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an ansatz of basis functions. This is a highly non-trivial cross-check of the result, and our

methods pave the way for greatly simplified higher-order calculations.

Keywords: Scattering Amplitudes, Gauge Symmetry, Supersymmetric Gauge Theory

ArXiv ePrint: 1706.10162

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2017)073

mailto:almelid@pvv.ntnu.no
mailto:claude.duhr@cern.ch
mailto:einan.gardi@ed.ac.uk
mailto:ajmcleod@stanford.edu
mailto:christopher.white@qmul.ac.uk
https://arxiv.org/abs/1706.10162
https://doi.org/10.1007/JHEP09(2017)073


J
H
E
P
0
9
(
2
0
1
7
)
0
7
3

Contents

1 Introduction 1

2 The soft anomalous dimension 3

3 Wilson lines and the Riemann sphere 6

4 Ansatz for ∆(3)
n 10

4.1 Colour structure of ∆
(3)
n 10

4.2 Symmetries 11

4.3 Constraints from N = 4 Super Yang-Mills 12

4.4 An ansatz for ∆
(3)
n 13

5 The Regge limit 15

5.1 The Regge limit of ∆
(3)
4 15

5.2 Constraints from the Regge limit 17

6 The collinear limit 22

6.1 Collinear limits 22

6.2 Constraints from two-particle collinear limits 24

7 Discussion 28

A Alternative Regge limits 30

B Useful colour identities 32

1 Introduction

The calculation of higher-order perturbative corrections in non-abelian gauge theories is

crucial both for increasing the precision of collider physics predictions, as well as for our

understanding of field theory itself. To this end, it is important to understand those

quantities which dictate all-order properties of perturbative scattering amplitudes. One

such quantity is the soft anomalous dimension, which governs the long-distance singularities

of scattering amplitudes, and can also be deduced from the ultraviolet singularities of

correlators of Wilson line operators [1–7]. These divergences have been studied in QCD

for many decades for processes involving two partons and any number of colour singlet

particles [8–15]. The singularity structure of amplitudes involving several partons has been

examined more recently, in both the massless [16–39] and massive [40–57] cases. Very

recently, a first calculation of the multileg soft anomalous dimension for massless particles

– 1 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
3

has been presented at three-loop order [58]. Despite the highly complicated nature of the

relevant Feynman integrals, the final result is very simple when written in the right way. It

consists of a contribution that is consistent with the so-called dipole formula of refs. [27–29]

and depends termwise only on pairs of particles, a constant term depending on the colour

charges of sets of three partons, and a contribution involving sets of four partons that

depends on conformally invariant cross ratios of the invariants βi · βj , where βi is the four-

velocity of the ith Wilson line. It was found in ref. [58] that this last contribution, which

can first appear at three loops, can be written in terms of a restricted class of functions:

single-valued harmonic polylogarithms [59–61] (SVHPLs), whose arguments depend on

conformally invariant cross ratios.

The unexpected simplicity of the three-loop massless soft anomalous dimension calls for

a deeper understanding and suggests that one may obtain it by alternative means, without

surrendering to the complexity of Feynman integral evaluation. In particular, if one knows

that the answer can be expressed exclusively in terms of a restricted set of functions, then

one can use a bootstrap approach. That is, one may write an ansatz for the soft anomalous

dimension in terms of a basis of such functions, and constrain the coefficients of this ansatz

by applying known consistency constraints, such as the known behaviour of the result in

certain kinematic limits, e.g. the high-energy limit, or the limit in which a subset of the

Wilson lines becomes collinear. Such methods have been highly successful in constraining

amplitudes in planar N = 4 Supersymmetric Yang-Mills (SYM) theory [61–70].

In the present study, the overall ethos of the bootstrap is very similar. We start with a

detailed argument for why SVHPLs are the only relevant functions. This need apply only

to that part of the soft anomalous dimension depending on conformally invariant cross

ratios, which at three loops is the most difficult part to compute using Feynman diagrams.

Secondly, one must identify a number of constraints on an ansatz of such functions. As

will be demonstrated, there is a sufficient number of known constraints at three loops to

completely determine the soft anomalous dimension up to an overall multiplicative rational

factor. As well as known symmetry properties, we will make use of previously obtained

results coming from the Regge [33–35, 71–73] and collinear [29, 32] limits. Our results

provide new insights into the structure of the three-loop soft anomalous dimension, and

will also prove useful in investigating this quantity at higher loop orders.

The structure of the paper is as follows. In section 2, we briefly review the definition

and known properties of the soft anomalous dimension. In section 3, we provide a detailed

argument for why SVHPLs are expected to describe the part of the soft anomalous dimen-

sion depending on conformally invariant cross ratios. In section 4, we develop a general

ansatz for this function satisfying the relevant symmetries, and in sections 5 and 6 we derive

constraints on this ansatz based, respectively, on the Regge limit of 2-to-2 scattering and

on two-particle collinear limits. In section 7, we combine these constraints and reproduce

completely the form of the non-dipole-like part of the soft anomalous dimension, up to

an overall rational number factor. Finally, we discuss our results and conclude. Techni-

cal details concerning the Regge limit and colour algebra identities are collected in two

appendices.
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2 The soft anomalous dimension

In this section, we review the salient details regarding the soft anomalous dimension that

will be needed for what follows. We start by considering a scattering amplitude for n

massless partons (quarks or gluons) at fixed angle, such that all invariants pi · pj are large

relative to the QCD confinement scale. It is well-known that such amplitudes are beset by

infrared divergences, due to the emission of virtual radiation that may become soft and/or

collinear with the external partons. The amplitude, in d = 4 − 2ε spacetime dimensions,

then assumes the factorised form [11, 21–23, 26, 27]

An({pi}, ε, αs) = S({βi}, {Ti}, ε, αs)Hn({pi}, {ni}, ε, αs)
n∏
i=1

J(pi, ni, ε, αs)

J (βi, ni, ε, αs)
, (2.1)

where αs is the d-dimensional running coupling, Hn is a process-dependent hard function

that is finite as ε→ 0, and S and J are the soft and jet functions that collect infrared singu-

larities originating from emissions that are soft and collinear to particle i respectively. We

have introduced a colour operator Ti associated with line i, as in ref. [19], which converts

into a generator in the appropriate representation when acting on the hard function. The

soft function is thus a complicated object in colour space, in contrast to the jet functions,

which are colour-singlet objects. The auxiliary vectors {ni}, one for each external parton,

are used to define the jet functions in a gauge-invariant manner, such that their dependence

cancels between the jet functions and the hard function. We have suppressed renormali-

sation and factorisation scales in eq. (2.1) for brevity. The functions J are referred to as

eikonal jet functions, and correct for the double counting of contributions which are both

soft and collinear. The soft and eikonal jet functions depend only on the four-velocities {βi}
(where βi ∝ pi) of each external parton, and have formal definitions in terms of vacuum

expectation values of Wilson line operators. The soft function, for example, is given by

S({βi}, {Ti}, ε, αs) = 〈0 |T [Φβ1 Φβ2 . . .Φβn ]| 0〉 , (2.2)

where T[· · · ] represents a time-ordered product and

Φβi = P exp

[
iµεgsT

a
i

∫ ∞
0

ds βi ·Aa(sβi)
]

(2.3)

is a Wilson-line operator along a trajectory of the ith parton. The soft function is matrix-

valued in the space of possible colour flows in the hard interaction Hn. The jet functions

also have operator definitions [22], that will not be needed in what follows.

The operator defined in eq. (2.3) is invariant under reparametrisations of the contour,

which translates into an invariance under rescalings of the four-velocity, βi → κiβi. This

property, together with Lorentz invariance, dictates that the soft function for non-lightlike

Wilson lines can only depend on the quantities (related to the cusp angles between pairs

of Wilson lines)

γij =
2βi · βj + i0√
β2
i − i0

√
β2
j − i0

, (2.4)
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where i0 is the usual Feynman prescription, which must be taken into account when an-

alytically continuing the velocities to different kinematic regions. Upon regulating all

singularities in eq. (2.1), they may be combined into a single overall factor, such that the

amplitude can be written in the alternative factorised form [29, 30, 74]

An
(
{pi}, ε, αs(µ2)

)
= Zn

(
{pi}, {Ti}, ε, αs(µ2

f )
)
Hn
(
{pi},

µf
µ
, ε, αs(µ

2)

)
. (2.5)

Here, as in ref. [32], we have been careful in distinguishing the ultraviolet renormalisation

scale µ from the factorisation scale µf at which infrared singularities are regularised. The

complete divergent prefactor Zn satisfies the renormalisation group equation

d

d lnµf
Zn ({pi}, {Ti}, ε, αs(µf )) = −Zn ({pi}, {Ti}, ε, αs(µf )) Γn ({pi}, {Ti}, µf , αs(µf )) ,

(2.6)

which defines the soft anomalous dimension Γn. This will also be matrix-valued in colour

flow space, and the solution of eq. (2.6) may be formally written as

Zn
(
{pi}, {Ti}, ε, αs(µ2

f )
)

= P exp

{
−1

2

∫ µ2f

0

dλ2

λ2
Γn
(
{pi}, {Ti}, λ, αs(λ2)

)}
, (2.7)

where the P symbol denotes path ordering of these matrices according to the ordering of

the scales λ. The soft anomalous dimension is finite as ε→ 0, such that all singularities in

Zn are generated by performing the integral over λ, and using the known scale dependence

of the d-dimensional running coupling.

Much is known about the structure of Γn. In particular, explicit calculation of the

result for massless partons up to two-loop order [20, 21, 26] demonstrated that potential

three-particle correlations were absent at this order. This motivated a detailed study

of constraints on the soft anomalous dimension, based on the factorisation formula of

eq. (2.1), together with invariance under rescaling of the four-velocities {βi}. Invariance

of the soft function alone is broken for lightlike Wilson lines due to the appearance of

collinear singularities (indeed, the kinematic variables defined in eq. (2.4) diverge in this

limit). It is restored however, upon dividing by the eikonal jets, thus linking the breakdown

of scale invariance in the soft function to the jet function, and hence to the cusp anomalous

dimension (see ref. [27]). These considerations lead to a differential equation for the soft

anomalous dimension, whose minimal solution up to three-loop order is the so-called dipole

formula [27–29]

Γdip.
n ({pi}, {Ti}, µ, αs) = −1

2
γ̂K(αs)

∑
i<j

log

(
−sij − i0

µ2

)
Ti ·Tj +

n∑
i=1

γJi(αs). (2.8)

Here γ̂K is the cusp anomalous dimension, which is known up to three-loop order in

QCD [5, 7, 75, 76], with the Casimir of the representation of the Wilson lines scaled out;

γJi is an anomalous dimension associated with collinear singularities, and is also known to

three-loop order for both quark and gluon jets [39, 77]. We have introduced the Mandelstam

invariants

− sij − i0 = 2|pi · pj |e−iπλij , (2.9)

where λij = 1 if partons i and j are both incoming or both outgoing, and λij = 0 otherwise.
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As refs. [27–29] make clear, there are two possible sources of the correction to the

dipole formula beyond two-loop order. The first is related to the fact that eq. (2.8) contains

the cusp anomalous dimension with all colour dependence scaled out, thus assuming that

Casimir scaling holds to all orders. In fact, this breaks for the first time at four-loop order

due to the appearance of new colour structures, quartic Casimirs, as has very recently

been shown explicitly in ref. [78]. This implies that the form of eq. (2.8) will have to be

modified beyond three loops [27–29]. The second source of corrections starts already at

three loops, and constitutes a homogeneous solution to the differential equation for the

soft anomalous dimension derived in ref. [27]. This implies a kinematic dependence only

through conformally invariant cross ratios

ρijkl ≡
(−sij)(−skl)
(−sik)(−sjl)

=
(βi · βj) (βk · βl)
(βi · βk) (βj · βl)

, (2.10)

such that, up to three-loop order, the complete soft anomalous dimension assumes the form

