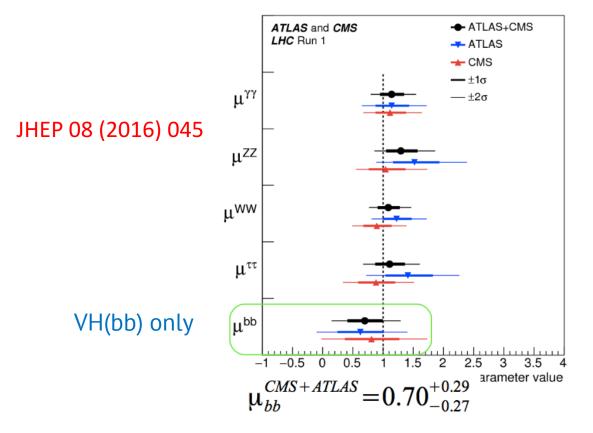
Higgs results with direct top and b-Yukawas with ATLAS

Zhijun Liang (IHEP,Beijing)
On behalf of ATLAS collaboration

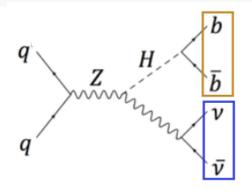

The fifth Annual Large Hadron Collider Physics conference (LHCP2017)

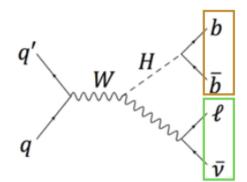
Outline

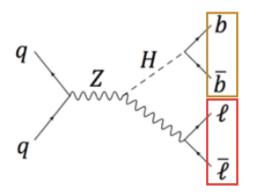
- Direct measurement of Higgs-bottom Yukawa coupling
 - VH, VBF H->bb and ttH(H → bb)
- Direct measurement of Higgs-Top Yukawa coupling
 - ttH(bb)
 - ttH (multi-lepton), including H \rightarrow W⁺W⁻, H \rightarrow $\tau\tau$, H \rightarrow ZZ
 - $ttH(\gamma\gamma)$

Higgs-bottom Yukawa coupling

- H→bb has the largest predicted branching ratio (~58%)
 - Test of Yukawa coupling between b-quarks and Higgs boson
- ATLAS+CMS Results in Run 1: observed significance 2.6σ (expected 3.7σ)




channels with a first Run-2 result


channel	Reference	Integrated Lumiosity
VH(bb¯)	ATLAS-CONF-2016-091	13.2 fb ⁻¹ (13TeV)
VBF H(bb)γ	ATLAS-CONF-2016-063	12.5 fb ⁻¹ (13TeV)

ATLAS-CONF-2016-091

VH(bb) searches: 3 channels

> 0-lepton:

 $E_{T}^{miss} > 150 \text{ GeV}$

1-lepton:

 e/μ , p_{\rightarrow} 25 GeV

Tight isolation

Missing E_T

p_T > 150 *GeV*

2-leptons:

Isolated ee, µµ

p_T1>25 GeV, p_T2>7 GeV

No missing E,

m, compatible with m,

Two jets

anti-kT with R=0.4

P_ ;1 > 45 *GeV*

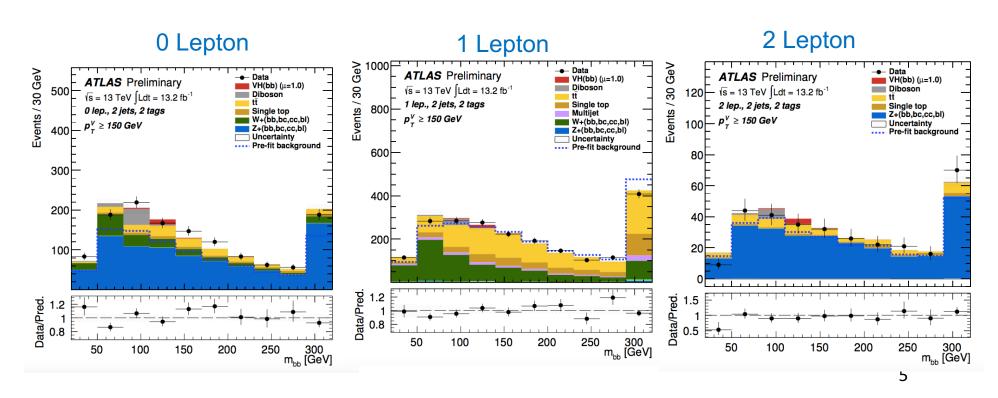
p_T^{j2}>20 *GeV*

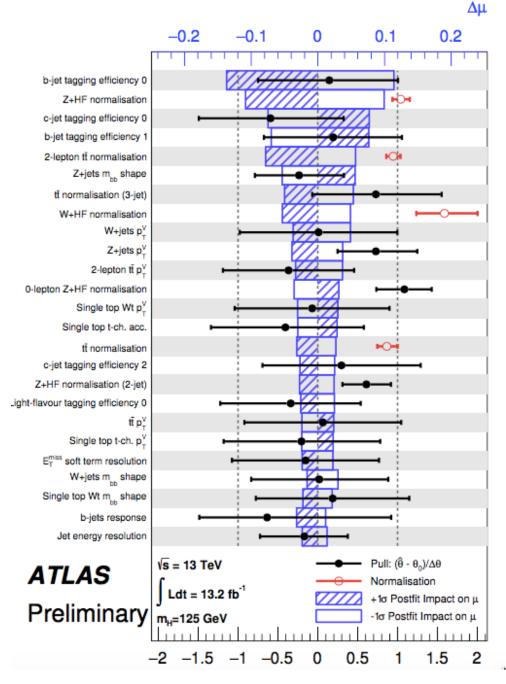
Improved b-tagging with respect to Run 1:

Eff: 70%, light jet

rejection: 380, charm

rejection: 12


> Analysis categories:


	0 lepton	1 lepton	2 leptons
2 jets $p_V^T > 150 \text{GeV}$ $p_V^T > 15$	$m^T > 150 CoV$	$p_V^T < 150 \text{GeV}$	
	$p_V > 150 \text{GeV}$	$p_{\tilde{V}} > 150 \mathrm{GeV}$	$p_V^T > 150 \text{GeV}$
2 into	m ^T > 150CoV	m ^T > 150CoV	$p_V^T < 150 \text{GeV}$
3 jets	$p_V^T > 150 \text{GeV}$	$p_{\tilde{V}} > 150 \text{GeV}$	$p_V^T > 150 \text{GeV}$

Major Background in VH(bb) searches

ATLAS-CONF-2016-091

- Z+bjets dominates in 0, 2 lepton channels
- Top quark and W+jets in 1 lepton channel
- Multi-jet background
 - negligible in 0/2 lepton channels after anti-QCD cuts
 - Data-driven estimate in 1 lepton channel

VH(bb) searches: results

ATLAS-CONF-2016-091

Combined signal strength with 13.2 fb⁻¹ at \sqrt{s} = 13 TeV

$$\mu_{VH, H \to bb} = 0.21^{+0.51}_{-0.50}$$

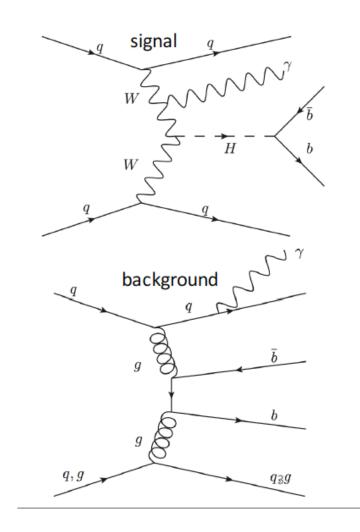
- Systematic and statistical uncertainties of the same size
- Dominant systematics from b-tagging and
- background normalization modelling (W+jets, Z+jets, top)

ATLAS Preliminary \sqrt{s} =13 TeV, $\int L \, dt$ = 13.2 fb⁻¹

Tot.
Stat.

