
Global heterogeneous resource harvesting:
The next-generation PanDA pilot for ATLAS
Paul Nilsson (1), Alexey Anisenkov (2,3), Daniel Drizhuk (4), Wen Guan (5), Mario Lassnig (6), Danila Oleynik (7), Pavlo Svirin (1) for the ATLAS Experiment

(1) Brookhaven National Laboratory, Upton, USA (2) Budker Institute of Nuclear Physics, Novosibirsk, Russia (3) Novosibirsk State University, Novosibirsk, Russia (4) National Research Centre “Kurchatov Insti-
tute”, Moscow, Russia (5) University of Wisconsin-Madison, Chamberlin Hall Madison, USA (6) CERN, Geneva, Switzerland (7) University of Texas at Arlington, USA / Joint Institute of Nuclear Research, Russia

The Production and Distributed Analysis system (PanDA), used for workload management in the ATLAS Experiment for over a
decade, has in recent years expanded its reach to diverse new resource types such as HPCs, and innovative new workflows such
as the event service. PanDA meets the heterogeneous resources it harvests in the PanDA Pilot, which has embarked on a
next-generation reengineering to efficiently integrate and exploit the new platforms and workflows. The new modular architecture
is the product of a year of design and prototyping in conjunction with the design of a completely new component, Harvester, that
will mediate a richer flow of control and information between Pilot and PanDA. While the traditional task of the Pilot is to execute
payloads on a grid worker node, the introduction of Harvester makes it simpler to approach complex systems like HPCs. In those
cases, some Pilot responsibilities can be moved to Harvester and others can be made available to Harvester via Pilot APIs.

Modular architecture
The architecture of the new Pilot version is based on plugins,
which help it to be highly customizable. Usage of plugins makes
it simpler to add support for new users of the system. Further-
more, with the modular approach it is simpler to add new data
copying tools and different types of execution methods, in-
cluding various supercomputers and containers.

APIs
APIs for third-party applications are provided. A Data API con-
tains the interface to the copy tools supporting synchronous
and asynchronous stage-in/out using rucio, xrdcp, gfal-copy,
locally defined copy tools, and more. The Communicator API
provides functions for interacting with external servers or ser-
vices such as the PanDA server, the ARC Control Tower and
Harvester. Finally, the Environment API has an interface to the
job execution environment used on HPCs.

Resource harvesting
The Pilot may interact with another new PanDA product, Har-
vester. This is a service between the PanDA server and HPCs
that provides resource provisioning and workload shaping. It
enables more intelligent and dynamic task matching with the
resources, simplifying the operator and user view of a PanDA
site but internally utilizing various kinds of information about
the resource and a site's capabilities to boost the performance
of tasks as well as sites.

Highly configurable
The new Pilot is configurable on several levels. It fetches con-
figurations from the environment, from global configs, and
several other locations. It takes into account which environ-
ment it is running in, the experiment or user it serves, the task
or queue to which it was assigned, as well as many other pa-
rameters.

Container support
The new Pilot has support for containers on multiple levels: as
a method of executing payloads and related file transfers, as
well as its own environment where the Pilot and all subpro-
cesses are executed within a single container. It provides users
with an easy way of deploying an indefinite number of tasks in
the exact environment they need.

Extended documentation
All the Pilot components as well as usage and APIs are fully
documented in the code as well as in an extended additional
usage documentation provided for all exposed interfaces. The
information is open and is accessible through the project re-
pository documentation page.

Supercomputer support
The modular architecture and abstraction layer through
plugins allow the new Pilot to work with different computation-
al infrastructures including massively parallel systems or su-
percomputers through interfaces to batch systems and exec-
utors.
Another PanDA product, Harvester, provides an efficient
usage of computing resources in general and especially on
HPCs. Harvester on HPCs uses Pilot functionality through the
Pilot API, and allows for more complicated workflows than the
Pilot can do alone.

Easy to extend
The plugins API enables an easy way to develop new workflows
and new applications of the Pilot, provide new monitoring, task
executing or management technologies. Plugins are simple to
use, extendable and easy to deploy. There is no need for users
to modify the core Pilot code or its main components since the
plugin mechanism enables high-level tweaking of the workflow
for specific cases or environments.

Monitoring
The Pilot has extendable monitoring using plugins. A monitor
can be created for the resources the task is operating with and
recent changes can be followed via the task manager without
waiting for the task to finish. It can monitor the health of the
task, its resource usage, or trace any arbitrary parameter and
forward it to the PanDA server, which in turn makes the infor-
mation available to the end user via the PanDA Monitor.

Internal workflow
Jobs

validate
Valid jobs

extract

request

notify

Payload

validate

Valid payload

request

notify

run_payload

finish fail

Finished payload

Data in

Failed data in Finished data in Failed payload

Finished job Failed job

copytool
retry

Data out

Failed data out Finished data out

copytool
retry

Workflow

Job Control

Node Control

Payload Control

Data Control

Job Monitor

Pilot Monitor

