
 

Proton decay testing low energy supersymmetry
with precision gauge unification

Stefan Pokorski,1,2 Krzysztof Rolbiecki,1 and Kazuki Sakurai1
1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,

Ludwika Pasteura 5, PL–02–093 Warsaw, Poland
2Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

(Received 2 August 2017; published 28 February 2018)

We show that gauge coupling unification in supersymmetry (SUSY) models can make a nontrivial
interconnection between collider and proton decay experiments. Under the assumption of precise gauge
coupling unification in the Minimal Supersymmeric Standard Model, with negligible grand unified theories
threshold corrections, the low energy SUSY spectrum and the unification scale are intertwined, and the
lower bound on the proton lifetime can be translated into upper bounds on SUSY masses. We find that the
current limit on τðP → π0eþÞ already excludes gluinos heavier than ∼70 (120 and 200) TeV if their mass
ratio to winos, R≡M3/M2, is ∼1 (3 and 7), respectively. Next generation nucleon decay experiments are
expected to bring these upper bounds down to ∼5 (10 and 15) TeV for R ∼ 1 (3 and 7).
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Proton decay would be the key evidence for grand
unified theories (GUTs) [1]. Among possible decay chan-
nels, a special role is played by the p → π0eþ mode for
which the dominant contribution may come from the
D ¼ 6 operators depending almost exclusively on the X,
Y boson mass and the unified gauge coupling. Unification
of the gauge couplings in the minimal supersymmeric
Standard Model (MSSM) as a link between the super-
symmetric spectrum and the GUT spectrum and a window
to the GUT physics has been studied intensively. Most such
works have focused on constraining the GUT spectrum
making simple assumptions on the low energy supersym-
metry (SUSY) spectrum. In this study, we take the opposite
approach, very similar to the one proposed in the early
Ref. [2] with similar motivation.
Following several studies [3,4], we assume that the

unification of the gauge couplings is precise within the
MSSM without threshold corrections of GUT scale par-
ticles. In fact, such a situation can be realized in a class of
extra dimensional GUT models, proposed as a solution to
the doublet-triplet splitting problem. In such a scenario, the
relevant superheavy particles are in general mass degen-
erate around the compactification scale, leading to small
threshold corrections. In particular, in a 6-D orbifold GUT
model that breaks the GUT symmetry nonlocal by Wilson

lines, the threshold correction exactly vanishes when the
size of two extra dimensions are the same [5,6].1

On the other hand, the GUT threshold corrections in
conventional models depend on the mass ratios between
superheavy particles forming incomplete multiplets (such
as the colored Higgs and the X, Y bosons in the minimal
SU(5)). If those superheavy particles have hierarchical
mass spectra, the threshold corrections can become large
enough to spoil “the success of gauge coupling unification
in the MSSM” [5,8]. We stress again that all conclusions
derived in this paper are subject to the assumption of the
precision gauge coupling unification within the MSSM.
Under the assumption of precise gauge coupling

unification (GCU), we show that the low energy SUSY
spectrum and the unification scale are intertwined, and
the lower bound on the proton lifetime τp→π0eþ can be
translated into upper bounds on SUSY masses.2 This leads
to an interesting interconnection between the proton decay
experiments and the collider searches, particularly in view
of the future progress on both fronts, in cornering super-
symmetric spectrum from above and from below.
In general, the p → Kþν mode, induced by the D ¼ 5

operators generated by the colored Higgs exchange
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1Small but not necessarily vanishing threshold corrections are
expected in extra dimensional orbifold GUT models with
boundary condition GUT breaking [7].

2Unlike other upper bounds on SUSY masses based on the
arguments of the Higgs boson mass [9] or the neutralino relic
abundance [10], these bounds depend neither on the ratio of
the Higgs vacuum expectation values, tan β≡ vu/vd, nor the
assumption of R-parity conservation and the thermal history of
the universe.
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diagrams, also gives a strong constraint on the colored
Higgs mass and low energy SUSY spectrum as well as the
structure of the Higgs sector in the GUT models [11].
However, this mode is highly model-dependent, and several
mechanisms have been known to suppress it independently
of the GCU [12].3 We therefore do not consider this mode
in this paper for simplicity. In any case, the constraints
derived from the p → π0eþ mode can be applied inde-
pendently from the D ¼ 5 proton decay constraints.
We use the two-loop renormalization group equations

