H(bb) at ATLAS

Tim Scanlon On behalf of the ATLAS Collaboration

H(bb)

See K. Liu's dedicated talk on ttH, H(bb)

20/02/2013

Only focusing on Run-2 results

VBF H(bb)+γ

13 TeV, 12.6 fb⁻¹

- Events Search for H(bb) with a high $p_T \gamma$ ($p_T > 25$ GeV) Extra handle for trigger and to suppress
 - multi-jet background

- Boosted Decision Trees (BDT) used to define 3 analysis regions
 - \succ Z(bb)+ γ as cross-check
 - Fit dijet invariant mass (m_{bb}) in 3 BDT regions

VBF H(bb)+γ Results

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\to b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p -value	0.4	0.1
Observed <i>p</i> -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \ {}^{+0.7}_{-0.5}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \ {}^{+2.8}_{-2.7}$	0.3 ± 0.8

• Limiting factors

- Statistics in background fit
- Signal modelling uncertainties

Uncertainty source	Uncertainty $\Delta \mu$
Non-resonant background uncertainty in medium-BDT region	0.22
Non-resonant background uncertainty in high-BDT region	0.21
Non-resonant background uncertainty in low-BDT region	0.17
Parton shower uncertainty on $H + \gamma$ acceptance	0.16
QCD scale uncertainty on $H + \gamma$ cross section	0.13
Jet energy uncertainty from calibration across η	0.10
Jet energy uncertainty from flavour composition in calibration	0.09
Integrated luminosity uncertainty	0.08

VH, H(bb)

1-Lepton

proton

protor

- Full 2015+16 VH(bb) analysis
 - \succ 2 and 3-jet, high p_T^V regions

Z+hf, W+hf, ttbar

Z+hf, ttbar

2-Lepton

proton

proto

VH, H(bb) Analysis

- Three versions of the analysis
 - Nominal: BDT VH, H(bb)
 - BDT VZ, Z(bb)
 - Cut-based m_{bb} VH, H(bb)
- Simultaneous fit to discriminating variable in all analysis regions
 - > Normalisation of $t\bar{t}$ and Z/W+hf freely floating
 - Uncertainties on overall and relative normalisation between regions
 - Shape uncertainties on all non-negligible backgrounds

			Categories					
Channel	SB/CB		2 b-tagged jets					
Unaimer		75 GeV	$V < p_{\mathrm{T}}^{V} < 150 \; \mathrm{GeV}^{-1}$	$p_{\mathrm{T}}^{V} > 1$	$50 \mathrm{GeV}$			
		2 jets	$3 ext{ jets}$	2 jets	3 jets			
0-lepton	SR	-	-	BDT	BDT			
1-lepton	\mathbf{SR}	-	-	BDT	BDT			
2-lepton	\mathbf{SR}	BDT	BDT	BDT	BDT			
1-lepton	W+HF CR	-	-	Yield	Yield			
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}			

Nominal: 8 Signal Regions 6 Control Regions

New $t\bar{t}$ and W+hf control regions (see A. Bell's talk)

01/08/2017

VZ, Z(bb) Cross-check

01/08/2017

Events / 0.2

10⁴

10³

10²

1.5 Data/Pred.

0.5

0.5

0 $\log_{10}(S/B)$

-3.5

-3

-2.

-2

-1.5

-1

-0.5

VH, H(bb) Result

• 36.1 fb⁻¹ VH, H(bb) result

Significance: Observed 3.5σ Expected 3.0σ

VH, H(bb) Run 1+2 Combination

• Combine with 4.7 fb⁻¹ and 20.3 fb⁻¹ Run 1 result

VH, H(bb) m_{bb} Result

VH, H(bb) Considerations

Source of uncertainty		σ_{μ}
Total		0.39
Statistical		0.24
Systematic		0.31
Experimenta	l uncertainties	
Jets		0.03
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03
Leptons		0.01
b-tagging	<i>b</i> -jets <i>c</i> -jets	0.09
	light jets	0.04
	extrapolation	0.01
Pile-up Luminosity		$\begin{array}{c} 0.01 \\ 0.04 \end{array}$
Theoretical a	and modelling u	ncertainties
Signal		0.17
Floating nor	malisations	0.07
Z+jets		0.07
W + jets		0.07
		0.07
Single top-quark		0.08
Diboson		0.02
Multijet	0.02	
MC statistics	al	0.13