Γn({pi}, {Ti}, µ, αs) = Γdip.
n ({pi}, {Ti}, µ, αs) + ∆n({ρijkl}, {Ti}, αs) , (2.11)

where the correction

∆n({ρijkl}, {Ti}, αs) =
(αs

4π

)3
∆(3)
n ({ρijkl}, {Ti}) +O(α4

s) (2.12)

begins at three-loop order. Whether or not it is nonzero at this order remained conjectural

for a number of years [32–37]. Recently, however, it was calculated for the first time in

ref. [58]. Before we quote its form, note that for any given four particles {i, j, k, l}, there

are potentially 24 cross ratios. However, eq. (2.10) implies

ρijkl = ρjilk = ρklij = ρlkji, (2.13)

which reduces the number of cross ratios to 6. In fact, further relations such as

ρijkl =
1

ρikjl
, ρijlkρilkj = ρijkl (2.14)

can be used to write all the cross ratios in terms of just 2 independent cross ratios, which

can be taken to be {ρijkl, ρilkj}. However, we will keep the second set of relations implicit

in the rest of this section to make the symmetry of the expressions more manifest. The

explicit form of the three-loop correction to the dipole formula can then be written

∆(3)
n ({ρijkl} , {Ti}) = 16 fabefcde

{
− C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

{
Ta
i ,T

d
i

}
Tb
jT

c
k (2.15)

+
∑

1≤i<j<k<l≤n

[
Ta
iT

b
jT

c
kT

d
l F(ρikjl, ρiljk) + Ta

iT
b
kT

c
jT

d
l F(ρijkl, ρilkj)

+ Ta
iT

b
lT

c
jT

d
k F(ρijlk, ρiklj)

]}
,

where

C = ζ5 + 2ζ2ζ3, (2.16)
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and the explicit form of the function F can be given by introducing variables {zijkl, z̄ijkl}
satisfying

zijklz̄ijkl = ρijkl, (1− zijkl)(1− z̄ijkl) = ρilkj . (2.17)

With these definitions, one has

F(ρijkl, ρilkj) = F (1− zijkl)− F (zijkl), (2.18)

where

F (z) = L10101(z) + 2ζ2[L001(z) + L100(z)]. (2.19)

In the previous equations and throughout this paper we suppress the dependence of func-

tions on the variables z̄ijkl. The function Lw(z) (where w is a word composed of zeroes

and ones) is a single-valued harmonic polylogarithm (SVHPL) [59]. These are special

combinations of harmonic polylogarithms [60] that are free of discontinuities, and thus

single-valued, in the kinematic region where z̄ is equal to the complex conjugate of z. This

region is a subset of the so-called Euclidean region, where all Mandelstam invariants are

spacelike with sij < 0. Unitarity of massless scattering amplitudes dictates that they can

only have singularities due to the vanishing of Mandelstam invariants, which do not occur

in the Euclidean region of fixed angle scattering. Thus, single-valuedness of the function

F reflects directly the analytic structure of the underlying amplitude.

Although eq. (2.15) was first written down when the explicit result was presented in

ref. [58], we will show in this paper that the exact functional form of the answer can be

deduced without a full calculation of the relevant Feynman integrals. Our first step is to

consider the nature of the mathematical functions that the result can depend on.

3 Wilson lines and the Riemann sphere

We start with a general analysis aimed at identifying the class of functions that depend

on a set of n four-velocities in a rescaling-invariant way. The discussion in this section is

independent of the number of loops, and we specialise to the three-loop case in the next

section.

One starts by considering the product of Wilson lines of eq. (2.2), whose vacuum

expectation value dictates the form of ∆n. Without loss of generality, we may choose all

Wilson lines in eq. (2.2) to be timelike and future-pointing (β0
i > 0). The Wilson-line

operator of eq. (2.3) is invariant under rescaling of its four-velocity, βi → κiβi. This allows

us to fix the value of β2
i for non-lightlike Wilson lines without affecting the correlator.

In principle this value can be different for each Wilson line. However, upon choosing a

common value, a correlator of n Wilson lines is completely determined by a set of n points

in three-dimensional hyperbolic space H3, namely the locus of all coordinates

βµ : (β0)2 − (β1)2 − (β2)2 − (β3)2 = R2, β0 > 0,

for some constant R. As noted already in section 2, any vacuum expectation value of

Wilson-line operators depends only on the cusp angles between pairs of lines, via the nor-

malised scalar products defined in eq. (2.4). In the hyperbolic space H3, this translates into
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the requirement that the soft anomalous dimension depends only on the geodesic distances

between pairs of points, rather than on their absolute position. Thus, a configuration of n

Wilson lines is mapped to a set of n points in H3, modulo any symmetry transformations

that leave the hyperbolic space invariant. The latter space is known as Confn(H3), namely

the set of configurations of n points on hyperbolic three-space. Given that Feynman inte-

grals can often be cast in terms of iterated integrals, one expects that they would appear

also in this case. However, to date there has been no systematic study of iterated integrals

on Confn(H3), which means that we do not know a suitable set of basis functions for the

soft anomalous dimension linking multiple massive partons.

The situation is simpler, however, for lightlike Wilson lines. In order to approach the

lightlike limit (which corresponds to taking R → 0 in the above coordinate system), it

is convenient to use an alternative coordinate system, exploiting the so-called upper half

space model of hyperbolic three-space, in which one identifies

H3 ' R2 × R+, (3.1)

with coordinates (x, y, r) ∈ R2 × R+. A given Wilson-line four-velocity βµi may then be

parametrised as

β0
i = 1 +

r2
i + x2

i + y2
i

4
, β1

i = xi, β2
i = yi, β3

i = 1− r2
i + x2

i + y2
i

4
. (3.2)

Each Wilson line satisfies β2
i = r2

i , but where different Wilson lines have distinct values

of ri. The lightlike limit corresponds to ri → 0, such that the points in hyperbolic space

move to the boundary. The latter has the topology of a sphere, which may be identified

with the plane R2 of eq. (3.1) upon stereographic projection. In the coordinate system of

eq. (3.1), products of four-velocities take the form

βi · βj =
1

2

[
(xi − xj)2 + (yi − yj)2 + r2

i + r2
j

]
=

1

2

(
|zi − zj |2 + r2

i + r2
j

)
, (3.3)

where we have identified the boundary of H3 with the Riemann sphere and defined the

complex coordinates

zj = xj + iyj and z̄j = xj − iyj . (3.4)

In the lightlike limit ri, rj → 0, conformally invariant cross ratios are given by

ρijkl =
(βi · βj)(βk · βl)
(βi · βk)(βj · βl)

ri,rj ,rk,rl→ 0
−−−−−−−−→ |zijkl|2 = zijklz̄ijkl , (3.5)

with

zijkl ≡
zij zkl
zik zjl

, zij = zi − zj , (3.6)

and equivalent definitions for the complex conjugates. Thus, cross ratios of scalar products

of Wilson-line velocities map to squares of cross ratios of complex distances on the Riemann

sphere. As above for H3, symmetries of the sphere, namely an SL(2,C) invariance, can

be factored out because only the angles between the Wilson lines matter, so that only
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conformally invariant ratios appear. We may write the correspondence implied by eq. (3.5)

more formally as

Confn(∂H3) 'M0,n, (3.7)

whereM0,n is the moduli space of Riemann spheres with n marked points. The advantage

of this latter identification is that the nature of iterated integrals for this space is com-

pletely known: they can always be expressed as linear combinations of products of multiple

polylogarithms, and the coefficients of this linear combination are rational functions [79].

The SL(2,C) invariance may be used to fix the positions of three of the n points.

Specifically considering the quadruple of particles {i, j, k, l}, one may choose

zi = zijkl, zj = 0, zk =∞, zl = 1, (3.8)

so that the only nontrivial position zi on the Riemann sphere may be identified with the

variable of eqs. (2.17). We have thus succeeded in furnishing the variables zijkl with a

geometric interpretation.

Recall that we have started from a configuration of timelike future-pointing Wilson

lines in Minkowski space. In the context of loop integrals it is convenient to use Euclidean

kinematics where all Lorentz invariants βi ·βj are negative. The two pictures are related by

analytic continuation. We note however that the phases acquired by the Lorentz invariants

in this process cancel in conformally invariant cross ratios, such as those in eq. (3.5).

Therefore our parametrization of the cross ratios in terms of zijkl and z̄ijkl remains valid

in the Euclidean region. In defining the functions we always refer to the Euclidean region

where z̄ijkl = z∗ijkl. One may then consider relaxing this condition, treating zijkl and z̄ijkl
as independent variables related to the cross ratios via eq. (3.5).

It is well known that scattering amplitudes are multivalued functions, and the disconti-

nuities across the branch cuts are related to the concept of unitarity. As a consequence, the

soft anomalous dimension cannot be an arbitrary combination of multiple polylogarithms,

but it is constrained by unitarity. A convenient tool to study the analytic properties of

multiple polylogarithms is the symbol and, more generally, the coproduct [79–87], which

maps a polylogarithm to a certain tensor product of polylogarithms of lower weight. Dis-

continuities only act in the first factor of the coproduct [86, 87], and so the first entry

in the coproduct can only have branch cuts dictated by unitarity [88, 89]. A massless

scattering amplitude can only have branch points when a scalar product between two ex-

ternal momenta vanishes or becomes infinite. Rescaling invariance then implies that the

soft anomalous dimension has branch cuts starting only at points where a conformally in-

variant cross ratio vanishes or becomes infinite. The relation between the cross ratios and

the complex variables zijkl in eq. (3.5) then implies that the scattering amplitude in the

Euclidean region must be a single-valued function of this complex variable [61, 90–97].

Single-valued multiple polylogarithms have been studied extensively in the literature.

They can be expressed as linear combinations of products of multiple polylogarithms and

their complex conjugates such that all branch cuts cancel. Moreover, they inherit many

of the properties of ordinary polylogarithms: they form a shuffle algebra and satisfy the
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same holomorphic differential equations and boundary conditions as their multi-valued

analogues. There are several ways to explicitly construct single-valued polylogarithms,

based on the Knizhnik-Zamolodchikov equation [59, 98], the coproduct and the action

of the motivic Galois group on multiple polylogarithms [87, 94, 99] and the existence of

single-valued primitives of multiple polylogarithms [96].

Let us discuss how the singularities of an amplitude manifest themselves in this lan-

guage. A known property of M0,n is that singularities occur only when marked points zi
and zj coincide. This corresponds to two Wilson lines becoming collinear, which is the

only case in which the soft anomalous dimension itself becomes singular.

At three-loop order, one may irreducibly connect at most four Wilson lines. From

the above discussion (e.g. eq. (3.8)), this implies that only one independent zijkl variable

will occur in each term in ∆
(3)
n . Thus, only the simplest instance of single-valued poly-

logarithms will show up, namely the single-valued version associated to harmonic poly-

logarithms (SVHPLs) with singularities only for z ∈ {0, 1,∞}, which have been studied

in detail in ref. [59]. For more general correlators involving more than four Wilson lines

beyond three-loop order, single-valued multiple polylogarithms will appear, depending on

more than one zijkl variable, corresponding to the fact that the complex dimension of

M0,n is n− 3.

To summarise, we expect that any rescaling-invariant function of n four-velocities can

be expressed in terms of single-valued multiple polylogarithms onM0,n. More precisely, we

expect to obtain a linear combination of products of single-valued multiple polylogarithms

and multiple zeta values (MZVs), whose coefficients are rational functions of the zi variables

and their complex conjugates with poles at most when two points coincide. At this point

a comment is in order: SVHPLs with argument z = 1 evaluate (if convergent) to special

combinations of MZVs called single-valued MZVs (SVMZVs) [99]. In particular, the single-

valued version of ζ2n is zero [99]. It is therefore tempting to restrict the set of MZVs

that can appear to SVMZVs, which would in particular imply that no powers of π could

appear in the final answer. As we will see shortly, this restriction is incorrect. Indeed, the

argument why only single-valued multiple polylogarithms can appear applies only to the

kinematic-dependent function, and does not extend to constants.

