# **Soft QCD Measurements at LHC**



### Marek Taševský

Institute of Physics, Academy of sciences, Prague, Czech Republic On behalf of the LHC experiments (ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM)

Lepton Photon 2017

Sun Yat-Sen University, Guangzhou

7-12/08/2017

Soft QCD :

- $\succ$  characterized by a soft scale (low  $p_T$ )
- applied to describe
- the part of the scattering that dominates at soft scale

Proton-

Heavy

ions

立國

Cosmic

rays

- hadronization
- > not uniform description, variability in modeling

#### Measurements

Soft scale  $\rightarrow$  processes with large cross sections:

- Inclusive cross sections
- Inclusive & Identified particle spectra
- Underlying event
- Particle correlations
- Similarities between pp / pPb / PbPb

### Phenomenology

Multi-parton interactions (MPI) Colour coherence / reconnection Hadronization (line, ropes, helix) Hydrodynamics / Gluon saturation

Very interesting links between

so different fields

11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017napic people c2n

# Inclusive (total & elastics) pp cross-sections



11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

# Inclusive charged particles in pp (0.9-13 TeV)



# Very forward energy flow



# Identified particle spectra (PbPb, pPb, pp)



M. Tasevsky, Soft QCD Measurements at LHC, LP2017

### Identified particle spectra in pp (13 TeV)



11/08/2017

# Underlying Event study (13 TeV)



#### 11/08/2017

### 2-Particle azimuthal correlations



Long-range ( $|\Delta\eta|>2$ ) ridge in 2-PC on near side ( $\Delta\phi\sim0$ ) observed in large systems (central AA coll.)

- described by Fourier decomposition ~ 1 +  $2v_n \cos(n\Delta \varphi)$ ,  $v_n$  = single-particle anisotropy harmonics

- result of collective hydrodynamic expansion of hot and dense nuclear matter created in the overlap region

But long-range ridge seen also in pPb (much smaller system) and even in pp at high multiplicity!

Origin of the ridge in small systems still under debate: hydrodynamics like for QGP? Initial state fluctuations (Color Glass Condensate/gluon saturation) ? Hadronization using ropes? Thin flux tubes?
 Ridge = testing ground to study complementarity between dynamical and hydrodynamical models

# 2-Particle azimuthal correlations



pPb 5 TeV:

LHCb, PLB 762 (2016) 473 (ALICE, CERN-EP-2016-228)

Size of near-side ridge & away-side ridge increases with multiplicity

• Size of near-side ridge maximal for 
$$1 < p_T < 2$$
 GeV

Ridge separation from non-flow (resonance decays, dijets) using:

low-multiplicity events
(e.g. ATLAS, PRL 116 (2016) 172301)

three-subevent method (next slide)

```
v_2{2}(pp) < v_2{2}(pPb) < v_2{2}(PbPb)
```





M. Tasevsky, Soft QCD Measurements at LHC, LP2017

Size of correlations in PbPb/pPb/pp: ~ linear grow with charged multiplicity

# Multi-particle azimuthal correlations

□ 2-particle correlations suffer from non-flow. Multi-particle correlations are more robust against non-flow effects. But also more statistically demanding.

□ Method: build cumulants  $c_n$ {2k} and calculate flow harmonics  $v_n$ {2k}

□ Extraction of collective flow in pp depends strongly on:

Event classification • Purity of non-flow subtraction ATLAS-CONF-2017-002



# Angular correlations of identified particles



# Bose-Einstein correlations in pp, pPb, PbPb

Min.Bias pp events,  $|\eta| < 2.5$ ,  $p_T > 0.1$  GeV **2-PC (***C*<sub>2</sub>**) of identical particles**: Same-sign/Opposite-sign double ratio Data/MC ATLAS, EPJ C75 (2015) 466



R [fm]

 $C_2 = C_0 [1 + \Omega(\lambda, R)] (1 + \varepsilon Q)$  Decrease of R with  $k_T$  measured  $\lambda$  = correlation strength R = correlation source size

Saturation of R at high-mult. - observed for the 1<sup>st</sup> time

(as in pPb: ATLAS, CERN-EP-2017-004) R ( $\lambda$ ) increasing (decreasing) with  $n_{ch}$ Larger sources appear more coherent

(pp, LHCb-PAPER-2017-025)