Limiting factors

- Signal modelling
- Monte Carlo statistics
- Flavour tagging
- Background modelling

Summary

- Run 2 H(bb) searches conducted in VH, VBF and ttH production channels
 - Full set of results on 2015+16 dataset in progress
- Evidence for H->bb in VH production channel
 - > Heralds a new era of H(bb) measurements
- Challenges
 - > VH, H(bb) channel systematically limited
 - > VBF H, H(bb) still statistically limited

Backup Slides

VH, Simulated Samples

Process	ME generator	ME PDF	PS and	UE model	Cross-section ace2.5cm
			Hadronization	tune	order
Signal					
$qq \rightarrow WH$	Powheg-Box v2 $+$	$NNPDF3.0NLO^{(\star)}$	Рутніа8.212	AZNLO	NNLO(QCD)+
$ ightarrow \ell u bb$	GoSAM + MINLO				NLO(EW)
$qq \rightarrow ZH$	Powheg-Box v2 $+$	$NNPDF3.0NLO^{(\star)}$	Рутніа8.212	AZNLO	$NNLO(QCD)^{(\dagger)}+$
$ ightarrow u u b b / \ell \ell b b$	GoSAM + MINLO				NLO(EW)
$gg \to ZH$	Powheg-Box v2	$NNPDF3.0NLO^{(\star)}$	Рутніа8.212	AZNLO	NLO(QCD)+
$ ightarrow u u b b / \ell \ell b b$					NLL(QCD)
Top-quark					
$t\bar{t}$	Powheg-Box v2	NNPDF3.0NLO	Рутніа8.212	A14	NNLO+NNLL
t-channel	Powheg-Box v1	CT10f4	Pythia 6.428	P2012	NLO
s-channel	Powheg-Box v2	CT10	Рутніа6.428	P2012	NLO
Wt	Powheg-Box v2	CT10	Рүтніа6.428	P2012	NLO
Vector boson $+$ j	ets				
$W \to \ell \nu$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$Z/\gamma * \to \ell \ell$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$Z \rightarrow \nu \nu$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
Diboson					
WW	Sherpa 2.1.1	CT10	Sherpa 2.1.1	Default	NLO
WZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
ZZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO

VH, Event Selection

Selection	0-lepton	1-1	epton	2-lepton
		e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose lepton	1 tight electron	1 medium muon	2 loose leptons
		$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27 { m GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m GeV}$	$> 30 { m GeV}$		-
$m_{\ell\ell}$	-		-	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets
<i>b</i> -jets	exactly 2 b -tagged jets			
Leading <i>b</i> -tagged jet $p_{\rm T}$	$> 45 { m GeV}$			
H_{T}	> 120 (2 jets), > 150 GeV (3 jets)		-	-
$\min\Delta\phi(E_{\rm T}^{\rm miss},{ m jet})$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		-	-
$\Delta \phi(E_{ m T}^{ m miss},bb)$	$> 120^{\circ}$	-		-
$\Delta \phi(b_1,b_2)$	$< 140^{\circ}$	-		-
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T,trk}}^{\mathrm{miss}})$	$< 90^{\circ}$		-	-
$p_{\rm T}^V$ regions	> 150 GeV			[75, 150] GeV, > 150 GeV
Signal Region	\checkmark	$m_{bb} \ge 75 \text{ GeV}$ of	or $m_{\rm top} \le 225 {\rm GeV}$	Same flavour leptons
				opposite-sign charge ($\mu\mu$ sub-channel)
Control Region	-	$m_{bb} < 75 \text{ GeV}$ as	nd $m_{\rm top} > 225 {\rm GeV}$	Different flavour leptons

