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Abstract

Pseudorapidity and azimuthal three-particle correlations are studied based on a correlated-
cluster model of multiparticle production. The model provides a common framework for correlations
in proton-proton and heavy-ion collisions allowing easy comparison with the measurements. It is
shown that azimuthal cluster correlations are definitely required in order to understand three-
particle correlations in the near-side ridge effect. This is similar to the explanation of the ridge
phenomenon found in our previous analysis of two-particle correlations and generalizes the model
to higher-order correlations.
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1 Introduction

Correlation measurements have proven to be extremely useful to understand multiparticle production
providing stringent tests for theoretical models of soft hadronic dynamics [1–4]. Being sensitive to
the last stage of particle interactions (freeze-out) in hadronic collisions, correlations become of special
interest in high-energy heavy-ion collisions for the study of new matter formation, such as quark-
gluon plasma and its properties [5], as well as in the search for hidden sectors beyond the Standard
Model [6, 7].

Moreover, somewhat unexpected collective effects have been observed both in heavy-ion and
proton-proton collisions at RHIC and LHC experiments [5]. Striking ridge-like and dip structures
show up in the two-particle correlation spectrum. In particular, the near-side ridge phenomenon cor-
responds to azimuthal collimated particle production extending over a large pseudorapidity interval,
whose physical origin is still unclear especially for proton-proton collisions where no collective flow is
expected.

In a previous paper [8] we studied two-particle correlations for the analysis of the near-side ridge in
hadron-hadron collisions. The effect was shown to have a natural explanation provided that clusters
are produced in a correlated way in the collision transverse plane. On the other hand, if particles
are emitted correlated to each other, this effect should also hold for higher-rank particle correlations.
Therefore, the analysis of three-particle correlations attracts as well high interest providing further
information on hadroproduction mechanisms [1–4].

In this work we extend our study [8] to three-particle (pseudo)rapidity and azimuthal correlations
in the framework of a correlated-cluster model (CCM), providing compact final expressions with
predictions under some simple physical assumptions, which can be directly tested by experiments.

2 Definitions and notations

As usual, two-particle correlations can be studied by means of

C2(1, 2) = ρ2(1, 2)− ρ(1)ρ(2) , (1)

where indices 1 and 2 stand for the set of kinematic variables relative to particles 1 and 2, respectively.
In terms of the rapidity (y) and the azimuthal angle (φ), the one-particle density ρ and the two-particle
density ρ2 are defined through

ρ(y, φ) =
1

σin

d2σ

dydφ
; ρ(y1, y2, φ1, φ2) =

1

σin

d4σ

dy1dφ1dy2dφ2
, (2)

where σin denotes the inelastic cross section and the dependence on the transverse momentum (pT )
has been integrated out. Still a potential dependence on the pT integration range should remain,
depending on the selected kinematic cuts.

The three-particle rapidity correlation function is defined as:

C3(1, 2, 3) = ρ3(1, 2, 3) + 2ρ(1)ρ(2)ρ(3)− ρ2(1, 2)ρ(3)− ρ2(2, 3)ρ(1)− ρ2(1, 3)ρ(2) , (3)

where the three-particle density is defined as

ρ3(y1, y2, y3, φ1, φ2, φ3) =
1

σin

d6σ

dy1dy2dy3dφ1dφ2dφ3
. (4)

As is well known, three-particle correlations can provide a more sophisticated test than two-
particle correlations for the study of partonic dynamics (e.g. jets) in proton-proton collisions [9], or
the emergence of a new state of matter in heavy-ion collisions [10].
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2.1 Correlations as function of (pseudo)rapidity and azimuthal differences

In order to match our theoretical approach to experimental results in terms of (pseudo)rapidity and
azimuthal differences (∆yij = yi − yj and ∆φij = φi − φj , i, j = 1, 2, 3, i 6= j), use will be made of
Dirac’s δ-functions as in our earlier studies [8]. Then, the two-particle distribution of uncorrelated
pairs reads

b2(∆yij ,∆φij) =

∫
dyidyjdφidφj ρ(yi, φi) ρ(yj , φj) δ(∆yij − yi + yj) δ(∆φij − φi + φj) , (5)

and the distribution of correlated pairs can be identified with

s2(∆yij ,∆φij) =

∫
dyidyjdφidφj ρ2(yi, φi, yj , φj) δ(∆yij − yi + yj) δ(∆φij − φi + φj) . (6)

Three-particle correlations are again expressed as a function of the rapidity and azimuthal differ-
ences,3

s3( ~∆y, ~∆φ) =

∫
d~y d~φ ~δ(∆y) ~δ(∆φ) ρ3(~y, ~φ) , (7)

where the shortened notation has been introduced:

~∆y, ~∆φ for ∆yij ,∆φij , ~y = (y1, y2, y3) , ~φ = (φ1, φ2, φ3) , d~y d~φ = dy1dy2dy2 dφ1dφ2dφ3 ,

and for the Dirac’s δ-functions:

~δ(∆y) = δ(∆y12 − y1 + y2) δ(∆y13 − y1 + y3), (8)

~δ(∆φ) = δ(∆φ12 − φ1 + φ2) δ(∆φ13 − φ1 + φ3) .

