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Abstract: We advocate the use of on-shell constrained M2 variables in order to mitigate the

combinatorial problem in SUSY-like events with two invisible particles at the LHC. We show

that in comparison to other approaches in the literature, the constrained M2 variables provide

superior ansatze for the unmeasured invisible momenta and therefore can be usefully applied

to discriminate combinatorial ambiguities. We illustrate our procedure with the example

of dilepton tt̄ events. We critically review the existing methods based on the Cambridge

MT2 variable and MAOS-reconstruction of invisible momenta, and show that their algorithm

can be simplified without loss of sensitivity, due to a perfect correlation between events

with complex solutions for the invisible momenta and events exhibiting a kinematic endpoint

violation. Then we demonstrate that the efficiency for selecting the correct partition is further

improved by utilizing the M2 variables instead. Finally, we also consider the general case

when the underlying mass spectrum is unknown, and no kinematic endpoint information is

available.
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1 Introduction

Events with missing transverse energy1 (ET/ ) are arguably the most exciting class of events

at the Large Hadron Collider (LHC). They offer the tantalizing possibility of discovering the

elusive dark matter — if dark matter particles were produced in the LHC collisions, they

would leave the detector without a trace, and the only sign of their presence would be the

imbalance in the total transverse momentum of the event. Unfortunately, events with ET/ are

also notoriously difficult to interpret and analyze:

• Instrumental effects. Since the missing transverse momentum /~PT is measured only

as the recoil against all other visible objects in the event, it can be easily faked by

mismeasurement and the finite detector resolution [1]. This problem becomes more

severe if the signature involves QCD jets, whose energies and momenta are poorly

measured in comparison to leptons and photons.

1/ET is an unfortunate misnomer which stands for the magnitude of the missing transverse momentum /~PT .
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• Unknown nature of the invisible particles. A priori, we do not know the nature of the

invisible particles — they could be new particles, or simply the Standard Model (SM)

neutrinos [2].

• Incomplete kinematic information. We do not know how many invisible particles were

present in the event to begin with [3–7]. We also do not know their individual momenta,

and only the net sum /~PT of their transverse components is available.

The first step in the analysis of any sample of ET/ events is to hypothesize a certain event

topology, and design suitable variables adapted to this interpretation [8]. It is already at

this stage that one is facing a combinatorial problem, namely, how to associate the various

reconstructed objects in the event to the elementary particles in the final state of the event

topology. Only in very special cases does the problem not arise — if the event topology is

very simple and/or all final state particles are distinct. In general, a typical ET/ event at the

LHC does suffer from a combinatorics problem, for the following two reasons:

• At hadron colliders like the LHC, strong production of colored particles is the dominant

production mechanism. When those colored particles decay to the invisible dark matter

candidates, the color is shed in the form of QCD jets, which can be confused with jets

from initial state radiation (ISR) [9–12]. In fact, the ISR combinatorics problem is very

general and affects any multijet events at hadron colliders, regardless of the presence of

ET/ in the event.

• The lifetime of the dark matter particles is typically protected by some new symmetry.

This is often chosen to be a discrete Z2 parity, under which the SM particles are even,

while the new physics particles are odd. In that case, the new particles are necessarily

pair produced, so that each event contains two independent decay chains. This creates

a partitioning ambiguity, since the experimenter has to decide whether to assign each

reconstructed object to the first or the second decay chain [13]. Wrong assignments

would tend to wash out the desired kinematic features and degrade the measurements.

In principle, the combinatorial problem can be addressed in two different ways:

• Sidestep the combinatorial problem. The idea here is to design the analysis in such a

way that the combinatorial problem does not become an issue. Two possibilities are:

– Use global inclusive variables which do not suffer from a combinatorics problem.

These variables treat the event as a whole and thus do not depend on the exact

event topology, and the combinatorics problem does not arise in the first place.

Some well known examples are Meff [14, 15], ŝmin [16], ET/ [17], etc. The disad-

vantage is that such variables are suboptimal when compared to more exclusive

variables which take advantage of the individual characteristics of the event topol-

ogy.
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– Use variables which optimize over all possible combinatorial assignments. In this

case, instead of trying to figure out the correct assignment in a given event, one

considers all possibilities, then chooses the one2 which preserves the relevant useful

property of the kinematic variable used in the analysis. As an example, consider

an attempt to measure the upper kinematic endpoint of some relevant distribution,

such as a two-body invariant mass or the Cambridge MT2 variable [18]. One could

simply compute the value of the variable under all possible assignments, then

choose the smallest among them to be used in the analysis [14, 19–27].3 While

this procedure is guaranteed to preserve the kinematic endpoint, it also adversely

distorts the shape of the kinematic distribution in the vicinity of the endpoint,

making it more difficult to observe in the presence of SM background.

• Resolve the combinatorial problem by choosing the “best” assignment event by event.