(RGEs) for the running of the gauge couplings, which we
solve numerically. The solution can be written as [13]

2π

αiðQÞ ¼
2π

αiðmZÞ
− bi ln

�
Q
mZ

�
þ si þ γi þ Δi; ð1Þ

where α1 ≡ 5
3
αY , i ¼ 1, 2, 3 represents the gauge group,

bi ¼ ð33
5
; 1;−3Þ are the one-loop β-function coefficients for

the MSSM and

si ≡
X
η

bηi ln

�
mη

mZ

�
ð2Þ

represent the threshold corrections of low energy
SUSY particles. The variables mη and bηi denote the mass
and the contribution to bi from the superpartner η. The

γi ≡ − 1
2

P
j
bij
bj
lnð αjðQÞ

αjðmZÞÞ accounts for the two-loop contri-

bution with bij being the two-loop β-function coefficients.
4

TheΔi represents the effect of the top Yukawa coupling and
the conversion factor between MS and DR schemes.5

In the special case where all SUSY particles are mass
degenerate atMs, the threshold correction can be written as
si ¼ δi lnðMs/mZÞ with δi ≡ ðbi − bSMi Þ, where bSMi ¼
ð41
10
;− 19

6
;−7Þ are the one-loop β-function coefficients for

the Standard Model (SM). In this case, precision gauge
unification α1ðQÞ ¼ α2ðQÞ ¼ α3ðQÞ≡ α�G is achieved by
the particular values, Ms ¼ M�

s , Q ¼ Mdeg �
G , satisfying

2π

α�G
¼ 2π

αiðmZÞ
−bi ln

�
Mdeg�

G

mZ

�
þδi ln

�
M�

s

mZ

�
þ γiþΔi ð3Þ

for all i. It should be borne in mind that the quantities M�
s ,

Mdeg �
G and α�G are not variables but constants defined as the

solution to the above three simultaneous equations.
Coming back to the general case, let us decompose the

vector si into three independent vectors as [4]

si ¼ δi ln

�
T
mZ

�
þ bi lnΩþ C: ð4Þ

The solution to this set of equations is given by

ln

�
T
mZ

�
¼ visi

D
ð5Þ

lnΩ ¼ uisi
D

ð6Þ

C ¼ ϵijkδjbisk
D

ð7Þ

where summation is understood for the repeated indices
and ϵijk is the antisymmetric tensor and

v ¼

0
B@

b2 − b3
−b1 þ b3
b1 − b2

1
CA; u ¼

0
B@

−δ2 þ δ3

δ1 − δ3

−δ1 þ δ2

1
CA;

D ¼ b2δ1 − b3δ1 − b1δ2 þ b3δ2 þ b1δ3 − b2δ3: ð8Þ

Plugging the concrete values of bi, δi and bηi into these
expressions, one gets

T ¼ ½M−28
3 M32

2 ðμ4mAÞ3XT � 119; ð9Þ

Ω ¼ ½M−100
3 M60

2 ðμ4mAÞ8XΩ� 1
288; ð10Þ

C ¼ 125

19
lnM3 −

113

19
lnM2 −

40

19
ln μ −

10

19
lnmA

þ
X

i¼1…3

�
79

114
lnmd̃Ri

−
10

19
lnml̃i

−
121

114
lnmq̃i

þ 257

228
lnmũRi þ

33

76
lnmẽRi

�
; ð11Þ

with

XT ≡ Y
i¼1…3

� m3
l̃i

m3
d̃Ri

��
m7

q̃i

m2
ẽRi
m5

ũRi

�
; ð12Þ

XΩ ≡ Y
i¼1…3

� m8
l̃i

m8
d̃Ri

��
m6

q̃i
mẽRi

m7
ũRi

�
: ð13Þ

We ignore the phases of SUSY breaking parameters
since they do not contribute to the running of gauge
couplings. In most models, the sfermion contributions to
T and Ω are negligible (i.e. XT ∼ XΩ ∼ 1). In particular,
these contributions vanish if the masses are degenerate
within the SU(5) multiplets, 5̄i¼ðd̃cR;l̃Þi, 10i ¼ ðq̃; ũcR; ẽcRÞi.
One can explicitly check that for a degenerate spectrum,
lnΩ ¼ C ¼ 0.

3The D ¼ 5 proton decays are suppressed also in the class of
models discussed in [6,7].

