
J
H
E
P
1
0
(
2
0
1
7
)
1
6
5

Published for SISSA by Springer

Received: July 12, 2017

Accepted: September 22, 2017

Published: October 24, 2017

On dark matter interactions with the Standard Model

through an anomalous Z′

Ahmed Ismail,a Andrey Katzb,c and Davide Raccoc

aPittsburgh Particle Physics, Astrophysics, and Cosmology Center,

Department of Physics and Astronomy, University of Pittsburgh,

3941 O’Hara St., Pittsburgh, PA 15260, U.S.A.
bTheory Division, CERN,

CH-1211 Geneva 23, Switzerland
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into the SM fermions. Because the Z ′ is anomalous, these kinds of DM models can be real-
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1 Introduction

While experimental evidence for dark matter (DM) has been well established for decades,

the precise nature of DM remains unknown to this day. Searches for non-gravitational

interactions of DM use a broad array of techniques to test different models, from tabletop

experiments probing axions to ton-scale detectors that are sensitive to DM much heavier

than the proton. With many proposed mechanisms for realizing DM in nature, the devel-

opment of new DM detection methods is a highly active field. Simultaneously, theoretical

advances have guided experiment by exploring frameworks that incorporate DM naturally

into extensions of the Standard Model (SM).

From a cosmological perspective, thermal freeze-out is one of the simplest ways to

account for the observed abundance of DM. The idea that DM is a thermal relic is also

attractive phenomenologically, as it implies a connection between the DM relic density and

the strength of potential signatures. Now, it is well known that thermal relic DM candidates

are subject to strong model-independent constraints, based on unitarity considerations

of DM annihilation [1]. In particular, a thermal relic DM particle cannot have a mass

exceeding ∼ 300 TeV. In practice, this limit is not easy to saturate and within concrete
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models the mass bound on a thermal relic is expected to be significantly more modest.

While the DM is not necessarily a thermal relic and a plethora of other consistent candidates

have been studied in the literature (for reviews see [2–4]), thermal relics are still appealing

candidates, both for theoretical reasons and because these bounds tightly constrain their

allowed parameter space and in principle allow a thorough study with collider, direct and

indirect detection experiments.

Within the thermal freeze-out scenario, it is well known that a particle that interacts

weakly and is near the electroweak scale ∼ 1 TeV would provide approximately the ob-

served DM relic abundance. These so-called weakly interacting massive particles (WIMPs)

are still the most popular DM thermal relic candidates, in spite of the fact that large parts

of their parameter space have already been ruled out both by direct and indirect detec-

tion experiments. Specifically, while the XENON1T experiment provides the strongest

direct detection bounds on WIMPs [5], indirect limits arise from the observations of Dwarf

Spheroidal Galaxies (dSph) by Fermi-LAT [6, 7] and of diffuse γ rays from the Galactic

Center by HESS [8].

In this regard, there is good motivation to consider a broader set of thermal relic

candidates, beyond the “standard” WIMP paradigm. This led to the emergence of dark

matter effective field theories (EFTs) [9–11], which posit higher-dimension operators be-

tween DM and SM states. While dark matter EFTs, especially in their non-relativistic

formulations [12, 13], are relevant for interpreting the results of direct detection experi-

ments, they are unable to accurately describe the physics of processes where the momentum

transfer is comparable to the EFT cut-off scale, as is common in collider searches [14–17].

The requirement to consider ultraviolet completions of dark matter EFTs in these regimes

subsequently resulted in the development of simplified DM models. A typical simplified

DM model extends the SM by a DM candidate as well as a mediator that communicates

between the SM and dark sectors.

Even though it is hard to believe that any simplified model accurately describes all

physics beyond the SM, the essential idea is that the key ingredients that determine the ex-

perimental signatures related to the DM should be captured correctly by these models. For

these purposes simplified models must be able to make proper predictions for the thermal

relic abundance, direct detection experiments, neutrino telescopes, γ ray telescopes and col-

lider experiments, such as the LHC or a future 100 TeV machine. We will closely investigate

this requirement in our work in the context of simplified models with spin-1 mediators.

The idea that the interaction between the SM particles and DM is mediated by a heavy

neutral spin-1 boson, that we will further call Z ′, is not new. Refs. [18–27] form merely

a partial list of the related contributions. In this particular work we will concentrate on

a Majorana fermion DM candidate whose interactions with the SM are mediated by the

heavy Z ′, corresponding to a symmetry that appears to be anomalous at the electroweak

scale. Anomaly cancellation at high scales is necessary for the overall consistency of the

theory, as well as for more practical purposes, most notably the calculation of the couplings

of the Z ′ to the SM gauge bosons, which in turn largely determine the DM signatures in

indirect detection experiments. This point has been recently emphasized in [28]. Moreover,

many of the Z ′ models employed in describing the results of LHC searches, including the
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“axial” Z ′ model, are anomalous [29, 30]. All such “anomalous” theories must descend from

the UV complete ones, where the anomalies are either canceled by spectator fermions [31],

or via the Green-Schwarz mechanism [32–34]. As has been recently shown in ref. [35], these

spectator fermions can be potentially responsible for non-trivial collider signatures and can

be more easily accessible at the LHC than the DM itself.

In this paper we will take a different approach. In fact, it is not always necessary to ana-

lyze a full UV-complete model to make important predictions for DM signatures in relevant

experiments. In particular, we will be especially interested in the anomalous Z ′ couplings

to the SM gauge bosons. These couplings determine the annihilation cross sections of DM

into SM gauge bosons, affecting the γ ray fluxes from dSph and the Galactic Center, as well

as signals in neutrino telescopes. To calculate these observables, it is sufficient to consider

an EFT with the anomalous Z ′ after the heavy spectators have been integrated out.

In fact, EFTs with low-energy anomalies from integrating out heavy chiral fermions

have been considered as early as the 1980s, mostly in the context of the SM without the

top quark [36, 37]. Indeed the SU(2) × U(1) electroweak symmetry is anomalous in the

absence of the top quark and should be analyzed as an effective field theory with extra

degrees of freedom with couplings which compensate for the loss of gauge invariance at the

1-loop level. This approach was further generalized by Preskill in ref. [38]. More recently,

the influence of anomalous Z ′ couplings to the SM gauge bosons has been studied in the

context of DM [22, 39–42].

In this work we essentially take the same approach. We formulate “simplified models”

of DM with anomalous Z ′ mediators as consistent effective field theories with a cutoff Λ.

We will show, in agreement with the results of [38], that this cutoff can be much heavier

than the mass of the Z ′ and therefore the non-decoupling effects of the heavy spectators can

be efficiently captured by the EFT, without explicitly considering these fermionic degrees

of freedom. As expected, this EFT uniquely determines the couplings between the heavy

Z ′ and the SM gauge bosons in which we will be interested [43, 44].

Because we are considering an EFT, we will find that some of our amplitudes, including

χχ → V V , where V is a SM gauge boson, grow quadratically with energy. This should

not be surprising, as the EFT necessarily contains higher dimensional operators, without

which gauge invariance is lost. The growth of such amplitudes is tamed at the scale Λ,

where the spectator fermions appear.

In this work we explicitly calculate the annihilation rates of the dark matter into the SM

gauge bosons and estimate the bounds, associated with these rates. We choose as examples

several anomalous Z ′ models, that illustrate some generic patterns. We emphasize, that

while the concrete bounds are always model dependent, the techniques that we illustrate

here are completely generic and can be used in any EFT with an anomalous Z ′ mediator.

We find that for DM heavier than ∼ 200 GeV, these higher dimensional operators

dictate that DM annihilation at low velocities is dominated by final states involving gauge

bosons. This results in considerable bounds from indirect detection experiments. At larger

velocities, such as at DM freeze-out, p-wave annihilation into fermions overcomes these

operators, which are loop suppressed, and so the DM relic abundance calculation is mostly

unaffected by the requirement of anomaly cancellation. We also compare our new indirect
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detection constraints with direct detection and collider limits. We find that for heavy DM,

γ ray and neutrino telescopes (depending on the concrete model) provide the strongest

bounds on anomalous Z ′ simplified DM models.

The remainder of this paper is organized as follows. In section 2, we describe the effect

of integrating out heavy fermions in a consistent theory, yielding an EFT with apparent

anomalies at low energy scales. We focus on the induced loop level operators corresponding

to these anomalies, and show that the maximum EFT cutoff can be significantly larger

than the Z ′ mass. Then in section 3 we specialize to the case of simplified models of DM

and motivate a selection of toy models which serve to illustrate the effects of the higher

dimensional operators on physical observables. Section 4 contains the experimental bounds

on these simplified models, paying particular attention to the impact of loop-induced DM

annihilation to gauge bosons on indirect detection constraints. We briefly discuss some

limitations of our analysis in section 5, including the assumption that the spectator fermions

are heavy. Section 6 contains our conclusions. Some important numerical results of our

calculation are relegated to the appendix.

2 Low-energy effective theory

In this section we will review building of an EFT for a new gauge group which appears to

be anomalous at low energies. We will introduce the new couplings that should necessarily

be introduced to restore gauge invariance of the full theory. We will also describe how the

couplings between the exotic and SM gauge bosons should be calculated, from anomaly

considerations. Throughout we will closely follow the original work by Preskill [38] (as

well as slightly more detailed handwritten notes [45]). We also borrow some results from

more recent works [46, 47] that made practical use of these results in a slightly different

context of MSSM augmented with anomalous Z ′s. The reader familiar with this subject

may safely skip this section and proceed directly to section 3, where we explain in detail

the DM models that we consider, and section 4, where we present our results.