Let us conclude this section by commenting on how the analysis presented here is

connected to similar results in the literature. Above we have used the particular coordinate

transformation of eq. (3.2) in order to implement the map of eq. (3.7). Similar arguments

for reinterpreting Wilson lines have been made before. Reference [100], for example, uses

both coordinate and conformal transformations to map Wilson lines to static charges in

Euclidean AdS3 space, such that they move to the boundary of this space upon becoming

lightlike. The boundary of this space is a two-sphere, which can be mapped to M0,n

similarly to eq. (3.7). Reference [101] also considers mapping four-dimensional momenta to

a “celestial sphere” at infinity, aiming to develop a holographic picture of Minkowski-space

amplitudes.
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4 Ansatz for ∆(3)
n

The considerations of the previous section were generic and independent of the number of

loops. In this section we restrict ourselves to three loops, and we present the most general

ansatz for ∆
(3)
n in terms of SVHPLs based on symmetries. The ansatz will depend on a

certain number of free parameters that cannot be fixed from symmetries alone. These will

be fixed in subsequent sections using input from special kinematic limits.

4.1 Colour structure of ∆
(3)
n

The soft anomalous dimension depends on the colour quantum numbers and the four-

velocities of the Wilson lines. Since at three loops at most four Wilson lines can be

irreducibly connected by gluons, each term in ∆
(3)
n can involve at most four colour gener-

ators Ti, 1 ≤ i ≤ n. The colour structures that enter the soft anomalous dimension have

been proven in ref. [56] to correspond to graphs that remain completely connected when

the Wilson lines are removed. The full set of such connected colour factors at three-loop

order has been classified, and this then allows us to write the most general form that ∆
(3)
n

can take:

∆(3)
n =

∑
{i,j,k,l}

fabefcde Ta
iT

b
jT

c
kT

d
l Aijkl +

∑
{i,j,k}

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k Bijk (4.1)

+
∑
{i,j,k}

fabcT
a
iT

b
jT

c
k Cijk+

∑
{i,j}

fabefcde

{
Ta
i ,T

d
i

}{
Tb
j ,T

c
j

}
Dij +

∑
{i,j}

Ti ·Tj Eij ,

where the sums run over all sets {i, j, . . .} of distinct Wilson lines, and the coefficients Aijkl,

Bijk etc. are functions of the four-velocities of the Wilson lines entering each colour factor.

Equation (4.1), however, is still largely over-complete. First, it was shown in

refs. [27–29] that colour tripoles of the form fabcT
a
iT

b
jT

c
k are absent at any loop order

(a corresponding kinematic function would violate rescaling invariance) and so we must

have Cijk = 0 in eq. (4.1). Second, it is important to keep in mind that ∆
(3)
n is an operator

in colour space acting on the hard amplitude Hn in eq. (2.1). The hard function is a colour

singlet, which implies that it must be annihilated by the sum of all colour charge operators,(
n∑
i=1

Ta
i

)
Hn = 0 . (4.2)

We emphasise that the sum of all colour charge operators does not vanish in general, but

only when it acts on a colour-singlet state. In practice, this means that eq. (4.2) can only

be applied after all colour operators have been commuted all the way to the right of the

expression. For example, we have(
n∑
i=1

Ta
i

)
Tb
j Hn = ifabc Tc

j Hn 6= 0 . (4.3)

In refs. [74, 102, 103] the role of colour conservation in the context of ∆
(3)
n was analysed

in detail, and a basis of colour structures that are independent after eq. (4.2) was imposed
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was worked out. Upon using colour conservation to write eq. (4.1) in that basis, one

observes that not all of the coefficients in eq. (4.1) are independent. In particular, we

may choose Dij = Eij = 0, and rescaling invariance implies that Bijk is then a constant

independent of i, j and k.

To summarise, we find that the colour structure of ∆
(3)
n is very constrained, and the

most general ansatz for the colour structure of ∆
(3)
n is

∆(3)
n =

∑
{i,j,k,l}

fabefcde Ta
iT

b
jT

c
kT

d
l Aijkl(ρikjl, ρiljk)

− 16C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k ,

(4.4)

where we have rewritten the summation in the second line, and pulled out an overall

numerical factor, for later convenience. From section 3 we know that the functions Aijkl
can be expressed in terms of SVHPLs, but they cannot be constrained any further by

analysing colour structure alone. The functional form is, however, heavily constrained on

general grounds by symmetries, as we will discuss in the next section.

4.2 Symmetries

Much like the scattering amplitude itself, the soft anomalous dimension must respect a

number of symmetries and identities. Most directly, given that the external particles have

been replaced by Wilson lines, the soft anomalous dimension admits Bose symmetry — that

is, invariance under the simultaneous interchange of both the colour and kinematic indices

associated with any two lines i and j. The functions Aijkl in eq. (4.4) can therefore depend

on the indices {i, j, k, l} only through their kinematic arguments. We then immediately

see that we can rewrite eq. (4.4) in the form of eq. (2.15), but where now the coefficient C

and the function F are regarded as undetermined. In other words, the problem of pinning

down ∆
(3)
n amounts to determining F and C.

Note that Bose symmetry together with the antisymmetry of the structure constants

in eq. (2.15) also implies that F is antisymmetric in its two arguments:

F(ρijkl, ρilkj) = −F(ρilkj , ρijkl) . (4.5)

We see from eqs. (3.5) and (3.8) that both ρijkl and ρilkj can be written in terms of zijkl
and z̄ijkl:

ρijkl = zijkl z̄ijkl and ρilkj = (1− zijkl)(1− z̄ijkl) . (4.6)

Combined with eq. (4.5), this means that F can be recast in the form of eq. (2.18), where

once again the function F is to be interpreted as undetermined.

In addition to Bose symmetry, the function ∆
(3)
n has an additional property when seen

as a function of the variables zijkl and z̄ijkl: it must be real in the Euclidean region, and

in particular when z̄ijkl = z∗ijkl. SVHPLs are real-analytic functions of their argument [59],

and hence complex conjugation corresponds to complex-conjugating the argument. This
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implies that the function F is invariant under the interchange z̄ijkl ↔ zijkl. This symmetry

acts on SVHPLs through reversal of words [59],

Lw(z̄) = Lw̃(z) + . . . . (4.7)

where w̃ is the word obtained upon reversing the word w, and the ellipsis denotes terms

proportional to multiple zeta values that can be worked out if needed, but are irrelevant

for the following.

4.3 Constraints from N = 4 Super Yang-Mills

Aside from symmetries, the function F and the constant C are constrained by additional

properties. One such property comes from the observation that ∆
(3)
n is the same in QCD as

it is in N = 4 Supersymmetric Yang-Mills (SYM) theory, since at this order contributions

sensitive to the differing matter content in these theories are entirely contained in the dipole

contribution to the soft anomalous dimension given in eq. (2.8) [32]. This is advantageous

because L-loop amplitudes in N = 4 SYM are expected to have uniform transcendental

weight (or just weight) 2L. Multiplicative factors of ε−m in dimensional regularization

contribute a factor m to this weight, dictating that the weight of the remaining function

should be 2L −m. The soft anomalous dimension, which is associated with a single pole

in ε in the amplitude, is thus expected to have uniform transcendental weight five at three

loops. Although this property remains conjectural, it is obeyed by all previously calculated

amplitudes in N = 4 SYM theory, cf., e.g., refs. [62–70, 104–109].

The transcendental weight of a multiple polylogarithm corresponds to the number

of integrations appearing in the definition of the function (where these integrations are

required to take a specific form, see refs. [59–61]). For example, rational factors have

weight zero, while logarithms correspond to integrating once over the kernel dx/x and so

have weight one. In fact, logarithms are the only functions that can appear at weight one

in the space of multiple polylogarithms. The Riemann zeta value ζn is also assigned weight

n since it appears at special values of weight n polylogarithms. The weight of a product

of two multiple polylogarithms is the sum of their individual weights. The SVHPL Lw(z)

is a linear combination of products of ordinary harmonic polylogarithms (HPLs) and their

complex conjugates, such that each term in the sum has weight equal to the length |w| of

the word w. The weight of Lw(z) is therefore defined to be |w|.
It is additionally believed that the soft anomalous dimension in N = 4 SYM is a pure

function — that is, a function without kinematic-dependent prefactors. This can be seen

by considering the maximally-helicity-violating (MHV) amplitudes in this theory, which

are not themselves pure functions but are expected to be linear combinations of pure func-

tions dressed by simple rational prefactors [110–113]. For example, the on-shell four-point

amplitude is a linear combination of pure functions multiplying the three prefactors 1/(st),

1/(su), and 1/(tu), each of which corresponds to a different tree-level channel [109]. How-

ever, these rational prefactors only contribute to the hard function H4 in the factorization

scheme of eq. (2.5), implying that the remaining factor Z4 must be a pure function of

uniform weight. Since, moreover, the soft anomalous dimension matrix is independent of
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the helicity structure of the underlying hard scattering process, it must be endowed with

this property more generally. We conclude that ∆
(3)
n is a pure function of uniform weight,

whose only kinematic dependence appears in the SVHPLs themselves.

4.4 An ansatz for ∆
(3)
n

We now combine all these ingredients and construct an ansatz for the function F and

constant C, and thus for ∆
(3)
n . Relabelling indices and using the permutation properties of

the colour factors, eq. (2.15) can be recast in the form:

∆(3)
n = 16

∑
1≤i<j<k<l≤n

Ta
iT

b
jT

c
kT

d
l

[
fabefcde

(
F (ziljk)− F (zikjl)

)
+ facefbde

(
F (zilkj)− F (zijkl)

)
+ fadefbce

(
F (ziklj)− F (zijlk)

)]
− 16C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k .

(4.8)

For a given set of four particles {i, j, k, l}, this formula contains the variables zijkl with

six permutations of the indices. Actually, we may rewrite the formula in terms of a single

permutation zijkl, based on the fact that the cross ratio transformations of eqs. (2.13)

and (2.14) imply, through eq. (2.17), the following relations:

zijkl =
1

zikjl
= 1− zilkj =

zijlk
zijlk − 1

. (4.9)

Equation (4.8) then becomes

∆(3)
n = 16

∑
1≤i<j<k<l≤n

Ta
iT

b
jT

c
kT

d
l

[
fabefcde

(
F (1− 1/zijkl)− F (1/zijkl)

)
(4.10)

+ facefbde

(
F (1−zijkl)− F (zijkl)

)
+ fadefbce

(
F (1/(1−zijkl))− F (zijkl/(zijkl−1))

)]
− 16C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k .

A general ansatz for F (z) consists of 32 weight five SVHPLs, 8 weight three SVHPLs

multiplied by ζ2, 4 weight two SVHPLs multiplied by ζ3, 2 weight one SVHPLs multiplied

by ζ4, and finally a general linear combination of the 2 weight five constants ζ5 and ζ2ζ3, all

with rational prefactors.1 This gives 48 distinct terms. Similarly, a general ansatz for the

constant C consists of a general linear combination of the 2 independent weight five MZVs,

with rational prefactors. However, this näıve ansatz is overly large for two reasons. First,

because of the invariance under the interchange zijkl ↔ z̄ijkl and the way this symmetry

acts on SVHPLs via reversal of words (see eq. (4.7)), only palindromic combinations of

1The space of MZVs contains only even powers of π, thus forbidding the appearance of weight four

SVHPLs.
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weight five SVHPLs need to be considered. Second, the function F (zijkl) only appears in

our ansatz (4.10) via the differences (cf. eq. (2.15)):

F(ρikjl, ρiljk) =F (1− 1/zijkl)− F (1/zijkl),

F(ρijkl, ρilkj) =F (1− zijkl)− F (zijkl),

F(ρijlk, ρiklj) =F (1/(1− zijkl))− F (zijkl/(zijkl − 1)).

(4.11)

We should therefore only consider the number of linearly independent combinations of

SVHPLs that show up in these expressions (a trivial example is that a constant term in

F immediately drops out when considering the differences in eq. (4.11)). In fact, we can

go one step further, as the three terms in the square brackets of eq. (4.8) are not linearly

independent due to the fact that the colour factors appearing there are related by the

Jacobi identity

facefbde = fabefcde + fadefbce. (4.12)

One may choose to eliminate any of the three products of structure constants inside the

square brackets in eq. (4.10), after which only two of the combinations

F1(z) ≡ F (1− 1/z)− F (1/z) + F (1− z)− F (z),

F2(z) ≡ F (1/z)− F (1− 1/z) + F (1/(1− z))− F (z/(z − 1)),

F3(z) ≡ F (z)− F (1− z) + F (z/(z − 1))− F (1/(1− z)) = −F1(z)− F2(z),

(4.13)

will remain. For example, eliminating fabefcde one gets

∆(3)
n = 16

∑
1≤i<j<k<l≤n

Ta
iT

b
jT

c
kT

d
l

[
facefbdeF1(zijkl) + fadefbceF2(zijkl)

]
(4.14)

− 16C
n∑
i=1

∑
1≤j<k≤n
j,k 6=i

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k .