Tot. (Stat. Syst.)

WH


0.15+0.67 (+0.49 +0.45)
0.33+0.95 (+0.68 +0.68)
0.21+0.51 (+0.36 +0.36)
0.21+0.51 (+0.36 +0.36)
0.21+0.51 (+0.36 +0.36)
0.25 GeV

Best fit μ=σ/σ_{SM} for m_H=125 GeV

VBF H(bb) γ

ATLAS-CONF-2016-063

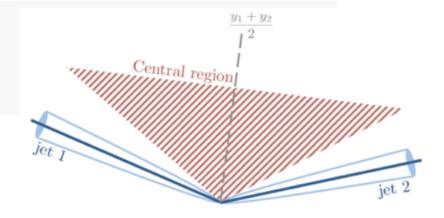
- Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background
 - Special VBF production
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF
- Existing results for inclusive VBF (H->bb)
 - ATLAS in Run 1
 - observed (expected) upper limit : 4.4 (5.4) x SM
 - CMS in Run 1
 - observed (expected) significance : 2.2 (0.8) x SM
 - observed (expected) upper limit: 5.5 (2.5) x SM
 - CMS in Run 2 (2015 data)
 - observed (expected) upper limit: 3.0 (5.0) x SM

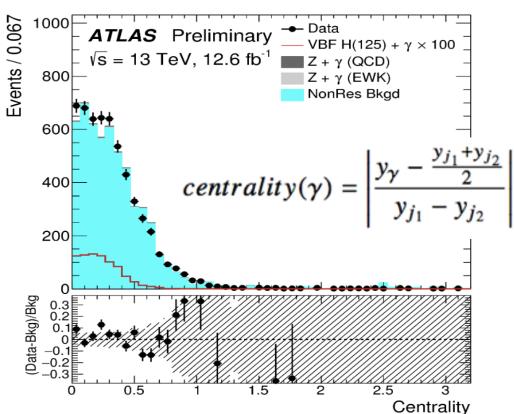
VBF H(bb) γ : event selection

ATLAS-CONF-2016-063

Trigger:

- L1 trigger: single photon (pT > 25 GeV)
- High level trigger: 4 jets pT > 35 GeV, mjj> 700 GeV


Offline Selection:


- Tight ID photon, pT > 30 GeV
- 4 jets with pT> 40 GeV
- 2 central(|η|<2.5) b-tagged jets
- pT(bb)>80GeV
- mjj> 800 GeV

BDT discriminant

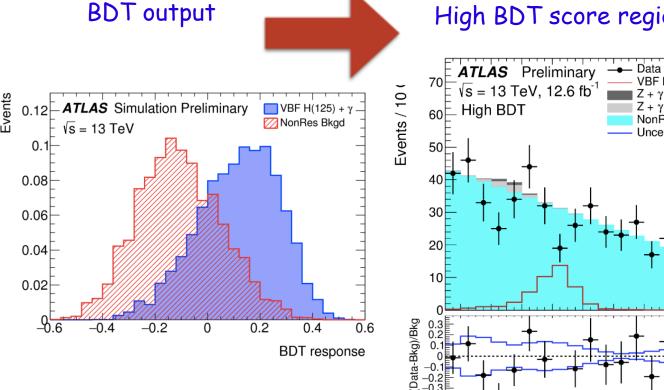
 $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}, jet width, \gamma centrality, p_T^{balance}$

- Define 3 regions with different S/B
- Fit m_{bb} in 3 regions

VBF H(bb) γ : signal extraction

ATLAS-CONF-2016-063

• Non-resonant background (γ +jets) estimated with 2nd order polynomial fit.