The EFTs that we are describing here can be thought of as descending from fully gauge

invariant theories with spontaneously broken gauge symmetry, after some heavy fermions

have been integrated out. Given that these fermions are chiral and get masses from gauge

symmetry breaking, like the fermions in the SM, the theory below the scale of the heavy

fermions appears to be anomalous. In fact, this is exactly what happens in the SM if we

integrate out the top quark, as it is the heaviest fermion of the SM [48, 49]. Although the

full SM is perfectly anomaly free, as one would expect from a consistent gauge invariant

theory, integrating out the top leaves both the hypercharge and the SU(2)L symmetries

anomalous, as well as giving rise to the SU(2)L ×U(1)Y mixed anomaly.

The basic procedure of canceling the anomalies in this low energy EFT comes at the

price of introducing non-renormalizability. To see this in a working example, let us consider

first the U(1)′3 triangle in an anomalous Abelian theory. Since the theory is anomalous,

gauge invariance is lost and under the U(1)′ gauge transformation Aµ → Aµ + ∂µω/g
′ the
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Figure 1. Kinetic term for the field a and the mass term for the Z ′ gauge boson induced by

the radiative corrections in the U(1) anomalous theory. Note that each blob corresponds to the

couplings (2.2) and is therefore naturally of the size of the fermionic triangle loop.

effective action transforms as

δωΓ =
g′2

96π2

∑
i

Q3
i

∫
d4xω εµνρσF

µνF ρσ . (2.1)

where F is the field strength associated with A. Here g′ stands for the “gauge” coupling of

the U(1)′ and the sum runs over all the fermions that are charged under the U(1)′. This

transformation simply manifests the fact that in an anomalous theory the gauge invariance

is lost. There will also be mixed anomalies between the U(1)′ and the SM gauge groups,

which we consider below.

In our example, the U(1)′ gauge invariance can be easily restored by introducing a

scalar a that transforms under a gauge transformation as a→ a+ v ω, where v stands for

the scale of the U(1)′ breaking, or, equivalently v ≡ mZ′/g′. Then, the transformation (2.1)

can be restored by introducing the following term:

L = − g′2

96π2

∑
i

Q3
i εµνρσ

aFµνF ρσ

v
. (2.2)

Even though (2.2) appears to cancel the anomaly with a new degree of freedom, this

term is merely a Wess-Zumino counterterm that we have added to the action and a is

not a genuine degree of freedom. First, it is worth noticing that in spite of the form of

Lagrangian term (2.2), the total Lagrangian is independent of the field a and depends only

on its derivative ∂µa. This fact becomes manifest if we perform a rotation on the fermions

ψi → e−iQia/vψi.
1 While such a rotation eliminates the term (2.2), the path integral

measure transforms non-trivially under this rotation, inducing a term in the effective action

that looks like ∼ ∂µaψ†σ̄µψ.

The kinetic term of the field a, which should also be gauge invariant, is of the form

L =
1

2

(
∂µa− g′vZ ′µ

)2
(2.3)

Even if we start from a theory that does not have this term, it is induced radiatively by

the diagrams depicted in figure 1, similarly to the Green-Schwarz mechanism.

This Lagrangian is nothing but a U(1) theory that has been higgsed via a Stückelberg

mechanism. In the unitary gauge the scalar degree of freedom a can be set (locally) to

1To avoid confusion we will assume two-component fermions in this notation. One can always use them

to construct the four-component fermions with an appropriate use of the projection operators.
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zero at any point in space, leaving us simply with an effective theory of the massive gauge

bosons with anomalous fermionic field content.

Of course, our effective theory cannot be extrapolated to infinitely high energies, and

the calculability requirement sets the cutoff of the theory. In any non-unitary gauge, the

presence of the cutoff is evident from the term (2.2) in the Lagrangian, while in the unitary

gauge we can see it from the bad UV behavior of the two-point function of the Z ′. In order

to estimate the cutoff of the effective theory, we should remember that loop effects, similar

to those that produce the term (2.3) (see figure 1), will also produce terms that look like

∼ 1

(4πv)p−2
1

vp−2
(
∂µa− g′vZ ′µ

)p
(2.4)

for every power p ≥ 2. In order to have a consistent EFT, each order in the perturbative

expansion (2.4) should be smaller than its predecessor such that the expansion is valid.2

Taking this requirement into account (see [38] for the details of this derivation) one finds

the following cutoff estimation of the EFT:

Λ ∼ 64π3m′Z∣∣g′∑iQ
3
i

∣∣ . (2.5)

Now we can extend this logic to models with more complicated gauge symmetries and

mixed anomalies between the U(1)′ and the non-Abelian gauge groups. This is exactly the

situation in which we are interested, where the anomalous Z ′ couples to the DM, and the

mixed anomaly will eventually determine the strength of its interaction with the SM gauge

bosons.

The treatment of the mixed anomalies will follow a similar logic to one we used in the

U(1)′ case. Let us consider U(1)′ × SU(N) symmetry with a mixed anomaly∑
i

Tr(tatbQi) = A δab (2.6)

where ta are the generators of SU(N) The matrix element of this theory between the Z ′

and the SU(N) gauge bosons is nominally divergent, signaling that the theory is non-

renormalizable, because there is no tree level coupling between the Z ′ and the SU(N)

gauge bosons.

In this case the form of the anomalous transformation is slightly less straightforward

to derive. However, it can be obtained by invoking the Wess-Zumino consistency condi-

tion [50]. Under U(1)′ and SU(N) transformations with transformation parameters ω1 and

ωN , respectively, the action transforms as:

δω1Γ = C1
g2N

16π2
ATr

∫
d4xω1

(
FµνN F̃Nµν

)
(2.7)

δωN Γ = CN
g′1gN
8π2
A
∫
d4xF̃µν1 Tr (ωN∂µANν) (2.8)

2While we will hereafter dub this expansion as a “loop expansion”, it is important to keep in mind that

the couplings from eq. (2.2) and the fermion loop are of the same order of magnitude, similarly to the

Green-Schwarz mechanism.
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p1

p2

p3

p1

p3

p2

p1
k + p2

k − p3

k

k + p3 + a

k + a

k − p2 + a

Figure 2. Diagrams relevant for the Z ′V V vertex function calculation. The integration variable k

of one diagram can be shifted with respect to another by an arbitrary momentum a.

Note that we have only kept the components of the transformations that correspond to

the mixed anomaly, and their sum is fixed by the Wess-Zumino consistency condition

to be C1 + CN = 1. In particular, the presence of the mixed anomaly means that we

cannot simultaneously have SU(N) × U(1)′ gauge invariance, since either C1 or CN must

be non-zero. Conversely, the orthogonal combination C1 − CN is unconstrained. This

combination depends on the Wess-Zumino counterterm which shifts the value of C1−CN .

That counterterm can be added to the action with an arbitrary strength.

In an arbitrary SU(N)×U(1)′ gauge theory, there is no a priori motivation to choose

particular values of C1 and CN , which can be used, in particular, to insist that the anomaly

preserves either U(1)′ or SU(N) gauge invariance. However, in the SM augmented with the

anomalous Z ′ the situation is different. While we expect that at the scale Λ, or below, the

spectator fermions restore the full gauge invariance, we should also insist that even below

the spectator fermion scale the SM electroweak gauge group is exactly gauge invariant.

Otherwise, the anomaly would affect electroweak gauge group. This requirement will set

for us the coefficient in front of the Wess-Zumino counterterm and consequently the value

of the combination C1 − CN . Indeed, using the freedom to set C1 − CN we can always

choose the counterterm such that either C1 = 0, namely require the U(1) gauge invariance,

or CN = 0, which would mean that the SU(N) is gauge invariant. In the SM with the Z ′,

we will have to insist that the corresponding gauge transformations of the SU(2)L×U(1)Y
vanish, but not of the U(1)′.

This requirement of the gauge transformation of the electroweak group is crucial for

our further calculation. It further removes any ambiguities in the calculation of the Z ′

vertex with any pair of the SM gauge bosons. We will now outline this calculation. For

illustrative purposes we will assume here an unbroken electroweak symmetry with massless

fermions. Of course in the SM the electroweak symmetry is broken and we consider the

effects of the breaking, including fermion masses and the contributions from the Nambu-

Goldstone bosons of SU(2)L × U(1)Y , in our explicit calculation in section 4. However,

eventually the spontaneous electroweak symmetry breaking is a minor effect that does not

change the picture conceptually.

The calculation of the Z ′V V vertex function involves the calculation of the pair of

diagrams shown in figure 2, where we understand the sum over all the fermions charged

under the U(1)′ and the relevant SM gauge group. In an anomaly free theory one can
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always shift the integration momentum of one diagram with respect to the other by an

arbitrary momentum aµ, without changing the finite answer. This is no longer true in an

anomalous theory. As we will immediately see the momentum shift a is not arbitrary in our

setup, and in fact for a given Wess-Zumino counterterm it will be completely determined

by the required gauge invariance of the EW group.

Our objective is to make sure that only the gauge transformation of the effective action

with respect to the U(1)′ does not vanish, which is equivalent to the requirement that the

Ward (Slavnov-Taylor) identities for the EW gauge group hold. Namely, in the case of the

unbroken SU(2)L ×U(1)Y we get

pµΓµνρ3-point = 0 (2.9)

when pµ is the momentum of the SM gauge boson, which would correspond to p2 and p3 in

figure 2. When we will move to the broken EW symmetry, eq. (2.9) will be accompanied

by an extra piece, corresponding to the Goldstone boson contribution, that we will take

care of later.