In this case one tries to design an algorithm which will single out one (or maybe sev-

eral) among the many possible assignments as the most likely “correct” assignment,

then use the value of the kinematic variable obtained with this specific choice. Ideally,

the algorithm should return a unique selection, which would be correct 100% of the

time. Unfortunately, this is rarely achievable in practice, and an important measure

quantifying the success of the algorithm is the purity of the resulting sample, i.e., the

fraction of events in which the combinatorics was successfully resolved. In principle,

there can be different approaches to designing such an algorithm, from the use of a

single exclusive variable to a multivariate technique like a neural network analysis [28].

For example, depending on the process at hand, one can attempt to tag ISR jets by a

suitable combination of cuts on the jet rapidity and transverse momentum [29] or on

the invariant mass and MT2 [30]. The partitioning problem into two decay chains is

usually addressed by the so-called “hemisphere” algorithm, developed originally within

CMS [31] and later adopted in many phenomenological studies [32–34]. There have

been attempts to further improve on the hemisphere algorithm by suitable cuts on the

invariant mass and either the jet pT [35] or MT2 [36], by excluding certain reconstructed

objects from the clustering algorithm [21, 37], or by recursive jigsaw reconstruction [38].

In general, methods which invoke fewer assumptions, are robust and model indepen-

dent, but lead to rather vague conclusions, while methods with more assumptions give

better results, but are not generally applicable.

In the case of ET/ events, the combinatorics problem is exacerbated by the fact that the

momenta of the invisible particles are unknown. If the decay chains are sufficiently long,

so that there are enough kinematic constraints, one can attempt to compute the individual

invisible particle momenta on an event per event basis [39–43]. Unfortunately, this procedure

itself suffers from a combinatorics problem, which only becomes worse as the decay chains get

2The chosen option does not necessarily have to be the correct one.
3A similar idea can be applied to measure a lower kinematic endpoint — in that case one would choose the

largest value among all possibilities.
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longer (as required for the method to work). For shorter decay chains, like the ones considered

in this paper, the method does not apply.

Since the invisible momenta cannot be reconstructed exactly, the next best thing to do is

to use some sort of an approximation for them [44]. Again, different approaches are possible.

For example, one could use a matrix element method (MEM) to select the most likely values

of the invisible momenta. However, the MEM itself suffers from combinatorics, and is rather

model dependent since it requires us to fully specify the underlying physics. A better approach

would be to rely only on kinematics and obtain the invisible momenta by optimizing a suitable

kinematic function. But what constitutes a good target function for such optimization?

Initially, the focus was placed on transverse mass variables like MT2 [18, 45] and its variants

[46–49]. While transverse quantities are Lorentz invariant under longitudinal boosts, they only

provide an ansatz for the transverse components of the individual invisible momenta, and one

still needs to provide a supplementary procedure for calculating the longitudinal components

of the invisible momenta. One such complementary technique is the MAOS4 reconstruction

[50], where one imposes an additional on-shell kinematic constraint which can be solved for

the longitudinal momentum component of each invisible particle. It has been shown that the

MAOS approach provides a reasonably good approximation to the true values of the invisible

momenta, and can be usefully applied for mass and spin measurements [50–52]. The MAOS

technique was then used to design a novel algorithm [53] for resolving the combinatorial

ambiguity in dilepton tt̄ events, further expanding on the ideas from Refs. [35, 36]. The

algorithm aims to resolve the two-fold5 ambiguity in selecting the correct lepton-jet pairing

and involves the following three steps:

• Step I. Following the proposal of Ref. [36], some number of wrong lepton-jet combi-

nations can be eliminated if they violate the expected endpoints in the distributions of

the invariant mass mb` and MT2.

• Step II. Utilizing the ansatz found in Step I for the transverse components of the

invisible momenta, attempt a MAOS reconstruction of the longitudinal components in

two cases:

1. using the known value of the top quark mass mt;

2. using the known value of the W -boson mass mW .

Eliminate additional wrong combinations if the solutions for the longitudinal momenta

in either case turn out to be complex.

• Step III. In this final step, one uses the reconstructed masses for the W -boson (in case

II.1) and the top quark (in case II.2) in conjunction with MT2 to decide which of the

two lepton-jet pairings is the likelier one.

4MAOS stands for MT2-Assisted On-Shell reconstruction.
5In the case of dilepton tt̄ events, the two jets originating from the top decays can be distinguished from

ISR jets by b-tagging.
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While this algorithm was originally designed to handle the two-fold ambiguity in tt̄ events,

where the mass spectrum is known, with suitable modifications it can also be applied to new

physics searches, as advertised in Ref. [53]. For instance, in the MAOS reconstruction Step

II, instead of using the fixed values of the known masses mt and mW , one could use the

measured endpoints in the respective MT2 subsystems [46].

Recently it has been pointed out that the MT2 approach has a (3 + 1)-dimensional ana-

logue in terms of a general class of on-shell constrained invariant mass variables M2 [8, 54, 55].

Compared to MT2, the M2 variables have several advantages:

• Being defined in (3+1) dimensions, they allow us to easily and directly enforce all

relevant on-shell constraints in a given event topology [8, 56].

