þ x2ðz − 1Þ
�
M2

V

þ
�
−
2

3
x4zð1þ zÞ þ 8

3
x3zð2 − zÞ − 3x2z

�
m2

Hi

þ
�
−
2

3
x3ð1þ 4zÞ þ x2ð6z − 1Þ

�
m2

s1

þ
�
2

3
x3ð4zþ 1Þ þ 3x2ð3 − 2zÞ

�
M2

X2
: ð23Þ

This agrees with the corresponding result of Ref. [56] for
the special case MX2

¼ MV .
2

In terms of the LOOPTOOLS functions, the scalar-vector-
vector loop contribution is given by

AHiVγ
sXX ¼α2emQX2

CX2His�1
Cs1X�

2
V�

�
−2C12−2C22þ4C1þ2C2

−2

�
m2

Hi
−m2

s1

M2
X2

�
ðC12þC22þC2Þ

�

ðk2;q2;m2
Hi
;m2

s1 ;M
2
X2
;M2

X2
Þ; ð24Þ

where k2 ¼ M2
V and q2 ¼ 0 are the final-state particles’

invariant masses.

E. Vector loop diagram

The fifth and sixth diagrams in Fig. 1 contribute with two
different gauge boson masses in the loop to Hþ

5 → Wþγ.
The masses and couplings are given by mHi

¼ m5, MX1
¼

MZ, MX2
¼ MV ¼ MW , QX2

¼ −1, CX1V�X�
2
¼ CZW−Wþ ¼

cW=sW , and CHiX�
1
x2 ¼ CHþ

5
ZW− ¼ −v sin θH=2cWs2W .

The form factor is given as an integral over Feynman
parameters by

SHiVγ ⊃ AHiVγ
X1X2X2

¼ α2em
2

QX2
CX1V�X�

2
CHiX�

1
X2

Z
1

0

dx
Z

1

0

dz
IHiVγ
X1X2X2

ΔX1X2X2

;

ð25Þ

where

2Note that our integrand IsXX is defined such that our integral
differs from that in Ref. [56] by a factor of 4.
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ΔX1X2X2
¼ −M2

Vxð1 − xÞ þM2
X1
ð1 − xÞ þM2

X2
xþ ðM2

V −m2
Hi
Þxzð1 − xÞ;

IHiVγ
X1X2X2

¼ x
3M2

X1
M2

X2

½M4
X1
ðx½117 − 6xð34þ 16x½z − 1� − 29zÞ − 72z� − 12Þ þM2

X2
ðM2

X2
x½9þ 6xðz − 6 − 16x½z − 1�Þ�

þM2
X1
½36þ 6xðx½40 − 18z� þ 32x2½z − 1� − 3½3þ 4z�Þ�Þ þm2

Hi
xðm2

Hi
x½xzð2 − 24x½11þ 5xðz − 1Þ − 9z�z

− 90½z − 2�zÞ − 4zð1þ 9zÞ� þM2
X2
½xð6z½13þ 2z� − 2 − 12x½23þ 18xðz − 1Þ − 16z�zÞ − 9z�

þM2
X1
½57zþ xð2þ 12x½39þ 18xðz − 1Þ − 32z�zþ 6z½26z − 51�Þ�Þ

þM2
VðM2

X2
x½9z − 12þ xð64þ 12x½23þ 18xðz − 1Þ − 16z�ðz − 1Þ − 2z½29þ 6z�Þ�

þM2
Vx½3 − 3z − 2xðz − 1Þ2ð20þ 60x3½z − 1� − 12x2½9z − 11� þ x½45z − 88�Þ�

þM2
X1
½xð72 − 57zþ x½ð454 − 156zÞz − 304 − 12xð39þ 18x½z − 1� − 32zÞðz − 1Þ�Þ − 12�

þm2
Hi
x½3zþ xð2þ z½76z − 78� þ 4x½z − 1�½1þ ð132x − 60x2 − 89Þzþ 3ð15 − 36xþ 20x2Þz2�Þ�Þ�: ð26Þ

The numerator can be equivalently expressed in the following, equally horrible, form,

IHiVγ
X1X2X2

¼ m4
Hi

M2
X1
M2

X2

�
40x6z2ð1− zÞ þ 8z2x5ð9z− 11Þ þ 2

3
x4zð1þ 90z− 45z2Þ− 4

3
x3zð1þ 9zÞ

�

þ m2
Hi
M2

V

M2
X1
M2

X2

�
80x6zðz− 1Þ2 − 16x5zðz− 1Þð9z− 11Þ þ 4

3
x4ðz− 1Þð1− 89zþ 45z2Þ þ 2

3
x3ðz− 1Þð38z− 1Þ þ x2z

�

þ m2
Hi

M2
X1

�
72x5zð1− zÞ þ 4x4zð16z− 23Þ þ 2

3
x3ð6z2 þ 39z− 1Þ− 3x2z

�

þ m2
Hi

M2
X2

�
72x5zðz− 1Þ− 4x4zð32z− 39Þ þ 2

3
x3ð1− 153zþ 78z2Þ þ 19x2z

�

þ M4
V

M2
X1
M2

X2

�
40x6ð1− zÞ3 þ 8x5ðz− 1Þ2ð9z− 11Þ− 2

3
x4ðz− 1Þ2ð45z− 88Þ þ ð1− zÞx2 − 40

3
x3ðz− 1Þ2

�

þ M2
V

M2
X1

�
72x5ðz− 1Þ2 − 2

3
x3ð6z2 þ 29z− 32Þ− 4x4ðz− 1Þð16z− 23Þ þ x2ð3z− 4Þ

�

þ M2
V

M2
X2

�
−72x5ðz− 1Þ2 þ 4x4ðz− 1Þð32z− 39Þ þ 2

3
x3ð152− 227zþ 78z2Þ þ x2ð24− 19zÞ− 4x

�

þM2
X2

M2
X1

½32x4ð1− zÞ þ 2x3ðz− 6Þ þ 3x2� þ 64x4ðz− 1Þ þ 4x3ð20− 9zÞ− 6x2ð3þ 4zÞ þ 12x

þM2
X1

M2
X2

½32x4ð1− zÞ þ 2x3ð29z− 34Þ− 3x2ð8z− 13Þ− 4x�: ð27Þ

In terms of the LOOPTOOLS functions, the vector loop contribution to Hþ
5 → Wþγ is given by

A
Hþ

5
Wγ

ZWW ¼ −
αem
2πv

sin θHMWMZ cot θW

�
ð12C12 þ 12C22 þ 12C2 þ 6C0Þ þ

s2W
c2W

ðC12 þ C22 þ 2C1 þ 3C2 þ 2C0Þ

þ m2
5

M2
W
ðC12 þ C22 þ C2Þ

�
ðk2; q2; m2

5;M
2
Z;M

2
W;M

2
WÞ; ð28Þ

where k2 ¼ M2
W and q2 ¼ 0 are the final-state particles’ invariant masses. In this case we have computed the specific

diagrams appearing in Hþ
5 → Wþγ rather than a more generic case because we had to use the relations among the gauge,

Goldstone, and ghost couplings to simplify the result of the ’t Hooft-Feynman gauge calculation. We note also that these
simplifications make use of the final-state W boson mass, so that this result is good for on-shell decays only.
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III. SCALAR DECAYS TO Vγ
IN THE GM MODEL

With the loop functions in hand, we now assemble all the
contributions to compute the amplitudes for decays of
the neutral scalars in the GM model into γγ and Zγ and the
singly-charged scalars into Wγ.