VH, Signal Acceptance

$m_H = 125 \text{ GeV} \text{ at } \sqrt{s} = 13 \text{ TeV}$					
Process	Cross soction × BR [fb]	Acceptance [%]			
1100055		0-lepton	1-lepton	2-lepton	
$qq \to (Z \to \ell\ell)(H \to b\overline{b})$	29.9	< 0.1	< 0.1	7.0	
$gg \to (Z \to \ell \ell)(H \to b\overline{b})$	4.8	< 0.1	< 0.1	15.7	
$qq \to (W \to \ell\nu)(H \to b\overline{b})$	269.0	0.2	1.0	—	
$qq \to (Z \to \nu\nu)(H \to b\overline{b})$	89.1	1.9	—	—	
$gg \to (Z \to \nu \nu)(H \to b\overline{b})$	14.3	3.5	—	_	

VH, BDT Input Variables

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}		×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	\times
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(b_1, b_2)$	×	×	×
$ \Delta\eta(b_1,b_2) $	×		
$\Delta \phi(V,bb)$	×	×	×
$ \Delta\eta(V,bb) $			×
$m_{ m eff}$	×		
$\min[\Delta \phi(\ell,b)]$		×	
$m^W_{ m T}$		×	
$m_{\ell\ell}$			×
$m_{ m top}$		×	
$ \Delta Y(V,bb) $		×	
	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

VH, Background Uncertainties

	Z+jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + bb normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30-40%
Z + cc-to- $Z + bb$ ratio	13-15%
Z + bl-to- $Z + bb$ ratio	20-25%
0-to-2 lepton ratio	7%
p_{T}^V,m_{bb}	S
	W+jets
W + ll normalisation	32%
W + cl normalisation	37%
W + bb normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)
0-to-1 lepton ratio	5%
W+HF CR to SR ratio	10% (1-lepton)
p_{T}^V,m_{bb}	S
$t\overline{t}$ (all are decorre	lated between the $0+1$ and 2 -lepton channels)
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)
0-to-1 lepton ratio	8%
2-to-3-jet ratio	9% (0+1-lepton only)
W+HF CR to SR ratio	25%
p_{T}^V,m_{bb}	S
	Single top-quark
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)
Acceptance 2-jet	17% (t-channel), $35%$ (Wt)
Acceptance 3-jet	20% (t-channel), $41%$ (Wt)
$m_{bb},p_{ m T}^V$	S (t-channel, Wt)
	Multi-jet (1-lepton)
Normalisation	60-100% (2-jet), $100-500%$ (3-jet)
BDT template	S

20/02/2013

VH, **Diboson Uncertainties**

	ZZ
Normalisation	20%
0-to-2 lepton ratio	6%
Acceptance from scale variations (var.)	10.3% - 18.2% (Stewart-Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), $5.8%$ (2-lepton)
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), $3.1%$ (2-lepton)
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with WZ uncertainties)
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE var.}$	S (correlated with WZ uncertainties)
m_{bb} , from matrix element var.	S (correlated with WZ uncertainties)
	WZ
Normalisation	26%
0-to-1 lepton ratio	11%
Acceptance from scale var.	12.7% - 21.2% (Stewart-Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	3.9%
Acceptance from PS/UE var. for 3 jets	10.8%
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with ZZ uncertainties)
$m_{bb}, p_{\rm T}^V$, from PS/UE var.	S (correlated with ZZ uncertainties)
m_{bb} , from matrix element var.	S (correlated with ZZ uncertainties)
	WW
Normalisation	25%

VH, Signal Uncertainties

	Signal
Cross-section (scale)	$0.7\% \; (qq), 27\% \; (gg)$
Cross-section (PDF)	$1.9\%~(qq \rightarrow WH),~1.6\%~(qq \rightarrow ZH),~5\%~(gg)$
Branching ratio	1.7~%
Acceptance from scale variations (var.)	2.5% - 8.8% (Stewart-Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	10.0%-13.9% (depending on lepton channel)
Acceptance from PS/UE var. for 3 jets	12.9%– $13.4%$ (depending on lepton channel)
Acceptance from PDF+ α_s var.	$0.5\%{-}1.3\%$
$m_{bb}, p_{\rm T}^V$, from scale var.	S
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE var.}$	S
$m_{bb}, p_{\rm T}^V, \text{ from PDF} + \alpha_s \text{ var.}$	S
$p_{\rm T}^V$ from NLO EW correction	S

VH, Background Normalisation

Process	Normalisation factor
$t\bar{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	1.04 ± 0.06
W + HF 2-jet	1.22 ± 0.14
W + HF 3-jet	1.27 ± 0.14
Z + HF 2-jet	1.30 ± 0.10
Z + HF 3-jet	1.22 ± 0.09