100

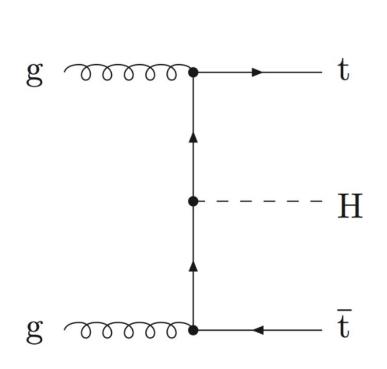
120 140 160

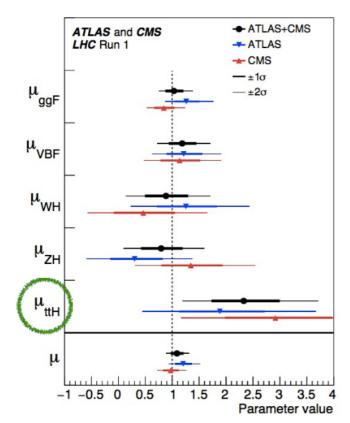
180

m_{bb} [GeV]

- Simultaneous fit on three signal regions
 - Low/medium/high BDT regions

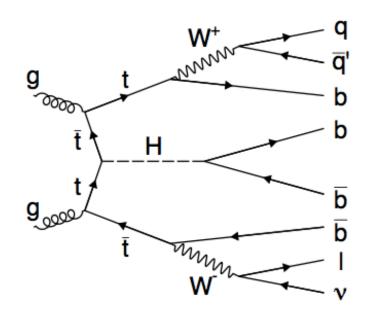
•			
10	n		
IU	•		

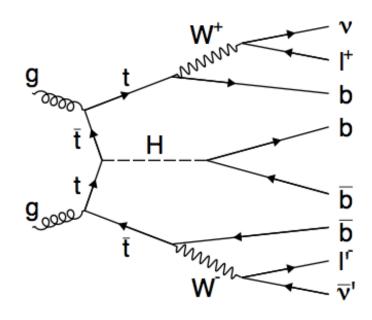

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\to b\bar b) + \gamma jj$	
Expected significance	0.4	1.3	
Expected <i>p</i> -value	0.4	0.1	
Observed p-value	0.9	0.4	
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 ^{+0.7}_{-0.5}$	
Observed limit	4.0	2.0	
Observed signal strength μ	$-3.9 \begin{array}{c} +2.8 \\ -2.7 \end{array}$	0.3 ± 0.8	
VBF H (bb) γ production cross section line • Expected 95% CL limit: $6.0^{+2.3}_{-1.7}$ • Observed 95% CL limit:			
4×(σ×BR) SM			


section limit

Higgs-top Yukawa coupling

- Direct measurement of Higgs-Top coupling via ttH production.
- ttH signal strength (μ_{ttH}) measured in LHC Run 1
 - 4.4 sigma observed significance (ATLAS+CMS run1 combination)
 - 2.0 sigma expected significance

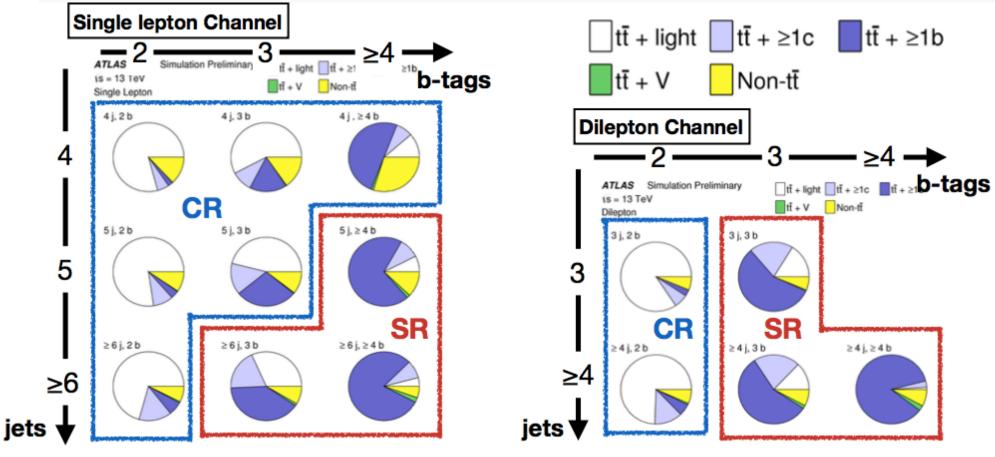

JHEP 08 (2016) 045



ATLAS-CONF-2016-080

ttH(bb)