A. Decays to two photons

In the GM model, the neutral scalars h, H, H0
3, and H0

5

can decay to two photons through the usual loop-induced
processes. Electromagnetic gauge invariance ensures that
only a single particle runs around the loop in each diagram,
so that the decay amplitudes S and ~S can be expressed in
terms of the familiar functions given, e.g., in Ref. [6]. The
contributing particles in the loop are summarized in Table I.
Note that h, H, and H0

5 are CP-even and hence decay via
the form factor S, while H0

3 is CP-odd and decays via the
form factor ~S. The CP-odd form factor receives contribu-
tions only from fermions in the loop. The state H0

5 is
fermiophobic and hence the fermion loop does not con-
tribute to its decay.
For the CP-even scalars h, H, and H0

5, the decay is
described by Eq. (2) with ~S ¼ 0 and [6]3

SHiγγ ¼
αem
2πv

�
βHi
W F1ðτWÞ þ

X
f

NcfQ2
fβ

Hi
f F1=2ðτfÞ

þ
X
s

βHi
s Q2

sF0ðτsÞ
�
; ð29Þ

where Ncf ¼ 3 for quarks and 1 for leptons, Qj is the
electric charge of particle j in units of e, and the sums run
over all fermions and scalars that can propagate in the loop
for the parent scalar Hi. In practice the charged scalars are
s ¼ fHþ

3 ; H
þ
5 ; H

þþ
5 g and we keep only the top quark

contribution to the fermion loop, f ¼ t. The coupling
coefficients βHi

j are defined as,

βHi
W ¼ CHiWþW−e2

gMW
; βHi

f ¼ −
CHiff̄v

mf
; βHi

s ¼ CHiss�v

2m2
s

;

ð30Þ

for a propagating W boson, fermion f, and scalar s,
respectively. The couplings Cijk are given in Appendix B.
In the case of theW boson and fermion loops, these factors
βHi
W;f are equal to the usual ratios κ

Hi
W;f of the scalar coupling

to WW or ff̄ normalized to the corresponding SM Higgs

coupling as described in Ref. [65]. Note that β
H0

5

f ¼ 0

because the H5 states are fermiophobic.

The loop factors are given in terms of the usual functions
for particles of spin 0, 1=2 and 1 [6],

F1ðτWÞ ¼ 2þ 3τW þ 3τWð2 − τWÞfðτWÞ;
F1=2ðτfÞ ¼ −2τf½1þ ð1 − τfÞfðτfÞ�;
F0ðτsÞ ¼ τs½1 − τsfðτsÞ�; ð31Þ

where τj ¼ 4m2
j=m

2
Hi

and

fðτÞ ¼

8>><
>>:

h
sin−1

� ffiffi
1
τ

q �i
2

if τ ≥ 1;

− 1
4

h
log

�
ηþ
η−

�
− iπ

i
2

if τ < 1;
ð32Þ

with η� ¼ 1� ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
.

For the CP-odd scalar H0
3, the decay is described by

Eq. (2) with S ¼ 0 and [6]

~SH0
3
γγ ¼

αem
2πv

�X
f

NcfQ2
fβ

H0
3

f FA
1=2ðτfÞ

�
; ð33Þ

where FA
1=2 ¼ −2τffðτfÞ and β

H0
3

f is defined as in Eq. (30).
Again we will include only the top quark in the loop, f ¼ t.

B. Decays to Zγ

The neutral scalars h, H, H0
3, and H0

5 can also decay to
Zγ through a loop. For this decay, loops involving particles
with two different masses can appear, because the Z boson
(unlike the photon) can couple to two different-mass
particles. These new diagrams arise only in the decay of
the custodial-fiveplet scalar H0

5 → Zγ, because custodial
symmetry is enough to forbid them in the decays of the
custodial-singlet scalars h and H, and the CP-odd scalar
H0

3 → Zγ decay receives contributions only from loops of
fermions, whose couplings to the Z boson are flavor-
diagonal.
As before, the CP-even scalars h, H, and H0

5 decay via
the form factor S, while the CP-odd scalar H0

3 decays via
the form factor ~S. The state H0

5 is fermiophobic and
hence the fermion loop does not contribute to its decay.
The contributing particles in the loop are summarized
in Table II.

TABLE I. Particles in the loop that contribute to the decay
Hi → γγ. For the fermion contributions we include only the
dominant top quark contribution.

Hi Formfactor V f s

h S Wþ t fHþ
3 ; H

þ
5 ; H

þþ
5 g

H S Wþ t fHþ
3 ; H

þ
5 ; H

þþ
5 g

H0
5

S Wþ N/A fHþ
3 ; H

þ
5 ; H

þþ
5 g

H0
3

~S N/A t N/A

3Note that 1=2πv ¼ g=4πMW .
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For the custodial-singlet CP-even scalars h and H, the
decay is described by Eq. (2) with ~S ¼ 0 and

SHiZγ ¼ −
αem
2πv

�
βHi
W AHiZγ

W þ
X
f

βHi
f AHiZγ

f þ
X
s

βHi
s AHiZγ

s

�
;

ð34Þ

where the sums run over all fermions and scalars that can
propagate in the loop for the parent scalar Hi. In practice
the contributing scalars are s ¼ fHþ

3 ; H
þ
5 ; H

þþ
5 g and we

keep only the top quark contribution to the fermion loop,
f ¼ t. The coupling coefficients βHi

j are the same as in
Eq. (30). The loop factors are given as usual by [6]4

AHiZγ
W ¼−

cW
sW

	�
8−

16

λW

�
I2ðτW;λWÞ

þ
�
4

λW

�
1þ 2

τW

�
−
�
6þ 4

τW

��
I1ðτW;λWÞ



; ð35Þ

AHiZγ
f ¼ Ncf

−2QfðT3L
f − 2Qfs2WÞ
sWcW

½I1ðτf; λfÞ − I2ðτf; λfÞ�;

ð36Þ

AHiZγ
s ¼ CZss�QsI1ðτs; λsÞ; ð37Þ

where T3L
f is the third component of isospin of the left-handed

fermion f (T3L
f ¼1=2 for the top quark), τj¼4m2

j=m
2
Hi
,

λj ¼ 4m2
j=M

2
Z, and the loop functions are

I1ða; bÞ ¼
ab

2ða − bÞ þ
a2b2

2ða − bÞ2 ½fðaÞ − fðbÞ�

þ a2b
ða − bÞ2 ½gðaÞ − gðbÞ�; ð38Þ

I2ða; bÞ ¼ −
ab

2ða − bÞ ½fðaÞ − fðbÞ�: ð39Þ

The function fðτÞ was given in Eq. (32), and

gðτÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
τ − 1

p
sin−1

� ffiffi
1
τ

q �
if τ ≥ 1;

1
2

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p h
log

�
ηþ
η−

�
− iπ

i
if τ < 1;

ð40Þ

with η� defined as for fðτÞ. The couplings CZss� are given
in Appendix B.
For the custodial-fiveplet CP-even scalar H0

5, the decay
is described by Eq. (2) with ~S ¼ 0 and

SH0
5
Zγ ¼ −

αem
2πv

�
β
H0

5

W A
H0

5
Zγ

W þ
X
s

β
H0

5
s A

H0
5
Zγ

s

�
þ A

H0
5
Zγ

WþHþ
5
Hþ

5

þ A
H0

5
Zγ

W−H−
5
H−

5
þ A

H0
5
Zγ

Hþ
5
WþWþ þ A

H0
5
Zγ

H−
5
W−W− ; ð41Þ

where the sum over scalars runs over s ¼ fHþ
3 ; H

þ
5 ; H

þþ
5 g

as before and β
H0

5

W;s are defined as in Eq. (30). The novel
contributions are the last four terms, which come from the
vector-scalar-scalar loop (Sec. II C) and the scalar-vector-
vector loop (Sec. II D) involving aW boson and anH�

5 . Our
conventions for these diagrams are such that the two
directions of electric charge flow must be included explic-

itly, but this is simplified by the fact that A
H0

5
Zγ

WþHþ
5
Hþ

5

¼
A
H0

5
Zγ

W−H−
5
H−

5
and A

H0
5
Zγ

Hþ
5
WþWþ ¼ A

H0
5
Zγ

H−
5
W−W− . There are no fermion

loop contributions because H0
5 is fermiophobic.