We should thus restrict our attention to the linear combinations of F (z) given in eq. (4.13).

Note that these functions are related by the transformations

F2(z) = F1

(
z

z − 1

)
, F3(z) = F1(1− z), F2(z) = F3

(
1

z

)
. (4.15)

We see from eq. (4.9) that upon taking z = zijkl in (4.15) these three relations correspond

directly to exchanging momenta pi ↔ pj , pi ↔ pk, and pi ↔ pl respectively. Moreover, the

functions in eq. (4.13) are each symmetric under one of the above permutations, namely

F3(z) = F3

(
z

z − 1

)
, F2(z) = F2(1− z), F1(z) = F1

(
1

z

)
. (4.16)

The kinematic relation −F3(z) = F1(z) + F2(z), in conjunction with the Jacobi iden-

tity (4.12), allows us to express ∆
(3)
n in many ways.2 In particular, we may rewrite eq. (4.14)

2We note in passing the structure shared by the kinematic relation −F3(z) = F1(z)+F2(z) and the colour

Jacobi identity (4.12), which is reminiscent of the known colour-kinematics duality for loop integrands [114].
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in a way that distinguishes the components which are symmetric or antisymmetric with

respect to a given pair of Wilson lines. For example, we obtain

∆(3)
n = −16C

n∑
i=1

∑
1≤j<k≤n
j,k 6=i

fabefcde

{
Ta
i ,T

d
i

}
Tb
jT

c
k (4.17)

+ 8
∑

1≤i<j<k<l≤n
Ta
iT

b
jT

c
kT

d
l

[
fabefcde

(
F1(zijkl)− F2(zijkl)

)
− (facefbde + fadefbce)F3(zijkl)

]
,

where the first term in the last line is manifestly antisymmetric in both colour and kine-

matics under i↔ j interchange, while the second is symmetric in both under this transfor-

mation. This clarifies the interpretation of the combinations of F (z) defined in eq. (4.13).

Having now understood that Bose symmetry and the Jacobi identity imply that only

the combinations of F (z) appearing in eq. (4.13) can contribute to the soft anomalous

dimension, we would like to write down an ansatz which is not over-complete. There is,

however, a subtlety in doing so, namely there can be cancellations between the terms on the

right-hand side of the expressions in eq. (4.13) involving functions of different arguments,

and which are not necessarily manifest until functional identities amongst SVHPLs are

taken into account. To deal with this, one may first convert all SVHPLs to involve the

same argument, before reducing to a minimal basis of independent functions such as the

Lyndon basis of ref. [115] using the aforementioned shuffle algebra. Then, combinations of

SVHPLs that vanish in eqs. (4.13) can be excluded from our ansatz. In combination with

the requirement of invariance under the interchange z̄ ↔ z, this results in an ansatz for

F (z) involving only 11 parameters:

F (z)= a1L00000 + a2L00100 + a3L10001 + a4L10101 + a5 (L01001 + L10010)

+ a6 [L00101+L10100+2(L00011+L11000)]+a7 [L11010+L01011+3(L00011+L11000)]

+ a8 ζ2L000 + a9 ζ2 (L001 + L100) + a10 ζ3 L00 + a11 ζ
2
2 L0, (4.18)

where each ai ∈ Q is an undetermined rational numerical coefficient, and we have sup-

pressed the dependence of the SVHPLs on their argument, Lw ≡ Lw(z). Writing our

ansatz for the constant C explicitly as

C = a12 ζ5 + a13 ζ2 ζ3 , (4.19)

we have a total of 13 undetermined rational coefficients. In other words, a correct under-

standing of the symmetries of ∆
(3)
n and the space of functions it can depend on determines

its value up to only 13 rational coefficients. In order to determine these numerical coeffi-

cients using only general constraints, we now turn to the Regge and collinear limits.

5 The Regge limit

5.1 The Regge limit of ∆
(3)
4

The study of scattering amplitudes in the high-energy or Regge limit predates the use of

QCD as a field theory of strong interactions (see e.g. ref. [116] for a review). In the case
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of 2 → 2 scattering, one may parametrise an amplitude according to the centre-of-mass

energy s and the momentum transfer t. The Regge limit then corresponds to

s� −t, (5.1)

and is such that amplitudes become dominated by a power-like growth in energy. In

perturbation theory at leading power in (−t)/s, this manifests itself as logarithmically

enhanced terms

αps logm
(
s

−t

)
, m ≤ p (5.2)

dressing the Born amplitude, that can be resummed to all orders in perturbation the-

ory. The link between the Regge limit and infrared singularities was first explored in

refs. [17, 18]. Wilson lines naturally occur in both contexts (see also ref. [117]) and the

subject has been more recently studied in refs. [33–35, 71–73, 118, 119]. The Regge limit

was first used as a constraint on the soft anomalous dimension in refs. [33, 34] where the

dipole formula was shown to generate all infrared singularities at leading- and next-to-

leading logarithmic accuracy in the high-energy limit in the real part of the amplitude.

These papers also showed that the absence of super-leading logarithms with m > p in

eq. (5.2) already provides a useful constraint on ∆
(3)
4 . Below we will see that this is in-

deed so, but we will be able to go further and provide powerful constraints on ∆
(3)
4 using

the state-of-the-art knowledge of high-energy logarithms deduced using rapidity evolution

equations [35, 73]. Reference [73] in particular established the structure of high-energy

logarithms at three loops and examined the infrared singular structure of the Regge limit

in detail, and we will make direct use of the conclusions reached there.

For the present analysis, we will use the information that at three loops the dipole form

of the soft anomalous dimension, eq. (2.8), correctly predicts the highest three powers of

large logarithms in the real part of the amplitude [73], and the highest two powers of

large logarithms in the imaginary part [35]. These statements can be translated into the

constraint that these or higher powers of large logarithms are absent from ∆
(3)
4 in all Regge

limits. More specifically, the appearance of logm(s/(−t)) is excluded for m ≥ 1 in the real

part and m ≥ 2 in the imaginary part of ∆
(3)
4 in these limits. There is a different Regge

limit corresponding to every partition of the partons {1, 2, 3, 4} into an incoming pair and

outgoing pair. The Regge limit in which partons i and j are incoming should be evaluated

in the region where the Mandelstam invariants s ≡ sij and skl with {i, j, k, l} = {1, 2, 3, 4}
are positive while all others are negative, as dictated by eq. (2.9). Conversely, our ansatz

is most naturally formulated in the Euclidean region where all Mandelstam invariants are

negative, since it is only here that ∆
(3)
4 is single-valued. Thus, to get to the Regge limit in

which partons i and j scatter into partons k and l, we must first analytically continue our

ansatz into the appropriate Minkowski region and then take the limit s� (−t) for this set

of incoming and outgoing particles. This procedure will be described in more detail in the

remainder of this section.
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5.2 Constraints from the Regge limit

Analytic continuation of invariants away from the Euclidean region involves several steps

that will be described in the following.

A. Analytic continuation to incoming Wilson lines. Let us start with our ansatz

in the Euclidean region where all Mandelstam invariants are negative in the case of n = 4

coloured partons, and any number of additional colourless particles, i.e., the momenta of

the four partons do not sum to zero. We want to analytically continue our ansatz to the

physical region where β1 and β2 are incoming while the other two Wilson lines are outgoing.

From eq. (2.9) we know that the phase of a Mandelstam invariant sij is determined by

whether both βi and βj are ingoing or outgoing or not. This in turn determines the phase

of the cross ratios:

ρ1234 =
(−s12 − i0)(−s34 − i0)

(−s13 − i0)(−s24 − i0)
=

∣∣∣∣s12s34

s13s24

∣∣∣∣ e−2iπ ,

ρ1432 =
(−s14 − i0)(−s23 − i0)

(−s13 − i0)(−s24 − i0)
=

∣∣∣∣s14s23

s13s24

∣∣∣∣ . (5.3)

Although the cross ratios do not change their value, it would be incorrect to set the phase

on the right-hand side of this equation to 1, because the amplitude has branch cuts. It is

therefore important to keep track of such phases to ensure that the amplitude is evaluated

on the correct Riemann sheet, starting from the Euclidean region where the amplitude is

real. Phases are generated for all invariants that become timelike (in our case s12 and s34)

but not for those that remain spacelike (all others). In performing this analytic continuation

we may choose paths for s12 and s34 along a loop in the upper half plane, consistent with

the Feynman +i0 prescription (cf. eq. (2.9)):

−s12 − i0→ |s12| e−iπt and − s34 − i0→ |s34| e−iπt , with t ∈ [0, 1) , (5.4)

where t = 0 corresponds to the starting point, the Euclidean region, while t → 1− corre-

sponds to the final value where the invariants are timelike. Consequently, the cross ratio

ρ1234 moves along a circle around the origin, in agreement with eq. (5.3):

ρ1234(t) = |ρ1234| e−2iπt , with t ∈ [0, 1) . (5.5)

∆
(3)
n , however, depends on the cross ratios and the Mandelstam variables only through the

variables (z, z̄) ≡ (z1234, z̄1234) defined in eq. (3.5), and so we need to work out the path

travelled by (z, z̄) as ρ1234 moves along the circle. We start by inverting eq. (4.6), and

we find:

z = Z+(ρ1234, ρ1432) and z̄ = Z−(ρ1234, ρ1432) , (5.6)

with

Z± =
1

2

(
1 + ρ1234 − ρ1432 ±

√
(1− ρ1234 − ρ1432)2 − 4ρ1234ρ1432

)
. (5.7)

We then see that (z, z̄) move along the paths parametrised by

z(t) = Z+(ρ1234(t), ρ1432) and z̄(t) = Z−(ρ1234(t), ρ1432) . (5.8)
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Figure 1. Paths in the complex plane for the analytic continuation of the variables z and z̄ to the

physical region where partons 1 and 2 are incoming.

The paths are shown in figure 1. We see that, although we started from a point where

z̄ = z∗, this relation is no longer valid for arbitrary t. As a consequence, ∆
(3)
4 will not be

single-valued for generic t, and so the function may develop an imaginary part and will not

be single-valued after analytic continuation. Note that the variables z and z̄ exchange their

roles at the end of the analytic continuation, such that |z(0)|2 = |z(1)|2, in agreement with

the observation that the absolute value of ρ1234 does not change. We also see from figure 1

that z̄(t) crosses the branch cut starting at z̄ = 0 clockwise, while z(t) avoids all branch

cuts. This is equivalent to the combined trajectory drawn by z̄(t) and z(t) encircling the

branch point at the origin. The combined phases are given by

lim
t→1

z(t)z̄(t) = |z|2 e−2iπ ,

lim
t→1

(1− z(t))(1− z̄(t)) = |1− z|2 ,
(5.9)

in agreement with eq. (5.3). The previous equation is in fact sufficient to perform the

analytic continuation of the SVHPLs that appear in our ansatz in eq. (5.3). Indeed, since

only the branch cut starting at z = 0 is crossed, we can use the shuffle algebra properties

of SVHPLs to make all discontinuities explicit: Lw(z) has a branch point at z = 0 if and

only if the rightmost letter in the word w is a ‘0’. We can thus use the shuffle algebra to

recast Lw(z) in a form where the only words whose rightmost entry is a ‘0’ are those of the

form (0, . . . , 0). These SVHPLs are just powers of logarithms of z and z̄ and are simple to

analytically continue, e.g.,

L10(z) = L0(z)L1(z)− L01(z) −→ (L0(z)− 2iπ)L1(z)− L01(z) . (5.10)

Applying this procedure to every SVHPL in eq. (4.18), we can analytically continue our

ansatz to the physical region where the Wilson lines 1 and 2 are incoming.
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Let us conclude by discussing how the analytic continuation changes if other Wilson

lines are incoming.