Single Lepton Channel

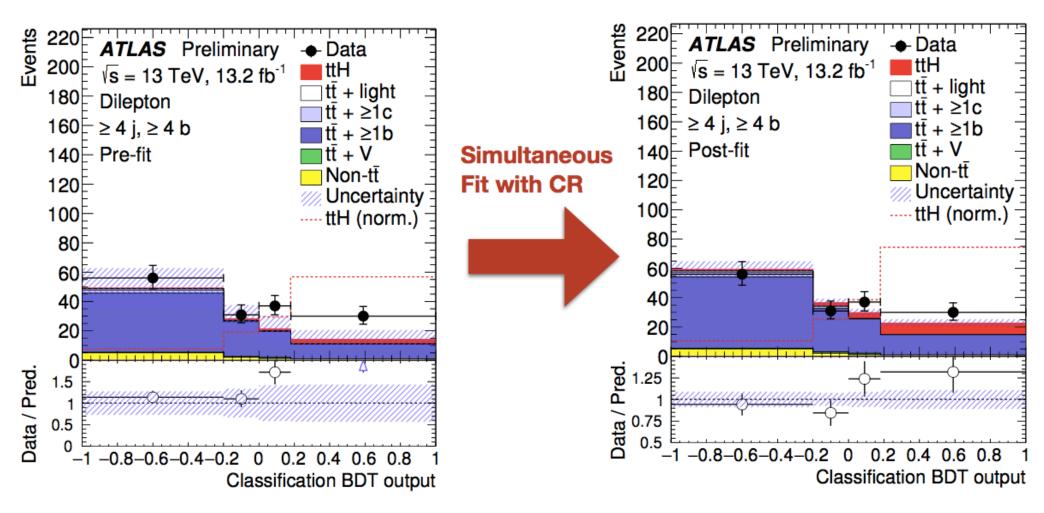

- 1 light lepton (e,µ)
- · At least 4 jets
- At least 2 b-tagged jets

Dilepton Channel

- 2 opposite charge light leptons (e,µ)
- At least 3 jets
- At least 2 b-tagged jets
- · Z mass veto

ttH(bb)

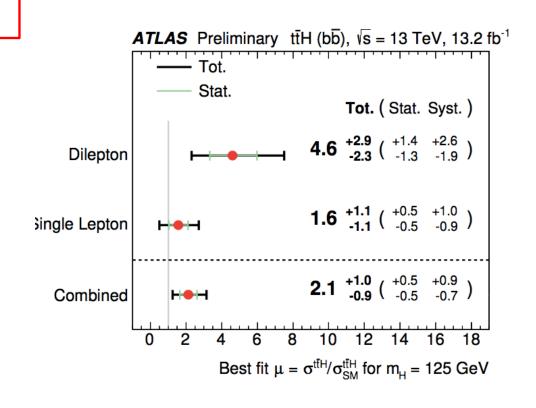
ATLAS-CONF-2016-080


Signal Region (SR): Enriched in signal.

Control Region (CR): Use to constraint backgrounds.

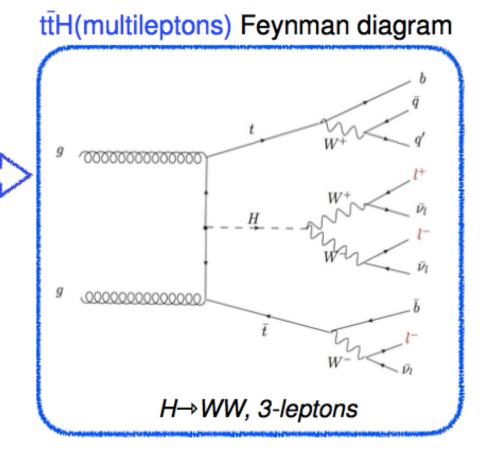
 $tt + \ge 1$ bjet, $tt + \ge 1$ cjet, and tt + light jets are the dominant backgrounds

ttH(bb)