When we are dealing with the mixed anomaly, the expression that one gets in (2.9)

is aµ-dependent. Because the anomalies do not cancel out, each separate term of Γµνρ3-point

is nominally linearly divergent. Therefore, because of the freedom to shift the integration

momentum by aµ, we expect the Ward identity to have a form

pµΓµνρ ∼
∫
d4k

(
fµνρ(kσ + a′σ)− fµνρ(kσ)

)
, (2.10)

with the leading term of fµνρ in k leading to the linear divergence of the integral. Note,

that generically the shift momentum a′ need not be exactly equal to a, but rather can

involve a linear combination of the external momenta as well. After expanding the first

term we find that the result does not vanish, but rather reduces to a surface term

2iπ2a′σ lim
k2→∞

k2kσf
µνρ(k) , (2.11)

which is finite and a-dependent. There is no choice of aµ to set the Ward identities in

eq. (2.10) to zero simultaneously for all three incoming momenta pi in figure 2. However,

there is always a choice of aµ that preserves the Ward identities of the electroweak gauge

group. This is exactly the choice we will proceed with.

It is also worth noting that there is in fact a one-to-one correspondence between the

Wess-Zumino counterterm (and, consequently C1−CN combination in eqs. (2.7) and (2.8))

and the momentum shift a that we are required to choose. If we choose the counterterm

such that CN vanishes, and consequently, the effective action is invariant under the SU(N)

transformation (that we identify with the EW group transformation), we will not need any

momentum shift between the two diagrams to restore gauge invariance. This is because

the counterterm is imposing EW gauge invariance already. On the other hand, if we are

not enforcing gauge invariance at the Lagrangian level with an appropriate Wess-Zumino

counterterm, we are obliged to do it by choosing a non-trivial momentum shift, so that

eventually all the three (and higher) point functions of the theory are well defined. In all

of our further calculations we will set the counterterm to zero and calculate the necessary

momentum shift to restore gauge invariance.
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Finally, we briefly comment on the restoration of gauge invariance of the spontaneously

broken gauge theory, that is the case in the EW group, and is relevant for the calculation of

the 3-point function of the Z ′ with W and Z bosons. In principle, we use exactly the same

procedure that we have described before, except that when calculating the Ward identities,

we have to include the piece contributed by the Goldstone boson. Further details of this

procedure are described in ref. [47]. Practically, instead of eq. (2.9) we must demand

− ipµΓµνρ +mV ΓνρNG = 0 (2.12)

where ΓνρNG stands for the three-point function with the gauge boson Vµ replaced by its

corresponding Goldstone boson.

3 Dark matter models with heavy anomalous Z′

In this section we describe in more detail the dark matter models with Z ′ mediated interac-

tions that we will consider. As we outline these models, we will make no requirement that

the low-energy fermion content of our theory cancels all the gauge anomalies. This is a

common step in the DM literature, which typically assumes that extra fermions, resolving

anomaly cancellation, appear at high scales. Below the mass scale of these fermions we get

an effective field theory similar to the one that we have formulated in the previous section.

We begin with a SM singlet Majorana fermion χ that couples axially to the gauge

boson Z ′ of some new U(1)′ symmetry. The choice of this setup is mostly motivated by the

null results of DM direct detection experiments. The vectorial couplings of the Majorana

fermion to the Z ′ are naturally precluded and therefore the scattering in the direct detection

experiments is either spin-dependent or velocity-suppressed at tree level. The spin and

velocity independent interactions are often negligible. Because the DM is not charged

under the SM gauge groups, it has no impact on the mixed anomalies, in which we are

mostly going to be interested in order to calculate the DM annihilations into SM particles.

While Majorana particles, being real fields, cannot be charged under an exact Abelian

group, they can couple to the gauge boson if the gauge group is broken. In the latter case

the fermions get their masses via the Higgs mechanism (e.g. via couplings like ∼ Φψψ),

or, in the case of vector-like fermions, as a result of mixing with other singlet fermions.

Because of the possible mixing effects, the coupling of Z ′ to DM need not be equal to the

coupling to the SM.

In general, the U(1)′ will be anomalous without the introduction of additional fermions

besides χ. Indeed, gauging any flavor-universal symmetry other than B − L, Y -sequential

or linear combination thereof, leads to mixed anomalies between the gauge groups of the

SM and the new U(1)′. These must be resolved by new fermions with non-trivial SM

charge. Here we do not try to build a full UV-complete model (for explicit attempts to

do this see e.g. [31, 35]), as for our purposes the only relevant quantities are the anomaly

coefficients in the EFT that solely include the SM, χ, and Z ′. At sufficiently high energies,

above the cutoff Λ (see section 2), all gauge anomalies must cancel.

As we are interested in the effects of anomalies, it is interesting to consider explicit

models and discern the phenomenological importance of the effects of the Z ′ couplings to
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the gauge bosons. The first model we will be concerned with is one where the SM fermions

are axially charged under U(1)′. In choosing this particular case we are mostly motivated

by the vast existing literature on DM simplified models, that usually assumes a U(1)′

with pure axial charges as a standard benchmark point [24, 29, 30]. This choice however

comes with its own obvious shortcoming, that eventually renders it somewhat non-generic

compared to the landscape of other options.

For a SM fermion f the usual SM Yukawa coupling yfHf̄f is gauge invariant only if

the Higgs doublet also has dark charge [51]. If H is charged under U(1)′, in turn, then the

Z ′ acquires at least some mass from electroweak symmetry breaking and mixes with the Z.

This Z-Z ′ mixing is constrained by electroweak precision, and even though it can be viable

if the Z ′ mass is heavier than a few TeV [28], we prefer to avoid these complications, which

would defocus us from the goal of showing the phenomenological impact of anomaly-induced

interactions. If we assume that the SM Higgs is not charged under the U(1)′, the only option

is to promote the Yukawa couplings to U(1)′ spurions, by writing the Yukawa terms as(〈Φ〉
M∗

)2n

ỹfHf̄f , (3.1)

where 〈Φ〉 is the vacuum expectation value of a field Φ that spontaneously breaks U(1)′,

M∗ is some suppression scale dictated by the UV completion, and n is the ratio of the

fermion axial U(1)′ charge to the Φ charge. In this framework, the natural size of the

Yukawa couplings is driven by the size of 〈Φ〉/M∗. Although this approach is generally

consistent with the smallness of the SM Yukawas, it becomes difficult to reproduce the top

Yukawa coupling in this way. To “fix” this problem we assume that the top quark couples

vectorially to the Z ′. The other fermions are taken to have axial couplings, except for the

neutrinos which necessarily have purely left-handed couplings. We will further call this

particular symmetry U(1)
′ ctV
ax .

As with the scalar that could be responsible for a DM Majorana mass term, the

particular characteristics of the scalars that generate SM fermion Yukawas are not relevant

to the interactions at hand. For our purposes, the only other effect of the scalars which

acquire U(1)′-breaking vacuum expectation values is to provide mass to the Z ′.3 We simply

parametrize these effects by a mass term 1
2m

2
Z′(Z ′)2, and generally ignore the details of the

scalar sector from here on.4

In order to summarize these considerations and to fix our notation, we show here the

newly added terms to the Lagrangian:

LDM = −1

4
Z ′µνZ

′µν +
1

2
m2
Z′Z ′ 2µ +

1

2
χ(i/∂ −mχ)χ

+
1

2
gχZ

′µχγµγ5χ+ gZ′Z ′µ
∑
f

f
(
gfV γ

µ + gfAγ
µγ5

)
f , (3.2)

3For more comments on the possible relevant effects of the U(1)′-breaking Higgs see [27].
4As we have mentioned, another possibility to deal with the fermion masses problem would be to charge

the SM Higgs under the U(1)′ and deal with the Z − Z′ mixing similarly to [28]. See also [52] for some

important insights on this framework.
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SU(3) SU(2) U(1)Y U(1)B−L U(1)
′ ctV
ax U(1)′B+L U(1)′L(

νeL

eiL

)
,

(
νµL

µiL

)
,

(
ντL

τ iL

)
1 2 −1

2 −1 −1 +1 +1(
eiR
)C

,
(
µiR
)C

,
(
τ iR
)C

1 1 1 +1 −1 −1 −1(
uL

dL

)
,

(
cL

sL

)
3 2 1

6 +1
3 −1 +1

3 0

(uR)C, (cR)C 3 1 −2
3 −1

3 −1 −1
3 0

(dR)C, (sR)C 3 1 1
3 −1

3 −1 −1
3 0(

tL

bL

)
3 2 1

6 +1
3 −1 +1

3 0

(tR)C 3 1 −2
3 −1

3 +1 −1
3 0

(bR)C 3 1 1
3 −1

3 −1 −1
3 0

Higgs

(
φ+

φ0

)
1 2 1

2 0 0 0 0

Table 1. Charges of the SM matter content under some choices of U(1)′ that we further analyze

in the paper.

where the coupling of the Z ′ to the SM fermions f is given by gZ′ times the charges gfV
and gfA, which are given in table 1, and gχ is the coupling to the Majorana DM χ.