Non-correlated three-particle distributions correspond to

b3( ~∆y, ~∆φ) =

∫
d~y d~φ ~δ(∆y) ~δ(∆φ) ρ(y1, φ1) ρ(y2, φ2) ρ(y3, φ3) . (9)

According to Eq.(3), a three-particle normalized correlation function depending on the rapidity
and azimuthal differences can be defined as

c3( ~∆y, ~∆φ) =
s3 + 2b3 − s123 − s231 − s132

b3
, (10)

where the explicit dependence on the rapidity and azimuthal diferences has been omitted in the terms
of the r.h.s., and

s123( ~∆y, ~∆φ) =

∫
d~y d~φ ~δ(∆y) ~δ(∆φ) ρ(y1, φ1) ρ2(y2, φ2, y3, φ3) , (11)

while s231 and s132 terms are obtained straigthforwardly by permutation.
On the other hand, sometimes a simplified version of the three-particle correlation function, also

of common use in experimental analyses of data, is given by [5]

c3( ~∆y, ~∆φ) =
s3
b3
. (12)

In the following we make use of the expression (12) although the main conclusions would remain
the same had we employed Eq.(10) instead.4

3Notice that only two rapidity differences are independent: ∆y12 = y1 − y3 and ∆y13 = y1 − y3 are chosen as
independent, so that ∆y23 = y2 − y3 = ∆y13 − ∆y12. Similarly for the azimuthal variable: ∆φ12 = φ1 − φ2 and
∆φ13 = φ1 − φ3 are independent, so that ∆φ23 = φ2 − φ3 = ∆φ13 − ∆φ12.

4Additionaly, correlations among so-called event planes [11] (corresponding to different harmonics) have recently
emerged as a powerful tool for the analysis of heavy-ion collisions [12, 13]. In this paper, which can be applied to
proton-proton collisions as well, we do not consider this analysis.
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3 Two- and three-particle correlations in the CCM

It is generally accepted that particle production in soft hadronic interactions occurs via an intermediate
step of decaying strings/clusters/fireballs yielding final-state particles [1, 4]. It should be noted that
the “cluster” concept has to be understood in a broad sense, i.e. a group of particles with some
correlated properties, probably comming from a common ancestor.

We keep the same notation as in our paper [8] for two-particle correlations. Hence, the single
particle density can be expressed as the convolution of the cluster density ρ(c)(yc, φc) and the particle
density from a single cluster ρ(1)(y, φ; yc, φc), i.e.

ρ(y, φ) =

∫
dycdφc ρ

(c)(yc, φc) ρ
(1)(y, φ; yc, φc) = 〈Nc〉 ρ̄(1) E1(y, φ) ,

∫
dy dφ E1(y, φ) = 1 . (13)

where 〈Nc〉 stands for the average cluster number per collision and ρ̄(1) denotes the average particle
density for single cluster decays. On the other hand, the function E1(y, φ) encodes the expected
dependence on the rapidity and azimuthal variables of the emitted particles.

For uncorrelated particle pairs and triplets we introduce the product of the two and three single-
particle distributions representing the mixed-event background,

ρmixed(y1, φ1, y2, φ2) = ρ(y1, φ1)ρ(y2, φ2) = 〈Nc〉2 ρ̄(1)2E1(y1, φ1)E1(y2, φ2) , (14)

ρmixed(~y, ~φ) = ρ(y1, φ1)ρ(y2, φ2)ρ(y3, φ3) = 〈Nc〉3 ρ̄(1)3E1(y1, φ1)E1(y2, φ2)E1(y3, φ3) , (15)

which suggests to define
Eb(y1, φ1, y2, φ2) = E1(y1, φ1)E1(y2, φ2) , (16)

Eb(~y, ~φ) = E1(y1, φ1)E1(y2, φ2)E1(y3, φ3) . (17)

Next, the two-particle density can be written as

ρ2(y1, φ1, y2, φ2) =

∫
dycφc ρ

(c)(yc, φc) ρ
(1)
2 (y1, φ1, y2, φ2; yc, φc) (18)

+

∫
dyc1dyc2dφc1dφc2 ρ

(c)
2 (yc1, φc1, yc2, φc2) ρ

(1)(y1, φ1; yc1, φc1) ρ
(1)(y2, φ2; yc2, φc2) .

The first term on the r.h.s. corresponds to the emission of secondaries from a single cluster while the
second term corresponds to the emission of the two particles from two distinct clusters, whose density

is noted as ρ
(c)
2 (yc1, φc1, yc2, φc2). Therefore, we conclude for the two-particle density:

ρ2(y1, φ1, y2, φ2) = 〈Nc〉 ρ̄(1)2E(1)
s (y1, φ1, y2, φ2) + 〈Nc(Nc − 1)〉 ρ̄(1)2E(2)

s (y1, φ1, y2, φ2) , (19)

where E
(1)
s (y1, φ1, y2, φ2) and E2

s (y1, φ1, y2, φ2) stand for correlations stemming from the corresponding
two integrals of Eq.(18).