For the CP-odd scalar H0
3, the decay is described by

Eq. (2) with S ¼ 0 and

~SH0
3
Zγ ¼ −

αem
2πv

�X
f

β
H0

3

f
~A
H0

3
Zγ

f

�
; ð42Þ

where the CP-odd fermion loop function is [6]

~AHiZγ
f ¼ Ncf

−2QfðT3L
f − 2Qfs2WÞ
sWcW

½−I2ðτf; λfÞ�; ð43Þ

with I2 given by Eq. (39) and β
H0

3

f defined as in Eq. (30).
Again we will include only the top quark in the loop, f ¼ t.

TABLE II. Particles in the loop that contribute to the decay Hi → Zγ. For the fermion contributions we include only the dominant top
quark contribution. The H0

5 → Zγ decay receives contributions from vector-scalar-scalar diagrams as computed in Sec. II C and from
scalar-vector-vector diagrams as computed in Sec. II D.

Hi Formfactor V f s Xss sXX

h S Wþ t fHþ
3 ; H

þ
5 ; H

þþ
5 g N/A N/A

H S Wþ t fHþ
3 ; H

þ
5 ; H

þþ
5 g N/A N/A

H0
5

S Wþ N/A fHþ
3 ; H

þ
5 ; H

þþ
5 g fWþHþ

5 H
þ
5 ;W

−H−
5H

−
5 g fHþ

5 W
þWþ; H−

5W
−W−g

H0
3

~S N/A t N/A N/A N/A

4Here we have rewritten AHiZγ
W in a form that clearly separates

the kinematic dependence of the loop diagrams on MW and MZ
(encoded in λW and τW) from their dependence on the triple- and
quartic-gauge couplings, following Appendix B of Ref. [23].
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C. Decays to W + γ

The singly-charged scalarsHþ
3 andHþ

5 of the GMmodel
can decay to Wþγ through a loop. These states are not CP
eigenstates and hence their decays generically receive
contributions from both S and ~S in Eq. (2). Indeed, both
S and ~S contribute to Hþ

3 → Wþγ. However, because ~S is
generated only by fermions in the loop, the decay of the
fermiophobic scalar Hþ

5 → Wþγ receives contributions
only from S.
For Hþ

3 → Wþγ, the decay is described by Eq. (2) with

SHþ
3
Wγ ¼

X
f

A
Hþ

3
Wγ

ff0 þ
X
s1;s2

A
Hþ

3
Wγ

s1s2s2 þ
X
X;s

A
Hþ

3
Wγ

Xss þ
X
s;X

A
Hþ

3
Wγ

sXX ;

ð44Þ

~SHþ
3
Wγ ¼

X
f

~A
Hþ

3
Wγ

ff0 : ð45Þ

The particles that contribute to the sums are summarized in
Table III. This calculation requires the fermion diagram of
Sec. II A, the scalar diagram of Sec. II B, the vector-scalar-
scalar diagram of Sec. II C, and the scalar-vector-vector
diagram of Sec. II D.
For Hþ

5 → Wþγ, the decay is described by Eq. (2) with
~S ¼ 0 and

SHþ
5
Wγ ¼

X
s1;s2

A
Hþ

5
Wγ

s1s2s2 þ
X
X;s

A
Hþ

5
Wγ

Xss þ
X
s;X

A
Hþ

5
Wγ

sXX þ A
Hþ

5
Wγ

ZWW :

ð46Þ

The particles that contribute to the sums are summarized in
Table IV. This calculation requires the scalar diagram of
Sec. II B, the vector-scalar-scalar diagram of Sec. II C, the
scalar-vector-vector diagram of Sec. II D, and the vector
diagrams of Sec. II E. Note that the scalars s1 and s2 that

run in the loop for A
Hþ

5
Wγ

s1s2s2 always have the same mass as
each other due to the custodial symmetry, so that the scalar
loop integral reduces in this case to the familiar Zγ loop
function as in Eq. (18).

D. Competing decay modes

In order to compute the branching ratios for the loop-
induced decays, we need the partial widths for all com-
peting decay modes of the neutral and singly-charged
scalars. For this we use the decay partial width calculations
for the scalars of the GMmodel as implemented in GMCALC

1.2.0 [61], which includes the following processes:
(1) Tree-level decays to V1V2, with V ¼ W or Z,

including full doubly off-shell effects;
(2) Tree-level decays to one scalar and one vector

boson, using the two-body expression when kine-
matically allowed and taking the vector boson off-
shell otherwise;

(3) Tree-level decays to two scalars (two-body only);
(4) Decays to gluon pairs, including partial QCD

corrections at the level of Ref. [66];
(5) Decays to fermion pairs (two-body only), including

partial QCD corrections at the level of Ref. [66].
In our numerical analysis we will be most interested in

H5 masses below the VV threshold, where the loop-
induced decays can obtain large branching ratios. For such
H5 masses our inclusion of the doubly off-shell effects in
the competing decays H0

5 → WW, ZZ and Hþ
5 → WþZ is

essential. Also interesting are Hþ
3 decays toWþγ below the

threshold for Hþ
3 → tb̄. We have not included off-shell top

quark effects in this competing decay; we leave this
improvement to future work.
For very light charged (neutral) scalars below the W (Z)

boson mass, off-shell loop-induced decays to W�γ (Z�γ)
can become relevant. These could in principle be imple-
mented by taking the W (Z) boson off shell with a Breit-
Wigner distribution as in Ref. [67]. However, this approach
neglects nonresonant box diagram contributions to the full
Hi → ff̄γ process (so-called Dalitz decays [68–70]).
Furthermore, our result for the vector loop contribution
toHþ

5 → Wþγ in terms of the LOOPTOOLS functions is valid
for an on-shell final-state W boson only. For these reasons,
in our numerical implementation we compute the scalar
decays to Wγ (Zγ) as strictly two-body decays. This will
result in a counterintuitive resurgence of the off-shell
Hþ

5 → WþZ branching ratio for m5 < MW, when the
two-body Hþ

5 → Wþγ decay is forbidden in our calcula-
tion. Our numerical results for Hþ

5 decay branching
ratios are therefore not to be trusted for m5 < MW. For

TABLE III. Particles in the loop that contribute to the decay
Hþ

3 → Wþγ. For the fermion contribution we include only the
third-generation quark loops.

Diagram Formfactor Particles

f1f2f2 S; ~S tbb; b̄ b̄ t̄
s1s2s2 S hH−

3H
−
3 ; HH−

3H
−
3 ; H

0
5H

−
3H

−
3 ;

H0
3H

−
5H

−
5 ; H

þþ
5 Hþ

3 H
þ
3 ; H

−
3H

−−
5 H−−

5

Xss S ZH−
5H

−
5 ;W

−H−−
5 H−−

5

sXX S hW−W−;HW−W−;H0
5W

−W−;Hþþ
5 WþWþ

TABLE IV. Particles in the loop that contribute to the decay
Hþ

5 → Wþγ.

Diagram Formfactor Particles

s1s2s2 S H0
3H

−
3H

−
3 ; H

0
5H

−
5H

−
5 ;

H−
5H

−−
5 H−−

5 ; Hþþ
5 Hþ

5 H
þ
5

Xss S ZH−
5H

−
5 ;W

−H−−
5 H−−

5

sXX S H0
5W

−W−; Hþþ
5 WþWþ

X1X2X2 S ZW−W−
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these masses, one can rely instead on searches for
Hþþ

5 → WþWþ, for which there is no competing decay,
and for H0

5 → γγ, which will dominate over any off-shell
H0

5 → Z�γ contribution. In our numerical analysis in the
next section we consider only Hþ

5 masses above MW and
H0

5 masses above MZ.