• If the Wilson lines 1 and 4 (or 2 and 3) are incoming, then only ρ1432 acquires a phase:

(ρ1234, ρ1432) −→ (ρ1234, ρ1432 e
−2iπ) . (5.11)

Repeating the previous analysis, one finds that z̄(t) avoids all branch cuts, while z(t)

crosses the branch cut starting at z = 1 in the clockwise direction. The imaginary

part can be determined in a way similar to the previous case, by using the shuffle

algebra to make all discontinuities at z = 1 explicit:

L01(z) = L0(z)L1(z)− L10(z) −→ L0(z) (L1(z) + 2iπ)− L10(z) . (5.12)

• If the Wilson lines 1 and 3 (or 2 and 4) are incoming, then both ρ1234 and ρ1432

acquire a phase:

(ρ1234, ρ1432) −→ (ρ1234 e
2iπ, ρ1432 e

2iπ) . (5.13)

This time both z(t) and z̄(t) cross branch cuts starting at z = 0 and z̄ = 1, respec-

tively, going counterclockwise. This is equivalent to the contour drawn by z(t) and

z̄(t) together encircling the branch point at infinity in the clockwise direction, and

we can extract the imaginary parts as in the previous cases.

We have thus seen that analytic continuation to the physical region of 2-to-2 scattering

takes the function away from the region where it is single-valued, generating imaginary

parts. Thus after analytic continuation the function will be expressed in terms of ordinary

harmonic polylogarithms. We have also seen that for each pair of incoming particles, there

is a distinct branch point — one of the three {0, 1,∞}— which is encircled by the combined

trajectory of z(t) and z̄(t).

B. The momentum conserving limit. Having performed the analytic continuation,

our ansatz is now valid in the region where two specific partons are incoming. Below we

only discuss the case where the partons 1 and 2 are incoming, and all other cases are

similar. The kinematics does not yet correspond to a massless 2-to-2 scattering, because

this requires momentum conservation among the partonic momenta, in addition to the

constraint s12 + s13 + s23 = 0, with s12 > 0 and s23 < 0. Since we will be interested in

the Regge limit s12 � (−s23), we can assume without loss of generality that we work in a

region where s12 is greater than (−s23). Imposing these constraints, we see that the cross

ratios become

ρ1234 =

(
s12

s12 + s23

)2

and ρ1432 =

(
s23

s12 + s23

)2

. (5.14)

It is easy to check that in the momentum conserving limit eq. (4.6) implies:

z̄ = z =
s12

s12 + s23
> 1 . (5.15)

Having started from a complex conjugate pair, z̄ = z∗, the momentum conserving limit

corresponds to the situation where z and z̄ approach the real axis. Care is needed, however,
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because z and z̄ approach the real axis from opposite sides. Indeed, if we assume that in

the Euclidean region z and z̄ were in the upper and lower half planes respectively, then

after analytic continuation z and z̄ have negative and positive imaginary parts, respectively.

Hence, in the momentum conserving limit z approaches the real axis from below, while z̄

approaches it from above. Equation (5.15) then implies that some harmonic polylogarithms

may develop opposite imaginary parts in the limit, e.g.,

log(1− z)
s12+s13+s23=0−−−−−−−−−−→ log

(
−s23

s12 + s23

)
+ iπ , (5.16)

log(1− z̄)
s12+s13+s23=0−−−−−−−−−−→ log

(
−s23

s12 + s23

)
− iπ . (5.17)

Let us conclude by commenting on the class of functions that appear in the momentum

conserving limit. Since z̄ = z, we can write ∆
(3)
4 entirely in terms of ordinary HPLs in

the single variable z/(z− 1) = s12/(−s23), in agreement with all known results for on-shell

four-point amplitudes in QCD and N = 4 SYM [104, 109, 120–129].

C. Constraints from the Regge limit. Having at our disposal the ansatz in the

physical region of a 2-to-2 scattering, we can proceed and consider its Regge limit. There

are three different choices for the incoming particles, and for each choice we can consider

two different Regge limits, corresponding to forward and backward scattering. In the

following we discuss one of these limits in detail, and we only comment on the other limits

at the very end.

Let us consider the Regge limit of the scattering where the partons 1 and 2 are incoming

and s12 � (−s23). We know that our ansatz can be written in terms of HPLs in x ≡
s12/(−s23), and we can expand each HPL in a power series in 1/x� 1. Dropping power-

suppressed terms, we find that the functions Fi in eq. (4.13) reduce to

Re(F1)
s12�−s23−−−−−−→−8a1

15
L5+

(
16a1−12a2+16a6+24a7−

8a8

3

)
ζ2L

3+(4a10+16a7)ζ3L
2

+(−48a1−4a11+48a3−48a4+48a5−288a6−432a7+24a8+24a9)ζ2
2L

+(12a10+48a2−24a3+48a4+24a5−24a6+72a7−8a9)ζ2ζ3

+(−24a2+12a3−8a4−36a5+12a6−4a7)ζ5,

Re(F2)
s12�−s23−−−−−−→ 4a1

15
L5+

(
8a2+12a3+12a5+20a6+28a7+

4a8

3

)
ζ2L

3

+(−2a10−8a7)ζ3L
2+(2a11+48a2−24a3+48a4+72a5+168a6+264a7−24a9)ζ2

2L

+(12a10−24a2+24a3−48a4−24a5+24a6+72a7+4a9)ζ2ζ3

+(12a2−6a3+4a4+18a5−6a6+2a7)ζ5,

Re(F3)
s12�−s23−−−−−−→ 4a1

15
L5+

(
−16a1+4a2−12a3−12a5−36a6−52a7+

4a8

3

)
ζ2L

3

+(−2a10−8a7)ζ3L
2+(48a1+2a11−48a2−24a3−120a5+120a6+168a7−24a8)ζ2

2L

+(−24a10−24a2−144a7+4a9)ζ2ζ3

+(12a2−6a3+4a4+18a5−6a6+2a7)ζ5, (5.18)
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and

1

π
Im(F1)

s12�−s23−−−−−−→ 4a1

3
L4+(−16a1+18a2−24a6−36a7+4a8)ζ2L

2+(−4a10−16a7)ζ3L

+

(
48a1

5
+2a11+18a2−24a3+24a4−24a5+120a6+180a7−8a8−12a9

)
ζ2

2 ,

1

π
Im(F2)

s12�−s23−−−−−−→
(
a2

6
+a3+a5+

7a6

3
+

10a7

3

)
L4

+(−2a2−6a3+4a4+10a5+2a6+6a7−2a9)ζ2L
2

+(8a10+4a3−8a4−4a5+4a6+44a7)ζ3L

+

(
48a1

5
+2a11+

18a2

5
−68a3+

64a4

5
+12a5+76a6+

632a7

5
−8a8−24a9

)
ζ2

2 ,

1

π
Im(F3)

s12�−s23−−−−−−→
(
−4a1

3
− a2

6
−a3−a5−

7a6

3
− 10a7

3

)
L4

+(16a1−16a2+6a3−4a4−10a5+22a6+30a7−4a8+2a9)ζ2L
2 (5.19)

+(−4a10−4a3+8a4+4a5−4a6−28a7)ζ3L

+

(
12a5−

96a1

5
−4a11−

108a2

5
+92a3−

184a4

5
−196a6+

1532a7

5
+16a8+36a9

)
ζ2

2 ,

where we have adopted the notation L ≡ log x. These expressions can be compared to

the results of refs. [35, 73], as mentioned above. This requires the coefficients of Lm, with

m ≥ 1 in the real part of the amplitude and m ≥ 2 in the imaginary part, to vanish

in eqs. (5.18) and (5.19). We then find six independent conditions on the undetermined

coefficients ai in our ansatz for F (z).

We have carried out the same analysis in the remaining five Regge limits, and the

expansion of our ansatz in two of these limits — where partons 1 and 3 are incoming

and s13 � (−s14), and where partons 1 and 4 are incoming and s14 � (−s13) — are

presented in appendix A. Each Regge limit gives rise to six constraints, but those coming

from limits involving the same pairs of incoming (or outgoing) partons are identical. Any

pair of Regge limits involving different incoming (or outgoing) partons gives rise to eight

independent constraints between them, after which considering additional Regge limits

does not give rise to further constraints. Putting together the constraints from the above

Regge limit and one of the limits considered in appendix A, we can thus fix 8 out of the

13 free parameters in our ansatz in eq. (4.18):

(a1, . . . , a8) =

(
0,
a10

10
,−a10

10
− a11

48
,
a9

2
− 3a10

20
− a11

12
,
a10

10
+
a11

48
,

7a10

20
,−a10

4
,−3a10

5

)
.

(5.20)

Having discussed the Regge limit in detail, we now turn to the kinematic limit in which

two Wilson lines become collinear.
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6 The collinear limit

6.1 Collinear limits

As has already been considered in refs. [29, 32], further kinematic constraints on the soft

anomalous dimension arise from collinear limits. We briefly review this argument here. Let

us now work in the kinematic region where all n coloured particles carrying momenta {pk}
are outgoing, and consider the limit in which two of these partons, i and j, become collinear.

In this limit pi · pj → 0, resulting in kinematic divergences inversely proportional to pi · pj .
It is well known that for final-state collinear partons3 these divergences factorise [132–135],

such that one may write

An(p1, p2, {pj};µ, ε, αs)
1‖2−−→ Sp(p1, p2,T1,T2;µ, ε, αs)An−1(P, {pj}, µ, ε, αs). (6.1)

Without loss of generality, we have taken particles 1 and 2 collinear, where {pj}, j =

3 . . . n denotes the set of remaining momenta. The right-hand side contains the (n − 1)-

particle amplitude in which the momenta p1 and p2 are replaced by the sum P = p1 + p2,

multiplied by a universal splitting function Sp, which collects all singular contributions to

the amplitude due to particles 1 and 2 becoming collinear. Care must be taken to interpret

the colour structure of eq. (6.1). The amplitudes An and An−1 live in n-parton and (n−1)-

parton colour space respectively. However, one may write a colour generator on the line of

momentum P as

T = T1 + T2, (6.2)

which promotes the amplitude An−1 to live in n-parton colour space after all. Crucially, the

splitting amplitudes Sp must only depend on the quantum numbers of particles 1 and 2.

It is this property that we wish to exploit, following refs. [29, 32], in order to constrain the

soft anomalous dimension. Let us briefly recall how the constraint arises, before analysing

its implications regarding our ansatz.

One starts with the observation that infrared factorization, according to eq. (2.5), holds

separately for the n and (n− 1)-parton4 amplitudes in eq. (6.1):

An(p1, p2, {pj}, µ, ε, αs)=Zn(p1, p2, {pj},T1,T2, {Tj}, ε, αs(µ2
f ))Hn(p1, p2, {pj};µ, µf , ε) ,

(6.3a)

An−1(P, {pj}, µ, ε, αs)=Zn−1(P, {pj},T, {Ti}, ε, αs(µ2
f ))Hn−1(P, {pj}, µ, µf , ε, αs) .

(6.3b)

Kinematic divergences in the collinear limit p1 ·p2 → 0 appear in eq. (6.3a) in both Zn and

the hard function Hn. By analogy with eq. (6.1), the hard function may be factorised in

the collinear limit according to

Hn(p1, p2, {pj};µ, µf , ε, αs)
1‖2−−→SpH(p1, p2,T1,T2;µ, µf , ε, αs)Hn−1(P, {pj};µ, µf , ε, αs),

(6.4)

3In the case of a space-like splitting, factorisation is violated [130, 131].
4Note that An−1 in eq. (6.1) is evaluated at P 2 = 0, and hence it obeys the usual soft-collinear factori-

sation formula for massless partons scattering in eq. (2.1).
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where SpH is an appropriate splitting function collecting all terms which are singular as

P 2 → 0, such that the (n− 1)-particle hard function Hn−1 may be evaluated with P 2 = 0.

Of course, all quantities in eq. (6.4) are infrared finite.

Equations (6.3) together with eqs. (6.1) and (6.4) implies the condition

SpH(p1, p2,T1,T2, µ, µf , ε, αs) = Z−1
n (p1, p2, {pj},T1,T2, {Tj}, ε, αs(µ2

f ))

× Sp(p1, p2,T1,T2, µ, ε, αs) Zn−1(P, {pj},T, {Tj}, ε, αs(µ2
f )), (6.5)

where all quantities must be evaluated in the limit P 2 → 0. This equation implies a highly

non-trivial cancellation between both colour and kinematic dependence on the right-hand

side, such that the left-hand side depends only on the quantum numbers of the two particles

becoming collinear.