It is easy to note in what sense this “modified axial model” U(1)
′ ctV
ax is not generic. If

we do not tighten the solution of the flavor problem with the DM theory (which is possible

but by no means necessary) yet still insist that the SM Higgs is uncharged under the new

force, the charges of the SM fermions are vectorlike under the U(1)′. This immediately

implies that the mixed anomalies with the U(1)EM and the SM color group must vanish. At

sufficiently large DM masses this strongly suppresses the γγ and gg annihilation channels

of the DM, but does not qualitatively change other channels. As an example of this model

we choose U(1)′B+L, which is simply one representative point in a large class of models.

Finally we choose to also show a leptophilic model (for this purpose, U(1)′L). This

choice is special because we have no constraints from the LHC and direct detection, and

all the constraints come from indirect detection searches.5

Taking all this into account we present the charges of the SM fields under the new

U(1)′s in table 1. For comparison, we also show B − L, which is of course anomaly free

and does not require any extra terms in the effective action.

Since our axial vector model features flavor non-universal Z ′ quark couplings, we par-

enthetically consider here the flavor constraints on this kind of Z ′. Even though the axial-Z ′

couplings are diagonal in the flavor basis, the quark rotations that diagonalize the Yukawa

5Strictly speaking, this model is not totally invisible to direct detection experiments due to radiative

couplings to the hadrons (for works along these lines see [53]). However the effect is expected to be so small

that we disregard it here.
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matrix generally induce off-diagonal couplings between quark mass eigenstates [54]. To es-

timate the size of the associated flavor-changing neutral currents (FCNCs), we must make

assumptions about the structure of the quark rotations. Note that the only measured mis-

alignment between the quark flavor and mass eigenstates is from the CKM matrix VCKM,

which is a combination of the two left-handed quark rotations. Conversely, the U(1)
′ ctV
ax

model only contains non-universality in the right-handed up-quark sector. Of course, if the

mixing angles in the RH sectors are completely anarchical, the structure that we discuss is

not viable. However, this is not the only option, especially if we take into account the hier-

archical structure of VCKM. First, FCNCs may be completely avoided if the right-handed

quark flavor and mass eigenstates are identical (this would invoke either a fine-tuning or

some other structure that would explain the vanishing rotation angles).

Alternatively, let us assume that the flavor structures of the RH and LH quark sectors

are similar, such that the product of the rotations between the up- and down-type RH quark

U(1)’ flavor and mass eigenstates is ∼ VCKM. Then, since the non-universality is only in

the third generation, the Z ′c̄RuR coupling will go as ∼ V ub∗
CKMV

cb
CKM, which is quite small,

without dangerous consequences for D mixing. Non-universal couplings in the down-type

sector are also induced at the loop level, leading to effects such as B −B mixing.

Finally we note that a kinetic mixing term BµνF
′µν , where B and F are the U(1)Y and

U(1)′ field strengths respectively, is fully allowed by the symmetries of the theory. Sizable

kinetic mixing can lead to observable effects that are interesting but separate from those

caused by the triple gauge vertices induced by anomalies. We henceforth assume negligible

mixing, and concentrate on the anomalous couplings among the SM and U(1)′ gauge bosons.

4 Application to dark matter models

In this section we present the main results of our paper. First, we will use the results of

section 2 to explicitly calculate the annihilation cross sections of the DM particle into the

SM gauge bosons. In the following subsections we show the prospects for the direct and

indirect detection, as well as LHC searches. We will emphasize the complementarity of

these searches to properly analyze the possible parameter space of these models.

4.1 Annihilation cross sections into the SM gauge bosons

The objective in this part of our paper is to explicitly calculate the relevant annihilation

cross sections that arise only at the one-loop level. To begin, we outline the calculation of

the coupling between three gauge bosons induced by anomalies, starting with the Z ′-γ-γ

vertex. We take a single fermion f of electric charge Qemf to run in the loop diagrams of

figure 2, whose amplitude we write as εµ(p1)ε
∗
ν(p2)ε

∗
ρ(p3)Γ

µνρ. Note that we use p1 for the

Z ′ momentum, while the momenta p2, p3 stand for the photon momenta. If the fermion’s

U(1)′ coupling is vectorial, then by Furry’s theorem the vertex vanishes. Without loss of

generality we assume a Z ′ff̄ vertex with strength igZ′γµ(gV +gAγ
5) with the understanding
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that only gA will contribute.6 As described in section 2, contracting the external gauge

boson momenta with the triangle amplitude gives non-vanishing results due to surface

terms (see [45, 47] for further calculation details). The resulting Ward identities depend,

as explained in section 2, on the loop momentum shift a:

(p1)µΓµνρ =
gZ′e2gA(Qemf )2

8π2
ενραβaα(p1)β

(p2)νΓµνρ =
gZ′e2gA(Qemf )2

8π2
εµραβ(a+ 2p3)α(p2)β (4.1)

(p3)ρΓ
µνρ =

gZ′e2gA(Qemf )2

8π2
εµναβ(a− 2p2)α(p3)β

At this stage we can either tune the Wess-Zumino conterterm to get rid of any aµ de-

pendence in these expressions or, alternatively, set the Wess-Zumino counterterm to zero

and find an appropriate momentum shift to maintain the necessary Ward identities. We

choose the latter recipe to resolve this problem. We make the phenomenologically moti-

vated choice of retaining U(1)EM gauge invariance, which corresponds to the requirement

that the second and third lines of eq. (4.1) vanish. This, in turn, may be accomplished by

setting a = 2(p2 − p3), yielding the Ward identities

(p1)µΓµνρ =
g′e2Qf (Qemf )2

2π2
ενραβ(p2)α(p3)β

(p2)νΓµνρ = (p3)ρΓ
µνρ = 0 (4.2)

Next, to calculate the relevant cross section, we write the most general form of the

amplitude using the standard Rosenberg parametrization [55]

Γµνρ =
gZ′e2gA(Qemf )2

π2

(
I1ε

ανρµ(p2)α + I2ε
ανρµ(p3)α

+I3ε
αβνµ(p2)

ρ(p2)α(p3)β + I4ε
αβνµ(p3)

ρ(p2)α(p3)β (4.3)

+I5ε
αβρµ(p2)

ν(p2)α(p3)β + I6ε
αβρµ(p3)

ν(p2)α(p3)β

)
where Ii, 1 ≤ i ≤ 6 are form factors to be computed. By dimensional analysis, it is clear

that the effect of any divergences must be in I1 and I2, while the remaining form factors

are finite. We thus use the Ward identities of eq. (4.2) to fix the divergent form factors,

and calculate the others explicitly. The final result is [47]

I1(p2, p3;mf ) = (p2 · p3)I3(p2, p3;mf ) + p23I4(p2, p3;mf )

I2(p2, p3;mf ) = −I1(p3, p2;mf )

I3(p2, p3;mf ) = −C12(p
2
3, p

2
1, p

2
2,m

2
f ,m

2
f ,m

2
f ) (4.4)

I4(p2, p3;mf ) = C11(p
2
3, p

2
1, p

2
2,m

2
f ,m

2
f ,m

2
f ) + C1(p

2
3, p

2
1, p

2
2,m

2
f ,m

2
f ,m

2
f )

I5(p2, p3;mf ) = −I4(p3, p2;mf )

I6(p2, p3;mf ) = −I3(p2, p3;mf )

6Note that this parametrization is completely generic and suitable for analyzing any anomalous Z′. If

we turn back to the models we have outlined in section 3, we see that in those particular models all the SM

fermions have either gV = 0 or gA = 0, but this is by no mean guaranteed for a generic Z′.
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where the C functions are Passarino-Veltman loop functions [56]. When there are multiple

fermions charged under both electromagnetism and U(1)′, eq. (4.3) is readily generalized

by summing over the available loop fermions.

The above vertex may now be used to calculate physical observables. For instance,

the amplitude for DM annihilation to photons immediately follows, and the resulting cross

section takes a rather compact form

σ(χχ→ γγ) =
α2
emg

2
χg

4
Z′

π3
m2
χ

√
s

m4
Z′

√
s− 4m2

χ

×
∣∣∣∣∣∑
f

cfAN
f
c Q

2
f

[
2m2

fC0(0, 0, s,m
2
f ,m

2
f ,m

2
f )+1

]∣∣∣∣∣
2

,

(4.5)

where the explicit form of the Passarino-Veltman function involved is

C0(0, 0, s,m
2
f ,m

2
f ,m

2
f ) =

1

2s
log2

(√
s(s− 4m2

f ) + 2m2
f − s

2m2
f

)
. (4.6)

This should be compared to the cross section for DM annihilation to fermions,

σ(χχ→ ff̄) =
g2χg

4
Z′ N

f
c

3πs
(
(s−m2

Z′)2 + Γ2
Z′m2

Z′
)√s− 4m2

f

s− 4m2
χ

(
g2V (s− 4m2

χ)(s+ 2m2
f )

+g2A

(
s(s− 4m2

χ) + 4m2
f

(
m2
χ

(
7− 6

s

m2
Z′

+ 3
s2

m4
Z′

)
− s
)))

. (4.7)

The key difference between these cross sections is that the annihilation to photons

remains constant with increasing center-of-mass energy, unlike the annihilation to fermions

which eventually falls as 1/s. Of course this “constant” annihilation rate cannot proceed

to arbitrarily high energy because it would eventually break the unitarity of the theory.

We will comment on this issue later in the section.

We calculate the form factors for the annihilations into the rest of the gauge bosons,

using exactly the machinery that we have shown here. We list the relevant results in ap-

pendix A. For simplicity we take the Z ′ width to be ΓZ′ = mZ′/10 throughout our calcula-

tions. This choice only affects the extent of the influence of resonant effects in our results.