4At the unification scale (MG), it can be approximated as
γi ¼ − 1

2

P
j
bij
bj
lnð1þ bjαG

2π lnMG
mZ
Þ. One can solve γi iteratively by

updating MG and αG.
5For the treatment of Δi, see for example [14].
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To see roles of T, Ω and C in GCU, we substitute Eq. (4)
into Eq. (1) and obtain

2π

αiðQÞ ¼
2π

α�G
− bi ln

�
Q

ΩMdeg �
G

�
þ δi ln

�
T
M�

s

�
þ C; ð14Þ

where Eq. (3) has also been used.6 It is clear that the exact
unification for the general case is obtained when the rhs
becomes i-independent, that is at T ¼ M�

s [15] and the
exact unification scale is given by

MG ¼ ΩMdeg �
G : ð15Þ

The unified gauge coupling is related to that of the
degenerate case as

α−1G ¼ α�−1G þ C
2π

: ð16Þ

Away from the exact unification, we define a candidate
unification scale MU and a semiunified coupling αU by

α1ðMUÞ ¼ α2ðMUÞ≡ αU: ð17Þ

This scale can be computed from the low energy
spectrum as

MU ¼ ΩMdeg �
G ðT/M�

sÞ
δ1−δ2
b1−b2 ; ð18Þ

where δ1−δ2
b1−b2

¼ − 25
84
≃ −0.3, and at this scale the gauge

couplings are given by

2π

αiðMUÞ
¼ 2π

α�G
þ
�
δi − bi

δ1 − δ2
b1 − b2

�
ln

�
T
M�

s

�
þ C: ð19Þ

Using this formula, a measure of gauge coupling unifica-
tion, which we define as ϵ3 ≡ ðα3ðMUÞ − αUÞ/αU, is
calculated as

ϵ3 ¼
α�G
2π

Y ln

�
T
M�

s

�
þ � � � ; ð20Þ

where the dots represent higher order terms of α�G
2π and

Y≡b1ðδ2−δ3Þþb2ð−δ1þδ3Þþb3ðδ1−δ2Þ
b1−b2

¼ 19

14
: ð21Þ

It is interesting that ϵ3 depends only on T at the leading
order [15].

All numerical scans presented in this paper use a two-loop
RGE code including the effect of the top Yukawa coupling,
following [14]. We use tan β ¼ 10, but a variation of tan β
results in negligible effects. The SUSY breaking parameters
are uniformly scanned in the logarithmic scale within [mmin,
103 TeV].We takemmin ¼ 1.5 TeV forM3 and 200GeV for
M2, μ and mA. The sfermion masses are assumed to be
universal (≡mf̃) for simplicity and mmin ¼ 1 TeV is used.
We also vary α3ðmZÞ ¼ 0.1184ð7Þ, according to the 1-σ
uncertainty. At the central value of α3ðmZÞ, numerically,
M�

s¼2.08TeV, Mdeg�
G ¼ 1.27×1016 GeV and α�−1G ¼ 25.5.

We show in Fig. 1 the result of our numerical scan. The top
plot in Fig. 1 confirms the predicted relationEq. (20) (dashed
line). Hereafter, we keep the points that have precise GCU,
jϵ3j < 0.1%, and discard them otherwise. We see that the
precision GCU occurs only when the SUSY masses are
arranged such that T computed by Eq. (9) is within a certain
range, [1, 4] TeV, centred around 2 TeV. The width of T for
precisionGCU is generated by two factors: a variation ofM�

s
corresponding to the uncertainty on α3ðmZÞ and a small
violation of T ¼ M�

s caused by up to 0.1% deviation from
the exact unification, ϵ3 ¼ 0. The middle plot shows the
correlation between Ω and the exact unification scale, MG.
The color of points represents a typical SUSY scaleffiffiffiffiffiffiffiffiffiffiffiffiffi
M3M2

p
. One can see that heavy SUSY tends to have a

small unification scale. For the PeV scale SUSY withffiffiffiffiffiffiffiffiffiffiffiffiffi
M3M2

p
∼ 103 TeV, MG is reduced by a factor of 5

compared to the TeV scale one. The bottom plot confirms
the predicted relation Eq. (16) (dashed line). The color-code
indicates a SUSY scale, ðM3M2mf̃Þ