• Unlike the case of MT2, the optimization procedure required to compute the value

of M2 automatically provides an ansatz for both the transverse and the longitudinal

components of the invisible momenta. In this sense, once one commits to using M2

variables instead of MT2, the MAOS reconstruction step for finding the longitudinal

momentum components is unnecessary.

• The maximally constrained M2 variable can be expected to provide the best possible

ansatz for the individual invisible momenta, since it takes into account all relevant

kinematic constraints in a given event topology [44].

The main goal of this paper is to utilize these advantages of the M2 variables and design

an improved algorithm for resolving the combinatorial ambiguity in SUSY-like events with

two invisible particles at the LHC. As our benchmark, we shall use the current state of the art

algorithm which was proposed and tested for dilepton tt̄ events in Ref. [53]. Correspondingly,

in section 2 we shall first give a brief review of the relevant background information regarding

the kinematics of the dilepton tt̄ event topology. Then in section 3 we shall carefully define

the different options for kinematic reconstruction of the invisible momenta [44]. We shall see

that in principle there can be different ways of applying the ideas of MAOS reconstruction,

M2-assisted reconstruction, or some combination of both. In section 3 we shall also compare

the accuracy of several representative methods for invisible momentum reconstruction.

The next three sections will be devoted to the issue of resolving the combinatorial am-

biguity. First in section 4 we critically review each of the three steps of the current state of

the art method based on the Cambridge MT2 variable and MAOS-reconstruction of invisible

momenta [36, 53]. Our goal will be to improve the algorithm in two aspects:

• Better performance. By considering various modifications, e.g., utilizing the alternative

set of M2 variables, or alternative implementations of the MAOS method itself, we shall

attempt to improve the efficiency6 of the algorithm in selecting the correct partition in

dilepton tt̄ events.

6Throughout the paper, we shall use the terms “efficiency” and “purity” interchangeably to denote the

same quantity — the fraction of events in which the algorithm is successful in identifying the correct partition.
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• Simplicity. At the same time, we shall keep an eye on the relative performance of

each algorithm component, and if we find components which underperform, we shall

eliminate them from consideration, thus simplifying the algorithm. For example, in

section 4.2 we shall demonstrate that Step II can be safely disregarded since it is fully

correlated with Step I and does not give anything new.

Then in section 5 we consider several new ideas which go beyond the three steps of the current

algorithm. In section 5.1 we consider expanding the set of variables used in Step I from two

to three, since the dilepton tt̄ event topology allows not just two, but three independent

kinematic endpoints [46, 57]. Then in section 5.2 we discuss a special class of maximally

constrained M2 variables where the knowledge of the top and W -boson masses can be taken

into account already during the optimization stage7, thus further improving the ansatz for

the transverse invisible momenta. In section 5.3 we study the potential benefit from using a

global inclusive variable such as
√
ŝ or an angular variable such as the scattering angle of the

parents in the center-of-mass frame. Finally, in section 6 we treat the general case when the

underlying mass spectrum is unknown, and no kinematic endpoint information is available.

We consider a simplified version of the algorithm which is suitably adapted to this scenario,

and investigate its performance in the general new physics mass parameter space. We discuss

future extensions of this work and summarize in section 7.

2 Dilepton tt̄ kinematics and mass-constraining variables

In this section we shall introduce the basic notation and review the relevant class of mass-

constraining variables which will be used later to obtain suitable ansatze for the invisible

momenta. For the most part, we shall stick to the notation and terminology of Refs. [44, 55].

Following [36, 53], we focus primarily on the “dilepton tt̄” event topology depicted in Fig. 1.

This choice is motivated by several factors:

• As far as the combinatorial problem is concerned, this is the simplest example which

is not trivial — if we were to consider a single-step two-body decay on each side, there

would be no combinatorial issue to begin with, and if we were to consider longer decay

chains, the problem would become more difficult.

• This event topology is realized in the SM production of tt̄ events, providing a useful toy

playground for testing new ideas for studying new physics [57–60].

• Several new physics models can lead to this event topology, including stop-pair produc-

tion in supersymmetry [61] and pair-production of leptoquarkinos [62].

Thus the general event topology considered in this paper is the pair-production of two

identical parent particles Ai, followed by a 2-step 2-body decay for each one (see Fig. 1):

pp→ A1A2 , Ai → aiBi , Bi → biCi , (i = 1, 2) . (2.1)

7Note that this is impossible in the case of purely transverse variables like MT2.
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A1 B1 C1

A2 B2 C2

a1 b1

a2 b2

(a)

(b)

(ab)

Figure 1. The event topology considered in this paper, together with the three possible subsystems.

The blue dotted, the green dot-dashed, and the black solid boxes indicate the subsystems (a), (b), and

(ab), respectively. The figure is taken from Ref. [55].