Multi-pion BEC in PbPb: ALICE, PRC 93 (2016) 054908

**\Box** Ratio measured multi- $\pi$  / expected multi- $\pi$  from 2- $\pi$ :

- pp, pPb: no suppression observed
- PbPb: suppression at low  $Q_4$ ,  $Q_3$

4- $\pi$ : explained by 32% of coherent correlations (but 3- $\pi$ : not explained by 32% of coherent correlations)

(PbPb: ALICE, PRL 118 (2017) 222301)

### **SUMMARY**

□ Soft QCD measurements important in many aspects:

- $\sigma_{tot}$  as input for modelling pile-up at LHC and extensive air showers caused by cosmic rays
- Very forward flow (also vs central flow) to model interactions in cosmic rays
- Underlying event non-negligible in many LHC analyses
- Particle correlations as a powerful tool to study multihadron production
- To understand hadronization process
- □ All collision systems useful for soft QCD studies, complementing each other
- □ Performant LHC @ experiments provide high-statistics & high-precision data samples → estimate reliably many sources of systematics
- □ Sophisticated techniques (low  $p_T \sim 100$  MeV, efficient background subtraction, unfolding...)
- □ Precision data help faster understand unexplained phenomena and develop/reject models
- □ Necessity to retune MC models to describe data at every energy
- Similar phenomena observed in PbPb / pPb / pp (high multiplicity) collisions: strangeness enhancement, collectivity effects. Why in small systems (pPb, pp)? Currently lively discussed
- Near-side ridge as testing ground to study complementarity between hydrodynamics/QGP and dynamics model (CGC/saturation/ropes)
- □ Intensive works on improving the hadronization models (lines/ropes/helices)

# **BACKUP SLIDES**

# Inclusive (total) pp cross-sections



11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

## Inclusive (elastic) pp cross-section

ρ



New (preliminary) results at 13 TeV:  $\beta^* = 2.5$ km, 0.0006 < |t| < 0.2 GeV<sup>2</sup>

- Coulomb-Nuclear Interference region



$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \left.\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right|_{t=0} \, \exp\!\left(\sum_{i=1}^{N_b} b_i \, t^i\right) \,,$$

Pure exponential form ( $N_b$ =1) excluded at 7.2 $\sigma$  significance

Non-exponential form observed also at 7 and 13  $\mbox{TeV}$ 

8 TeV:  $\beta^* = 1.0$ km, 0.0006 < |t| < 0.2 GeV<sup>2</sup> Coulomb-Nuclear Interference region 0.25 13 TeV point to come 0.2 2018 plan: 900 GeV 0.15 0.10.05 pp (PDG) 0 H pp (PDG) -0.05COMPETE preferred model (pp) -0.1TOTEM indirect at  $\sqrt{s} = 7$  TeV this article,  $\sqrt{s} = 8$  TeV -0.15-0.2 $10^{2}$  $10^{4}$  $10^{1}$  $10^{3}$  $\sqrt{s}$  (GeV) TOTEM, EPJC 76 (2016) 661

### Inclusive charged particles in pp (13 TeV)



# Inclusive very forward energy flow (13 TeV)



M. Tasevsky, Soft QCD Measurements at LHC, LP2017

# Identified particles at very forward direction



<sup>11/08/2017</sup> 

6000

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

# Inclusive charged particles in pp (0.9-8 TeV)

 $\sqrt{s} = 0.9, 2.36, 2.76, 7, 8 \text{ TeV}$  $|\eta| < 2, p_T > 0.1 \text{ GeV}$  INEL = all (MB) events NSD = Non Single Diffraction

ALICE, EPJC77 (2017) 33 (PbPb: PRL 116 (2016) 222302)



M. Tasevsky, Soft QCD Measurements at LHC, LP2017

# Inclusive charged particles in pp (13 TeV)

150

EPOS LHC

0.5

1 1.5

PYTHIA8 CUETM1

PYTHIA8 MONASH

HERWIG++ UE-EE-4C

data

200

250

 $n_{
m ch}$ (13 TeV)



### HERWIG++ deficient EPOS gives best overall description (specialized soft QCD model) In general: all models need to be retuned for the 13 TeV energy