1
3. We see that high scale

SUSY tends to predict a smaller unified coupling,αG, but the
variation is small and only up to∼10% between the TeVand
PeV scale SUSY mass points.
An interesting observation follows from the last two plots

of Fig. 1. High scale SUSY, where the unification scale is
lower, in general leads to a rapid proton decay, p → eþπ0.
This is because the rate Γðp → eþπ0Þ scales as αG/ðMGÞ4,
where the X, Y boson mass is identified as the unification
scale, since the precise gauge unification implies all GUT
particles forming incomplete GUT multiplets (e.g. X, Y
bosons and colored Higgs) have the same mass, MG.
Turning this around, the lower limit onMG from the proton
lifetime measurement (if found, bearing in mind that the
variation of αU is small) can place upper bounds on the
masses of SUSY particles. Let us denote this lower limit by
MPD: MG > MPD. Then, eliminating M3 from Eq. (10) by
using Eqs. (9) and (18) gives us

M
4
5

2ðμ4mAÞ 1
25 < M�

s

�
MPD

Mdeg �
G

�
−2016

475

X
1
25

EW; ð22Þ

with

XEW ≡ Y
i¼1…3

�
ml̃i

md̃Ri

��
m7

q̃i

m3
ẽRi
m4

ũRi

�
; ð23Þ

6Strictly speaking, γi and Δi do not cancel out in this
expression, since the unification scales and the unified couplings
are different between the general and the degenerate SUSY cases.
However, the differences are of higher order and can be
neglected.
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where M�
s ¼ 2.08 TeV and Mdeg �

G ¼ 1.27 × 1016 GeV
are the constants. This implies that the smallest mass
in the lhs is bounded from above by the rhs of Eq. (22).
When this bound is saturated, M2 ¼ μ ¼ mA. The upper

limit on the individual parameters are obtained, for
example, as

M2 < M�
s

�
μ4mA

M�5
s

�
− 1
20

�
MPD

Mdeg �
G

�
−504

95

X
1
20

EW; ð24Þ

In this expression the rhs is bounded from above by the
experimental lower limit on μ and mA.
The upper bound Eq. (22) is observed in our numerical

scan shown in Fig. 2, where the smallest ofM2, μ andmA is
plotted in the x-axis. The blue, green and orange points
correspond to the cases where M2, μ and mA is the lightest
among the three, respectively. A tendency is observed that
M2 is close to the upper limit if M2 is the lightest. This is
due to the higher power for M2 in Eq. (22) than for μ and
mA. At each point we calculate τp→π0eþ based on [16,17]7

using αG andMG obtained by the two-loop RGE code. The
horizontal black-dashed and red-solid lines represent the
boundaries where all points below them have the lifetime
shorter than the quoted values. In particular, the region
below the red line is excluded by the current limit:
τp→π0eþ > 1.7 × 1034 years [19].

FIG. 1. Scan of SUSY particle masses projected onto the (T, ϵ3)
(top), the (Ω, MG/M

deg �
G ) (middle) and (C/2π, α−1G − α�−1G )

(bottom) planes. In the middle and bottom plots, the precise
gauge unification ðjϵ3j < 0.1%Þ is required (corresponding
to the blue band in the top plot), and the color-codes represent
typical SUSY scales

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M3M2

p
and ðM3M2mf̃Þ

1
3, respectively. The

dashed lines represent the two-loop relations Eqs. (20), (15) and
(16) for the top, middle and bottom plots, respectively.

FIG. 2. Points with precise gauge unification (jϵ3j < 0.1%)
projected onto the minðM2; μ; mAÞ vs MG plane. The blue, green
and orange points correspond to the points where M2, μ and
mA is the smallest among them, respectively. The regions
below a black-dashed or a red-solid line are excluded by
the quoted future or current limits on the proton lifetime. The
black-solid line corresponds to the upper bound Eq. (22) for
T ¼ M�

s and MPD ¼ MG.

7The calculation of τp→π0eþ is not completely model indepen-
dent. For example, τp→π0eþ in flipped SU(5) models is smaller by
1/½1þ ð1þ VudÞ2� ∼ 1/5 than in conventional models [18].
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The upper bound on the gluino mass can be found by
eliminating μ4mA in Eq. (10) by using Eq. (9) as

M3 < M�
s

�
M2

M�
s

�
−1
�
MPD

Mdeg �
G

�
−216

19

X
1
4

g̃ ð25Þ

with

Xg̃ ≡
Y

i¼1…3

�
mũRimẽRi

m2
q̃i

�
: ð26Þ

As previously, the rhs of Eq. (25) is bounded from above by
the experimental lower limit on the wino mass.
If the SUSY breaking mechanism is specified, the ratio

of gluino and wino masses is usually predicted. Assuming
the value of R≡M3/M2, the following upper bounds can
be derived:

M3 < M�
sR

1
2

�
MPD

Mdeg �
G

�
−108

19

X
1
8

g̃; ð27Þ

M2 < M�
sR−1

2

�
MPD

Mdeg �
G

�
−108

19

X
1
8

g̃; ð28Þ

ðμ4mAÞ15 < M�
sR2

�
MPD

Mdeg �
G

�144
90

· X
1
10
μ ; ð29Þ

where

Xμ ≡
Y

i¼1…3

� m2
l̃i

m2
˜dRi

��
m4

q̃i

mẽRim
3
ũRi

�
: ð30Þ

We show in Fig. 3 our scan in the ðM3;M2Þ plane with
the color-code indicating ðμ4mAÞ15. As previously, the
black-dashed and red-solid lines represent the future
and current bounds on τp→π0eþ . It is evident that M3 and
M2 are highly sensitive to the proton lifetime and con-
strained by it from above. This is in direct contrast to
collider searches, constraining these parameters from
below. Unlike M3 andM2, μ and mA are almost insensitive
to the proton lifetime, which follows from the lower power
of MPD in Eq. (29). On the other hand, they are highly
sensitive to R. In particular, μ is typically a TeV for R ∼ 1
whereas it isOð100Þ TeV for R ∼ 7. The implication of this
to naturalness and phenomenology are studied in detail
in [3,4].
It is remarkable that the current proton lifetime limit

already excludes the gluino and wino masses larger than 70
and 70 TeV for R ∼ 1 (compressed SUSY), 120 and 40 TeV
for R ∼ 3 (e.g. CMSSM, GMSB) and 200 and 30 TeV for
R ∼ 7 (e.g. AMSB), respectively. Next generation nucleon
decay experiments are expected to improve the current

τp→π0eþ limit by a factor of ten [16], which will result in
tightening the upper bounds on gluino and wino masses
further down to ðM3;M2Þ ≲ ð5; 5Þ TeV for R ∼ 1,
(10,3) TeV for R ∼ 3 and ðM3;M2Þ≲ ð15; 2Þ TeV for
R ∼ 7. These bounds are close to the lower mass limits
ðM3;M2Þ≳ ð10; 2.7Þ TeV [20,21], which are expected to
be obtained at future 100 TeV hadron-hadron colliders.
We have checked how these upper bounds are weakened

if we relax the condition on the precision GUT to
jϵ3j < 1%. In such a case, we found the current upper
bounds on the gluino and wino masses to be 90 and 90 TeV
for R ∼ 1, 180 and 60 TeV for R ∼ 3 and 280 and 40 TeV
for R ∼ 7, respectively.
It is worth noting that the above conclusion is robust

against the details of the rest of the SUSY spectrum as long
as sfermion masses are not split significantly within the
SU(5) multiplets. In fact, the impact of nondegenerate
sfermion masses on the superpartner mass bounds can be
understood by, for instance, Eqs. (26) and (27). Typically,
the squark and slepton masses split due to the RGEs and
become mũRi

∼mq̃i ∼ 3mẽRi
at the TeV scale. In this case,

the gluino mass bound is even tightened by a factor of 0.7
for a fixed R. Our conclusion also holds even if new
particles, which are singlets under the SM gauge group, are
added to the MSSM, as in the case of the next-to-minimal
supersymmetric Standard Model.
We have investigated the link between the proton life-

time τp→π0eþ and the supersymmetric spectrum under the
assumption of small GUT thresholds. It has been shown
that most of the allowed mass range of gluinos and winos
will be probed by future collider and proton lifetime

FIG. 3. Points with precise gauge unification (jϵ3j < 1%)
projected onto the (M3, M2) plane. The color-code shows
ðμ4mAÞ15. The regions above the black-dashed and red-solid lines
are excluded by the quoted future or current limits on τp→π0eþ .
The three diagonal lines correspond to R≡M3/M2 ¼ 1, 3 and 7
from top to bottom. In this plot the upper boundaries of μ and mA

scans are extended up to 5 × 107 TeV.
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experiments. It is straightforward to extend this analysis to
concrete models with sizeable threshold corrections. In this
case, the result will depend on the details of the GUT
models (see e.g. [22]).
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