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N = 1, D = 4 nonlinear sigma models, parametrized by chiral superfields, usually describe Kählerian 
geometries, provided that Einstein frame supergravity is used. The sigma model metric is no longer Käh-
ler when local supersymmetry becomes nonlinearly realized through the nilpotency of the supergravity 
auxiliary fields. In some cases the nonlinear realization eliminates one scalar propagating degree of free-
dom. This happens when the sigma model conformal-frame metric has co-rank 2. In the geometry of 
the inflaton, this effect eliminates its scalar superpartner. We show that the sigma model metric remains 
semidefinite positive in all cases, due the to positivity properties of the conformal-frame sigma model 
metric.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In this note we comment on some general properties of the 
sigma-model metric in N = 1 supergravity coupled to chiral multi-
plets [1,2]. In particular we discuss properties of the metric in the 
conformal and Einstein frames. These frames are particular cases in 
the superconformal approach to supergravity [3]. Different frames 
are suitable for uncovering the physics of different explicit models. 
Positivity properties of the sigma-model metric are maintained by 
the metric in different frames, but the sigma model metric in the 
conformal frame can have lower rank than in the Einstein frame, 
before elimination of the axial vector auxiliary field. In this note, 
we show examples where the conformal metric is non-invertible 
but the final sigma model metric is nevertheless positive definite.

In the case of nonlinear realizations of supersymmetry, the 
nilpotency of the auxiliary field Aμ may reduce the rank of the 
full scalar metric. A particularly striking example is the inflaton, 
where the nilpotency of Aμ removes the pseudoscalar partner of 
the inflaton (the “sinflaton”).

2. Supergravity in the conformal and Einstein frames

Conformal-frame supergravity is the formulation that follows 
directly from the tensor calculus [3–5] that uses a minimal set 
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of auxiliary fields; namely, a complex scalar u and axial vec-
tor Aμ . This corresponds to a particular choice of Jordan frame 
(see e.g. [6]) in which the frame function, φ(z, ̄z), is the first com-
ponent of a real superfield, �(Z , Z̄), whose local D-density is the 
Lagrangian of supergravity coupled to a nonlinear sigma model [1]

�(Z , Z̄)

∣∣∣
D

= LC S = e
[φ

6
R − φij̄ ∂μzi∂ν z̄j̄ gμν − φ

9
Aμ Aν gμν

+ i

3
Aμ(φi∂ν zi − φı̄∂ν z̄ı̄ )gμν + ...

]
. (1)

Here e = det ea
μ , φi = ∂iφ etc. and we only wrote explicitly bosonic 

terms relevant for our discussion. The function φ(z, ̄z) is negative 
with non-negative sigma model metric φij̄ . We call eq. (1) “con-
formal frame Lagrangian” because its Einstein equation is sourced 
by the improved energy–momentum tensor in curved space [7]
(see [8] for the supergravity extension). We remark that the 
conformal-frame Lagrangian is additive in the φ function, differ-
ently from other Jordan frames. This property was important in 
formulating the “sequestering” scenario of ref. [9]. The physical 
properties of a supergravity model may be transparent in one 
frame but hidden in another. For instance, the example of ref. [9], 
based on brane constructions, was naturally additive in φ. The 
same is true for conformally coupled scalars. Other models, such 
as sequential toroidal compactifications of higher-dimensional su-
pergravity, are instead additive in the Kähler potential K .

The Einstein frame action is obtained by performing a Weyl 
rescaling of the vierbein, ea

μ → ea
μ exp(σ ), such that the R curva-
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ture term coincides with the Einstein–Hilbert action.1 This rescal-
ing is

e2σ = − 3

φ
, (2)

1

6
eφR → −1

2
eR − 3

4
egμν∂μ log φ∂ν log φ + total derivative.

(3)

Under this rescaling we have LC S → LE S with

LE S/e = −1

2
R + 3

φ
φij̄ ∂μzi∂ν z̄j̄ gμν

− 3

4
[(log φ)i∂μzi + (log φ)ı̄∂μ z̄ı̄]2 +

+ 1

3
Aμ Aν gμν − i Aμ[(log φ)i∂ν zi − (log φ)ı̄∂ν z̄ı̄]gμν.

(4)

Finally, if one integrates out the Aμ field, one gets

LE S/e = −1

2
R + 3

φ
φij̄ ∂μzi∂ν z̄j̄ gμν

− 3

4
[(log φ)i∂μzi + (log φ)ı̄∂μ z̄ı̄]2

+ 3

4
[(log φ)i∂μzi − (log φ)ı̄∂μ z̄ı̄]2. (5)

This is a nonlinear sigma model with Kähler metric (d ≡ dzi∂i , d̄ ≡
dz̄ı̄ ∂ı̄ )

(d ⊗ d̄)K = − 3

φ
(d ⊗ d̄)φ + 3

4
(d logφ + d̄ logφ)

⊗ (d logφ + d̄ logφ) +
− 3

4
(d logφ − d̄ logφ) ⊗ (d logφ − d̄ logφ)

= − 3

φ
(d ⊗ d̄)φ + 3d logφ ⊗ d̄ log φ = −3d ⊗ d̄ logφ.