ATLAS, EPJC76 (2016) 502

 $|n| < 2.5, p_T > 0.1 \text{ GeV}$ 

QGSJET: no colour coherence

PYTHIA 8: colour reconnection EPOS: hydrodynamical evolution

Multiplicity distribution again

not described perfectly

**CMS-PAS-FSQ-15-008** 

 $|\eta| < 2.4, p_T > 0.5 \text{ GeV}$ 

SD = Single Diffraction

Min.Bias events: at least two tracks with

# Underlying Event study (13 TeV)



#### 11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

23

### Strangeness enhancement in PbPb (5 TeV)

New results from 5 TeV PbPb collisions:

 $\sqrt{s}$  closer to pPb and pp energies  $\rightarrow$  PbPb points approach better the trend from pp and pPb points



# $J/\Psi$ production in jets

- J/Ψ production occurs in transition between perturbative and non-perturbative QCD
- Measure  $z(J/\Psi) = p_T(J/\Psi) / p_T(jet)$  for prompt  $J/\Psi$  and those from b-hadron decays in jets
  - J/Ψ→ $\mu^+\mu^-$ , 2< η(J/Ψ, $\mu$ )< 4.5,  $p_T(\mu)$  > 0.5 GeV ○ Jets: anti-kt, R=0.5,  $p_T$  > 20 GeV, 2 < η < 4.0

# The $1^{st}$ ever measurement of $z(J/\Psi)$ for prompt $J/\Psi$ !



 Prompt J/Ψ produced in parton showers
 z(J/Ψ) not described by LO non-relativistic
 QCD (includes color-octet+color-singlet mechanisms) as implemented in PYTHIA 8.
 Some soft component missing?



 $\Box$  z(J/ $\Psi$ ) of J/ $\Psi$  from b-hadron decays described by PYTHIA 8.



#### 11/08/2017

### Bose-Einstein correlations in pp, pPb, PbPb

Min.Bias events,  $|\eta| < 2.5$ ,  $p_T > 0.1$  GeV **2-PC (** $C_2$ **) of identical particles**: SS/OS double ratio Data/MC



# Charge-dependent azimuthal correlations

Charge-dependent 3-particle azimuthal correlations with respect to (2<sup>nd</sup> order) event plane:

Same sign (SS) and opposite sign (OS) particle pairs and 3<sup>rd</sup> particle in forward calorimeter (to probe the long-range correlations).

The (OS-SS) difference interpreted as possible signature of chiral magnetic effect (CME) in AA collisions.





CMS, PRL 118 (2017) 122301

PbPb and pPb data show a similar effect.

BUT: in high-multiplicity pPb collisions a strong CME is not expected

- mag.field smaller than in peripheral PbPb collisions
- angle between mag.field and event plane randomly distrib.
- Slopes for PbPb and pPb different?
- Analogous effect produced by medium vorticity
- (Lambda polarization at STAR)

# Hadronization of helical QCD string

□ Lund string fragmentation: randomly broken 1D string, no cross-talk between break-up vertices □ Quantized helical (3D) string: causality (cross-talk)  $\rightarrow$  2 parameters ( $\kappa R, \Delta \Phi$ ):



- Hadron spectra follow a simple quantized pattern:  $m_T = n \kappa R \Delta \Phi$ 

- Predicts momentum difference Q for pairs of ground-state hadrons

| Pair rank difference r | 1       | 2      | 3           | 4       | 5           |
|------------------------|---------|--------|-------------|---------|-------------|
| Q expected [MeV]       | 266 ± 8 | 91 ± 3 | $236 \pm 7$ | 171 ± 5 | $178 \pm 5$ |

 $\kappa R$ ,  $\Delta \Phi$  fixed using masses of pseudoscalar mesons:

| κξ [MeV]      | ĸ R [MeV]      | ΔΦ                   |  |
|---------------|----------------|----------------------|--|
| $192.5\pm0.5$ | 68±2           | $2.82\pm0.06$        |  |
| meson         | PDG mass [MeV] | model estimate [MeV] |  |
| π             | 135 - 140      | 137                  |  |
| η             | 548            | 565                  |  |
| $\eta'$       | 958            | 958                  |  |

PR D89 (2014) 015002

- Adjacent pions produced with  $p_T$  difference ~266 MeV. Low-Q region populated by SS pairs (r=2)



### 11/08/2017

M. Tasevsky, Soft QCD Measurements at LHC, LP2017

 $\Delta \Phi \sim 2.8$