Given that the amplitude splitting function Sp does not depend on the infrared fac-

torisation scale µf , one may differentiate eq. (6.5) and use eq. (2.6) to obtain the condition

d

d lnµf
SpH(p1, p2,T1,T2, µ, µf , ε, αs)

= ΓSp(p1, p2,T1,T2, µf , αs(µ
2
f )) SpH(p1, p2,T1,T2, µ, µf , ε, αs),

(6.6)

where we have defined

ΓSp(p1, p2,T1,T2, µf , αs(µ
2
f ))

≡ Γn(p1, p2, {pj},T1,T2, {Tj}, µf , αs(µ2
f ))− Γn−1(P, {pj},T, {Tj}, µf , αs(µ2

f )) .
(6.7)

Given that the quantity on the left-hand side of this equation depends manifestly on the

quantum numbers of partons 1 and 2 only, this must also be true for the right-hand side.

Upon making the decomposition of eq. (2.11) (valid up to three-loop order), one may

further decompose

ΓSp(p1, p2,T1, T2, µf , αs(µ
2
f )) = Γdip.

Sp (p1, p2,T1,T2, µf , αs(µ
2
f ))

+ ∆n({ρijkl},T1,T2, {Tj}, αs(µ2
f ))−∆n−1({ρijkl},T, {Tj}, αs(µ2

f )).
(6.8)

We want to take the kinematic limit in which partons 1 and 2 become collinear. To this

end, we may parametrise each momentum according to:

p1 = xP + k, p2 = (1− x)P − k, (6.9)

where k is a small momentum to allow P 2 6= 0, while p2
1 = p2

2 = 0. The first term in

eq. (6.8) is then found to be [32]

Γdip.
Sp (p1, p2,T1,T2, λ, αs(λ

2)) = γJ1(αs(λ
2)) + γJ2(αs(λ

2)) − γJP (αs(λ
2)) (6.10)

− 1

2
γ̂K(αs(λ

2))
[

ln
(2|p1 · p2|e−iπλ12

λ2

)
T1 ·T2−T1 ·(T1+T2) lnx−T2 · (T1+T2) ln(1−x)

]
,

in terms of the quantities appearing in eq. (2.8). Note that here λ12 = 1 as we assumed

that p1 and p2 both belong to the final state. Equation (6.10) by itself depends only on
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the quantum numbers of the two particles becoming collinear, which finally leads to an

important constraint on the ∆n, namely that the difference

∆
(3)
Sp(T1,T2) =

[
∆(3)
n ({ρijkl},T1,T2, {Tj})−∆

(3)
n−1({ρijkl},T, {Tj})

]
p1‖p2

(6.11)

can only depend on the quantum numbers of the two particles that are becoming collinear.

Note that the right-hand side of eq. (6.11) is evaluated in the limit where p1 and p2 have

become collinear. As suggested by our notation, this quantity has no kinematic dependence.

To see this, first note that universality of the splitting function implies that the result

should be independent of the number of Wilson lines n. When n = 2, colour conservation

implies that there is only one independent colour structure (a single quadratic Casimir),

such that the dipole formula furnishes the complete splitting function, and the correction

term vanishes: ∆
(3)
2 = 0. This in turn implies

∆
(3)
Sp(T1,T2) =

[
∆

(3)
3 (−T1 −T2,T1,T2)−∆

(3)
2 (T1,T2)

]
p1‖p2

= ∆
(3)
3 (−T1 −T2,T1,T2)

∣∣∣
p1‖p2

,
(6.12)

but since there are no conformally invariant cross ratios that one can form from three

particle momenta, the right-hand side evaluates to a constant. Universality of the splitting

amplitude then implies that the same is true for all n.

6.2 Constraints from two-particle collinear limits

Equation (6.11) dictates that when two partons become collinear, the difference ∆
(3)
n −

∆
(3)
n−1 can only depend on the colour and kinematic degrees of freedom of the two partons

becoming collinear. In fact, we saw that this difference must be a constant, independent

of the number of Wilson lines n (provided one takes n ≥ 3, so that ∆
(3)
n 6= 0). These

properties can be imposed as further constraints on our ansatz for F (z). To do so, we

specialize to three- and four-parton scattering, and set i = 1, j = 2, k = 3, l = 4. We do

not impose momentum conservation (i.e. we consider the situation in which any number

of colour singlet particles may carry additional momentum). This will allow us to consider

pairs of particles becoming collinear, without simultaneously restricting the momenta of

other coloured particles. We also choose to focus on the collinear limit in which p1 ‖ p2. It

will prove convenient to define the basis of colour generators as follows [102]:

TA = T1 + T2, TB = T1 −T2,

TC = T3 −T4, TD = T3 + T4.
(6.13)

Note that in contrast with the generators corresponding to different lines {T1,T2,T3,T4}
the generators defined in eq. (6.13) are not mutually commuting. The nonzero commutators

amongst them are summarised by eq. (B.4).

Let us first consider the n = 3 case, for which colour conservation assumes the form

T3 = −TA. (6.14)
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As we saw in eq. (6.12), the difference in eq. (6.11) reduces to the single term ∆
(3)
3 when

n = 3. In addition, for this number of partons the second and third lines in eq. (2.15) are

not present, as they consist of sums over four particle combinations only. We thus have

∆
(3)
3 (T3,T1,T2) = −16Cfabefcde

({
Ta

1,T
d
1

}
Tb

2T
c
3 +

{
Ta

2,T
d
2

}
Tb

1T
c
3 +

{
Ta

3,T
d
3

}
Tb

1T
c
2

)
.

(6.15)

One can put this in a form where colour conservation is made explicit using eq. (6.14),

after commuting all factors of T3 to the right. Making liberal use of the colour identities

listed in appendix B, one can put this in the form

∆
(3)
3 (−T1 −T2,T1,T2) = −6Cfabefcde

{
Ta
A,T

d
A

}{
Tb
B,T

c
B

}
+ 3CN2

c TA ·TA, (6.16)

where C is the part of our ansatz defined in eq. (4.19). As the right-hand side of this

equation is already a constant and depends only on the colour degrees of freedom of particles

1 and 2, it does not directly constrain our ansatz. However, we can now require that the

right hand side of eq. (6.11) equals this expression when evaluated for any number of

partons n.

With this in mind, we now turn to the n = 4 case. Using the definitions in eq. (6.13)

again, colour conservation can be written as

TD = −TA . (6.17)

Moreover, the second term in eq. (6.11) becomes (cf. eq. (6.15))

∆
(3)
3 (T1 + T2,T3,T4) =− 16Cfabefcde

[{
Ta

1 + Ta
2,T

d
1 + Td

2

}
Tb

3T
c
4 (6.18)

+
{
Ta

3,T
d
3

}(
Tb

1 + Tb
2

)
Tc

4 +
{
Ta

4,T
d
4

}(
Tb

1 + Tb
2

)
Tc

3

]
.

After expressing all colour generators in terms of the basis of eq. (6.13), one may com-

mute all factors of TD to the right, and then implement colour conservation according to

eq. (6.17). Using the identities in appendix B one then obtains

∆
(3)
3 (−T3 −T4,T3,T4) = −6Cfabefcde

{
Ta
A,T

c
A

}{
Tb
C ,T

d
C

}
+ 3CN2

c TA ·TA . (6.19)

To put the first term in eq. (6.11) into a form that manifests colour conservation, we first

use the Jacobi identity to rewrite the expression in eq. (2.15) for general F(ρ1234, ρ1432)

and C as

∆
(3)
4 =− 16Cfabefcde

∑
{i,j,k}∈{1,2,3,4}|j<k

{
Ta
i ,T

d
i

}
Tb
jT

c
k (6.20)

+ 8 Ta
1Tb

2T
c
3T

d
4

[
fabefcde

(
F(ρ1234, ρ1432)−F(ρ1243, ρ1342) + 2F(ρ1324, ρ1423)

)
+
(
facefbde + fadefbce

)(
F(ρ1234, ρ1432) + F(ρ1243, ρ1342)

)]
.
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Again employing colour conservation after moving TD to the right and simplifying, the

sum over colour structures in the first term of eq. (6.20) can be rewritten as

fabefcde
∑

{i,j,k}∈{1,2,3,4}|j<k

{
Ta
i ,T

d
i

}
Tb
jT

c
k =

1

4
fabefcde

({
Ta
A,T

c
A

}{
Tb
B,T

d
B

}
+
{
Ta
A,T

c
A

}{
Tb
C ,T

d
C

}
+

1

2

{
Ta
B,T

c
B

}{
Tb
C ,T

d
C

})
− 5

16
N2
c TA ·TA. (6.21)

By a similar procedure, the remaining colour structures in eq. (6.20) evaluate to

Ta
1Tb

2T
c
3T

d
4fabefcde=−1

8
fabefcde

{
Ta
A,T

c
A

}
Tb
BTd

C−i
3

16
NcfabcT

a
ATb

BTc
C−

1

16
N2
c TB ·TC ,

(6.22a)

Ta
1Tb

2T
c
3T

d
4

(
facefbde + fadefbce

)
=

1

32
fabefcde

({
Ta
B,T

c
B

}{
Tb
C ,T

d
C

}
−
{
Ta
A,T

c
A

}{
Tb
B,T

d
B

}
−
{
Ta
A,T

c
A

}{
Tb
C ,T

d
C

})
+

1

64
N2
c TA ·TA . (6.22b)

Substituting these expressions back into eq. (6.20) and subtracting eq. (6.19), one obtains[
∆

(3)
4 −∆

(3)
3

]
p1‖p2

= −1

4
fabefcde×{(

{Ta
A,T

c
A} {Tb

B,T
d
B} −

1

2
N2
c TA ·TA

)[
F(ρ1234, ρ1432) + F(ρ1243, ρ1342) + 16C

]
p1‖p2

+ {Tb
C ,T

d
C}
(
{Ta

A,T
c
A} − {Ta

B,T
c
B}
)[
F(ρ1234, ρ1432) + F(ρ1243, ρ1342)− 8C

]
p1‖p2

}

−
(
fabefcde{Ta

A,T
c
A}Tb

BTd
C +

3i

2
NcfabcT

a
A Tb

B Tc
C +

1

2
N2
c TB ·TC

)
×
[
F(ρ1234, ρ1432)−F(ρ1243, ρ1342) + 2F(ρ1324, ρ1423)

]
p1‖p2

. (6.23)

As discussed above, consistency of collinear factorisation means that the right-hand side

of eq. (6.23) must only depend on the degrees of freedom of particles 1 and 2. This in

turn means that dependence on TC in the collinear limit is forbidden, which immediately

implies the constraints[
F(ρ1234, ρ1432)−F(ρ1243, ρ1342) + 2F(ρ1324, ρ1423)

]
p1‖p2

= 0,[
F(ρ1234, ρ1432) + F(ρ1243, ρ1342)

]
p1‖p2

= 8C. (6.24)

Implementing these in eq. (6.23) we find that the latter indeed becomes equal to eq. (6.16).

Thus, the quantity ΓSp is indeed found to be universal, in that it is independent of whether

one considers three or four-parton scattering. The constraints of eq. (6.24) can be recast

in the form

Fa(z1234)
∣∣∣
p1‖p2

= 0 and Fb(z1234)
∣∣∣
p1‖p2

= 8C , (6.25)

– 26 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
3

where we used eq. (4.11) to write the relevant combinations of F in terms of F (z1234) and

subsequently related them to the Fi(z), i ∈ {1, 2, 3}, defined in eq. (4.13), getting:

Fa(z) ≡ F1(z)− F2(z) = F1(z)− F1 (z/(z − 1)) ,

Fb(z) ≡ −F3(z) = F1(z) + F2(z) = F1(z) + F1 (z/(z − 1)) ,
(6.26)

where z = z1234 and where we used eq. (4.15) to write F2 in terms of F1. The interpretation

of the two conditions in eq. (6.25) becomes clear upon comparing eq. (6.20) to eq. (4.17):

the first condition corresponds to the component in ∆
(3)
4 which is antisymmetric in both

colour and kinematics variables of lines 1 and 2, and so must clearly vanish when p1 ‖ p2,

while the latter corresponds to the symmetric component, which instead approaches a

non-zero constant in this collinear limit.