Before we present our results, it is instructive to see how the annihilation cross sections

σv scale with the kinetic energy of the fermions for fixed DM mass. We show this scaling

within the EFT on figure 3 (we use for this illustration the U(1)
′ ctV
ax model). While the

cross sections into the fermions fall at the high energies as 1/s (as one would expect), the

annihilations into the gauge bosons stay constant as a function of s, signaling an inevitable

breakdown of unitarity at high energies. This breakdown is expected from the way we

have formulated our EFT in section 2, in particular because of the higher dimensional

interactions that we were forced to introduce. Of course these cross sections are tamed at

the scale where the spectator fermions show up. This can in turn happen at or below the

scale Λ as defined in eq. (2.5) (modulo replacing the Abelian anomaly by a mixed one).

Note also that unitarity will often dominate the exact bound on the cutoff Λ, although

it will often be of order (2.5). For example, a simple back-of-the-envelope estimation leads
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eV keV MeV GeV TeV PeV

10-36

10-32

10-28

10-24

→Ann. in the Sun

→Milky Way Halo

→Freeze-Out

Figure 3. Annihilation cross sections in the U(1)
′ ctV
ax model as a function of the DM kinetic energy

within the EFT that we describe. The blue curves indicate gauge boson final states that receive

contributions from anomalies. Annihilations into heavy quarks, light quarks, and leptons are shown

in green, red, and yellow, respectively. Kinetic energies corresponding to DM in the Sun, the Milky

Way halo, and at freezeout are indicated. Note that above the scale ∼ 100 TeV the EFT cannot

give the correct solution due to the inevitable unitarity breakdown.

us to the conclusion that the unitarity of the model depicted on figure 3 will break down

at a scale ∼ 100 TeV. In this sense the very right corner of this plot is not meaningful and

the physics there should be described by a full UV complete theory rather than the EFT.

Note also the difference between the fermions that couple axially and ones that couple

vectorially to the Z ′. While annihilations into the former final states (in this particular

example, all the SM fermions except the top) are constant at low energies, the latter in this

range scale as v2, and therefore linearly with the kinetic energy. This can also be clearly

observed in eq. (4.7).

Another important lesson that we learn from figure 3 is the dominance of the various

channels in different physical situations. For example, the velocity is still high enough

during the thermal freeze-out to render the annihilation into the gauge bosons unimportant,

such that the relic abundance is determined almost completely by the annihilations into

the fermions. However at lower velocities (annihilation in the Galactic halo or at the center

of the Sun) the entire signal is essentially determined by the radiative annihilations into

the gauge bosons.

Finally let us notice, that even in the models where the respective mixed anomaly

vanishes, the annihilation channels into the gauge bosons are induced by finite radiative
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corrections. However, because these contributions do not grow with energy, they are much

smaller than the anomaly-augmented annihilations, and can be neglected.

4.2 Relic abundance

We first briefly comment on the DM relic abundance, if we assume that the DM is the ther-

mal relic (which might or might not be the case). WIMP freezeout typically happens near

x = mχ/T ≈ 25, with the particular decoupling temperature only logarithmically sensitive

to the annihilation cross section. The annihilation channels which determine the relic abun-

dance are thus simply the modes which dominate at a DM velocity of
√

3
x ∼ 1/3. From

figure 3, it is apparent that DM annihilation to fermions is primarily responsible for setting

the relic abundance. Consequently, the impact of anomalies in the DM relic density calcula-

tion is minimal. We thus expect the values of the couplings and masses that reproduce the

observed DM abundance to be similar to previous calculations in the literature, see e.g. [57].

4.3 Indirect detection

Today very little kinetic energy is available for DM annihilation because the typical velocity

of a DM in the Milky Way halo is ∼ 10−3. In our models the gauge boson modes can

dominate the annihilations, and so the DM can be probed through searches for annihilation

to gg, W+W−, γγ, Zγ and ZZ.

We illustrate this point on figure 4, where we show the branching ratios into the

various annihilation channels of the DM in our galaxy as a function of the DM mass. If

the DM is relatively light, ∼ 10 GeV, the BRs are dominated by the fermionic channels,

particularly bb̄. However at sufficiently high DM masses the gg (if the mixed anomaly of

the U(1)′ with the SM does not vanish) and W+W− channels dominate the annihilations

at such low DM velocities, and therefore the indirect detection signatures. We also point

out the importance of the γγ (when present) and Zγ annihilation channels. Although the

latter channels are heavily suppressed compared to the W+W−, the photon emission is

monochromatic, leading to the prediction of a γ ray line.

4.3.1 Gamma ray continuum searches

We first consider limits from the continuum γ ray spectrum, where the strongest current

bound comes from dSph Fermi-LAT observations [6, 7] and, for TeV scale DM masses,

from HESS observation of the continuum emission from the Galactic Center [8].

These bounds depend on the products of DM annihilation, as different SM particles

yield distinct photon spectra. In order to apply the γ ray limits, we thus consider the

annihilation branching ratios to different final states. At low DM mass, the fermionic

annihilation channels are dominant, as seen in figure 4.

We start by discussing the U(1)
′ ctV
ax model, where all such channels except for tt̄ are chi-

rally suppressed, and the bb̄ and τ+τ− annihilations are more common than those into the

light fermions. In practice, the limits on annihilations to bb̄ and τ+τ− are quite close to one

another [7]. Similarly, DM annihilations to charm quarks produce similar photon spectra

as to up quarks [58], for which the limits are in turn close to those for annihilations to bb̄.

– 16 –



J
H
E
P
1
0
(
2
0
1
7
)
1
6
5

Figure 4. Left: DM mass vs. annihilation branching ratios in the U(1)
′ ctV
ax model. The DM velocity

is taken to be 220 km/s, characteristic of the Milky Way halo. The curves are colored as in figure 3.

Right: same for the U(1)′B+L model. The quark lines all overlap on the red line. The branching

ratios of the U(1)′L model are analogous to the ones of U(1)′B+L, without the quark channels.

We thus choose to compare the total fermionic annihilation cross section to the Fermi-LAT

limit on DM annihilating to bottom quarks for DM masses below approximately 200 GeV.

At larger DM masses, the gg, W+W− and ZZ channels take over. Again, since the

resulting γ ray spectra from these annihilation modes are similar, we simply compare the

total bosonic annihilation cross section to the Fermi-LAT limit on DM annihilations to

W+W− (which gives a slightly weaker bound than gg). Finally, in the resonance region

mχ ≈ mZ′/2, fermionic annihilations take over again and we switch back to comparing the

total annihilation cross section to the bb̄ limit from Fermi-LAT once more. Throughout,

we assume that χ makes up all of the observed DM.

In the U(1)′B+L and U(1)′L models the procedure is analogous, with the notable dif-

ference that the gg channel disappears. At low DM masses the annihilations to fermions,

which now couple vectorially to the Z ′, are velocity suppressed.

We show the bounds on the suppression scale mZ′/
√
gZ′gχ in the three models as a

function of the DM mass in figure 5. These bounds are insensitive to the choice of DM

profile [7]. The bound on the U(1)
′ ctV
ax model is significantly stronger than those on the

B + L and L models because of the dominance of the gg annihilation channel, which is

prolific in γ rays due to its secondary production of pions. As the mixed anomaly of the

latter two U(1)s with the color group vanishes, the annihilations into gg in these models

are much more modest.

The choice of the mediator mass has no effect on the bounds except in the resonance

region, and so while the limits correspond to somewhat large couplings for the indicated

mZ′ . Lighter mediators will have similar constraints. Note that if the DM is significantly

heavier than the mediator mass, the coupling gχ should be sufficiently small to avoid

unitarity constraints on the DM self-scattering [27].

We show the HESS continuum Galactic Center bounds in figure 5, assuming three

different DM profiles (see section 4.3.2 for more details). For each profile we compute the

integrated J-factor between 0.3◦ and 1◦ around the direction of the Galactic Center using

the tables from [58] and scale the HESS bound appropriately.
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Figure 5. Limits from continuum γ ray emission on the three models we consider. Left: bounds

from Fermi-LAT observations of dSphs [6, 7]. Right: bounds from HESS observation of the Galactic

Center [8], for three choices of the DM profile distribution.

4.3.2 Gamma ray line searches

Given the potential for annihilation to γγ or Zγ through anomalies, we now discuss the

impact of γ ray line searches on our benchmark models, as performed by Fermi-LAT [59]

and HESS [60]. Fermi-LAT is typically sensitive to photons below several hundred GeV in

energy, while HESS, being a terrestrial telescope, has the best sensitivity for much more

energetic γ rays.

The bounds from line searches generally depend on the DM halo profile, and so we

will show their variation when different profiles are considered; for an overview of DM

halo profiles see for instance ref. [61]. Fermi-LAT optimizes the signal region of interest to

maximize the bound depending on the profile, for several different halo shape choices. For

instance, the optimal bound is obtained for a region subtending 16◦ around the galactic

center for the Einasto profile, but 90◦ for an isothermal profile. HESS only shows limits

for the Einasto profile, using a signal region of radius 1◦. We choose to show bounds

for Einasto, isothermal and Burkert DM halo profiles, by rescaling the Fermi-LAT and

HESS limits using the ratios of J-factors for different profiles over the signal regions of

interest [58]. In the case of Fermi-LAT, we obtain the limit for a Burkert profile by rescaling

the constraint for an isothermal profile, as these halo shapes are both relatively cored.