- In SR, "Classification BDT" is used to extract signal in
- Simultaneous fit to all region

ttH(bb)

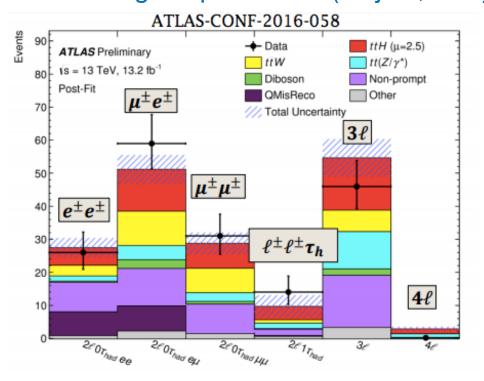
- Summary of signal strength measurements
- Major systematics: tt+X modelling, jet flavor tagging

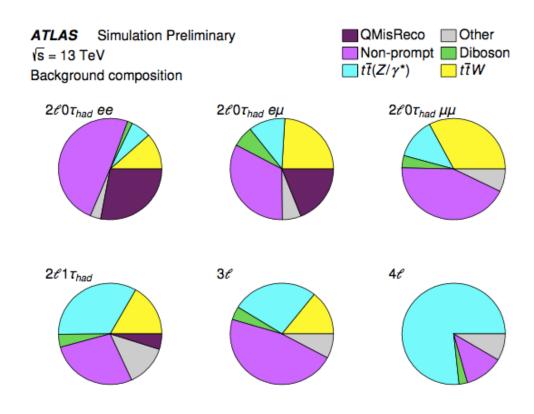

Uncertainty source $\Delta\mu$		μ
$t\bar{t}+ \geq 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t}+ \geq 1c \text{ modelling}$	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+ \geq 1b$ normalisation	+0.34	-0.34
$t\bar{t}+ \geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

ttH (multi-leptons) analysis: event selection and background

Higgs decay mode	Branching ratio [%]
H→ bb	58.1
H→ ww	21.5
Η→ ττ	6.3
H→ ZZ	2.6
Η→ γγ	0.23

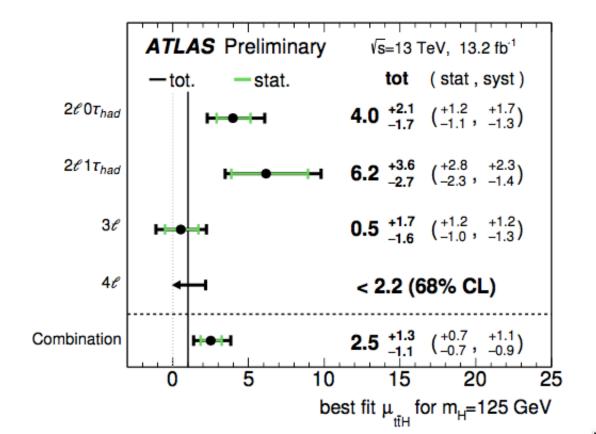
ttH(multileptons) channel has many possible final states → focus on those with clean signature and low backgrounds.