In its turn, the three-particle density can be written as

ρ3(~y, ~φ) =

∫
dycdφc ρ

(c)(yc, φc) ρ
(1)
3 (~y, ~φ; yc, φc) (20)

+

∫
dyc1dyc2dφc1dφc2 ρ

(c)
2 (yc1, φc1) ρ

(c)(yc2, φc2) ρ
(2)(y1, φ1; yc1, φc1) ρ

(1)(y2, φ2; yc2, φc2) + permutations

+

∫
dyc1dyc2dyc3dφc1dφc2dφc3 ρ

(c)
3 (~yc, ~φc) ρ

(1)(y1, φ1; yc1, φc1) ρ
(1)(y2, φ2; yc2, φc2) ρ

(1)(y3, φ3; yc3, φc3) ,

where we have introduced ~yc ≡ (yc1, yc2, yc3) and ~φc ≡ (φc1, φc2, φc3). We will write

ρ3(~y, ~φ) = 〈Nc〉 ρ̄(1)3E(1)
s (~y, ~φ) + 〈Nc(Nc−1)〉 ρ̄(1)3E(2)

s (~y, ~φ) + 〈Nc(Nc−1)(Nc−2)〉 ρ̄(1)3E(3)
s (~y, ~φ)

(21)

where the functions E
(k)
s (~y, ~φ), k = 1, 2, 3, encode the rapidity and angular dependence for three-

particle correlations in single-cluster production (k = 1), double-cluster production (k = 2), and
triple-cluster production (k = 3).
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3.1 Factorization hypothesis

As in [8], we apply factorization of the rapidity (longitudinal) and azimuthal (transverse) directions
to the E-functions. Factorization of production cross sections and decay distributions into transverse
and longitudinal momentum parts is a hypothesis widely used in many high-energy physics processes.
Although not yet rigorioulsy proven from first principles, it works very well when contrasted with
experimental data, especially for high transverse momentum where such a hypothesis can also be
theoretically justified to some extent.

Since the ridge phenomenon shows up for particles with transverse momentum typically of order
>∼ 1 GeV, we will factorize the rapidity and azimuthal dependences of the above E-functions following

[8], as

Eb(~y, ~φ) = ELb (~y) · ETb (~φ) ,

Es(~y, ~φ) = ELs (~y) · ETs (~φ) , (22)

where the superscripts L and T denote the longitudinal and transverse parts, respectively.
According to different (hydrodynamic, cascade) models, fluctuating initial conditions should lead

to decorrelations of the orientation of initial event-planes in heavy ion collisions. In particular, the
authors of [14, 15] argue that event-to-event early state fluctuations (termed “torque effect” in [16])
should lead to a (pseudo)rapidity-azimuthal factorization breaking for well separated (pseudo)rapidity
particles in heavy ion collisions. Notice, however, that keeping the (pseudo)rapidity difference ∆yij
small, Eqs.(22) should remain reliable. Moreover, any observed deviation from our later predictions
on rapidity and azimuthal correlations for larger (pseudo)rapidity separations might be interpreted as
a hint of the existence of such kind of torque effect.

On the other hand, as usual in cluster models we shall adopt Gaussian distributions in rapidity
and azimuthal spaces for both cluster density and particle density from clusters, as developed below.
Thus, we shall write the single, two-cluster and three-cluster densities as

ρ(c)(yc, φc) ∼ exp

[
− y2c

2δ2cy

]
, ρ

(c)
2 (yc1, φc1, yc2, φc2) ∼ exp

[
−(yc1 + yc2)

2

2δ2cy

]
× exp

[
−(φc1 − φc2)2

2δ2cφ

]
,

ρ
(c)
3 (~yc, ~φc) ∼ exp

[
−(yc1 + yc2 + yc3)

2

2δ2cy

]
× exp

[
−(φc1 − φc2)2 + (φc1 − φc3)2 + (φc2 − φc3)2

2δ2cφ

]
, (23)

where δcy and δcφ stand for the rapidity and azimuthal cluster correlation lengths, respectively. Let
us remark that Eqs. (23) can be regarded as parameterizations especially suitable to determine the
near-ridge effect using the CCM. The rapidity Gaussians with arguments yc1 + yc2 and yc1 + yc2 + yc3
can be seen as a consequence of (partial) longitudinal momentum conservation for two-cluster and
three-cluster poduction. The azimuthal conditions are implemented in the Gaussians following [8], in
order to include collinear emission of particles in the near-side ridge effect.

On account of the plateau structure of multiplicity distribution in pseudorapidity phase space,
one may assume that the dependence of ρ(c)(yc, φc) on yc is rather weak, i.e. δ2cy � 1. On the other
hand, the particle density from single cluster decay, the rapidity and azimuthal dependence can be
approximately expressed in terms of Gaussians, i.e.

ρ(1)(y, φ; yc, φc) ∼ exp

[
−(y − yc)2

2δ2y

]
× exp

[
−(φ− φc)2

2δ2φ

]
. (24)

The parameter δy ( <∼ 1 rapidity units [17]) is usually referred to as the cluster decay (pseudo)rapidity
“width”. Regarding the transverse plane, δφ can be seen as another cluster decay width. For small
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Figure 1: Illustrative picture of three clusters produced in a primary hadron collision at the origin of
the transverse plane with azimuthal angles φc1, φc2 and φc3, decaying into final-state particles.

azimuthal angles with respect to the cluster direction, δφ ∼ 1
vT γT

, where vT and γT denote the cluster
velocity in the transverse plane and its associated Lorentz factor, as shown in [8].

In Fig. 1 we illustrate the particle emission from three clusters produced at the same primary
hadron collision leading to different elliptic shapes due to different Lorentz boosts. Clusters are
assumed to be correlated both in rapidity and azimuth according to Eqs. (23) (for more details see
Appendices).

