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Abstract

N = 1, D = 4 non linear sigma models, parametrized by chiral superfields, usually describe

Kählerian geometries, provided that Einstein frame supergravity is used. The sigma model metric

is no longer Kähler when local supersymmetry becomes nonlinearly realized through the nilpotency

of the supergravity auxiliary fields. In some cases the nonlinear realization eliminates one scalar

propagating degree of freedom. This happens when the sigma model conformal-frame metric has

co-rank 2. In the geometry of the inflaton, this effect eliminates its scalar superpartner. We

show that the sigma model metric remains semidefinite positive in all cases, due the to positivity

properties of the conformal-frame sigma model metric.
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1 Introduction

In this note we comment on some general properties of the sigma-model metric in N = 1 supergravity

coupled to chiral multiplets [1, 2]. In particular we discuss properties of the metric in the conformal

and Einstein frames. These frames are particular cases in the superconformal approach to supergrav-

ity [3]. Different frames are suitable for uncovering the physics of different explicit models. Positivity

properties of the sigma-model metric are maintained by the metric in different frames, but the sigma

model metric in the conformal frame can have lower rank than in the Einstein frame, before elimina-

tion of the axial vector auxiliary field. In this note, we show examples where the conformal metric is

non-invertible but the final sigma model metric is nevertheless positive definite.

In the case of nonlinear realizations of supersymmetry, the nilpotency of the auxiliary field Aµ may

reduce the rank of the full scalar metric. A particularly striking example is the inflaton, where the

nilpotency of Aµ removes the pseudoscalar partner of the inflaton (the “sinflaton”).

2 Supergravity in the Conformal and Einstein Frames

Conformal-frame supergravity is the formulation that follows directly from the tensor calculus [3–5]

that uses a minimal set of auxiliary fields; namely, a complex scalar u and and axial vector Aµ.

This corresponds to a particular choice of Jordan frame (see e.g. [6]) in which the frame function,

φ(z, z̄), is the first component of a real superfield, Φ(Z, Z̄), whose local D-density is the Lagrangian

of supergravity coupled to a nonlinear sigma model [1]

Φ(Z, Z̄)
∣∣∣
D

= LCS = e
[φ

6
R− φī∂µzi∂ν z̄ ̄gµν −

φ

9
AµAνg

µν +
i

3
Aµ(φi∂νz

i − φı̄∂ν z̄ ı̄)gµν + ...
]
. (1)

Here e = det eaµ, φi = ∂iφ etc. and we only wrote explicitly bosonic terms relevant for our discussion.

The function φ(z, z̄) is negative with non-negative sigma model metric φī. We call eq. (1) “conformal

frame Lagrangian” because its Einstein equation is sourced by the improved energy-momentum ten-

sor in curved space [7] (see [8] for the supergravity extension). We remark that the conformal-frame

Lagrangian is additive in the φ function, differently from other Jordan frames. This property was

important in formulating the “sequestering” scenario of ref. [9]. The physical properties of a super-

gravity model may be transparent in one frame but hidden in another. For instance, the example of

ref. [9], based on brane constructions, was naturally additive in φ. The same is true for conformally

coupled scalars. Other models, such as sequential toroidal compactifications of higher-dimensional

supergravity, are instead additive in the Kähler potential K.

The Einstein frame action is obtained by performing a Weyl rescaling of the vierbein, eaµ →
eaµ exp(σ), such that the R curvature term coincides with the Einstein-Hilbert action.1 This rescaling

1In the superconformal approach, different Jordan frames correspond to different gauge choices for the compensating
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is

e2σ = − 3

φ
, (2)

1

6
eφR → −1

2
eR− 3

4
egµν∂µ log φ∂ν log φ+ total derivative. (3)

Under this rescaling we have LCS → LES with

LES/e = −1

2
R+

3

φ
φī∂µz

i∂ν z̄
̄gµν − 3

4
[(log φ)i∂µz

i + (log φ)ı̄∂µz̄
ı̄]2 +

+
1

3
AµAνg

µν − iAµ[(log φ)i∂νz
i − (log φ)ı̄∂ν z̄

ı̄]gµν . (4)

Finally, if one integrates out the Aµ field, one gets

LES/e = −1

2
R+

3

φ
φī∂µz

i∂ν z̄
̄gµν− 3

4
[(log φ)i∂µz

i+(log φ)ı̄∂µz̄
ı̄]2+

3

4
[(log φ)i∂µz

i−(log φ)ı̄∂µz̄
ı̄]2. (5)

This is a nonlinear sigma model with Kähler metric (d ≡ dzi∂i, d̄ ≡ dz̄ ı̄∂ı̄)

(d⊗ d̄)K = − 3

φ
(d⊗ d̄)φ+

3

4
(d log φ+ d̄ log φ)⊗ (d log φ+ d̄ log φ) +

−3

4
(d log φ− d̄ log φ)⊗ (d log φ− d̄ log φ)

= − 3

φ
(d⊗ d̄)φ+ 3d log φ⊗ d̄ log φ = −3d⊗ d̄ log φ. (6)