VH, Cut-based Regions

		Categories							
Channel	m SR/CR	2 b-tagged jets							
Channel		$\boxed{75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}}$		$150 \text{ GeV} < p_{\mathrm{T}}^{V} < 200 \text{ GeV}$		$p_{\rm T}^V > 200 { m ~GeV}$			
		2 jets	3 jets	2 jets	3 jets	2 jets	3 jets		
0 lepton	SR	-	_	m_{bb}	m_{bb}	m_{bb}	m_{bb}		
1 lepton	SR plus W +HF CR	-	-	m_{bb}	m_{bb}	m_{bb}	m_{bb}		
2 lepton	SR	m_{bb}	m_{bb}	m_{bb}	m_{bb}	m_{bb}	m_{bb}		
2 lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield*	m_{bb}^{\dagger}	Yield*	m_{bb}^{\dagger}		

VH, Cut flow

Signal magiong	0-lepton		1-lepton		2-lepton			
Signal regions	$p_{\rm T}^V > 150 \text{ GeV}, 2\text{-tag}$		$p_{\rm T}^V > 150 \text{ GeV}, 2\text{-tag}$		$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, 2\text{-tag}$		$p_{\rm T}^V > 150 \text{ GeV}, 2\text{-tag}$	
Sample	2-jet	3-jet	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	\geq 3-jet
Z + ll	9.0 ± 5.1	15.5 ± 8.1	< 1	—	9.2 ± 5.4	35 ± 19	1.9 ± 1.1	16.4 ± 9.3
Z + cl	21.4 ± 7.7	42 ± 14	2.2 ± 0.1	4.2 ± 0.1	25.3 ± 9.5	105 ± 39	5.3 ± 1.9	46 ± 17
Z + HF	2198 ± 84	3270 ± 170	86.5 ± 6.1	186 ± 13	3449 ± 79	8270 ± 150	651 ± 20	3052 ± 66
W + ll	9.8 ± 5.6	17.9 ± 9.9	22 ± 10	47 ± 22	< 1	< 1	< 1	< 1
W + cl	19.9 ± 8.8	41 ± 18	70 ± 27	138 ± 53	< 1	< 1	< 1	< 1
W + HF	460 ± 51	1120 ± 120	1280 ± 160	3140 ± 420	3.0 ± 0.4	5.9 ± 0.7	< 1	2.2 ± 0.2
Single top-quark	145 ± 22	536 ± 98	830 ± 120	3700 ± 670	53 ± 16	134 ± 46	5.9 ± 1.9	30 ± 10
$t\bar{t}$	463 ± 42	3390 ± 200	2650 ± 170	20640 ± 680	1453 ± 46	4904 ± 91	49.6 ± 2.9	430 ± 22
Diboson	116 ± 26	119 ± 36	79 ± 23	135 ± 47	73 ± 19	149 ± 32	24.4 ± 6.2	87 ± 19
Multi-jet e sub-ch.	_	_	102 ± 66	27 ± 68	_	—	_	—
Multi-jet μ sub-ch.	_	_	133 ± 99	90 ± 130	_	—	_	—
Total bkg.	3443 ± 57	8560 ± 91	5255 ± 80	28110 ± 170	5065 ± 66	13600 ± 110	738 ± 19	3664 ± 56
Signal (fit)	58 ± 17	60 ± 19	63 ± 19	65 ± 21	25.6 ± 7.8	46 ± 15	13.6 ± 4.1	35 ± 11
Data	3520	8634	5307	28168	5113	13640	724	3708

VH, Composition High S/B

Process	Bin 11	Bin 12	Bin 13	Bin 14
Data	274	156	34	4
Signal (fit)	32.4	25.0	11.1	1.1
Total Background	238.3	113.7	27.3	1.5
Z + ll	0.2	0.1	< 0.1	< 0.1
Z + cl	0.7	0.4	< 0.1	< 0.1
Z + HF	86.1	51.3	10.5	1.5
W + ll	0.20	0.1	< 0.1	—
W + cl	1.6	0.2	< 0.1	—
W + HF	58.9	24.5	6.9	—
Single top-quark	19.2	7.6	2.9	—
$tar{t}$	61.3	25.7	6.2	—
Diboson	4.7	1.7	0.4	< 0.1
Multi-jet e sub-ch.	0.1	—	_	_
Multi-jet μ sub-ch.	5.2	2.0	< 0.1	_