IV. NUMERICAL RESULTS

In this section we study the branching ratios of the scalar
decays to γγ, Zγ, and Wγ in the GM model. We set mh ¼
125 GeV and scan over the full allowed parameter space of
the model using a modified version of GMCALC 1.2.0 [61]
into which we have implemented the new one-loop decays.

GMCALC 1.2.0 lets us impose the theoretical constraints
from perturbative unitarity of the quartic couplings in the
Higgs potential and the stability of the correct electroweak
vacuum [23], as well as indirect constraints from b → sγ
[27]. We also impose an upper bound on sin θH as a
function of m5 determined in Ref. [25] from an ATLAS
measurement of the like-sign WW cross section in vector
boson fusion at the 8 TeV LHC [71], which would be
increased by Hþþ

5 production.5 Finally we require that m3,
m5 ≥ 76 GeV; the lower bound on m5 was found in
Ref. [37] based on an ATLAS search for anomalous
like-sign dimuon production at 8 TeV [72,73], and the
lower bound onm3 comes from the LEP search for charged
Higgs pair production in the Type I two Higgs doublet
model [74], where we require m3 ≤ m5 to prevent off-shell
decays Hþ

3 → Hþ
5 Z;H

0
5W

þ. In our scans we require
76 GeV ≤ m5 ≤ 200 GeV and scan all other parameters

over their allowed ranges. The theoretical constraints force
m3 ≲ 600 GeV in these scans.
Our new result for ΓðH0

5 → ZγÞ allows us to make an
accurate calculation of the branching ratio BRðH0

5 → γγÞ
for m5 < 2MW, where the Zγ decay can contribute non-
negligibly to theH0

5 total width. We now use this to apply a
new constraint on the GM model from a LEP search for
eþe− → ZH0

5 with H0
5 → γγ [52]. We take the numerical

exclusion limit from HIGGSBOUNDS 4.2.0 [75]. The exclu-
sion is shown in the left panel of Fig. 2 as a limit on

ðκH0
5

Z Þ2 × BRðH0
5 → γγÞ as a function of m5, where κ

H0
5

Z ¼
2 sin θH=

ffiffiffi
3

p
is theH0

5ZZ coupling normalized to that of the
SM Higgs boson. The points above the blue curve are
excluded, and will be colored red in all the plots in this
section. The black points are allowed by all constraints
considered in this section.
The effect of the LEP H0

5 → γγ constraint on the GM
model parameter space can be better understood by study-
ing the m5– sin θH plane, as shown in the right panel of
Fig. 2. To illustrate the effects of the other experimental
constraints on the model, we show the points excluded by
b → sγ in cyan and the points excluded by the ATLAS like-
sign WW cross section in green. Again the red points are
excluded by the LEP H0

5 → γγ constraint and the black
points are allowed. We see that LEP excludes most of the
parameter space for m5 ≲ 110 GeV, except for points at
low sin θH for which the eþe− → ZH0

5 cross section is
suppressed and a smattering of points at higher sin θH for
which BRðH0

5 → γγÞ is suppressed due to cancellations
among the loop amplitudes.
In Fig. 3 we show the branching ratios of H0

5 → γγ (left
panel) and H0

5 → Zγ (right panel) as a function of m5. The
black points are allowed. We see that BRðH0

5 → γγÞ can
reach several tens of percent for m5 ≲ 130 GeV, and be
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FIG. 2. Left: BRðH0
5 → γγÞmultiplied by the square of theH0

5ZZ coupling as a function ofm5, showing the region excluded by a LEP
search for eþe− → ZH with H → γγ (blue line). Red points are excluded by the LEP search and black points are allowed. All other
experimental constraints are satisfied. Right: Scan points in the m5–sH plane. All points shown satisfy the theory constraints and the
lower bounds m5, m3 ≥ 76 GeV. Cyan points are excluded by b → sγ, green points by the ATLAS like-sign WWjj bound, and red
points by the LEP constraint. Black points are allowed.

5Other LHC searches for vector boson fusion production of
Hþþ

5 [35] or Hþ
5 [38,39] consider only masses above 200 GeV.

DEGRANDE, HARTLING, and LOGAN PHYSICAL REVIEW D 96, 075013 (2017)

075013-10



above 1% for a large fraction of the parameter space with
m5 ≲ 2MW . Similarly, BRðH0

5 → ZγÞ can reach several
percent for m5 ∼ 110–150 GeV, but never surpasses 10%.
The rapid decline of BRðH0

5 → ZγÞ for m5 ≲ 110 GeV is
due to the kinematic suppression from the on-shell
Z boson.
In Fig. 4 we study the effect of the new vector-scalar-

scalar and scalar-vector-vector contributions toH0
5 → Zγ. In

this figure we plot a “partial” calculation of ΓðH0
5 → ZγÞ,

obtained by computing only the usual W and scalar loop
diagrams for which standard expressions are available [6],
normalized to the full calculation of Eq. (41). Over most of
the parameter space, neglecting the new vector-scalar-scalar
and scalar-vector-vector loop contributions would lead to a
result forΓðH0

5 → ZγÞ about a factor of two smaller than that
of the full calculation, except at parameter points where an
accidental cancellation among loop amplitudes occurs in
either the “partial” or the full result.
In Fig. 5 we plot the branching ratios for Hþ

5 → Wþγ
(left) and Hþ

3 → Wþγ (right) as a function of m5 and m3,
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FIG. 4. Comparison of a “partial” calculation of ΓðH0
5 → ZγÞ

including only the SM-like diagrams to the full calculation. Red
points are excluded by the LEP search for eþe− → ZH, H → γγ.
Black points are allowed by all constraints.
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FIG. 5. Branching ratios of Hþ
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respectively. The black points are allowed. We see that
BRðHþ

5 → WþγÞ can reach a few tens of percent for
m5 ≲ 130 GeV, and be above 1% for a large fraction of
the parameter space with m5 ≲ 2MW . BRðHþ

3 → WþγÞ is
typically smaller due to competition with decays to fermion
pairs, though it can reach tens of percent for select
parameter points. This happens because Hþ

3 → Wþγ
receives contributions from scalar loop diagrams (see
Table III), which can remain unsuppressed at small
sin θH when the tree-level decays of Hþ

3 into fermion pairs
are suppressed.
Finally we comment on the decays ofH0

3. At lowmasses,
the decays of this state are dominated by ff̄ and gg, as well
as decays to Zh, ZH, ZH0

5, and/or W
�H∓

5 when not too
kinematically suppressed. Because H0

3 is CP-odd, its loop-
induced decays to γγ and Zγ receive contributions only
from fermions in the loop. Therefore the partial widths for
these loop-induced decays, as well as the loop-induced
decay to gg and the tree-level decay to ff̄, all scale with the
same H0

3f̄f coupling modification factor tan2 θH. None of
these decays of H0

3 involve the new one-loop diagrams
computed in this paper, and they are already implemented
in GMCALC 1.2.0.