4 Interpretation of the near-side ridge effect according to CCM

Rewriting the three-particle correlation function by adding the terms of contributions from one, two
and three cluster productions, one gets:

c3( ~∆y, ~∆φ) =
s
(1)
3 ( ~∆y, ~∆φ) + s

(2)
3 ( ~∆y, ~∆φ) + s

(3)
3 ( ~∆y, ~∆φ)

b3( ~∆y, ~∆φ)
, (25)

=
1

〈Nc〉2
h(1)( ~∆y, ~∆φ) +

〈Nc(Nc − 1)〉
〈Nc〉3

h(2)( ~∆y, ~∆φ) +
〈Nc(Nc − 1)(Nc − 2)〉

〈Nc〉3
h(3)( ~∆y, ~∆φ) ,

where detailed expressions for the h-functions are given in Appendix B.3. For Poisson distribution of
clusters, 〈Nc(Nc − 1)〉 becomes 〈Nc〉2 and 〈Nc(Nc − 1)(Nc − 2)〉 becomes 〈Nc〉3.

Therefore, the above expression leads to

c3( ~∆y, ~∆φ) =
1

〈Nc〉2
h(1)( ~∆y, ~∆φ) +

1

〈Nc〉
h(2)( ~∆y, ~∆φ) + h(3)( ~∆y, ~∆φ) . (26)

The last expression shows that the h(3) contribution dominates for large 〈Nc〉 (hence for high-multiplicity
events). This is an important feature concerning the correlated-cluster production as discussed later.

In the limit δ2cy � δ2y , δ
2
cφ � δ2φ and keeping the (∆y12, ∆y13) and (∆φ12, ∆φ13) components, Eqs.

(73)–(75) of Appendix B.3 read:

5



- for one cluster:

h(1)(∆y12,∆y13,∆φ12,∆φ13) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 −∆y12∆y13

3δ2y

]

× exp

[
−(∆φ12)

2 + (∆φ13)
2 − 2∆φ12∆φ13

3δ2φ

]
, (27)

- for two clusters:
h(2)(∆y12,∆y13,∆φ12,∆φ13)

∼
(

exp

[
−(∆y12)

2

4δ2y

]
+ exp

[
−(∆y13)

2

4δ2y

]
+ exp

[
−(∆y12)

2 + (∆y13)
2 − 2∆y12∆y13

4δ2y

])

×
(

exp

[
−(∆φ12)

2

4δ2φ

]
+ exp

[
−(∆φ13)

2

4δ2φ

]
+ exp

[
−(∆φ12)

2 + (∆φ13)
2 − 2∆φ12∆φ13

4δ2φ

])

× exp

[
−(∆y12)

2 + (∆y13)
2 −∆y12∆y13

3δ2cy

]
exp

[
−(∆φ12)

2 + (∆φ13)
2 −∆φ12∆φ13

2δ2cφ

]
, (28)

- for three clusters:

h(3)(∆y12,∆y13,∆φ12,∆φ13) ∼ exp

[
(∆y12)

2 + (∆y13)
2 +−(∆y12)(∆y13)

3δ2cy

]
(29)

×
(

exp

[
−(∆φ12)

2 + (∆φ13)
2 −∆φ12∆φ13

δ2cφ

]

+ exp

[
−(∆φ12)

2

2δ2cφ

]
+ exp

[
−(∆φ13)

2

2δ2cφ

]
+ exp

[
−(∆φ12)

2 + (∆φ13)
2 − 2∆φ12∆φ13

2δ2cφ

])
.

Figures 2–4, based on Eqs. (26)–(29), illustrate the above-described interpretation.
In the left panel of Fig.2 we show the contour-plot of c3(∆y12,∆y13,∆φ12,∆φ13) as a function

of the azimuthal differences ∆φ12 and ∆φ13, having fixed ∆y12 = ∆y13 = 0. A quite asymmetric
two-dimensional plot can be seen, resulting from the existence of two correlation scales: a short-range
correlation length (set by single-cluster decay) and a long-range correlation length (set by cluster
formation).5 One can see that, in fact, long-range azimuthal correlations mainly come from the h(3)

term, i.e. they are originated by correlated-cluster emission. This important point is in agreement with
our main conclusion on the near-side ridge effect in hadronic collisions obtained in our study of two-
particle correlations [8]. In a way similar to two-particle azimuthal correlations [8], we conclude here
that, in the absence of correlated-cluster emission, no long-range azimuthal three-particle correlations
would be seen.

In the right panel of Fig. 2 we show the contour-plot of c3(∆y12,∆y13,∆φ12,∆φ13) now as a
function of the rapidity differences ∆y12 and ∆y13, having fixed ∆φ12 = ∆φ13 = 0. A quite different
behaviour can be appreciated as compared to the azimuthal dependence on the left. Aside the central
peak corresponding to dominating short-range correlations from single clusters decays, it is now a
rather structureless plot, in agreement with some early experimental measurements [19].