In principle, Ai, Bi and Ci should be thought of as some unknown BSM particles, while ai
and bi are SM particles whose four-momenta are measured. The particles Ci are invisible in

the detector, and their momenta qi are constrained only by the /~PT measurement and their

(a priori unknown) masses, m̃Ci , with q2
i = m̃2

Ci
.

The 2-step 2-body event topology of Fig. 1 allows for three different subsystems, as

indicated by the colored rectangular boxes [46]. Each subsystem is labelled by the visible

particles in it, and defined by a choice of parent and daughter particles, leaving the third

type of particles as “relatives”: in subsystem (ab) the parents are Ai, the daughters are Ci
and the relatives are Bi; in subsystem (a) the parents are Ai, the daughters are Bi and the

relatives are Ci, while in subsystem (b) the parents are Bi, the daughters are Ci and the

relatives are Ai. The mass-constraining kinematic variables defined below can be applied to

any of the three subsystems, thus each variable has three different versions, depending on the

chosen subsystem. For simplicity, in what follows we shall assume that the event topology of

Fig. 1 is symmetric, i.e., A1 = A2, B1 = B2, and C1 = C2 (see [47, 48] for generalizing to the

asymmetric case).

We first consider the traditional transverse variable MT2 [18]. Let the two transverse

masses of the parent particles be MTPi(~qiT , m̃), where ~qiT is the transverse momentum of Ci
and m̃ is a test mass for the daughter particles, which is m̃Ci for the case of subsystems (ab)

and (b) and m̃Bi for the case of subsystem (a). The kinematic variable MT2 is now defined

as the absolute minimum of the larger of these two transverse masses, with respect to all

possible partitions of the individual invisible transverse momenta ~qiT ,

MT2(m̃) ≡ min
~q1T ,~q2T

{max [MTP1(~q1T , m̃), MTP2(~q2T , m̃)]} . (2.2)

~q1T + ~q2T = /~PT

Alternatively, one could apply the same procedure to the actual parent masses, MPi , and
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define the (3+1)-dimensional analogue of Eq. (2.2) as

M2(m̃) ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.3)

~q1T + ~q2T = /~PT

where now the minimization is performed over the 3-component momentum vectors ~q1 and

~q2 [8]. As shown in Refs. [8, 55, 56], at this point the two definitions (2.2) and (2.3) are

equivalent, in the sense that the resulting two variables, MT2 and M2, will have the same

numerical value.

The case when M2 begins to differ from MT2 is when we start to apply additional kine-

matic constraints beyond the /~PT condition ~q1T + ~q2T = /~PT . Then the M2 variable can be

further refined and one can obtain non-trivial variations [55]:

M2XX ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.4)

~q1T + ~q2T = /~PT

M2CX ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.5)

~q1T + ~q2T = /~PT

MP1 = MP2

M2XC ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.6)

~q1T + ~q2T = /~PT

M2
R1

= M2
R2

M2CC ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} . (2.7)

~q1T + ~q2T = /~PT

MP1 = MP2

M2
R1

= M2
R2

Here MPi (MRi) is the reconstructed mass of the parent (relative) particle in the i-th decay

chain during the associated minimization procedure and a subscript “C” indicates that an

equal mass constraint is applied for the two parents (when “C” is in the first position) or

for the relatives (when “C” is in the second position). A subscript “X” simply means that

no such constraint is applied. In any given subsystem, the variables (2.2-2.7) are related

event-by-event in the following way [55]

MT2 = M2XX = M2CX ≤M2XC ≤M2CC . (2.8)
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Until now, we have treated the event topology of Fig. 1 in very general terms. In

particular, we have not made any assumptions about the nature of the visible particles

ai and bi. If they are all indistinguishable, e.g., jets from gluino pair-production events,

pp → g̃g̃ → jjq̃q̃ → jjjj + ET/ , the resulting combinatorial issues are rather severe, and one

should perhaps first focus on testing the hypothesis for the event topology [22]. Here we

would like to start with a more tractable problem, where some of the final state particles are

distinguishable. Keeping in mind the dilepton tt̄ example and the analogous BSM signatures,

we shall take particles ai to be b-jets, and particles bi to be leptons, i.e., a1 = b, a2 = b̄,

b1 = `+ and b2 = `−, where ` = {e, µ} and b is the bottom quark. Since the charge of the

b-jet is difficult to determine, there is a two-fold partitioning ambiguity: the correct partition

is

PC : {b, `+} ⊕ {b̄, `−}, (2.9)

while the wrong partition is

PW : {b̄, `+} ⊕ {b, `−}. (2.10)

In the rest of this paper, we shall be concerned with designing algorithms which would

preferentially select the correct pairing (2.9) over the wrong one (2.10). For this purpose,

we shall mostly utilize the Cambridge MT2 variable (2.2) and the constrained M2CC variable

(2.7). Each of these two variables can be applied to one of the three possible tt̄ subsystems,

(b`), (`) and (b). Notice, however, that in the “smaller” subsystems (b) and (`), the two

partitions (2.9) and (2.10) give identical values ofMT2, thus the corresponding subsystemMT2

variables M
(b)
T2 and M

(`)
T2 will not be useful to us for the purposes of resolving the combinatorial

issue. In contrast, all three subsystem M2CC variables, M
(b`)
2CC , M

(b)
2CC , and M

(`)
2CC , depend on

the partitioning — either directly, or through the relative constraint MR1 = MR2 .