V. CONCLUSIONS

In this paper we evaluated the one-loop contributions to
Hi → Vγ from “heterogeneous” loop diagrams involving
particles with two different masses propagating in the
loop. These are necessary for a full leading-order calcu-
lation of the decay widths of Hþ

3 → Wþγ, Hþ
5 → Wþγ,

and H0
5 → Zγ in the GM model. The novel results

presented here are for (1) the scalar loop diagram with
mHi

≠ ms1 ≠ ms2 , which contributes to Hþ
3 → Wþγ;

(2) the vector-scalar-scalar loop diagram, which contrib-
utes to H0

5 → Zγ and Hþ
5 → Wþγ; (3) the scalar-vector-

vector loop diagram withMV ≠ MX2
, which contributes to

H0
5 → Zγ; and (4) the vector loop diagram which con-

tributes to Hþ
5 → Wþγ. We gave the results for these

diagrams in terms of the LOOPTOOLS functions for ease of
numerical implementation. We also recalculated the
heterogeneous loop diagrams previously computed in
Ref. [56] in order to give expressions for them in terms
of the LOOPTOOLS functions.
Using these results we performed numerical scans over

the theoretically and experimentally allowed parameter
space of the GM model in order to study the behavior
of the Hi → Vγ branching ratios. We showed that a LEP
search for eþe− → ZH0

5 with H0
5 → γγ strongly constrains

the GM model parameter space for m5 ≲ 110 GeV.
Our results for the loop-inducedHi → Vγ decays will be

implemented into GMCALC 1.3.0 and higher, which will
allow the experimental searches for H0

5 and H
þ
5 at the LHC

to be reliably extended below the VV threshold.
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APPENDIX A: THE GEORGI-MACHACEK
MODEL

The scalar sector of the GM model [2,3] consists of the
usual complex doublet ðϕþ;ϕ0ÞT with hypercharge6 Y ¼ 1,
a real triplet ðξþ; ξ0;−ξþ�ÞT with Y ¼ 0, and a complex
triplet ðχþþ; χþ; χ0ÞT with Y ¼ 2. The doublet is respon-
sible for the fermion masses as in the SM. Custodial
symmetry is preserved at tree level by imposing a global
SUð2ÞL × SUð2ÞR symmetry on the scalar potential. In
order to make this symmetry explicit, we write the doublet
in the form of a bidoublet Φ and combine the triplets to
form a bitriplet X:

Φ¼
�

ϕ0� ϕþ

−ϕþ� ϕ0

�
; X¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA: ðA1Þ

The vevs are defined by hΦi ¼ vϕffiffi
2

p I2×2 and hXi ¼ vχI3×3,

where I is the unit matrix and the W and Z boson masses
constrain

v2ϕ þ 8v2χ ≡ v2 ¼ 1ffiffiffi
2

p
GF

≈ ð246 GeVÞ2: ðA2Þ

The most general gauge-invariant scalar potential involv-
ing these fields that conserves custodial SU(2) is given, in
the conventions of Ref. [23], by7

VðΦ; XÞ ¼ μ22
2
TrðΦ†ΦÞ þ μ23

2
TrðX†XÞ þ λ1½TrðΦ†ΦÞ�2

þ λ2TrðΦ†ΦÞTrðX†XÞ þ λ3TrðX†XX†XÞ
þ λ4½TrðX†XÞ�2 − λ5TrðΦ†τaΦτbÞTrðX†taXtbÞ
−M1TrðΦ†τaΦτbÞðUXU†Þab
−M2TrðX†taXtbÞðUXU†Þab: ðA3Þ

6We use Q ¼ T3 þ Y=2.
7A translation table to other parametrizations in the literature

has been given in the appendix of Ref. [23].
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Here the SU(2) generators for the doublet representation
are τa ¼ σa=2 with σa being the Pauli matrices, the
generators for the triplet representation are

t1 ¼ 1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; t2 ¼ 1ffiffiffi

2
p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA;

t3 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ðA4Þ

and the matrix U, which rotates X into the Cartesian basis,
is given by [8]

U ¼

0
B@

− 1ffiffi
2

p 0 1ffiffi
2

p

− iffiffi
2

p 0 − iffiffi
2

p

0 1 0

1
CA: ðA5Þ

The physical fields can be organized by their trans-
formation properties under the custodial SU(2) symmetry
into a fiveplet, a triplet, and two singlets. The fiveplet and
triplet states are given by

Hþþ
5 ¼ χþþ; Hþ

5 ¼ ðχþ− ξþÞffiffiffi
2

p ; H0
5 ¼

ffiffiffi
2

3

r
ξ0−

ffiffiffi
1

3

r
χ0;r;

Hþ
3 ¼−sHϕþþcH

ðχþþ ξþÞffiffiffi
2

p ; H0
3 ¼−sHϕ0;iþcHχ0;i;

ðA6Þ
where the vevs are parametrized by

cH ≡ cos θH ¼ vϕ
v
; sH ≡ sin θH ¼ 2

ffiffiffi
2

p
vχ

v
; ðA7Þ

and we have decomposed the neutral fields into real and
imaginary parts according to

ϕ0 →
vϕffiffiffi
2

p þ ϕ0;r þ iϕ0;iffiffiffi
2

p ; χ0 → vχ þ
χ0;r þ iχ0;iffiffiffi

2
p ;

ξ0 → vχ þ ξ0: ðA8Þ

The masses within each custodial multiplet are degenerate
at tree level and can be written (after eliminating μ22 and μ23
in favor of the vevs) as8

m2
5 ¼

M1

4vχ
v2ϕ þ 12M2vχ þ

3

2
λ5v2ϕ þ 8λ3v2χ ;

m2
3 ¼

M1

4vχ
ðv2ϕ þ 8v2χÞ þ

λ5
2
ðv2ϕ þ 8v2χÞ ¼

�
M1

4vχ
þ λ5

2

�
v2:

ðA10Þ

Note that the custodial-fiveplet states H5 consist entirely of
the triplet fields, and hence do not couple to fermions at tree
level. In contrast, the H3 states contain a doublet admixture
and hence do couple to fermions.
The two custodial-singlet mass eigenstates are given by

h ¼ cαϕ0;r − sαH00
1 ; H ¼ sαϕ0;r þ cαH00

1 ; ðA11Þ

where cα ¼ cos α, sα ¼ sin α, and

H00
1 ¼

ffiffiffi
1

3

r
ξ0 þ

ffiffiffi
2

3

r
χ0;r: ðA12Þ

The mixing angle and masses are given by

sin2α¼ 2M2
12

m2
H −m2

h

; cos2α¼M2
22−M2

11

m2
H −m2

h

;

m2
h;H ¼ 1

2

h
M2

11þM2
22 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11−M2
22Þ2þ 4ðM2

12Þ2
q i

;

ðA13Þ

where we choose mh < mH, and

M2
11 ¼ 8λ1v2ϕ;

M2
12 ¼

ffiffiffi
3

p

2
vϕ½−M1 þ 4ð2λ2 − λ5Þvχ �;

M2
22 ¼

M1v2ϕ
4vχ

− 6M2vχ þ 8ðλ3 þ 3λ4Þv2χ : ðA14Þ

The couplings of the scalars in the GMmodel that we use
in this paper are collected in Appendix B.

APPENDIX B: FEYNMAN RULES
FOR THE GM MODEL

Here we summarize the Feynman rules for the GM
model that we have used in the one-loop decay calcula-
tions. A full set of Feynman rules can be found in Ref. [23].
In what follows, all particles and momenta are incoming.
For the covariant derivative we use the sign conven-
tion Dμ ¼ ∂μ − igAa

μTa.

1. Scalar couplings to fermions

The Feynman rules for the vertices involving a neutral
scalar and two fermions are given as follows:

8Note that the ratio M1=vχ can be written using the mini-
mization condition ∂V=∂vχ ¼ 0 as

M1

vχ
¼ 4

v2ϕ
½μ23þð2λ2 − λ5Þv2ϕþ 4ðλ3þ 3λ4Þv2χ − 6M2vχ �; ðA9Þ

which is finite in the limit vχ → 0.
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hf̄f∶ − i
mf

v
cos α
cos θH

¼ iChf̄f;

Hf̄f∶ − i
mf

v
sin α
cos θH

¼ iCHf̄f;

H0
3ūu∶

mu

v
tan θHγ5;¼ CH0

3
ūuγ5

H0
3d̄d∶ −

md

v
tan θHγ5 ¼ CH0

3
d̄dγ5: ðB1Þ

Here f stands for any charged fermion, u stands for any
up-type quark, and d stands for any down-type quark or
charged lepton.
The Feynman rules for the vertices involving a charged

scalar and two fermions are given as follows, with all
particles incoming:

Hþ
3 ūd∶ − i

ffiffiffi
2

p

v
Vud tan θHðmuPL −mdPRÞ;

Hþ�
3 d̄u∶ − i

ffiffiffi
2

p

v
V�
ud tan θHðmuPR −mdPLÞ: ðB2Þ

Here Vud is the appropriate element of the CKMmatrix and
the projection operators are defined as PR;L ¼ ð1� γ5Þ=2.
We define the coupling coefficients CS and CP used in the
work above according to iðCS

Hþ
3
f̄1f2

þ CP
Hþ

3
f̄1f2

γ5Þ.
The custodial fiveplet states do not couple to fermions.