VH, **Detailed Results**

Dataset	1	<i>p</i> ₀	Significance		
Dataset	Exp.	Obs.	Exp.	Obs.	
0-lepton	4.2%	30%	1.7	0.5	
$1 ext{-lepton}$	3.5%	1.1%	1.8	2.3	
2-lepton	3.1%	0.019%	1.9	3.6	
Combined	0.12%	0.019%	3.0	3.5	

VH, Composition Control Regions

Control regions	1-lepton		2-lepton				
Control regions	$p_{\rm T}^V > 150 \text{ GeV}, 2\text{-tag}$		75 GeV < p	$p_{\rm T}^V < 150 \text{ GeV}, 2\text{-tag}$	$p_{\rm T}^V > 150 \text{ GeV}, 2\text{-tag}$		
Sample	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet	
Z + ll	< 1	< 1	< 1	< 1	< 1	< 1	
Z + cl	—	< 1	< 1	< 1	< 1	< 1	
Z + HF	6.6 ± 0.7	19.3 ± 1.4	2.1 ± 0.2	2.8 ± 0.2	< 1	1.2 ± 0.1	
W + ll	1.1 ± 0.1	2.9 ± 0.1	—	—	—	—	
W + cl	2.6 ± 1.1	8.7 ± 3.7	—	—	—	—	
W + HF	234 ± 21	594 ± 45	3.0 ± 0.3	2.7 ± 0.3	< 1	< 1	
Single top-quark	10.3 ± 2.8	40 ± 14	50 ± 15	127 ± 45	5.8 ± 1.8	27.9 ± 9.8	
$t \bar{t}$	24.8 ± 7.8	107 ± 29	1437 ± 41	4852 ± 85	48.8 ± 3.8	431 ± 21	
Diboson	5.6 ± 1.9	12.1 ± 4.2	—	< 1	—	—	
Multi-jet e sub-ch.	8.2 ± 5.3	2.2 ± 5.6	—	—	—	—	
Multi-jet μ sub-ch.	6.8 ± 5.1	3.7 ± 5.4	—	—	—	—	
Total bkg.	300 ± 16	791 ± 27	1492 ± 37	4985 ± 68	55.2 ± 3.9	461 ± 19	
Signal (fit)	< 1	1.2 ± 0.4	< 1	< 1	< 1	< 1	
Data	302	790	1489	4967	50	470	

ttH, H(bb)

• Search in both single and di-lepton channels

- Categorise according to jet and b-tag multiplicity
- Reconstruction multivariate analysis (MVA) matches jets to partons
- Classification MVA discriminates signal from background

ttH, H(bb) Results

Uncertainty source	$\Delta \mu$		
$t\bar{t}+\geq 1b$ modelling	+0.53	-0.53	
Jet flavour tagging	+0.26	-0.26	
$t\bar{t}H ext{ modelling}$	+0.32	-0.20	
Background model statistics	+0.25	-0.25	
$t\bar{t}+\geq 1c \text{ modelling}$	+0.24	-0.23	
Jet energy scale and resolution	+0.19	-0.19	
$t\bar{t}$ +light modelling	+0.19	-0.18	
Other background modelling	+0.18	-0.18	
Jet-vertex association, pileup modelling	+0.12	-0.12	
Luminosity	+0.12	-0.12	
$t\bar{t}Z$ modelling	+0.06	-0.06	
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05	
Total systematic uncertainty	+0.90	-0.75	
$t\bar{t}+\geq 1b$ normalisation	+0.34	-0.34	
$t\bar{t}+\geq 1c$ normalisation	+0.14	-0.14	
Statistical uncertainty	+0.49	-0.49	
Total uncertainty	+1.02	-0.89	

Reached Run 1 sensitivity

Limiting factors:

- Modelling of $t\bar{t}$ +heavy flavour (hf)
- Flavour tagging
- Monte Carlo statistics
- Signal modelling