In Fig. 3, the projection plots of the three-particle correlation function c3(∆y12,∆y13,∆φ12,∆φ13)
for the azimuthal-difference dependence along the diagonal (∆φ12 = ∆φ13, left panel) and off the

5Let us remark that this plot agrees quite well with the results presented in [18] based on the framework of the glasma
interpretation.
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Figure 2: Contour plots of c3(∆φ12,∆φ13), ∆y12 = ∆y13 = 0 (left panel) and c3(∆y12,∆y13), ∆φ12 =
∆φ13 = 0 (right panel), calculated using Eqs. (26)–(29) with δy = 0.9, δcy = 4, δφ = 0.14, δcφ = 0.5,
assuming a Poisson distribution for clusters.
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Figure 3: The diagonal (left panel) and off-diagonal (right panel) projections of the azimuthal contour
plot of c3(∆φ12,∆φ13) with ∆y12 = ∆y13 = 0, shown in Fig. 2, left panel.
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Figure 4: The diagonal (left panel) and off-diagonal (right panel) projections of the rapidity contour
plot of c3(∆y12,∆y13) with ∆φ12 = ∆φ13 = 0, shown in Fig. 2, left panel.

diagonal (∆φ12 = −∆φ13, right panel) are shown under the ∆y12 = ∆y13 = 0 condition. Again
a different behaviour can be readly observed in both plots, as the on-diagonal correlation length
is appreciably longer than the off-diagonal correlation length. We interpret this difference as an
indication that the former is dominated by cluster correlations whose correlation length is larger than
for particles emitted from the same cluster that mainly populate the off-diagonal line.
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In Fig. 4, the projections of the three-particle correlation function c3(∆y12,∆y13,∆φ12,∆φ13) for
the rapidity dependence only (having fixed ∆φ12 = ∆φ13 = 0) along the diagonal (∆y12 = ∆y13, left
plot) and off the diagonal (∆y12 = −∆y13, right plot) are shown. Now, as expected, the two Gaussian-
like plots are quite similar, reflecting that both are determined by short-distance correlations from
single-cluster decays.

5 Summary

A study of the ridge phenomenon is presented for three-particle correlations, extending our previous
work in the context of the correlated-cluster model (CCM). Gaussians are employed for azimuth
and (pseudo)rapidity distributions, encoding short- and long-range correlations for clusters and final-
state hadrons. The CCM provides a common framework to explain the ridge effect in proton-proton,
proton-nucleus and heavy-ion collisions. As obtained for two-particle correlations in our earlier study,
we conclude again that azimuthal correlations among clusters are definitely needed to explain the
ridge phenomenon.
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A Two-particle correlations

A.1 (Pseudo)rapidity dependence

We will assume throughout that both clusters and particles stemming from clusters obey Gaussian
distributions in rapidity space (for more detais on this Appendix we refer the reader to [8]):

ρ(c)(yc, φc) ∼ exp

[
− y2c

2δ2cy

]
, ρ(1)(y, φ; yc, φc) ∼ exp

[
−(y − yc)2

2δ2y

]
. (30)

Upon integration over the cluster rapidity yc, the EL1 (y) function, introduced in Eq.(13), reads

EL1 (y) ∼
∫
dyc exp

[
− y2c

2δ2cy

]
exp

[
−(y − yc)2

2δ2y

]
∼ exp

[
− y2

2(δ2y + δ2cy)

]
. (31)

Hence, for two particles emitted from the two clusters one gets for the longitudinal part of the Eb

function, introduced in Eq.(14),

E
(2)
b (y1, y2) = E

(1)
1 (y1) · E(1)

1 (y2) ∼ exp

[
− (y21 + y22)

2(δ2y + δ2cy)

]
. (32)

Upon integration on both rapidities keeping the rapidity interval ∆y = y1 − y2 fixed, one gets

e
(2)
b (∆y) ∼ exp

[
− (∆y)2

4(δ2y + δ2cy)

]
, (33)

For two particles stemming from the same cluster with rapidity yc

E(1)
s (y1, y2) ∼

∫
dyc exp

[
− y2c

2δ2cy

]
exp

[
−(y1 − yc)2

2δ2y

]
exp

[
−(y2 − yc)2

2δ2y

]
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∼ exp

[
−
δ2cy(y1 − y2)2

2δ2y(δ
2
y + 2δ2cy)

]
exp

[
− (y21 + y22)

2(δ2y + 2δ2cy)

]
. (34)

After integration using the Dirac’s δ-function, δ(∆y − y1 + y2), the above expression leads to

e(1)s (y1, y2) ∼ exp

[
−(∆y)2

4δ2y

]
. (35)

Notice that δcy drops off in the last expression so that it can be considered as a short-range correlation
contribution.

For two particles with rapidity y1 and y2 coming from two (correlated) clusters with rapidities yc1
and yc2, respectively, we have (see Eqs. (23))

E(2)
s (y1, y2) ∼

∫
dyc1dyc2 exp

[
−(yc1 + yc2)

2

2δ2cy

]
exp

[
−(y1 − yc1)2

2δ2y

]
exp

[
−(y2 − yc2)2

2δ2y

]

∼ exp

[
− (y1 + y2)

2

2(2δ2y + δ2cy)

]
. (36)

Using again the Dirac δ-function, one gets e
(2)
s (∆y) ∼ const., which corresponds to a long-range

correlation contribution.
In sum, we get two pieces with different behaviours (short-range and long-range correlations) in

rapidity space:

e(1)s (∆y) ∼ exp

[
−(∆y)2

4δ2y

]
; e(2)s (∆y) ∼ const. (37)

A.2 Azimuthal dependence

In addition to the hypothesis of isotropically decaying clusters in their own rest frame, we will assume
axial symmetry for cluster production in the transverse plane, i.e.