2. Triple scalar couplings

The Feynman rules for the triple-scalar couplings
involving incoming scalars s1s2s3 are given by −iCs1s2s3,
with all particles incoming. The ordering of the indices
does not matter for these couplings. The couplings used in
our calculations are given as follows:

CHþ
3
Hþ�

3
h ¼

1ffiffiffi
3

p
v2

n ffiffiffi
3

p
cα½ð4λ2 − λ5Þv3ϕ þ 8ð8λ1 þ λ5Þvϕv2χ

þ 4M1vϕvχ �− sα½8ðλ3 þ 3λ4 þ λ5Þv2ϕvχ
þ 16ð6λ2 þ λ5Þv3χ þ 4M1v2χ − 6M2v2ϕ�

o
; ðB3Þ

CHþ
3
Hþ�

3
H ¼ 1ffiffiffi

3
p

v2

n ffiffiffi
3

p
sα½ð4λ2 − λ5Þv3ϕ

þ 8ð8λ1 þ λ5Þvϕv2χ þ 4M1vϕvχ �
þ cα½8ðλ3 þ 3λ4 þ λ5Þv2ϕvχ
þ 16ð6λ2 þ λ5Þv3χ þ 4M1v2χ − 6M2v2ϕ�

o
; ðB4Þ

CHþ
5
Hþ�

5
h ¼ CHþþ

5
Hþþ�

5
h

¼ cα½ð4λ2 þ λ5Þvϕ� −
ffiffiffi
3

p
sα½8ðλ3 þ λ4Þvχ þ 2M2�;

ðB5Þ

CHþ
5
Hþ�

5
H ¼ CHþþ

5
Hþþ�

5
H

¼ sα½ð4λ2 þ λ5Þvϕ� þ
ffiffiffi
3

p
cα½8ðλ3 þ λ4Þvχ þ 2M2�;

ðB6Þ

CHþ
3
Hþ�

3
H0

5
¼

ffiffiffi
2

3

r
1

v2
½2ðλ3 − 2λ5Þv2ϕvχ − 8λ5v3χ

þ 4M1v2χ þ 3M2v2ϕ�; ðB7Þ

CH0
3
Hþ

3
Hþ�

5
¼ −i

ffiffiffi
2

p

v2
½2ðλ3 − 2λ5Þv2ϕvχ − 8λ5v3χ

þ 4M1v2χ þ 3M2v2ϕ�; ðB8Þ

CHþ
3
Hþ

3
Hþþ�

5
¼ −

2

v2
½2ðλ3 − 2λ5Þv2ϕvχ − 8λ5v3χ

þ 4M1v2χ þ 3M2v2ϕ�; ðB9Þ

CHþ
5
Hþ�

5
H0

5
¼

ffiffiffi
6

p
ð2λ3vχ −M2Þ; ðB10Þ

CHþ
5
Hþ

5
Hþþ�

5
¼ −6ð2λ3vχ −M2Þ; ðB11Þ

CHþþ
5

Hþþ�
5

H0
5
¼ −2

ffiffiffi
6

p
ð2λ3vχ −M2Þ: ðB12Þ

3. Scalar-vector-vector couplings

The Feynman rules for the vertices involving a scalar and
two gauge bosons are defined as ie2CsV1V2

gμν. The cou-
plings used in our calculations are given by

ChWþWþ� ¼ c2WChZZ ¼ −
1

6s2W
ð8

ffiffiffi
3

p
sαvχ − 3cαvϕÞ; ðB13Þ

CHWþWþ� ¼ c2WCHZZ ¼ 1

6s2W
ð8

ffiffiffi
3

p
cαvχ þ 3sαvϕÞ; ðB14Þ

CH0
5
WþWþ� ¼

ffiffiffi
2

3

r
1

s2W
vχ ; ðB15Þ

CHþ
5
Wþ�Z ¼ −

ffiffiffi
2

p

cWs2W
vχ ; ðB16Þ

CHþþ
5

Wþ�Wþ� ¼ 2

s2W
vχ : ðB17Þ

4. Vector-scalar-scalar couplings

The Feynman rules for the vertices involving two scalars
and a single Z boson are defined as ieCZs1s2ðp1 − p2Þμ,
where p1 (p2Þ is the incoming momentum of incoming
scalar s1 (s2). The couplings are given by
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CZhH0
3
¼ −i

ffiffiffi
2

3

r
1

sWcW

� ffiffiffi
3

p vχ
v
cα þ sα

vϕ
v

�
; ðB18Þ

CZHH0
3
¼ i

ffiffiffi
2

3

r
1

sWcW

�
cα

vϕ
v
−

ffiffiffi
3

p vχ
v
sα

�
; ðB19Þ

CZH0
3
H0

5
¼ i

ffiffiffi
1

3

r
1

sWcW

vϕ
v
; ðB20Þ

CZHþ
3
Hþ�

3
¼ CZHþ

5
Hþ�

5
¼ 1

2sWcW
ð1 − 2s2WÞ; ðB21Þ

CZHþþ
5

Hþþ�
5

¼ 1

sWcW
ð1 − 2s2WÞ; ðB22Þ

CZHþ
3
Hþ�

5
¼ −

1

2sWcW

vϕ
v
: ðB23Þ

The Feynman rules for the vertices involving two scalars
and a singleWþ boson are defined as ieCWþs1s2ðp1 − p2Þμ,
where again p1 (p2) is the incoming momentum of
incoming scalar s1 (s2). The couplings are given by

CWþhHþ�
3

¼ −
ffiffiffi
2

3

r
1

sW

� ffiffiffi
3

p
cα

vχ
v
þ sα

vϕ
v

�
; ðB24Þ

CWþHHþ�
3

¼ −
ffiffiffi
2

3

r
1

sW

� ffiffiffi
3

p
sα

vχ
v
− cα

vϕ
v

�
; ðB25Þ

CWþH0
3
Hþ�

3
¼ −

i
2

1

sW
; ðB26Þ

CWþHþ�
3
H0

5
¼ −

1

2
ffiffiffi
3

p 1

sW

vϕ
v
; ðB27Þ

CWþH0
3
Hþ�

5
¼ i

2

1

sW

vϕ
v
; ðB28Þ

CWþHþ
3
Hþþ�

5
¼ 1ffiffiffi

2
p 1

sW

vϕ
v
; ðB29Þ

CWþHþ�
5
H0

5
¼

ffiffiffi
3

p

2

1

sW
; ðB30Þ

CWþHþ
5
Hþþ�

5
¼ 1ffiffiffi

2
p 1

sW
: ðB31Þ

The couplings for the conjugate processes involving an
incoming W− are obtained using