We further calculate the expected annihilation cross section to photons and compare

with the Fermi-LAT and HESS γ ray line search bounds, computed as described above for

different halo profiles. We notice that even if the γγ channel is absent (up to finite terms

that we neglect here) because of the vanishing mixed anomaly with the U(1)EM, as is the

case for U(1)′B+L and U(1)′L, the Zγ channel can be present, because it is controlled by

the mixed anomaly with the hypercharge. Most monochromatic photons come from DM

annihilation to γγ when it is present, as the Zγ mode is less common and provides half

as many photons per annihilation. In the U(1)
′ ctV
ax we include the Zγ channel above mχ &

140 GeV, where the difference in energies between photons from γγ and Zγ annihilations

is expected to be below the resolution of Fermi-LAT; that of HESS is worse. For simplicity,

below this threshold we ignore annihilations to Zγ, which should not significantly affect

our final results due to the lower cross section for this channel.
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Figure 6. Limits from Fermi-LAT [59] and HESS [60] searches for γ ray lines. Below (above)

DM masses of 500 GeV, Fermi-LAT (HESS) provides the constraint. The choice of mediator mass

affects only the resonance region mχ ≈ mZ′/2.

The resulting constraints are presented in figure 6, and they clearly illustrate the impact

of the anomalies on indirect detection constraints. Conversely, anomaly-free models often

do not face meaningful limits from γ ray line searches, due to suppressed annihilation cross

sections to photons [28]. In the two models U(1)′B+L and U(1)′L, where only Zγ contributes

to the signal, the final bound is clearly much weaker, but still non-negligible for a DM mass

of a few TeV. The limits are quite sensitive to the choice of halo profile, particularly for

HESS which presents limits for a γ ray line search in a very narrow region around the Galac-

tic Center. As expected, the best limits are obtained for the cuspy Einasto profile. The

sensitivity of line searches is considerably weakened in the resonance region, where annihi-

lation to γγ is forbidden due to Landau-Yang theorem and only the Zγ mode contributes.

4.3.3 Neutrino telescopes

We finally consider DM annihilation to neutrinos in the Sun, and the associated bounds

from three years of observations of IceCube [62]. In particular, annihilations to W+W−, ZZ

and τ+τ− produce high-energy neutrinos which are tightly constrained, while annihilations

to bb̄ are less strongly limited because of the softer neutrino spectrum. To obtain the limit

on the overall annihilation cross section — and hence the scale of DM-SM interactions —

in any given model, we must convolve the various IceCube limits on different annihilation

channels with the annihilation branching ratios in the model, as we did above for the

continuum γ ray bounds.

For DM that is captured in the Sun, the typical kinetic energy is of the same order

as the temperature at the center of the Sun, 107 K ∼ keV, which corresponds to negligible
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velocity for DM heavier than the MeV scale. At such energies, p-wave annihilation is

essentially non-existent, and the annihilation branching ratios are similar to those in the

Milky Way halo shown previously in figure 4.7

The IceCube bounds on annihilations into bb̄ are weaker than the bounds on annihila-

tions into τ+τ− by 2-3 orders of magnitude. Therefore at low DM mass τ+τ− annihilations

always provide the most constrained source of neutrinos, even in the U(1)
′ ctV
ax model when

bottom quarks are the main products of DM annihilation.

At higher masses, W+W− and ZZ annihilations face bounds from IceCube that are

nearly as strong as τ+τ− [62], and annihilations to Zγ produce half as many neutrinos as

ZZ. Thus we use the stronger of the bounds on annihilations to τ+τ− and W+W−, ZZ, Zγ,

scaling the IceCube limits by the appropriate branching ratios and assuming that the

neutrino spectrum for the latter channels are all similar to that for W+W−.

The translation of the IceCube bounds on the SD DM-proton scattering cross section

σSDp to bounds on the EFT scale mZ′/
√
gZ′gχ requires some care about the form factor

assumed for DM capture in the Sun. When providing a bound on σSDp , IceCube assumes

that DM and the SM interact through the NR operator ONR
4 (according to the standard

notation, see e. g. [63, 64]). This is indeed the operator that arises in the U(1)
′ ctV
ax model, but

for the U(1)′B+L model, the leading interaction is the SI velocity-suppressed operator ONR
8 .

To convert between bounds on these operators, we use the capture form factors provided

by [64]. In the leptophilic model U(1)′L the DM capture rate is negligible, given the small

momentum exchange between DM and free electrons in the Sun, and the suppressed loop

interaction with nucleons, so IceCube bounds do not apply.

The results are shown in figure 7. Because the IceCube bounds are sensitive to the

branching ratios of DM annihilations rather than to the absolute annihilation cross sections,

in the U(1)
′ ctV
ax model the bounds are weakened due to the large branching ratio into gluons,

which yield a negligible neutrino spectrum. In the U(1)′B+L model, while there are no

annihilations into gluons, the velocity-suppressed capture rate results in an even looser

bound. We will see in the next section that in this model, direct detection bounds are much

stronger due to coherent enhancement of the spin-independent scattering cross section.

4.4 Colliders and direct detection

In addition to the above indirect detection searches which can be significantly affected by

the presence of anomalies, simplified models of DM face complementary constraints from

collider and direct detection experiments. In order to present a complete account of the

limits on the models we consider, here we discuss these bounds and compare them to the

exclusions derived previously that rely on anomalies.

At the LHC, the main probes of simplified DM models are missing energy-based

searches, such as monojets and monophotons, and direct searches for the mediator de-

caying to SM particles.

7The only difference between the annihilation branching ratios at velocities characteristic of the Milky

Way halo and of the center of the Sun is that the resonance region is narrower in the latter case, due to

the even smaller average DM velocity.
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Figure 7. Bounds due to IceCube [62] searches for neutrinos originating from DM annihilations in

the Sun, on the models we consider.

The stronger constraints from direct Z ′ searches come from searches for dilepton res-

onances. We use the combined 8 + 13 TeV CMS dilepton analysis [65]. Because the

resonant mediator searches do not involve the DM-mediator coupling, their reach cannot

be presented in terms of the DM-SM interaction suppression scale without additional as-

sumptions. Instead, we choose to show in figure 8 the upper limit on the U(1)′ coupling as

a function of the mediator mass. The bound on the U(1)′B+L model is rescaled to account

for the different charge of light quarks in this model. In the leptophilic model U(1)′L the

LHC bound does not apply, since the production of Z ′ at the LHC is absent at tree level.

The bound from the dilepton searches for the Z ′ is quite strong for mediators that are

kinematically accessible, and would push us to very low Z ′ couplings to SM fermions.

We also rescale the limits of the 8 TeV CMS monojet search [66] for Majorana DM and

show the results in figure 9.8 For DM below the TeV scale, monojets provide the dominant

bound on the models that we consider.

The LHC monojet analysis clearly does not apply in the U(1)′L model, for which we

rely on the recast done in [67] of the monophoton + missing transverse energy searches

performed by the DELPHI collaboration at LEP [68, 69]. Due to the lower energy reach

of LEP, the exclusion limit extends up to mχ ∼ 100 GeV.

Two models, out the three we consider, also produce direct detection signatures. The

U(1)
′ ctV
ax model mainly produces spin-dependent interactions because of the axial couplings.9

8While more recent searches are available, they are more difficult to recast for our purposes. The

inclusion of 13 TeV results would improve the monojet limits at light DM mass in figure 9, while leaving

the situation unchanged for DM heavier than several hundred GeV.
9Spin-independent direct detection is in principle induced at loop level [70]. However, for typical DM and

mediator masses in our region of interest the associated cross section is small enough to be safely ignored.
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Figure 8. Bounds from resonant dilepton searches on a Z ′ at LHC from the 8 + 13 TeV com-

bined analysis [65], presented in the gZ′ -mZ′ plane for U(1)
′ ctV
ax and U(1)′B+L (U(1)′L is obviously

unconstrained).

Figure 9. Bounds from the CMS monojet search [66] (for the models U(1)
′ ctV
ax and U(1)′B+L), and

the monophoton search performed by DELPHI and recast in [67] for the U(1)′L model.
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The most powerful direct detection bound for our purposes comes from PICO [71], and

is shown in figure 10. The bound is comparable to the monojet exclusion limit, and is

superseded by Fermi-LAT observations of dSph at DM masses around 500 GeV.

The U(1)′B+L model induces instead a spin-independent and velocity-suppressed inter-

action. The most recent experimental bound comes from XENON-1T [5]. The collabora-

tion provides a limit obtained assuming that the interaction between DM and nuclei occurs

via the canonical spin-independent operator Oq1 in the NR EFT of the DM. In our case the

dominant interaction is Oq6 rather than Oq1 [13, 72, 73]. We perform a recast by means of

the tables provided by [63]. The result is shown in figure 11. The exclusion limit from di-

rect detection is the most powerful for mχ up to a few TeV, where it is superseded by γ ray

line searches only if we assume a cuspy profile of the DM density distribution like Einasto.

4.5 Summary of results

The combinations of all the constraints described above are shown in figures 10, 11 and 12

respectively for the three models U(1)
′ ctV
ax , U(1)′B+L and U(1)′L.

Indirect detection provides the strongest bounds at large DM mass, driven by loop

annihilations of DM to gauge bosons. Depending on the choice of halo profile, either the

HESS γ ray line search or the Fermi-LAT dSph continuum γ ray spectrum analysis is most

constraining in this regime, depending in ultimate analysis on whether the gg channel is

anomaly-induced or not. For models where there is no mixed anomaly between the Z ′ and

U(1)EM, the γ ray line searches are only weakly constraining. For lighter DM, monojets

and/or direct searches still provide the tightest bound on the interaction scale. Notice that

in the leptophilic model U(1)′L these constraints are absent, as is the IceCube bound, and

the monophoton searches performed at LEP have a lower reach in mχ. In this model, the

only limits above LEP are provided by γ ray searches.