ETb (φ1, φ2) ∼ const. → eTb (∆φ) ∼ const. (38)

Thus, the distribution for two particles, emitted from the same cluster with azimuthal angle φc
should obey ∫

dφc exp

[
−(φ1 − φc)2

2δ2φ

]
exp

[
−(φ2 − φc)2

2δ2φ

]
∼ exp

[
−(φ1 − φ2)2

4δ2φ

]
(39)

for small azimuthal angles. Therefore, regarding the azimuthal dependence we can write

e(1)s (∆φ) ∼ exp

[
−(∆φ)2

4δ2φ

]
. (40)

As for the above rapidity correlations, the dependence on δcφ drops off in this expression, so that it
can be referred as a short-range correlation term.

On the other hand, we will assume that clusters are produced in a correlated way according to
Eqs.(23). Hence for two particles with azimuthal angles φ1 and φ2 coming from two (correlated)
clusters with azimuthal angles φc1 and φc2, we will write

ETs (φ1, φ2) ∼
∫
dφc1dφc2 exp

[
−(φc1 − φc2)2

2δ2cφ

]
exp

[
−(φ1 − φc1)2

2δ2φ

]
exp

[
−(φ2 − φc2)2

2δ2φ

]
(41)
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∼ exp

[
− (φ1 − φ2)2

2(2δ2φ + δ2cφ)

]
,

that directly leads to

e(2)s (∆φ) ∼ exp

[
− (∆φ)2

2(2δ2φ + δ2cφ)

]
, (42)

which corresponds to a long-range correlation contribution.

A.3 Final expressions

In sum, we find that the short-range and long-range pieces of the es(∆y,∆φ) function can be written
as

e(1)s (∆y,∆φ) ∼ exp

[
−(∆y)2

4δ2y

]
exp

[
−(∆φ)2

4δ2φ

]
and

e(2)s (∆y,∆φ) ∼ exp

[
− (∆φ)2

2(2δ2φ + δ2cφ)

]
.

Note that eb(∆y,∆φ) only retains dependence on the rapidity variable for isotropic cluster pro-
duction in the transverse plane,

eb(∆y,∆φ) ∼ exp

[
− (∆y)2

4(δ2y + δ2cy)

]
.

B Three-particle correlations

B.1 (Pseudo)rapidity dependence

Similarly to the above two-particle calculations in Appendix A.1, for three particles emitted from
three clusters one gets for the longitudinal part of the Eb function,

E
(3)
b (y) = EL1 (y1) · EL1 (y2) · EL1 (y3) ∼ exp

[
−(y21 + y22 + y23)

2(δ2y + δ2cy)

]
, (43)

where EL1 (y) is defined in Eq. (31). Upon integration over all three rapidities and keeping the rapidity
intervals ∆y12 = y1 − y2 and ∆y13 = y1 − y3 fixed, one gets

e
(3)
b ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 −∆y12∆y13

3(δ2y + δ2cy)

]
. (44)

Since ∆y23 = ∆y13 − ∆y12, the above equation can be also expressed in terms of all three rapidity
intervals

e
(3)
b ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 + (∆y23)

2

6(δ2y + δ2cy)

]
. (45)

For three particles stemming from the same cluster with rapidity yc,

E(1)
s (~y) ∼

∫
dyc exp

[
− y2c

2δ2cy

]
exp

[
−(y1 − yc)2 + (y2 − yc)2 + (y3 − yc)2

2δ2y

]

∼ exp

[
−
δ2cy(y

2
1 + y22 + y23 − y1y2 − y1y3 − y2y3)

2δ2y(δ
2
y + 3δ2cy)

]
exp

[
−(y21 + y22 + y23)

2(δ2y + 3δ2cy)

]
. (46)
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After integration using the Dirac’s δ-functions (see Eq.(8), the above expression leads to

e(1)s ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 −∆y12∆y13

3δ2y

]
. (47)

Notice again that δcy drops off in the last expression so that it can be referred to as a short-range
correlation contribution.

Again, using the ~∆y interdependence, the above equation can be expressed as

e(1)s ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 + (∆y23)

2

6δ2y

]
. (48)

For three particles coming from two clusters emitted in a correlated way (see Eqs. (23)), we have
three possibilities:

E(2)
s (~y) ∼

∫
dyc1dyc2 exp

[
−(yc1 + yc2)

2

2δ2cy

]
exp

[
−(y1 − yc1)2 + (y2 − yc2)2 + (y3 − yc2)2

2δ2y

]

∼ exp

[
−
δ2cy(y2 − y3)2 + 2δ2y(y

2
1 + y22 + y23 + y1y2 + y1y3 − y2y3)

2δ2y(3δ
2
y + 2δ2cy)

]
, (49)

E(2)
s (~y) ∼

∫
dyc1dyc2 exp

[
−(yc1 + yc2)

2

2δ2cy

]
exp

[
−(y2 − yc1)2 + (y1 − yc2)2 + (y3 − yc2)2

2δ2y

]
,

∼ exp

[
−
δ2cy(y1 − y3)2 + 2δ2y(y

2
1 + y22 + y23 + y1y2 + y2y3 − y1y3)

2δ2y(3δ
2
y + 2δ2cy)

]
, (50)