CW−s�
1
s�
2
¼ −C�

Wþs1s2
: ðB32Þ

5. Couplings involving Goldstone bosons

Our calculation of the vector-scalar-scalar, scalar-vector-
vector, and vector loop diagrams in the ’t Hooft-Feynman
gauge require the calculation of diagrams involving
Goldstone bosons. We collect the relevant couplings here.
The couplings of Goldstone bosons to other scalars are

given by −iCs1s2s3, where the coefficients used in this paper
are

CG0Hþ
5
Hþ�

3
¼ i

vϕ
v2

ðm2
5 −m2

3Þ; ðB33Þ

CGþHþ�
3
H0

5
¼ 1ffiffiffi

3
p vϕ

v2
ðm2

5 −m2
3Þ; ðB34Þ

CGþHþ�
5
H0

3
¼ −i

vϕ
v2

ðm2
5 −m2

3Þ; ðB35Þ

CGþHþ
3
Hþþ�

5
¼ −

ffiffiffi
2

p vϕ
v2

ðm2
5 −m2

3Þ; ðB36Þ

CG0Hþ
5
Gþ� ¼ iffiffiffi

2
p

v2
ð32λ3v3χþ6λ5v2ϕvχþM1v2ϕþ48M2v2χÞ;

ðB37Þ

CGþGþ�H0
5
¼ 1ffiffiffi

6
p

v2
ð32λ3v3χþ6λ5v2ϕvχþM1v2ϕþ48M2v2χÞ;

ðB38Þ

CGþGþHþþ�
5

¼−
1

v2
ð32λ3v3χ þ6λ5v2ϕvχ þM1v2ϕþ48M2v2χÞ;

ðB39Þ

CGþHþ�
3
h ¼ −

cαffiffiffi
2

p
v2

½2v2ϕvχð16λ1 þ 3λ5 − 8λ2Þ − 16λ5v3χ

þM1ðv2ϕ − 8v2χÞ�

þ
ffiffiffi
2

3

r
vϕsα
v2

½4v2χð6λ2 − 4λ3 − 12λ4 − λ5Þ
þ vχðM1 þ 12M2Þ þ λ5v2ϕ�; ðB40Þ

CGþHþ�
3
H ¼ −

sαffiffiffi
2

p
v2

½2v2ϕvχð16λ1 þ 3λ5 − 8λ2Þ − 16λ5v3χ

þM1ðv2ϕ − 8v2χÞ�

−
ffiffiffi
2

3

r
vϕcα
v2

½4v2χð6λ2 − 4λ3 − 12λ4 − λ5Þ
þ vχðM1 þ 12M2Þ þ λ5v2ϕ�: ðB41Þ

The couplings of a pair of Goldstone bosons to the Z or
W are given by ieCVs1s2ðp1 − p2Þμ, where p1 (p2) is the
incoming momentum of incoming scalar s1 (s2) and the
coefficients are
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CZGþGþ� ¼ 1

2sWcW
ð1 − 2s2WÞ; ðB42Þ

CW−G0Gþ ¼ i
2sW

: ðB43Þ

The couplings of a Goldstone boson and a physical scalar
to a single vector boson are given by ieCVs1s2ðp1 − p2Þμ,
wherep1 (p2) is the incomingmomentumof incoming scalar
s1 (s2). The coefficients used here are given by

CZH0
5
G0 ¼ −2i

ffiffiffi
2

3

r
1

sWcW

vχ
v
; ðB44Þ

CZHþ
5
Gþ� ¼ CZHþ�

5
Gþ ¼ −

ffiffiffi
2

p

sWcW

vχ
v
; ðB45Þ

CWþH0
5
Gþ� ¼ −CW−H0

5
Gþ ¼

ffiffiffi
2

3

r
1

sW

vχ
v
; ðB46Þ

CWþG0Hþ�
5

¼ CW−G0Hþ
5
¼ i

ffiffiffi
2

p

sW

vχ
v
; ðB47Þ

CWþGþHþþ�
5

¼ −CW−Gþ�Hþþ
5

¼ 2

sW

vχ
v
; ðB48Þ

CWþhGþ� ¼ −CW−hGþ ¼ −
1

6sWv
ð8

ffiffiffi
3

p
sαvχ − 3cαvϕÞ;

ðB49Þ

CWþHGþ� ¼ −CW−HGþ ¼ 1

6sWv
ð8

ffiffiffi
3

p
cαvχ þ 3sαvϕÞ:

ðB50Þ

The couplings of a Goldstone boson to two vector
bosons are given by ie2CsV1V2

gμν, with

CGþW−γ ¼ CG−Wþγ ¼
v

2sW
; ðB51Þ

CGþW−Z ¼ CG−WþZ ¼ −
v

2cW
: ðB52Þ

6. Couplings involving ghosts

Our calculation of the vector loop diagrams in the
’t Hooft-Feynman gauge requires the calculation of dia-
grams involving ghosts. This enters only in the decay
Hþ

5 → Wþγ. The relevant term in the ghost Lagrangian
involving an incoming Hþ

5 , incoming ghost c− and out-
going ghost cZ is

L ⊃ −ξvχ
e2ffiffiffi

2
p

s2WcW
c̄ZHþ

5 c
−; ðB53Þ

where ξ ¼ 1 is the gauge-fixing parameter for the ’t Hooft-
Feynman gauge. The resulting Feynman rule for the Higgs-
ghost-ghost vertex is ie2CHic−cZ with

CHþ
5
c−cZ ¼ −

vχffiffiffi
2

p
s2WcW

: ðB54Þ

In our conventions, the Feynman rules for a pair of ghosts
coupling to a vector boson are

c̄−ð−kÞcZW−
ν ∶ igcWkν; ðB55Þ

c̄−ð−kÞc−γν∶ − iekν; ðB56Þ

where −k is the incoming momentum of the incoming
antighost; i.e., k is the outgoing momentum of the out-
going ghost.

APPENDIX C: LOOPTOOLS CONVENTIONS

We summarize here the conventions used by the
LOOPTOOLS package [60] for the one-loop integrals that
we have used in this paper. The three-point integral for a
diagram with incoming external momenta p1, p2, and
p12 ¼ −p1 − p2 and internal masses m1, m2, and m3 is
defined as

i
16π2

C0;μ;μνðp2
1; p

2
2; p

2
12;m

2
1;m

2
2;m

2
3Þ

¼
Z

dDq
ð2πÞD

1; qμ; qμqν
½q2 −m2

1�½ðqþ k1Þ2 −m2
2�½ðqþ k2Þ2 −m2

3�
;

ðC1Þ

where k1 ¼ p1 and k2 ¼ p1 þ p2 ¼ −p12.
The vector and tensor three-point integrals are decom-

posed into scalar coefficients according to

Cμ ¼ k1μC1 þ k2μC2; ðC2Þ

Cμν ¼ gμνC00 þ k1μk1νC11 þ k1μk2νC12 þ k2μk1νC21

þ k2μk2νC22; ðC3Þ

where C21 ¼ C12 due to the symmetry of Cμν under
permutation of Lorentz indices. For compactness, when
a sum of three-point integrals with a common set of
arguments appears, we have specified the arguments only
once at the end of the sum.

APPENDIX D: DETAILS OF CALCULATIONS
IN ’T HOOFT-FEYNMAN GAUGE

In this appendix we give some details of the calculations
in the ’t Hooft-Feynman gauge of processes that involve
Goldstone bosons or ghosts. This is relevant for the
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vector-scalar-scalar, scalar-vector-vector, and vector loop
diagrams.