Outside of the resonance region, the limits are independent of the mediator mass.

Consequently, the dilepton searches presented on figure 8 should be considered as an or-

thogonal bound to those in figure 10. For very heavy mediators, on the other hand, only

large couplings can currently be constrained. However, future experiments will probe re-

gions of our model which can more naturally accommodate a Z ′ weighing several TeV, and

at such mass scales resonant LHC searches lose sensitivity quite rapidly.

5 Comments on validity of our results

Throughout our discussion, we have assumed that anomalies are canceled by fermions that

are sufficiently decoupled so as to be effectively infinitely heavy for the processes that they

mediate. Since the main effects of the Wess-Zumino terms are in DM annihilation, this

corresponds to mf � mχ. It is instructive to ask how our results change as the anomaly-

canceling fermions are brought closer to the DM mass.

Let us illustrate this point with the particular example of DM annihilation in a U(1)′

model where the charge of every SM fermion is equal to its usual hypercharge. Above the

scale of the heaviest SM fermion, the top quark, there are no mixed U(1)′-SM anomalies.

Below the top mass, however, anomalies should appear and induce Wess-Zumino terms. At
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Figure 10. Combined limits from indirect detection, collider, and direct detection bounds on the

U(1)
′ ctV
ax model with a 3 TeV mediator. For heavy DM, the anomaly-induced annihilations to gauge

bosons lead to strong indirect detection bounds. Some of the indirect detection limits are sensitive

to the halo profile, and for these the impact of choosing different halo profiles is shown.

Figure 11. The same as in figure 10, shown for the U(1)′B+L model.
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Figure 12. The same as in Fig, 10, shown for the U(1)′L model.

some point, where the DM becomes sufficiently lighter than the top mass, the EFT should

give a good approximation to the full anomaly-free theory.

We compare these two calculation methods in figure 13, by varying the mass of the

DM. The solid curve in figure 13 shows the annihilation cross section, calculated in the full

UV complete theory, while the dashed line stands for the EFT calculation. By comparing

the two curves, we see that the anomaly-canceling fermions can be treated as having infinite

mass so long as they are at least 2-3 times heavier than the CM energy of the process being

studied. In principle it is a very optimistic conclusion, that suggests that as long as the

spectator fermions are not at the scale of the DM, our results are valid.

We also notice that in this particular example we have chosen the mass of the Z ′ to be

very high, 10 TeV. Even though the top mass is much smaller than m′Z , the EFT is clearly

valid in the case of light DM, showing again that the scale of the Z ′ plays no role in setting

the validity range of the EFT.

6 Conclusions

Simplified models of DM are frequently used to present experimental results, yet the most

common spin-1 mediator models often contain anomalies. While these may be resolved

at high scales through the introduction of additional chiral fermions, in this work we

have demonstrated that this is not without consequence. Integrating out heavy fermions

generates Wess-Zumino terms, whose derivative couplings can create significant effects at

high energies despite the loop suppression.
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Figure 13. The effect of decoupling the top quark in a sequential hypercharge model. The green

(solid) curve shows the cross section for DM annihilation to photons with mt = 175 GeV, while

the red (dashed) curve shows the same cross section with an infinite top quark mass. In general,

anomaly-induced effects rise with energy until the mass scale where the anomaly is resolved.

In particular, mixed anomalies cause couplings between the Z ′ and the SM gauge

bosons. These interactions affect DM annihilation through the Z ′, and have the most

impact on indirect detection probes of DM. We have evaluated the resulting bounds for

a selection of U(1)′ possibilities. The Wess-Zumino terms that we have computed depend

only on the anomaly coefficients, and so DM annihilation cross sections to gauge bosons

for an arbitrary U(1)′ can in principle be obtained by scaling our results. If a new U(1)’

has vector couplings, the only anomaly-induced terms involve the SU(2)L bosons, and so

the annihilation cross sections tend to be smaller. This leads to weaker constraints from

indirect detection searches involving photons, under the assumption that the DM relic

density is set by some external mechanism.

We have compared bounds from indirect detection with those from direct detection

and colliders. We find that γ-ray searches can often provide the most stringent limits on

heavy DM, with either continuum or line searches being more constraining depending on

the choice of halo profile. For intermediate masses between a few hundred GeV and 1 TeV,

IceCube can provide bounds comparable to direct searches if the scattering cross section

with protons is SD. At small DM mass, direct detection is more effective at limiting a Z ′

which couples to quarks. Monojet and monophoton bounds can also constrain lighter DM,

and while resonance searches are not directly comparable, dileptons still provide the best

bounds if the mediator is kinematically accessible at the LHC and couples to quarks.

While most of our calculations assumed that the fermions which cancel anomalies are

completely decoupled, we also considered the effect of restoring gauge invariance at smaller

scales. As long as the anomalies persist up to energies that are a few times higher than the
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DM mass, which is the relevant energy scale for annihilation, our results remain completely

valid.

In our study we have assumed that DM is a Majorana fermion, in part to emphasize our

new indirect detection limits over the usual direct detection bounds, which are strong for

spin-independent interactions that arise when the DM and quarks both couple vectorially to

the Z ′. It would nevertheless be interesting to examine the interplay between direct and in-

direct detection bounds in more general models. For instance, if the DM is a Dirac fermion

with a vector U(1)′ coupling but the SM quarks couple axially under U(1)′, the leading spin-

independent direct detection interaction is velocity-suppressed. Dressing such an interac-

tion with Higgses yields a pure vector interaction, but as the main effect involves a top loop,

it can be avoided if the top does not couple to the Z ′. On the other hand, if the top does

carry U(1)′ charge but the light quarks do not, the SU(3)2C×U(1)′ anomaly could be relevant

for collider searches as there is no tree-level DM production from light quark initial states.

In characterizing the sensitivities of DM searches, models that are employed to show

experimental results should be consistent with theoretical considerations. In addition to

the recently well-studied requirement that such models provide unitary scattering ampli-

tudes, we have shown here how gauge invariance necessitates the inclusion of additional

interactions beyond the minimal Lagrangian of generic simplified DM models. We look

forward to future developments in this direction as searches for DM continue.
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Note added. While this paper was being completed, related work [74] appeared which

concentrates on the implications of anomalous U(1)′ theories at low energies. The underly-

ing physics is similar, but in contrast to the authors of [74], we primarily consider theories

of WIMP dark matter.

A Effective triple gauge boson couplings

Equation (4.3) gives the effective Z ′-γ-γ vertex. Here, we provide the form of this vertex

for other gauge boson channels.
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The calculation of the Z ′-g-g vertex is the same as for Z ′-γ-γ up to a color factor and

coupling constants:

Γµνρgg = 2

(
gs

eQemf Nc

)2

Γµνρ (A.1)

For massive gauge bosons, we include the Goldstone amplitude in the Ward identities,

as described in section 2. Unlike the photon and gluon cases, a triangle vertex arises even if

the U(1)′ coupling of the loop fermion is vector-like, because the weak interactions violate

parity. Similarly to the Z ′ coupling to fermions, we write the Z-fermion-fermion vertex as

igwcw γ
ρ(gZV + gZAγ

5). Then, the Z ′-Z-γ vertex is given by

ΓµνρZγ =
gZ′N2

c gweQ
em
f (gV g

Z
A + gAg

Z
V )

π2cw

(
IZγ1 εανρµ(p2)α + IZγ2 εανρµ(p3)α

+IZγ3 εαβνµ(p2)
ρ(p2)α(p3)β + IZγ4 εαβνµ(p3)

ρ(p2)α(p3)β (A.2)

+IZγ5 εαβρµ(p2)
σ(p2)α(p3)β + IZγ6 εαβρµ(p3)

σ(p2)α(p3)β

)
where the form factors, in terms of those in eq. (4.4), are

IZγ1 (p2, p3;mf ) = (p2 · p3)IZγ3 (p2, p3;mf ) + p23I
Zγ
4 (p2, p3;mf )

IZγ2 (p2, p3;mf ) = p22I
Zγ
5 (p2, p3;mf ) + (p2 · p3)IZγ6 (p2, p3;mf )

− gV g
Z
A

gV gZA + gAgZV
m2
fC0(p

2
3, p

2
1, p

2
2,m

2
f ,m

2
f ,m

2
f )

IZγ3 (p2, p3;mf ) = −I3(p2, p3;mf ) (A.3)

IZγ4 (p2, p3;mf ) = −I4(p2, p3;mf )

IZγ5 (p2, p3;mf ) = −I5(p2, p3;mf )

IZγ6 (p2, p3;mf ) = −I6(p2, p3;mf )

The Z ′-Z-Z vertex is

ΓµνρZZ =
gZ′N2

c g
2
w(2gV g

Z
V g

Z
A + gA((gZV )2 + (gZA)2))

π2c2w

(
IZZ1 εανρµ(p2)α + IZZ2 εανρµ(p3)α

+IZZ3 εαβνµ(p2)
ρ(p2)α(p3)β + IZZ4 εαβνµ(p3)

ρ(p2)α(p3)β (A.4)

+IZZ5 εαβρµ(p2)
σ(p2)α(p3)β + IZZ6 εαβρµ(p3)