E(2)
s (~y) ∼

∫
dyc1dyc2 exp

[
−(yc1 + yc2)

2

2δ2cy

]
exp

[
−(y3 − yc1)2 + (y1 − yc2)2 + (y2 − yc2)2

2δ2y

]

∼ exp

[
−
δ2cy(y1 − y2)2 + 2δ2y(y

2
1 + y22 + y23 + y1y3 + y2y3 − y1y2)

2δ2y(3δ
2
y + 2δ2cy)

]
. (51)

Using again the Dirac’s δ-functions (8), one gets respectively

e(2)s ( ~∆y) ∼ exp

[
−(∆y23)

2

4δ2y

]
= exp

[
−(∆y12)

2 + (∆y13)
2 − 2∆y12∆y13

4δ2y

]
, (52)

e(2)s ( ~∆y) ∼ exp

[
−(∆y13)

2

4δ2y

]
, (53)

and

e(2)s ( ~∆y) ∼ exp

[
−(∆y12)

2

4δ2y

]
. (54)

Similar to a single-cluster case, the δcy drops off in the these expressions which therefore can be
referred to as other short-range correlation contributions.

For three particles with rapidities y1, y2 and y3 coming from three (correlated) clusters with
rapidities yc1, yc2 and yc3, respectively, we have (see Eqs. (23)):

E(3)
s (~y) ∼

∫
dyc1dyc2dyc3 exp

[
−(yc1 + yc2 + yc3)

2

2δ2cy

]
exp

[
−(y1 − yc1)2 + (y2 − yc2)2 + (y3 − yc3)2

2δ2y

]
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∼ exp

[
−(y1 + y2 + y3)

2

2(3δ2y + δ2cy)

]
. (55)

As commented in the main text, the Gaussian depending on the sum of rapidities yc1 + yc2 + yc3
stems from the requirement of partial (longitudinal) momentum conservation. It takes into account
different topologies for cluster emission once integrated upon their rapidities.

Applying again the Dirac’s δ-functions, one gets

e(3)s ( ~∆y) ∼ const. , (56)

which corresponds to a long-range correlations contribution in rapidity phase-space.
In sum, we get several pieces with different behaviours in rapidity space:

e(1)s ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 −∆y12∆y13

3δ2y

]
, (57)

e(2)s ( ~∆y) ∼ exp

[
−(∆y12)

2 + (∆y13)
2 − 2∆y12∆y13

4δ2y

]
+ exp

[
−(∆y12)

2

4δ2y

]
+ exp

[
−(∆y13)

2

4δ2y

]
, (58)

e(3)s ( ~∆y) ∼ const. (59)

B.2 Azimuthal dependence

The distribution for three particles, emitted from the same cluster with azimuthal angle φc should
obey ∫

dφc exp

[
−(φ1 − φc)2

2δ2φ

]
exp

[
−(φ2 − φc)2

2δ2φ

]
exp

[
−(φ3 − φc)2

2δ2φ

]
(60)

for small azimuthal differences. Therefore, regarding the azimuthal dependence we can write

e(1)s ( ~∆φ) ∼ exp

[
−(∆φ12)

2 + (∆φ13)
2 −∆φ12∆φ13

3δ2φ

]
= exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

6δ2φ

]
.

(61)
For three particles with azimuthal angles φ1 and φ2 coming from two clusters with azimuthal angles

φc1 and φc2 emitted in a correlated way (see Eqs. (23)), three possible topologies are:

E(2)
s (~φ) ∼

∫
dφc1dφc2 exp

[
−(φc1 − φc2)2

2δ2cφ

]
exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc2)2

2δ2φ

]
, (62)

and

E(2)
s (~φ) ∼

∫
dφc1dφc2 exp

[
−(φc1 − φc2)2

2δ2cφ

]
exp

[
−(φ2 − φc1)2 + (φ1 − φc2)2 + (φ3 − φc2)2

2δ2φ

]
, (63)

and

E(2)
s (~φ) ∼

∫
dφc1dφc2 exp

[
−(φc1 − φc2)2

2δ2cφ

]
exp

[
−(φ3 − φc1)2 + (φ1 − φc2)2 + (φ2 − φc2)2

2δ2φ

]
. (64)

The above integrals lead to

E(2)
s (~φ) ∼ exp

[
−
δ2cφ(φ2 − φ3)2 + 2δ2φ(φ21 + φ22 + φ23 − φ1φ2 − φ1φ3 − φ2φ3)

2δ2φ(3δ2φ + 2δ2cφ)

]
,
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E(2)
s (~φ) ∼ exp

[
−
δ2cφ(φ1 − φ3)2 + 2δ2φ(φ21 + φ22 + φ23 − φ1φ2 − φ1φ3 − φ2φ3)

2δ2φ(3δ2φ + 2δ2cφ)

]
,

E(2)
s (~φ) ∼ exp

[
−
δ2cφ(φ1 − φ3)2 + 2δ2φ(φ21 + φ22 + (φ3)

2 − φ1φ2 − φ1φ3 − φ2φ3)
2δ2φ(3δ2φ + 2δ2cφ)

]
,

which can be rewritten as

e(2)s ( ~∆φ) ∼ exp

[
−

δ2cφ(∆φ23)
2

2δ2φ(3δ2φ + 2δ2cφ)

]
exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + 2δ2cφ)