1. Vector-scalar-scalar loop diagram

In ’t Hooft-Feynman gauge there are two diagrams that
contribute to this amplitude: one as shown by the third
diagram of Fig. 1 and one with the vector boson X1

replaced by the corresponding Goldstone boson G. The
calculation of this second diagram is identical to the
calculation of the scalar loop diagram [see Eq. (17)]. We
write the contribution to the amplitude from these two
diagrams as

AHiVγ
Xss ¼ SXss þ SGss; ðD1Þ

where

SXss ¼ −α2emQs2CX�
1
His2Cs�

2
X1V� ½−2ðC12 þ C22 þ 2C1

þ 3C2 þ 2C0Þ�ðk2; q2; m2
Hi
;M2

X1
; m2

s2 ; m
2
s2Þ; ðD2Þ

SGss ¼ −
αemQs2

π
CHiG�s2CV�Gs�

2
½C12 þ C22 þ C2

�

ðk2; q2; m2
Hi
;M2

X1
; m2

s2 ; m
2
s2Þ: ðD3Þ

To combine these into a single expression, we examine
the Goldstone boson couplings for the actual combinations
of parent and internal particles in the decays of interest.
The scalar s2 is always an H5 of nonzero electric charge,
and the couplings of twoH5 states to a Goldstone boson are
zero by custodial symmetry; thus the SGss term contributes
only to Hþ

3 → Wþγ, not to Hþ
5 → Wþγ or H0

5 → Zγ.
Substituting the appropriate Goldstone boson couplings
from Appendix B 5, AHiVγ

Xss reduces to the expression given
in Eq. (21). Note that the second term in the square brackets
in Eq. (21) contains a factor of ðm2

Hi
−m2

s2Þ, which is zero
when Hi and s2 are both H5 states.

2. Scalar-vector-vector loop diagram

In ’t Hooft-Feynman gauge there are four diagrams that
contribute to this amplitude: one as shown by the fourth
diagram of Fig. 1, two in which one of the gauge bosons X2

in the loop has been replaced by the corresponding
Goldstone boson G, and one in which both gauge bosons
X2 in the loop are replaced by Goldstone bosons G. The
calculation of the last of these diagrams is identical to that
of the scalar loop diagram [see Eq. (17)]. We write the
contribution to the amplitude from these four diagrams as

AHiVγ
sXX ¼ SsXX þ SsGX þ SsXG þ SsGG; ðD4Þ

where the subscripts denote the particles in the loop
proceeding clockwise from the Hi vertex. The diagram
corresponding to SsXG does not contribute to the kμqν term

in the amplitude, so SsXG ¼ 0. The remaining amplitudes
are

SsXX ¼ α2emQX2
CX2His�1

Cs1X�
2
V� ½−C12 − C22 þ 4C1 þ C2�

ðk2; q2; m2
Hi
;m2

s1 ;M
2
X2
;M2

X2
Þ; ðD5Þ

SsGX ¼ −α2emCX2His�1
CV�s1G�CGX�γ½2C12 þ 2C22 − 2C2�

ðk2; q2; m2
Hi
;m2

s1 ;M
2
X2
;M2

X2
Þ; ðD6Þ

SsGG ¼ −
αemQG

π
CHis�1G

CV�s1G� ½C12 þ C22 þ C2�
ðk2; q2; m2

Hi
;m2

s1 ;M
2
X2
;M2

X2
Þ: ðD7Þ

To combine these into a single expression, we again
examine the Goldstone boson couplings for the actual
combinations of parent and internal particles in the decays
of interest. For Hþ

5 → Wþγ and H0
5 → Zγ, s1 is always an

H5 state and X2 is always a W boson (of either charge).
Because the coupling of twoH5 states to a Goldstone boson
is zero by custodial symmetry, SsGG does not contribute to
these decays. The remaining pieces are easy to combine
using the relations between the Goldstone couplings and
the corresponding gauge boson couplings, yielding the first
line of Eq. (24) [note that the second line does not
contribute for an initial-state H5 because s1 is also an
H5 state and hence ðm2

Hi
−m2

s1Þ ¼ 0].
For Hþ

3 → Wþγ, the situation is more complicated. s1
can be h, H, H0

5, or H
þþ
5 , and in all cases SsGG is nonzero.

For either of the H5 states in the loop, the combination is
again fairly straightforward and yields the expression in
Eq. (24), with SsGG giving rise to the terms in the second
line. For h or H in the loop, the combination of SsXX and
SsGX is again straightforward, yielding the first line in
Eq. (24); the simplification of SsGG is nonobvious because
of the complicated form of the Hþ

3 hG
− and Hþ

3 HG−

couplings, but it can be verified numerically that it also
reduces to the terms in the second line of Eq. (24) for each
diagram individually.

3. Vector loop diagram

In ’t Hooft-Feynman gauge, the last diagram in Fig. 1
and its Goldstone boson substitutions do not contribute to
the kμqν term, so we only need to worry about the fifth
diagram and its Goldstone and ghost substitutions. There
are nine diagrams: one as shown by the fifth diagram in
Fig. 1, three in which a single gauge boson in the loop is
replaced by the corresponding Goldstone boson, three in
which two of the gauge bosons in the loop are replaced by
their corresponding Goldstone bosons, one in which all
three gauge bosons in the loop are replaced by Goldstone
bosons, and a diagram with ghosts in the loop.
We write the contribution to the amplitude from these

nine diagrams as
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AHiVγ
X1X2X2

¼ SXXX þ SGXX þ SXGX þ SXXG þ SGGX þ SXGG

þ SGXG þ SGGG þ Sghost; ðD8Þ

where again the subscripts denote the particles in the loop
proceeding clockwise from the Hi vertex. The diagrams
corresponding to SXGX and SGXG do not contribute to the
kμqν term in the amplitude, so they are zero. Four more of
the amplitudes can be read off from the scalar loop diagram
[Eq. (17)] and diagrams computed earlier in this appendix
[Eqs. (D2), (D5), and (D6), respectively]:

SGGG ¼ −
αemQG2

π
CHiG�

1
G2
CV�G1G�

2
½C12 þ C22 þ C2�

ðk2; q2; m2
Hi
;M2

X1
;M2

X2
;M2

X2
Þ; ðD9Þ

SXGG ¼ −α2emQG2
CX�

1
HiG2

CG�
2
X1V�

×½−2ðC12 þ C22 þ 2C1 þ 3C2 þ 2C0Þ�
ðk2; q2; m2

Hi
;M2

X1
;M2

X2
;M2

X2
Þ; ðD10Þ

SGXX ¼ α2emQX2
CX2HiG�

1
CG1X�

2
V� ½−C12 − C22 þ 4C1 þ C2�

ðk2; q2; m2
Hi
;M2

X1
;M2

X2
;M2

X2
Þ; ðD11Þ

SGGX ¼ −α2emCX2HiG�
1
CV�G1G�

2
CG2X�

2
γ½2C12 þ 2C22 − 2C2�

ðk2; q2; m2
Hi
;M2

X1
;M2

X2
;M2

X2
Þ: ðD12Þ

For the remaining diagrams, we specialize to the
actual process of interest, Hþ

5 → Wþγ, with X1 ¼ Z and

X2 ¼ W−. We can then use the explicit expressions for the
triple-gauge and ghost vertices. We obtain,

SXXG ¼ α2emCZHiGþ�CGþW−γ
cW
sW

×½C12 þ C22 − 2C1 þ 3C2 þ 2C0�
ðk2; q2; m2

Hi
;M2

X1
;M2

X2
;M2

X2
Þ; ðD13Þ

SXXX ¼ −α2emQW−CHiW−Z
cW
sW

½10C12 þ 10C22 þ C1

þ 10C2 þ 5C0�ðk2; q2; m2
Hi
;M2

X1
;M2

X2
;M2

X2
Þ;
ðD14Þ

Sghost ¼ 2α2emCHic−cZ
cW
sW

½C12 þ C22 þ C2�

ðk2; q2; m2
Hi
;M2

X1
;M2

X2
;M2

X2
Þ: ðD15Þ

The last expression for Sghost includes the contributions of
the two ghost diagrams: one with cZ; c−; c− proceeding
clockwise around the loop from the Hþ

5 vertex, and one
with cþ; cþ; cZ proceeding counterclockwise around the
loop from the Hþ

5 vertex (these are distinct because the
antiparticle of the ghost c− is c̄−, not cþ). These two
diagrams give identical contributions.
Inserting explicit expressions for all the couplings and

combining all the terms is then relatively straightforward,

and yields the expression for A
Hþ

5
Wγ

ZWW given in Eq. (28).
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