σ(p2)α(p3)β

)
where the form factors are

IZZ1 (p2,p3;mf ) = (p2 ·p3)IZZ3 (p2,p3;mf )+p23I
ZZ
4 (p2,p3;mf )−m2

fC0(p
2
3,p

2
1,p

2
2,m

2
f ,m

2
f ,m

2
f )

IZZ2 (p2,p3;mf ) = p22I
ZZ
5 (p2,p3;mf )+(p2 ·p3)IZZ6 (p2,p3;mf )−m2

fC0(p
2
3,p

2
1,p

2
2,m

2
f ,m

2
f ,m

2
f )

IZZ3 (p2,p3;mf ) = −I3(p2,p3;mf ) (A.5)

IZZ4 (p2,p3;mf ) = −I4(p2,p3;mf )

IZZ5 (p2,p3;mf ) = −I5(p2,p3;mf )

IZZ6 (p2,p3;mf ) = −I6(p2,p3;mf )
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For the Z ′-W+-W− vertex, we assume that two fermions run in the loop whose left-

handed components are related by SU(2)L, with the up-type fermion having mass mf and

coupling vectorially to the Z ′, −igZ′γν . Then, regardless of whether the down-type fermion

coupling to the Z ′ is vector or axial, i.e. −igZ′γν or igZ′γνγ5, the vertex is given by

ΓµνρWW =
gZ′N2

c g
2
w

4π2

(
IWW
1 εανρµ(p2)α + IWW

2 εανρµ(p3)α

+IWW
3 εαβνµ(p2)

ρ(p2)α(p3)β + IWW
4 εαβνµ(p3)

ρ(p2)α(p3)β (A.6)

+IWW
5 εαβρµ(p2)

σ(p2)α(p3)β + IWW
6 εαβρµ(p3)

σ(p2)α(p3)β

)
where the form factors are

IWW
1 (p2,p3;mf ) = (p2 ·p3)IWW

3 (p2,p3;mf )+p23I
WW
4 (p2,p3;mf )−

m2
f

4

(
C0(p

2
3,p

2
1,p

2
2,m

2
f ,0,0)

+C1(p
2
3,p

2
1,p

2
2,m

2
f ,0,0)+C1(p

2
3,p

2
1,p

2
2,0,m

2
f ,m

2
f )

+C2(p
2
3,p

2
1,p

2
2,m

2
f ,0,0)+C2(p

2
3,p

2
1,p

2
2,0,m

2
f ,m

2
f )
)

IWW
2 (p2,p3;mf ) = p22I

WW
5 (p2,p3;mf )+(p2 ·p3)IWW

6 (p2,p3;mf )+
m2
f

4

(
C0(p

2
3,p

2
1,p

2
2,m

2
f ,0,0)

+C1(p
2
3,p

2
1,p

2
2,m

2
f ,0,0)+C1(p

2
3,p

2
1,p

2
2,0,m

2
f ,m

2
f )

+C2(p
2
3,p

2
1,p

2
2,m

2
f ,0,0)+C2(p

2
3,p

2
1,p

2
2,0,m

2
f ,m

2
f )
)

IWW
3 (p2,p3;mf ) =

1

2

(
C12(p

2
2,p

2
1,p

2
3,m

2
f ,0,0)+C12(p

2
2,p

2
1,p

2
3,0,m

2
f ,m

2
f )
)

(A.7)

IWW
4 (p2,p3;mf ) = −IWW

5 (p3,p2;mf )

IWW
5 (p2,p3;mf ) =

1

2

(
C11(p

2
2,p

2
1,p

2
3,m

2
f ,0,0)+C11(p

2
2,p

2
1,p

2
3,0,m

2
f ,m

2
f )

+C1(p
2
2,p

2
1,p

2
3,m

2
f ,0,0)+C1(p

2
2,p

2
1,p

2
3,0,m

2
f ,m

2
f )
)

IWW
6 (p2,p3;mf ) = −IWW

3 (p2,p3;mf )
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[56] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and

D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[57] G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints,

arXiv:1703.07364 [INSPIRE].

[58] M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter

Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515]

[INSPIRE].

[59] Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from

galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope,

Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP09(2013)020
https://arxiv.org/abs/1305.6815
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6815
https://arxiv.org/abs/1706.04198
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04198
https://doi.org/10.1016/0550-3213(96)00322-7
https://arxiv.org/abs/hep-th/9602093
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602093
https://arxiv.org/abs/0802.0634
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0634
http://www.theory.caltech.edu/~preskill/ph230/notes/230Chapter3-Page23-74.pdf
https://doi.org/10.1103/PhysRevD.78.085014
https://arxiv.org/abs/0804.1156
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1156
https://arxiv.org/abs/0907.1535
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1535
https://doi.org/10.1016/0550-3213(84)90586-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B248,59%22
https://doi.org/10.1016/0550-3213(84)90587-X
https://doi.org/10.1016/0550-3213(84)90587-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B248,77%22
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B37,95%22
https://doi.org/10.1088/1475-7516/2017/01/039
https://arxiv.org/abs/1610.03063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.03063
https://arxiv.org/abs/1705.03897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03897
https://doi.org/10.1088/1475-7516/2014/04/022
https://arxiv.org/abs/1401.6457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6457
https://doi.org/10.1016/j.dark.2015.08.001
https://doi.org/10.1016/j.dark.2015.08.001
https://arxiv.org/abs/1506.03116
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03116
https://doi.org/10.1103/PhysRev.129.2786
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,129,2786%22
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565
https://arxiv.org/abs/1703.07364
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.07364
https://doi.org/10.1088/1475-7516/2011/03/051
https://arxiv.org/abs/1012.4515
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4515
https://doi.org/10.1103/PhysRevD.91.122002
https://arxiv.org/abs/1506.00013
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00013


J
H
E
P
1
0
(
2
0
1
7
)
1
6
5

[60] H.E.S.S. collaboration, A. Abramowski et al., Search for photon-linelike signatures from

dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301

[arXiv:1301.1173] [INSPIRE].

[61] M. Lisanti, Lectures on dark matter physics, in Proceedings, Theoretical Advanced Study

Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015),

Boulder CO U.S.A., 1–26 June 2015, pg. 399 [arXiv:1603.03797] [INSPIRE].

[62] IceCube collaboration, M.G. Aartsen et al., Search for annihilating dark matter in the sun

with 3 years of IceCube data, Eur. Phys. J. C 77 (2017) 146 [arXiv:1612.05949] [INSPIRE].

[63] M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark

matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].

[64] R. Catena and B. Schwabe, Form factors for dark matter capture by the sun in effective

theories, JCAP 04 (2015) 042 [arXiv:1501.03729] [INSPIRE].

[65] CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton

collisions at
√
s = 13 TeV and combination with 8 TeV data, Phys. Lett. B 768 (2017) 57

[arXiv:1609.05391] [INSPIRE].

[66] CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet

events in proton-proton collisions at
√
s = 8 TeV, Eur. Phys. J. C 75 (2015) 235

[arXiv:1408.3583] [INSPIRE].

[67] P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84

(2011) 014028 [arXiv:1103.0240] [INSPIRE].

[68] DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e+e−

collisions at
√
s = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019]

[INSPIRE].

[69] DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the

DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].

[70] U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent

interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454]

[INSPIRE].

[71] PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 C3F8

bubble chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].

[72] A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model independent direct

detection analyses, arXiv:1211.2818 [INSPIRE].

[73] N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus

elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].

[74] J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to

anomalous currents, arXiv:1705.06726 [INSPIRE].

– 33 –

https://doi.org/10.1103/PhysRevLett.110.041301
https://arxiv.org/abs/1301.1173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1173
https://arxiv.org/abs/1603.03797
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.03797
https://doi.org/10.1140/epjc/s10052-017-4689-9
https://arxiv.org/abs/1612.05949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05949
https://doi.org/10.1088/1475-7516/2013/10/019
https://arxiv.org/abs/1307.5955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5955
https://doi.org/10.1088/1475-7516/2015/04/042
https://arxiv.org/abs/1501.03729
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.03729
https://doi.org/10.1016/j.physletb.2017.02.010
https://arxiv.org/abs/1609.05391
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.05391
https://doi.org/10.1140/epjc/s10052-015-3451-4
https://arxiv.org/abs/1408.3583
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3583
https://doi.org/10.1103/PhysRevD.84.014028
https://doi.org/10.1103/PhysRevD.84.014028
https://arxiv.org/abs/1103.0240
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0240
https://doi.org/10.1140/epjc/s2004-02051-8
https://arxiv.org/abs/hep-ex/0406019
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0406019
https://doi.org/10.1140/epjc/s10052-009-0874-9
https://arxiv.org/abs/0901.4486
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4486
https://doi.org/10.1088/1475-7516/2013/04/050
https://arxiv.org/abs/1302.4454
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4454
https://doi.org/10.1103/PhysRevLett.118.251301
https://arxiv.org/abs/1702.07666
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.07666
https://arxiv.org/abs/1211.2818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2818
https://doi.org/10.1103/PhysRevC.89.065501
https://arxiv.org/abs/1308.6288
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6288
https://arxiv.org/abs/1705.06726
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06726

	Introduction
	Low-energy effective theory
	Dark matter models with heavy anomalous Z'
	Application to dark matter models
	Annihilation cross sections into the SM gauge bosons
	Relic abundance
	Indirect detection
	Gamma ray continuum searches
	Gamma ray line searches
	Neutrino telescopes

	Colliders and direct detection
	Summary of results

	Comments on validity of our results
	Conclusions
	Effective triple gauge boson couplings