(6)

3. Properties of the sigma-model metric

By inspection of eq. (6), the Einstein-frame Kähler metric is the 
sum of three 2n × 2n matrices: the matrix φij̄ and two positive 
rank-one matrices, the first coming from the Weyl rescaling and 
the second from integrating out the Aμ field. The physical require-
ment is that φij̄ is non-negative and of rank ≥ 2n − 2. For n = 1
the rank-zero example is the inflaton metric discussed in the next 
section. We also observe that the splitting of the Kähler metric in 
three factors does not respect the Kähler invariance

K → K + � + �̄, (7)

where � is a holomorphic function of the coordinates. In the φ
variables, the transformation corresponds to

φ → φe− 1
3 (�+�̄). (8)

Let us now consider a case where the φij̄ metric has rank 
2n − 2. This is the model with

φ3 = −1

3
dijk(zi + z̄ı̄ )(z j + z̄j̄ )(zk + z̄k̄). (9)

1 In the superconformal approach, different Jordan frames correspond to different 
gauge choices for the compensating multiplet [3].
This metric appears in the large-volume limit of the Kähler 
class moduli in Calabi–Yau compactifications of type IIA super-
strings [10]. Since φ depends only on Re zi and is homogeneous of 
degree one, it follows that φij̄ Re z j = 0. So φij̄ has a null eigenvec-
tor. Since the metric for Im zi is the same as the one for Re zi , it 
follows that the sigma-model metric splits into a rank-2n − 2 part 
plus a rank-2 part

Kij̄ = −3
(φij̄

φ
− φiφj̄

φ2

)
. (10)

Notice that if we only retain the volume modulus, t , then φtt̄ = 0
and the entire metric resides in the last term, which, in this case, 
is the full metric.

We remark that the conformal frame action is invariant under 
the Kähler transformation (7), (8), even if the sigma model metric 
is not. This happens because the transformation also acts nontriv-
ially on the conformal frame metric gC

μν :

gC
μν → gC

μνe
1
3 (�+�̄). (11)

4. Inflaton disk geometry

In many supersymmetric models such as the supergravity ex-
tension [11,12] of the R + R2 “Starobinsky” model [13,14], the 
inflaton ϕ has a Kähler potential

K = −3 log[(ϕ + ϕ̄)/3]. (12)

The standard inflaton is the real part of ϕ while the imaginary part 
is its supersymmetric partner, the “sinflaton.” As in the previous 
example, φϕ,ϕ̄ = 0. This is due to the fact that R + R2 super-
gravity is dual to a standard (conformal frame) supergravity with 
Lagrangian

LC S = e
φ

6
R + ...., φ = −(ϕ + ϕ̄). (13)

This formula shows that the Kähler metric of this model is en-
tirely due to curved space effects, since the two degrees of freedom 
Reϕ , Imϕ acquire kinetic terms only though the Weyl rescaling 
and the Aμ field equation. Dropping the Aμ contributions one ob-
tains the R + R2, N = 0 theory [15].

5. Nonlinear realizations

Nonlinear realizations of local supersymmetry have been widely 
discussed in the recent past. Beyond the Volkov–Akulov [16] nilpo-
tent chiral superfield X (X2 = 0) [17], other superfields can un-
dergo nonlinear realizations if they satisfy nilpotency conditions. 
In supergravity one can impose constraints which have no analog 
in rigid supersymmetry, since they create nonlinear restrictions on 
the underlying local superspace geometry. In this case, the only 
constraints that do not affect the gauge field sector are nilpo-
tency constraints on the auxiliary fields u and/or Aμ . They have 
the form [18]

X X̄(R− c) = 0, X X̄Gαα̇ = 0. (14)

Here R is the scalar curvature chiral superfield and Gαα̇ is the real 
Einstein superfield [19]. These constraints imply that u and Aμ are 
nilpotent. The first constraint will affect the scalar potential and 
the latter will affect the kinetic terms. Recently these constraints 
have been used in higher derivative supergravity [20]. In this note 
we discuss only the properties of the sigma model metric, so we 
confine our discussion to the latter constraint.

Nilpotency of Aμ implies that its contribution to the kinetic 
term in eqs. (1), (5) should be deleted. This procedure in some 
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cases has the effect of removing the propagating degree of free-
dom associated to one of the rank-one matrix contributions to the 
sigma-model metric. In particular, in the inflaton model discussed 
above, it deletes the “sinflaton” degree of freedom.

In the multi-field case with φ potential given by eq. (9), the 
full metric will have rank 2n − 1 so that one scalar degree of free-
dom will always become nondynamical. It is important however 
to make sure that the remaining degrees of freedom have positive 
metric. This follows from the positivity conditions on the φij̄ met-
ric. We also observe that two φ potentials related by coordinate 
transformations may have a different number of propagating de-
grees of freedom once the nonlinear constraint on Aμ is imposed. 
This is due to the fact that when the Aμ field becomes nilpotent, 
the underlying geometry is no longer Kähler. This is easily seen 
in the inflaton example. When φ = −(ϕ + ϕ̄) the sinflaton does 
not propagate. The potential φ = ϕϕ̄ − 1, which corresponds to a 
conformally coupled complex scalar, is obtained from the former, 
up to a Kähler transformation, by the coordinate transformation 
ϕ → (ϕ + i)/(ϕ − i). The latter potential is easily seen to give a 
sigma model where two scalars propagate, since it corresponds to 
a flat metric φϕ,ϕ̄ = 1 in the conformal frame.
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