Recently, Ref. [44] introduced another interesting variation of the M2CC variable, which

takes advantage of the potentially known mass for a relative particle. For example, if the

mass of the Bi particles is known, we can enforce it as an additional constraint during the

minimization in the (ab) subsystem. Specifying to the tt̄ case, where Ai are the top quarks ti
and Bi are the W -bosons Wi, we can write

M
(b`)
2CW ≡ min

~q1,~q2
{max [Mt1(~q1, m̃), Mt2(~q2, m̃)]} , (2.11)

~q1T + ~q2T = /~PT

Mt1 = Mt2

MW1 = MW2 = mW

where mW is the experimentally measured W -boson mass. Similarly, if we take the mass mt
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of the top quarks to be known, there is a new variable in the (`) subsystem:

M
(`)
2Ct ≡ min

~q1,~q2
{max [MW1(~q1, m̃), MW2(~q2, m̃)]} . (2.12)

~q1T + ~q2T = /~PT

MW1 = MW2

Mt1 = Mt2 = mt

3 Reconstruction schemes for invisible momenta

All of the kinematic variables introduced in the previous section are defined in terms of an

optimization procedure over all possible values of the individual invisible momenta. The

procedure then singles out one particular choice of the invisible momenta, which is used to

calculate the corresponding variable. We can also use this choice as a useful ansatz for the

invisible momenta, and then apply standard analysis techniques as if the momenta of the

invisible particles were known [44, 50].

The two main goals of this section are:

• to list systematically the different ways in which the variables from the previous section

can be used (sometimes in combination) to obtain an ansatz for the invisible momenta

(see Table 1);

• to compare the accuracy of several representative schemes for invisible momentum re-

construction (see Figs. 2-4).

The ansatz for the invisible momenta is generally obtained in two steps8:

1. Fixing the transverse components ~qiT of the invisible momenta. In principle, there are

several possible options here: one can use either an MT2 variable, or an M2 variable,

which can then be applied to any of the three possible subsystems in Fig. 1. In addition,

if one wished to use the mass information for a relative particle, one could also consider

the maximally constrained variables (2.11) and (2.12). The four columns of Table 1

list four representative examples, illustrating both the use of different variables (MT2

versus M2CC) and the use of different subsystems ((b`) versus (`)).

2. Fixing the longitudinal components qiz of the invisible momenta. Having thus deter-

mined the transverse invisible components, the second step is to obtain values for the

longitudinal components qiz of the invisible momenta. There are several possibilities

(refer to Table 1):

• Classic MAOS with mass information (MAOS1 and MAOS4). In the original

MAOS approach [50], a mass shell constraint for an intermediate resonance is

8In all cases, one must specify a test mass for the lightest particle (the neutrino in the case of dilepton tt̄

events.
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Schemes for fixing the components of the invisible momenta

longitudinal transverse

input M
(b`)
T2 = M

(b`)
2CX M

(`)
T2 = M

(`)
2CX M

(b`)
2CC M

(`)
2CC

mt MAOS1(b`;mt) MAOS4(`;mt) CMAOS1(b`;mt) CMAOS4(`;mt)

mW MAOS4(b`;mW ) MAOS1(`;mW ) CMAOS4(b`;mW ) CMAOS1(`;mW )

M
(b`)
T2 MAOS2(b`;b`) MAOS2(`;b`) CMAOS2(b`;b`) CMAOS2(`;b`)

M
(`)
T2 MAOS2(b`;`) MAOS2(`;`) CMAOS2(b`;`) CMAOS2(`;`)

M
(b`)
T MAOS3(b`;b`) MAOS3(`;b`) CMAOS3(b`;b`) CMAOS3(`;b`)

M
(`)
T MAOS3(b`;`) MAOS3(`;`) CMAOS3(b`;`) CMAOS3(`;`)

M
(b`)
2CC — — M2A(b`) —

M
(`)
2CC — — — M2A(`)

Table 1. Various methods for reconstructing the transverse and longitudinal momenta of invisible

particles in the dilepton tt̄ event topology of Fig. 1. In all cases, one must specify a test mass for the

lightest particle (the neutrino), then superscripts (b`) and (`) are used to denote respectively the (ab)

and (b) subsystems of Fig. 1 (or alternatively, the subsystems (2, 2, 0) and (2, 1, 0) in the notation of

Ref. [46]). The methods in the yellow (orange) cells will be investigated in detail in Table 9 (Table 11)

below.