Considering the leading behaviour of the kinematic variables in the collinear limit

P 2 = 2p1 · p2 → 0, one finds

zz̄ =
(p1 · p2)(p3 · p4)

(p1 · p3)(p2 · p4)

p1‖p2−−−→ 0,

(1− z)(1− z̄) =
(p1 · p4)(p3 · p2)

(p1 · p3)(p4 · p2)

p1‖p2−−−→ 1,

(6.27)

where all phases cancel, having assumed that all particles are outgoing (as far as the

cross ratios are concerned, this is equivalent to working in the Euclidean region). These

conditions together imply

z
p1‖p2−−−→ 0 and z̄

p1‖p2−−−→ 0 , (6.28)

in which limit F (z) reduces to a polynomial in log(zz̄) with coefficients drawn from the

space of multiple zeta values. It is easy to see that the condition on Fa(z) in eq. (6.25) is

always satisfied, and thus does not provide any constraint on the coefficients {ai}, because

Fa(z)
∣∣∣
p1‖p2

= lim
(z,z̄)→0

[F1(z)− F1 (z/(z − 1))] = 0 . (6.29)

Conversely, plugging the ansatz of eq. (4.18) into eq. (6.25), using eq. (6.26) and taking

the leading collinear behaviour as p1 ‖ p2, we find

Fb(z)
∣∣∣
p1‖p2

= lim
(z,z̄)→0

(
− F3(z)

)
= −a1

60
log5(zz̄)− a8

3
ζ2 log3(zz̄)− (4a7 + a10)ζ3 log2(zz̄)

− 2a11ζ
2
2 log(zz̄) + 8a9ζ2ζ3 + (24a2 − 12a3 + 8a4 + 36a5 − 12a6 + 4a7)ζ5,

(6.30)

which is not generically a constant, as eq. (6.25) tells us it must be. Requiring all the

non-constant terms in Fb to vanish gives us the constraints

a1 = 0, a7 = −a10

4
, a8 = 0, a11 = 0 . (6.31)
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Moreover, we can use the condition in eq. (6.25) to place constraints on the parameters

a12 and a13 that enter our ansatz for C in eq. (4.19). That is, imposing the constraints in

eqs. (5.20) and (6.31) on Fb and equating it to 8C implies

a12 = 3a2 −
3

2
a3 + a4 +

9

2
a5 −

3

2
a6 +

1

2
a7, a13 = a9. (6.32)

Here we have considered particles 1 and 2 becoming collinear such that z → 0, and

leading to the conditions:

F1(z)− F2(z)
z→0−−−→ 0, F1(z) + F2(z) = −F3(z)

z→0−−−→ 8C, (6.33)

corresponding to the antisymmetric and symmetric parts in eq. (4.17) under permutation

of {1,2}. We may also consider the limits in which the pair of particles {1,3} or {1,4}
become collinear, implying z →∞ and z → 1 respectively.5 The above arguments can be

repeated to show that in the limit p1 ‖ p3, one obtains the conditions

F1(z)− F3(z)
z→∞−−−→ 0, F1(z) + F3(z) = −F2(z)

z→∞−−−→ 8C, (6.34)

and similarly if p1 ‖ p4:

F2(z)− F3(z)
z→1−−−→ 0, F2(z) + F3(z) = −F1(z)

z→1−−−→ 8C. (6.35)

The conditions of eqs. (6.34) and (6.35) can be seen to coincide with eq. (6.33) upon

using the transformations of eq. (4.9), or equivalently they can be simply deduced from

eq. (6.33) using the relations in eq. (4.15). Thus, the additional collinear limits provide

no complementary information. In summary, the collinear limit provides the following

constraints on the parameters {ai}:

(a1, a7, a8, a11, a12, a13) =

(
0,−a10

4
, 0, 0, 3a2 −

3a3

2
+ a4 +

9a5

2
− 3a6

2
+
a7

2
, a9

)
. (6.36)

7 Discussion

In the previous two sections, we have derived separate constraints on the parameters {ai}
entering the ansätze of eqs. (4.18) and (4.19), from both the Regge and collinear limits, as

summarised in eqs. (5.20) and (6.36) respectively. We can now combine them into a single

set. In doing so, we see that the first two conditions in eq. (6.36) are already contained in

eq. (5.20), but that the remaining ones are complementary. Upon implementing the full

set of constraints, the ansätze of eqs. (4.18) and (4.19) reduce to

F (z) = a4 (L10101 + 2ζ2(L100 + L001)) and C = a4(ζ5 + 2ζ2ζ3) . (7.1)

We see that both F and C have been uniquely determined by our bootstrap procedure, up

to an overall rational number a4. Since ∆
(3)
n depends linearly on F and C, the form of the

5The remaining collinear limits in which particles {2,3}, {2,4} or {3,4} become collinear correspond to

the same limits of z, and thus provide no complementary information.
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three-loop correction to the dipole formula is fixed completely by symmetries and physical

constraints. Comparing the expressions in eq. (7.1) with the result of ref. [58] (quoted here

in eqs. (2.19) and (2.16)), we see that the latter can be reproduced by setting a4 = 1.

Our analysis is a highly non-trivial cross-check of the results of ref. [58], as well as the

consistency of the bootstrap procedure. This is the first time that a bootstrap procedure

has been successfully applied to a quantity in non-planar perturbative gauge theory.

It is interesting to observe the complementary nature of the Regge and collinear lim-

its used here. While the number of constraints that arise from the Regge limit is larger

— notably because it provides information on both the real and imaginary parts of the

amplitude at each logarithmic order — it is the collinear limit that relates the function

F and the constant C. This non-trivial interplay between the four- and three-line struc-

tures is a manifestation of colour conservation, or the gauge invariance of the theory. In

principle such a relation could arise from the Regge limit as well, but it requires extending

computations along the lines of refs. [35, 73] to higher logarithmic accuracy.

Given the homogeneous nature of all our collinear and Regge constraints, we cannot

use them to fix the overall normalisation of ∆
(3)
n . Had it not been computed, one could

consider fixing this constant by various other means. For example, it could be determined

by numerical integration at suitably high precision at a single kinematic point. Other

options include analytically computing the simpler quantity ∆
(3)
3 , which is just a constant,

or extracting the overall normalization factor from the three-loop four-point amplitude in

N = 4 SYM [109]. Alternatively, a4 could be fixed by the knowledge of a non-homogeneous

constraint, such as the computation of the iπ α3
s log(s/(−t)) term in the Regge limit of 2-

to-2 scattering, which is known to receive non-vanishing contributions from ∆
(3)
4 [73].

The fact that the form of ∆
(3)
n is fixed by symmetries and dynamic constraints begs

the question as to whether the same is true at higher loop orders. Before such a program

can be carried out, however, one must take into account the fact that the structure of the

soft anomalous dimension becomes more complicated starting at four loops. This is due

to the breakdown of Casimir scaling in the cusp anomalous dimension, which was recently

demonstrated in ref. [78] and requires modifying the dipole formula starting at four loops.

The contribution to the soft anomalous dimension depending only on conformally-invariant

cross ratios will still be amenable to the methods employed here. In particular, we have

argued that this contribution can be expressed in terms of single-valued polylogarithms to

all loop orders. However, starting at four loops ∆n also becomes sensitive to the matter

content of the theory, meaning that the assumptions of uniform transcendental weight and

purity will not generically apply. Additionally, as mentioned in section 3, single-valued

polylogarithms depending on more than one complex variable are expected to appear,

since more than four Wilson lines can become correlated in higher-loop diagrams. Even

so, the types of constraints considered in this paper also generalize to higher loops. In

fact, the requirement that the amplitude factorizes in two-particle collinear limits can be

directly applied at any loop order [132–135]. Further computations are required to extend

the types of Regge constraints we have used in the present paper to higher loops, but there

exists a well-defined framework to study the Regge limit of QCD amplitudes at arbitrary

order [35, 73, 119], making it possible for the relevant computations to be carried out.
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In particular, it is possible to explore constraints coming from multi-Regge limits [33, 34]

in addition to single-Regge limits. Lastly, one can consider multi-particle collinear limits,

in which higher-particle Mandelstam invariants go on shell. The multi-particle limits of

the three-loop soft anomalous dimension have already been computed, and do not give

rise to any constraints on ∆
(3)
n beyond those implied by two-particle collinear limits [136].

However, they could provide additional information at higher loop orders.

Finally, it would be interesting to see if a similar bootstrap procedure could be applied

to other physical quantities of interest. The extension of our work to the massive three-

loop soft anomalous dimension is currently hampered by our lack of understanding of the

corresponding space of functions, i.e., iterated integrals on hyperbolic 3-space, as discussed

in section 3. Conversely, the single-emission soft current is known to be expressible in

terms of SVHPLs through two loops from the calculations of refs. [137–140], suggesting

that this quantity may also be amenable to bootstrap techniques. It can also be hoped

that it will eventually prove possible to bootstrap QCD amplitudes themselves; however,

a much better understanding of the functions appearing in these amplitudes is required

before any such approach can be attempted.
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A Alternative Regge limits

In this appendix, we give the forms of the ansatz of eq. (4.18) in some alternative Regge lim-

its to that considered in section 5, using the analytic continuations of eqs. (5.11) and (5.13).

We first consider particles 1 and 3 to be incoming. Then, in the Regge limit s13 � −s14, the

real and imaginary parts of the functions of eq. (4.13) become (with L ≡ log(s13/(−s14)))

Re(F1)
s13�−s14−−−−−−→ −8a1

15
L5 +

(
16a1 − 12a2 + 16a6 + 24a7 −

8a8
3

)
ζ2L

3 + (4a10 + 16a7)ζ3L
2

+ (−48a1 − 4a11 + 72a2 + 48a3 − 48a4 + 48a5 + 24a8 + 24a9)ζ22L

+ (12a10 + 48a2 − 24a3 + 48a4 + 24a5 − 24a6 + 72a7 − 8a9)ζ2ζ3

+ (−24a2 + 12a3 − 8a4 − 36a5 + 12a6 − 4a7)ζ5,
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Re(F2)
s13�−s14−−−−−−→ 4a1

15
L5 +

(
−16a1 + 4a2 − 12a3 − 12a5 − 36a6 − 52a7 +

4a8
3

)
ζ2L

3

+ (−2a10 − 8a7)ζ3L
2 + (48a1 + 2a11 + 24a2 + 48a3 − 48a5 + 48a6 + 96a7 − 24a8)ζ22L

+ (−24a10 − 24a2 − 144a7 + 4a9)ζ2ζ3

+ (12a2 − 6a3 + 4a4 + 18a5 − 6a6 + 2a7)ζ5,

Re(F3)
s13�−s14−−−−−−→ 4a1

15
L5 +

(
8a2 + 12a3 + 12a5 + 20a6 + 28a7 +

4a8
3

)
ζ2L

3 + (−2a10 − 8a7)ζ3L
2

+ (2a11 − 96a2 − 96a3 + 48a4 − 48a6 − 96a7 − 24a9)ζ22L

+ (12a10 − 24a2 + 24a3 − 48a4 − 24a5 + 24a6 + 72a7 + 4a9)ζ2ζ3

+ (12a2 − 6a3 + 4a4 + 18a5 − 6a6 + 2a7)ζ5, (A.1)

and

1

π
Im(F1)

s13�−s14−−−−−−→ 4a1
3
L4 + (−16a1 + 18a2 − 24a6 − 36a7 + 4a8)ζ2L

2 + (−4a10 − 16a7)ζ3L

+

(
48a1

5
+ 2a11 − 18a2 − 24a3 + 24a4 − 24a5 − 24a6 − 36a7 − 8a8 − 12a9

)
ζ22 ,

1

π
Im(F2)

s13�−s14−−−−−−→
(
−4a1

3
− a2

6
− a3 − a5 −

7a6
3
− 10a7

3

)
L4

+ (16a1 + 2a2 + 18a3 − 4a4 + 2a5 + 34a6 + 54a7 − 4a8 + 2a9)ζ2L
2

+ (−4a10 − 4a3 + 8a4 + 4a5 − 4a6 − 28a7)ζ3L

+

(
−96a1

5
− 4a11 −

18a2
5
− 4a3 −

64a4
5

+ 12a5 − 4a6 −
32a7

5
+ 16a8

)
ζ22

1

π
Im(F3)

s13�−s14−−−−−−→
(
a2
6

+ a3 + a5 +
7a6
3

+
10a7

3

)
L4

+ (−20a2 − 18a3 + 4a4 − 2a5 − 10a6 − 18a7 − 2a9)ζ2L
2 (A.2)

+ (8a10 + 4a3 − 8a4 − 4a5 + 4a6 + 44a7)ζ3L

+

(
48a1

5
+ 2a11 +

108a2
5

+ 28a3 −
56a4

5
+ 12a5 + 28a6 +

212a7
5
− 8a8 + 12a9

)
ζ22

respectively.