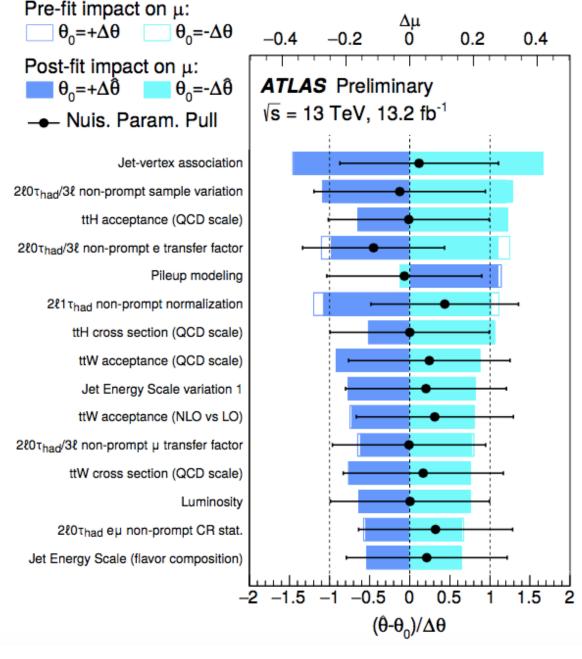

ttH (multi-leptons) analysis: event selection and background

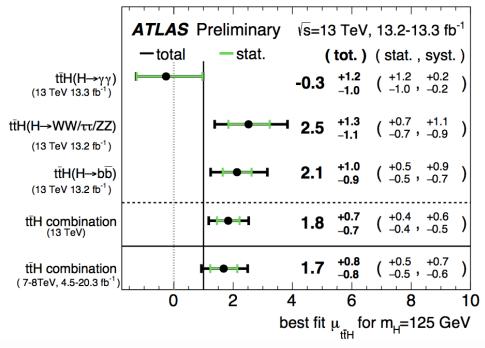

ATLAS-CONF-2016-058

- two same charge light leptons + no $\tau_{had} \rightarrow 2/0\tau_{had}$
- (at least 5 jets and at least 1 bjet)
- two same charge light leptons + one $\tau_{had} \rightarrow 2/1\tau_{had}$

Cut and count analysis in 6 categories


- > (at least 4 jets and at least 1 bjet)
- three light leptons → 3/ (≥ 4jets, ≥ 1bjet, or 3jets, ≥ 2bjets)
- four light leptons → 4/ (≥ 2jets, ≥ 1bjet)




ttH (multi-leptons) analysis: Results ATLAS-CONF-2016-058

- Systematic uncertainty is dominated by
 - non-prompt background estimates in the $2l \ 0\tau_{had}$, $2l \ 1\tau_{had}$, and 3l channels.
 - ttV modelling , pileup modelling

• Summary of the ttH signal strength measurements

Expected and observed significance

Channel	Significance	
	Observed $[\sigma]$	Expected $[\sigma]$
$t\bar{t}H, H \to \gamma\gamma$	-0.2	0.9
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0
$t\bar{t}H,H o b\bar{b}$	2.4	1.2
$t\bar{t}H$ combination	2.8	1.8

Summary

- The search for the Higgs decays to b-quarks in ATLAS
 - Using part of 2015-2016 data (~13fb⁻¹)
 - VH(bb): Expected (observed) significance: 1.92 (0.42)
 - VBF H(bb)γ: first ATLAS result (ever)
 Expected (observed) 95% CL limit: 6 (4) times the SM expectation
- A search for ttH production process has been performed in three channels
 - Using part of 2015-2016 data (~13fb⁻¹)
 - ttH (bb), ttH (multileptons), and ttH (γγ)
 - The best fit value of the ttH signal strength is 1.8 ± 0.7 .
 - Observed significance: 2.8 sigma (1.8 expected from SM).
- The results with full 2015-2016 dataset are coming soon.
- Stay Tuned!

ttH (multi-lepton) systematics

Uncertainty Source		$\Delta \mu$	
Non-prompt leptons and charge misreconstruction	+0.56	-0.64	
Jet-vertex association, pileup modeling	+0.48	-0.36	
$t\bar{t}W$ modeling	+0.29	-0.31	
$t\bar{t}H$ modeling	+0.31	-0.15	
Jet energy scale and resolution	+0.22	-0.18	
$t\bar{t}Z$ modeling	+0.19	-0.19	
Luminosity	+0.19	-0.15	
Diboson modeling	+0.15	-0.14	
Jet flavor tagging	+0.15	-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger	+0.12	-0.10	
Other background modeling	+0.11	-0.11	
Total systematic uncertainty	+1.1	-0.9	

q