imposed on each side of the event. Following the notation of [44], we shall make

the distinction between cases where the resonance is a parent particle (MAOS1) and

a relative particle (MAOS4). In the classic MAOS reconstruction, the transverse

invisible components are obtained from MT2, but this can be done for one of several

possible subsystems, so we need to implement some notation to indicate which

subsystem was used. For example, the abbreviation MAOS1(b`;mt) in Table 1

implies that the transverse invisible momenta were obtained from M
(b`)
T2 , while

the longitudinal invisible momenta were computed from the on-shell conditions

for the parent particles (thus MAOS1) with mass mt. Similarly, the abbreviation

MAOS4(`;mt) indicates the use of M
(`)
T2 for fixing the transverse invisible momenta,

then applying on-shell conditions for the top quarks, which in subsystem (`) are

relative particles (thus the name MAOS4). In both MAOS1 and MAOS4, the

longitudinal momenta are obtained up to a four-fold ambiguity, as one has to solve

a quadratic equation for each decay side.

• Classic MAOS without mass information (MAOS2 and MAOS3). There are two

other MAOS schemes, which are applicable in the absence of any mass information

about the parent or relative particles [51, 63–65]. In MAOS2 one forces each

parent mass to be equal to the computed MT2 value, i.e., MPi(~qi) = MT2, i = 1, 2,

while in MAOS3 one demands that the parent mass be equal to the corresponding

transverse parent mass obtained during theMT2 calculation: MPi(~qi) = MTPi(~qiT ),
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i = 1, 2. Once again, each of these two MAOS schemes can be applied to any of

the three possible subsystems [44]. Furthermore, in the previous step 1 we could in

principle use a different subsystem for the determination of the transverse invisible

components, therefore now we need two subsystem labels to completely define the

procedure. We shall employ the notation where the first subsystem label refers to

the determination of the transverse invisible momenta, while the second subsystem

label refers to the computation of the respective longitudinal components. For

example, the abbreviation MAOS3(`;b`) implies that the transverse components

were obtained from M
(`)
T2 , and then the longitudinal components were calculated

from the MAOS3 condition for the parents in the (b`) subsystem, i.e., the top

quarks: Mti(~qi) = MTti(~qiT ), i = 1, 2. The MAOS3 procedure always results in an

unique ansatz, while MAOS2 is unique only for balanced events, i.e., events with

MTP1 = MTP2 ; for unbalanced events, MAOS2 gives exactly two solutions [55].

• M2-assisted invisible momentum reconstruction. Another alternative is to use an

M2 variable — recall that the M2 optimization procedure provides an ansatz for

the full 3-vectors ~qi of the invisible momenta. As indicated in Table 1, such M2-

Assisted reconstructions will be denoted with M2A and will carry a corresponding

subsystem label as well.

• Hybrid methods. The remaining methods in Table 1 are hybrid in the sense that

they rely on a constrained M2CC variable for obtaining the transverse components

of the invisible momenta and on one of the MAOS methods for the determination

of the longitudinal components. We shall call such methods CMAOS for “con-

strained” MAOS. The rationale for considering these methods is that, as we shall

see below, the constrained M2CC variables often provide superior ansatze for the

transverse invisible momenta. Once again, one can “mix and match” the sub-

systems, which necessitates the use of two subsystem arguments for the CMAOS

procedures listed in Table 1.

Note that Table 1 does not include all logical possibilities — for example, in order to

keep the table compact, we did not list the the maximally constrained variables (2.11) and

(2.12), which represent another M2A option for simultaneously computing the transverse and

longitudinal invisible components. One should also distinguish between methods which use

additional mass inputs (mt or mW ) and methods which do not — in what follows, we shall

be careful to compare the performance of those two categories of methods separately. For

example, the methods in the yellow-shaded cells of Table 1 require an additional mass input

and as such they will be discussed and contrasted in Table 9 of section 4.3. On the other

hand, the orange-shaded cells of Table 1 highlight a few representative methods which do not

require additional mass inputs — those methods will be compared separately in Table 11 of

section 4.3. Note that the M2A methods from Table 1 do not use extra mass information.

Having defined the different momentum reconstruction schemes, we are now in position to

compare their performance. Following [50, 52], we shall first ask, how close each scheme gets
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Figure 2. Difference between the reconstructed and the true values for the invisible momentum

components in dilepton tt̄ events. The left panel shows results from several methods for fixing the

transverse components qix and qiy by minimizing an invariant mass variable: M
(b`)
T2 (blue dotted line),

M
(b`)
2CC (red solid line), M

(`)
2Ct (green dashed line) and M

(b`)
2CW (magenta dashed line). The middle (right)

panel shows corresponding results for the longitudinal components, obtained with methods which

use (do not use) additional mass information: MAOS1(b`;mt) (blue dotted line), MAOS4(b`;mW )

(black dotted line), M
(`)
2Ct (green dashed line), M

(b`)
2CW (magenta dashed line), M2A(b`) (red solid line),

MAOS2(b`;b`) (yellow dotted line) and MAOS3(b`;b`) (cyan dashed line).