Next, we consider particles 1 and 4 to be incoming, and the Regge limit s14 � −s13.

In this case, one finds (now with L ≡ log(s14/(−s13)))

Re(F1)
s14�−s13−−−−−−→ 4a1

15
L5 +

(
−16a1 + 4a2 − 12a3 − 12a5 − 36a6 − 52a7 +

4a8
3

)
ζ2L

3

+ (−2a10 − 8a7)ζ3L
2 + (48a1 + 2a11 − 48a2 + 24a3 − 120a5 + 120a6 + 168a7 − 24a8)ζ22L

+ (−24a10 − 24a2 − 144a7 + 4a9)ζ2ζ3

+ (12a2 − 6a3 + 4a4 + 18a5 − 6a6 + 2a7)ζ5,

Re(F2)
s14�−s13−−−−−−→ −8a1

15
L5 +

(
16a1 − 12a2 + 16a6 + 24a7 −

8a8
3

)
ζ2L

3 + (4a10 + 16a7)ζ3L
2

+ (−48a1 − 4a11 + 48a3 − 48a4 + 48a5 − 288a6 − 432a7 + 24a8 + 24a9)ζ22L

+ (12a10 + 48a2 − 24a3 + 48a4 + 24a5 − 24a6 + 72a7 − 8a9)ζ2ζ3

+ (−24a2 + 12a3 − 8a4 − 36a5 + 12a6 − 4a7)ζ5,
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Re(F3)
s14�−s13−−−−−−→ 4a1

15
L5 +

(
8a2 + 12a3 + 12a5 + 20a6 + 28a7 +

4a8
3

)
ζ2L

3 + (−2a10 − 8a7)ζ3L
2

+ (2a11 + 48a2 − 24a3 + 48a4 + 72a5 + 168a6 + 264a7 − 24a9)ζ22L

+ (12a10 − 24a2 + 24a3 − 48a4 − 24a5 + 24a6 + 72a7 + 4a9)ζ2ζ3

+ (12a2 − 6a3 + 4a4 + 18a5 − 6a6 + 2a7)ζ5, (A.3)

and

1

π
Im(F2)

s14�−s13−−−−−−→
(
−4a1

3
− a2

6
− a3 − a5 −

7a6
3
− 10a7

3

)
L4

+ (16a1 − 16a2 + 6a3 − 4a4 − 10a5 + 22a6 + 30a7 − 4a8 + 2a9)ζ2L
2

+ (−4a10 − 4a3 + 8a4 + 4a5 − 4a6 − 28a7)ζ3L

+

(
−96a1

5
− 4a11 −

108a2
5

+ 92a3 −
184a4

5
+ 12a5 − 196a6 −

1532a7
5

+ 16a8 + 36a9

)
ζ22

1

π
Im(F2)

s14�−s13−−−−−−→ 4a1
3
L4 + (−16a1 + 18a2 − 24a6 − 36a7 + 4a8)ζ2L

2 + (−4a10 − 16a7)ζ3L

+

(
48a1

5
+ 2a11 + 18a2 − 24a3 + 24a4 − 24a5 + 120a6 + 180a7 − 8a8 − 12a9

)
ζ22 ,

1

π
Im(F3)

s14�−s13−−−−−−→
(
a2
6

+ a3 + a5 +
7a6
3

+
10a7

3

)
L4

+ (−2a2 − 6a3 + 4a4 + 10a5 + 2a6 + 6a7 − 2a9)ζ2L
2 (A.4)

+ (8a10 + 4a3 − 8a4 − 4a5 + 4a6 + 44a7)ζ3L

+

(
48a1

5
+ 2a11 +

18a2
5
− 68a3 −

64a4
5

+ 12a5 + 76a6 +
632a7

5
− 8a8 − 24a9

)
ζ22 .

B Useful colour identities

Here, we collect a number of colour algebra identities that are useful when applying the

collinear constraint in section 6.2. Contraction of a pair of SU(Nc) structure constants gives

facdfbcd = Ncδab . (B.1)

Then the Jacobi identity of eq. (4.12) implies

fadefbegfcgd =
Nc

2
fabc. (B.2)

We also make use of a number of useful identities resulting from antisymmetry of the

structure constants under interchange of any two indices:

fcde{Ta
i ,T

d
i }Abc = 0

fabcT
a
iT

b
i =

1

2
fabc[T

a
i ,T

b
i ]

fabefcdefh(x)h(y)g{T
h(z)
i ,Tg

i } = 0,

(B.3)
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where Abc = −Acb is an arbitrary antisymmetric matrix of dimension (N2
c − 1), and the

last identity holds for any invertible map h : {x, y, z} 7→ {a, b, c, d}.
Finally, the non-zero commutators among the colour operators defined in eq. (6.13) are

[Ta
A,T

b
A] = ifabcTc

A, [Ta
B,T

b
B] = ifabcTc

A,

[Ta
A,T

b
B] = ifabcTc

B, [Ta
B,T

b
A] = ifabcTc

B,

[Ta
C ,T

b
C ] = ifabcTc

D, [Ta
D,T

b
D] = ifabcTc

D,

[Ta
C ,T

b
D] = ifabcTc

C , [Ta
D,T

b
C ] = ifabcTc

C . (B.4)

These are useful for applying colour conservation in this basis.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

[2] I. Ya. Arefeva, Quantum contour field equations, Phys. Lett. 93B (1980) 347 [INSPIRE].

[3] V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian

Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

[4] R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops,

Phys. Rev. D 24 (1981) 879 [INSPIRE].

[5] G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization

Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

[6] G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD:

Renormalization properties of the Wilson loops in higher orders of perturbation theory, Sov.

J. Nucl. Phys. 44 (1986) 877 [INSPIRE].

[7] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[8] A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20

(1979) 2037 [INSPIRE].

[9] J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D

22 (1980) 1478 [INSPIRE].

[10] A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981)

3281 [INSPIRE].

[11] A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in

Nonabelian Gauge Theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].

[12] J.G.M. Gatheral, Exponentiation of Eikonal Cross-sections in Nonabelian Gauge Theories,

Phys. Lett. 133B (1983) 90 [INSPIRE].

[13] J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984)

231 [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(80)90507-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B164,171%22
https://doi.org/10.1016/0370-2693(80)90529-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B93,347%22
https://doi.org/10.1016/0550-3213(80)90103-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B169,527%22
https://doi.org/10.1103/PhysRevD.24.879
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D24,879%22
https://doi.org/10.1016/0370-2693(86)91439-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B171,459%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,44,877%22
https://doi.org/10.1016/0550-3213(87)90277-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B283,342%22
https://doi.org/10.1103/PhysRevD.20.2037
https://doi.org/10.1103/PhysRevD.20.2037
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D20,2037%22
https://doi.org/10.1103/PhysRevD.22.1478
https://doi.org/10.1103/PhysRevD.22.1478
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,1478%22
https://doi.org/10.1103/PhysRevD.24.3281
https://doi.org/10.1103/PhysRevD.24.3281
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D24,3281%22
https://doi.org/10.1103/PhysRevD.28.860
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D28,860%22
https://doi.org/10.1016/0370-2693(83)90112-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B133,90%22
https://doi.org/10.1016/0550-3213(84)90294-3
https://doi.org/10.1016/0550-3213(84)90294-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B246,231%22


J
H
E
P
0
9
(
2
0
1
7
)
0
7
3

[14] G.F. Sterman, Infrared divergences in perturbative QCD, AIP Conf. Proc. 74 (1981) 22.

[15] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD,

Phys. Rev. D 42 (1990) 4222 [INSPIRE].

[16] G.P. Korchemsky, On Near forward high-energy scattering in QCD, Phys. Lett. B 325

(1994) 459 [hep-ph/9311294] [INSPIRE].

[17] I.A. Korchemskaya and G.P. Korchemsky, Evolution equation for gluon Regge trajectory,

Phys. Lett. B 387 (1996) 346 [hep-ph/9607229] [INSPIRE].

[18] I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross

singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].

[19] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]

[INSPIRE].

[20] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427

(1998) 161 [hep-ph/9802439] [INSPIRE].

[21] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys.

Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

[22] L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles

in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

[23] N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard

scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].

[24] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton

QCD cross-sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE].

[25] Yu. L. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP

01 (2006) 007 [hep-ph/0509078] [INSPIRE].

[26] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix

and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [INSPIRE].

[27] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

[28] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

[29] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[30] E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6

(2009) 137 [arXiv:0908.3273] [INSPIRE].

[31] L.J. Dixon, Matter Dependence of the Three-Loop Soft Anomalous Dimension Matrix, Phys.

Rev. D 79 (2009) 091501 [arXiv:0901.3414] [INSPIRE].

[32] L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP

02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

– 34 –

http://dx.doi.org/10.1063/1.33099
https://doi.org/10.1103/PhysRevD.42.4222
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D42,4222%22
https://doi.org/10.1016/0370-2693(94)90040-X
https://doi.org/10.1016/0370-2693(94)90040-X
https://arxiv.org/abs/hep-ph/9311294
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9311294
https://doi.org/10.1016/0370-2693(96)01016-7
https://arxiv.org/abs/hep-ph/9607229
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9607229
https://doi.org/10.1016/0550-3213(94)00553-Q
https://arxiv.org/abs/hep-ph/9409446
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9409446
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605323
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439
https://doi.org/10.1016/S0370-2693(02)03100-3
https://doi.org/10.1016/S0370-2693(02)03100-3
https://arxiv.org/abs/hep-ph/0210130
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0210130
https://doi.org/10.1088/1126-6708/2008/08/022
https://arxiv.org/abs/0805.3515
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3515
https://doi.org/10.1016/S0550-3213(98)00441-6
https://arxiv.org/abs/hep-ph/9803241
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9803241
https://doi.org/10.1016/j.physletb.2003.09.068
https://arxiv.org/abs/hep-ph/0307035
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0307035
https://doi.org/10.1088/1126-6708/2006/01/007
https://doi.org/10.1088/1126-6708/2006/01/007
https://arxiv.org/abs/hep-ph/0509078
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0509078
https://doi.org/10.1103/PhysRevD.74.074004
https://arxiv.org/abs/hep-ph/0607309
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0607309
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1091
https://doi.org/10.1103/PhysRevLett.102.162001
https://arxiv.org/abs/0901.0722
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0722
https://doi.org/10.1088/1126-6708/2009/06/081
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
https://doi.org/10.1393/ncc/i2010-10528-x
https://doi.org/10.1393/ncc/i2010-10528-x
https://arxiv.org/abs/0908.3273
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3273
https://doi.org/10.1103/PhysRevD.79.091501
https://doi.org/10.1103/PhysRevD.79.091501
https://arxiv.org/abs/0901.3414
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3414
https://doi.org/10.1007/JHEP02(2010)081
https://doi.org/10.1007/JHEP02(2010)081
https://arxiv.org/abs/0910.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3653


J
H
E
P
0
9
(
2
0
1
7
)
0
7
3

[33] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to

Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].

[34] V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The Infrared structure of

gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581]

[INSPIRE].

[35] S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521]

[INSPIRE].

[36] V. Ahrens, M. Neubert and L. Vernazza, Structure of Infrared Singularities of

Gauge-Theory Amplitudes at Three and Four Loops, JHEP 09 (2012) 138

[arXiv:1208.4847] [INSPIRE].

[37] S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of

most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234]

[INSPIRE].
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