3 Properties of the Sigma-Model Metric

By inspection of eq. (6), the Einstein-frame Kähler metric is the sum of three 2n × 2n matrices: the

matrix φī and two positive rank-one matrices, the first coming from the Weyl rescaling and the second

from integrating out the Aµ field. The physical requirement is that φī is non-negative and of rank

≥ 2n−2. For n = 1 the rank-zero example is the inflaton metric discussed in the next section. We also

observe that the splitting of the Kähler metric in three factors does not respect the Kähler invariance

K → K + Λ + Λ̄, (7)

where Λ is a holomorphic function of the coordinates. In the φ variables, the transformation corre-

sponds to

φ→ φe−
1
3

(Λ+Λ̄). (8)

Let us now consider a case where the φī metric has rank 2n− 2. This is the model with

φ3 = −1

3
dijk(z

i + z̄ ı̄)(zj + z̄ ̄)(zk + z̄k̄). (9)

multiplet [3].
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This metric appears in the large-volume limit of the Kähler class moduli in Calabi-Yau compactifica-

tions of type IIA superstrings [10]. Since φ depends only on Re zi and is homogeneous of degree one,

it follows that φī Re zj = 0. So φī has a null eigenvector. Since the metric for Im zi is the same as

the one for Re zi, it follows that the sigma-model metric splits into a rank-2n − 2 part plus a rank-2

part

Kī = −3
(φī
φ
− φiφ̄

φ2

)
. (10)

Notice that if we only retain the volume modulus, t, then φtt̄ = 0 and the entire metric resides in the

last term, which, in this case, is the full metric.

We remark that the conformal frame action is invariant under the Kähler tranformation (7,8), even

if the sigma model metric is not. This happens because the transformation also acts nontrivially on

the conformal frame metric gCµν :

gCµν → gCµνe
1
3

(Λ+Λ̄). (11)

4 Inflaton Disk Geometry

In many supersymmetric models such as the supergravity extension [11,12] of the R+R2 “Starobinsky”

model [13,14], the inflaton ϕ has a Kähler potential

K = −3 log[(ϕ+ ϕ̄)/3]. (12)

The standard inflaton is the real part of ϕ while the imaginary part is its supersymmetric partner, the

“sinflaton.” As in the previous example, φϕ,ϕ̄ = 0. This is due to the fact that R+R2 supergravity is

dual to a standard (conformal frame) supergravity with Lagrangian

LCS = e
φ

6
R+ ...., φ = −(ϕ+ ϕ̄). (13)

This formula shows that the Kähler metric of this model is entirely due to curved space effects,

since the two degrees of freedom Reϕ, Imϕ acquire kinetic terms only though the Weyl rescaling and

the Aµ field equation. Dropping the Aµ contributions one obtains the R+R2, N = 0 theory [15].

5 Nonlinear Realizations

Nonlinear realizations of local supersymmetry have been widely discussed in the recent past. Beyond

the Volkov-Akulov [16] nilpotent chiral superfield X (X2 = 0) [17], other superfields can undergo

nonlinear realizations if they satisfy nilpotency conditions. In supergravity one can impose constraints

which have no analog in rigid supersymmetry, since they create nonlinear restrictions on the underlying
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local superspace geometry. In this case, the only constraints that do not affect the gauge field sector

are nilpotency constraints on the auxiliary fields u and/or Aµ. They have the form [18]

XX̄(R− c) = 0, XX̄Gαα̇ = 0. (14)

Here R is the scalar curvature chiral superfield and Gαα̇ is the real Einstein superfield [19]. These

constraints imply that u and Aµ are nilpotent. The first constraint will affect the scalar potential and

the latter will affect the kinetic terms. Recently these constraints have been used in higher derivative

supergravity [20]. In this note we discuss only the properties of the sigma model metric, so we confine

our discussion to the latter constraint.

Nilpotency of Aµ implies that its contribution to the kinetic term in eqs. (1,5) should be deleted.

This procedure in some cases has the effect of removing the propagating degree of freedom associated

to on of the rank-one matrix contributions to the sigma-model metric. In particular, in the inflaton

model discussed above, it deletes the “sinflaton” degree of freedom.

In the multi-field case with φ potential given by eq. (9), the full metric will have rank 2n−1 so that

one scalar degree of freedom will always become non dynamical. It is important however to make sure

that the remaining degrees of freedom have positive metric. This follows from the positivity conditions

on the φī metric. We also observe that two φ potentials related by coordinate transformations may

have a different number of propagating degrees of freedom once the nonlinear constraint on Aµ is

imposed. This is due to the fact that when the Aµ field becomes nilpotent, the underlying geometry

is no longer Kähler. This is easily seen in the inflaton example. When φ = −(ϕ + ϕ̄) the sinflaton

does not propagate. The potential φ = ϕϕ̄− 1, which corresponds to a conformally coupled complex

scalar, is obtained from the former, up to a Kähler transformation, by the coordinate transformation

ϕ → (ϕ + i)/(ϕ − i). The latter potential is easily seen to give a sigma model where two scalars

propagate, since it corresponds to a flat metric φϕ,ϕ̄ = 1 in the conformal frame.
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