to reproducing the actual values for the invisible momenta. Fig. 2 shows a comparison of the

true values ~qtrue of the transverse components (left panel) and the longitudinal components

(middle and right panels) of the invisible momenta to the corresponding reconstructed values

~q obtained with different methods from Table 1. The left panel in Fig. 2 contains the combined

distributions of the transverse momentum differences ∆qx ≡ qx,true−qx and ∆qy ≡ qy,true−qy
resulting from four different transverse momentum reconstruction schemes: M

(b`)
T2 (blue dotted

line), M
(b`)
2CC (red solid line), M

(`)
2Ct (green dashed line) and M

(b`)
2CW (magenta dashed line). In

all four cases, the distributions are peaked at ∆q = 0, which indicates that on average all

four methods work rather well. We also observe that the distributions for M
(`)
2Ct and M

(b`)
2CW ,

which utilize an extra mass input, are more sharply peaked, leading to much smaller errors.

Among the two remaining distributions, M
(b`)
2CC appears to perform slightly better than M

(b`)
T2 .

The middle and right panels of Fig. 2 show similar plots for the longitudinal momen-

tum difference ∆qz ≡ qz,true − qz, obtained with various methods for reconstructing the

longitudinal invisible momenta: MAOS1(b`;mt) (blue dotted line), MAOS4(b`;mW ) (black

dotted line), M
(`)
2Ct (green dashed line), M

(b`)
2CW (magenta dashed line), M2A(b`) (red solid

line), MAOS2(b`;b`) (yellow dotted line) and MAOS3(b`;b`) (cyan dashed line). Among the

methods requiring an additional mass input (middle panel), M
(`)
2Ct and M

(b`)
2CW again work

best, while among the more conservative methods (right panel), M2A appears to outperform

MAOS2 and MAOS3 (see also [44]).

Figs. 3 and 4 provide a more detailed view of the results from Fig. 2 by showing the

correlations between ∆qz and ∆qx (left panels) and between the difference in magnitudes

|~qtrue| − |~q | and the direction mismatch ∆R(~qtrue, ~q ) ≡
√

(∆η)2 + (∆ϕ)2 (right panels).
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Figure 3. Correlations between ∆qz and ∆qx (left) and |~qtrue| − |~q | and ∆R(~qtrue, ~q ) (right) for four

different schemes (from top to bottom): MAOS1(b`;mt), MAOS4(b`;mW ), M
(`)
2Ct and M

(b`)
2CW .

Figs. 3 and 4 reveal that in general, the transverse components of the invisible momenta

are reconstructed more accurately than the longitudinal components, and that having ad-
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Figure 4. The same as Fig. 3, but for methods which do not use an extra mass input (from top to

bottom): MAOS2(b`;b`), MAOS3(b`;b`) and M2A(b`).

ditional mass information at one’s disposal definitely helps. The right panels of Fig. 4 also

show that for those methods, it is more likely to underestimate (than to overestimate) the

magnitude of the invisible momentum — this is easy to understand for the case of events in

which the two transverse invisible momenta partially cancel each other out in the /~PT sum.

In conclusion of this section, we note that it is known that the performance of the methods

with respect to invisible momentum reconstruction can be further improved by selecting only

events near the kinematic endpoint of the respective invariant mass variable from which the

ansatz originated [44, 50]. However, this benefit comes with a significant loss in statistics,

and we shall not pursue this idea further here.

– 15 –



4 Critical review of the standard method

In this section, we analyze the standard method outlined in Refs. [36, 53] for resolving the

combinatorics problem in dilepton tt̄ events. The method involves three steps, which were

briefly reviewed in the Introduction, and will be now examined in detail in the following three

subsections. For our numerical studies, we generate a partonic tt̄ dilepton sample with 50k

events, using the MadGraph5 aMC@NLO framework at the LHC with
√
s = 14 TeV center

of mass energy and the default set of parton distribution functions [66]. The masses of the

top quark and the W -boson are set to 173 GeV and 80.419 GeV, respectively, and we also

take into account the proper finite widths — as we shall see below, this leads to the presence

of events for which the top quarks and/or the W -bosons can be significantly off-shell. In

order to reduce the background, we apply the same basic cuts as those used in Ref. [53]. This

leaves us with 18,456 events after cuts, for a cut efficiency of 37%. The different versions of

the MT2 and M2 kinematic variables will be computed with the OPTIMASS package [67].

4.1 Step I: M
(b`)
T2 and mb` cuts

The first step of the algorithm relies on the fact that in the event topology of Fig. 1, there exist

several invariant mass variables, whose distributions exhibit an upper kinematic endpoint. If

we choose the correct partition (2.9), all of these endpoints should be satisfied (barring off-

shell effects). On the other hand, the wrong partition (2.10) may lead to one (or more)

endpoint violations. The art of designing a good method for resolving the combinatorics lies

in choosing the optimal invariant mass variables which will maximize the number of events

for which the wrong partition (2.10) results in endpoint violations.