]
, (65)

e(2)s ( ~∆φ) ∼ exp

[
−

δ2cφ(∆φ13)
2

2δ2φ(3δ2φ + 2δ2cφ)

]
exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + 2δ2cφ)

]
, (66)

e(2)s ( ~∆φ) ∼ exp

[
−

δ2cφ(∆φ12)
2

2δ2φ(3δ2φ + 2δ2cφ)

]
exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + 2δ2cφ)

]
. (67)

For three clusters with azimuthal angles φc1, φc2 and φc3, all of them emitted in a correlated way
one has (see Eqs. (23)):

E(3)
s (~φ) ∼

∫
d~φc exp

[
−(φc1 − φc2)2 + (φc1 − φc3)2 + (φc2 − φc3)2

2δ2cφ

]

× exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc3)2

2δ2φ

]

∼ exp

[
−φ

2
1 + φ22 + φ23 − φ1φ2 − φ1φ3 − φ2φ3

3δ2φ + δ2cφ

]
, (68)

which can be rewritten as

e(3)s ( ~∆φ) ∼ exp

[
−(∆φ12)

2 + (∆φ13)
2 −∆φ12∆φ13

3δ2φ + δ2cφ

]
∼ exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + δ2cφ)

]
.

(69)
For two clusters (out of three) emitted in a correlated way, the three possible topologies are:

E(3)
s (~φ) ∼

∫
d~φc exp

[
−(φc2 − φc3)2

2δ2cφ

]
exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc3)2

2δ2φ

]

∼ exp

[
− (φ2 − φ3)2

2(2δ2φ + δ2cφ)

]
,

which can be rewritten as

e(3)s ( ~∆φ) ∼ exp

[
−(∆φ12)

2 + (∆φ13)
2 − 2∆φ12∆φ13

2(2δ2φ + δ2cφ)

]
∼ exp

[
− (∆φ23)

2

2(2δ2φ + δ2cφ)

]
; (70)

E(3)
s (~φ) ∼

∫
d~φc exp

[
−(φc1 − φc2)2

2δ2cφ

]
exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc3)2

2δ2φ

]

∼ exp

[
− (∆φ12)

2

2(2δ2φ + δ2cφ)

]
,

13



E(3)
s (~φ) ∼

∫
d~φc exp

[
−(φc1 − φc3)2

2δ2cφ

]
exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc3)2

2δ2φ

]

∼ exp

[
− (∆φ13)

2

2(2δ2φ + δ2cφ)

]
.

Notice that, conversely to the (pseudo)rapidity dependence, we consider pairwise azimuthal cor-
relations among clusters as potential contributions to the ridge effect. Therefore, no two-cluster
contributions similar to the three ones just above to appear for pseudorapidities.

For three clusters, all of them independently emitted, one gets

E(3)
s (~φ) ∼

∫
dφc1dφc2dφc3 exp

[
−(φ1 − φc1)2 + (φ2 − φc2)2 + (φ3 − φc2)2

2δ2φ

]
∼ const. ,

leading to
e(3)s ( ~∆φ) ∼ const. (71)
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B.3 Final expressions

Taking into account that in the transverse direction, in addition to the hypothesis of isotropically
decaying clusters in their own rest frame, we assume axial symmetry for cluster production i.e.

ETb (φ1, φ2, φ3) ∼ const. → eTb ( ~∆φ) ∼ const. , (72)

similarly to two-particle correlations, Eq. (38), the final experssions are as follows:

- for one cluster:

h(1)( ~∆y, ~∆φ) =
e
(1)
s

e
(3)
b

(73)

∼ exp

[
−
δ2cy{(∆y12)2 + (∆y13)

2 + (∆y23)
2}

6δ2y(δ
2
y + δ2cy)

]
exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

6δ2φ

]
,

- for two clusters:

h(2)( ~∆y, ~∆φ) =
e
(2)
s

e
(3)
b

∼
(

exp

[
−(∆y12)

2

4δ2y

]
+ exp

[
−(∆y13)

2

4δ2y

]
+ exp

[
−(∆y23)

2

4δ2y

])
(74)

× exp

[
(∆y12)

2 + (∆y13)
2 + (∆y23)

2

6(δ2y + δ2cy)

]

×
(

exp

[
−

δ2cφ(∆φ12)
2

2δ2φ(3δ2φ + 2δ2cφ)

]
+ exp

[
−

δ2cφ(∆φ13)
2

2δ2φ(3δ2φ + 2δ2cφ)

]
+ exp

[
−

δ2cφ(∆φ23)
2

2δ2φ(3δ2φ + 2δ2cφ)

])

× exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + 2δ2cφ)

]
,

- for three clusters:

h(3)( ~∆y, ~∆φ) =
e
(3)
s

e
(3)
b

∼ exp

[
(∆y12)

2 + (∆y13)
2 + (∆y23)

2

6(δ2y + δ2cy)

]
(75)

×
(

exp

[
−(∆φ12)

2 + (∆φ13)
2 + (∆φ23)

2

2(3δ2φ + δ2cφ)

]

+ exp

[
− (∆φ12)

2

2(2δ2φ + δ2cφ)

]
+ exp

[
− (∆φ13)

2

2(2δ2φ + δ2cφ)

]
+ exp

[
− (∆φ23)

2

2(2δ2φ + δ2cφ)

])
.
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