In principle, there are two types of invariant mass variables which can have kinematic

endpoints:

• Using visible particles from the same decay chain. One can study the invariant mass of

a collection of visible particles emerging from the same decay chain. For a long decay

chain, there are many possible combinations [25], but for a short decay chain like the

one in Fig. 1, the choice is unique - we can only form the two-body invariant mass of

the b-jet and the lepton on each side. This gives us two values, mb`+ and mb̄`− , each

of which should obey the kinematic endpoint mmax
b` , as illustrated in the left panel of

Fig. 5. Following Refs. [36, 53], we shall apply the stronger condition that the larger of

these two values should also obey the upper kinematic endpoint:

max{mb`+ ,mb̄`−} 6 mmax
b` ≡

√(
m2
t −m2

W

)(
m2
W −m2

ν

)
m2
W

, (4.1)

where mt, mW and mν are respectively the masses of the top quark, the W -boson and

the neutrino (we neglect the masses of the b-quark and the lepton). With their nominal

values from the standard model, the endpoint is located at mmax
b` = 153.2 GeV (see the

insert in the left panel of Fig. 5).
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Figure 5. The distribution of mb` (left), M
(b`)
T2 (middle) and M

(b`)
2CC (right) for the correct partition

(2.9) (solid lines) and the wrong partition (2.10) (dotted lines). The inserts show a wider range of the

x-axis and use a log scale for the y-axis. The corresponding MT2 and M2CC distributions for the (b)

and (`) subsystems are shown in Fig. 9 below.

• Using visible particles from both decay chains. The other possibility is to use the mea-

sured momenta of visible particles from both decay chains in order to construct invariant

mass variables which also exhibit upper kinematic endpoints [8]. The prototypical ex-

ample of such a variable is the Cambridge variable MT2 (see the middle panel in Fig. 5),

but there are other possibilities as well, e.g., MCT [68, 69], MCT2 [70], and more re-

cently, M2CC [55] (see the right panel in Fig. 5). Following Refs. [36, 53], we shall

continue to consider MT2, but we shall also entertain the possibility of using M2CC

instead. For the correct partition, the distributions of MT2 and M2CC have common

kinematic endpoints, and so the values of MT2 and M2CC obey the hierarchy

M
(b`)
T2 6 M

(b`)
2CC 6 mt , (4.2)

M
(`)
T2 6 M

(`)
2CC 6 mW , (4.3)

where the endpoint values correspond to using the true9 value of the neutrino mass

mν = 0. More importantly, for the wrong partition, the shapes of the MT2 and M2CC

distributions are different (compare the blue dotted lines in the middle and right panels

of Fig. 5), which will affect the efficiency for selecting the correct partition. Due to

the general property (2.8), the wrong partition will still preserve the hierarchy MT2 6
M2CC , and therefore, the chances of endpoint violations will be increased if we were to

use M2CC in place of MT2 [61].

9If the neutrino mass were unknown, one could use any arbitrary value for the test daughter particle mass,

and then extract the endpoint values in (4.2) and (4.3) from the data.
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Figure 6. Definition of the four quadrants in

the plane (mt −M (b`)
T2 , mmax

b` −maxj{m(j)
b` }).

Quadrant Quadrant for PW
for PC I II III IV

I

II

III

IV

Table 2. Resolving the combinatorial ambi-

guity at Step I. Each event is tagged with two

quadrant numbers, one for each partition Pi.

The quadrant number for the correct (wrong)

combination is given in the ‘row’ (‘column’) la-

bel of the 4 by 4 matrix above. The green,

red, and white fields indicate correctly resolved,

wrongly resolved, and unresolved cases, respec-

tively.

The distributions in Fig. 5 clearly motivate the use of the variables mb` and M
(b`)
T2 (or

perhaps M
(b`)
2CC instead) to resolve the two-fold combinatorial ambiguity.10 This idea is imple-

mented as Step I of the algorithm, by requiring that the invariant mass variables computed

with a given partition Pi, (i = 1, 2), obey the two kinematic endpoints (4.1) and (4.2). If

one of the partitions obeys both endpoints, while the other does not, the former (latter) is

declared to be the correct (wrong) partition PC (PW ).

In order to quantify the discussion in the rest of paper, we introduce a simple Cartesian

coordinate system designed to keep track of the kinematic endpoint violations (see Fig. 6).

The x and y variables will be chosen so that their values are positive (negative) in the absence

(presence) of a kinematic endpoint violation. To this end, we shall consider the difference

between the value of the upper kinematic endpoint and the value of the variable itself —

this difference is expected to be positive for the correct partition PC , and conversely, if the

difference is negative, it is likely that we have chosen the wrong partition PW . Thus in Fig. 6

we choose the x-axis to be mt −M (b`)
T2 (later on we shall also consider mt −M (b`)

2CC), while

for the y-axis we take mmax
b` − maxj{m(j)

b` }, where m
(1)
b` and m

(2)
b` are the invariant masses

of the two b-lepton pairs in a given partition. As usual, the plane in Fig. 6 is divided into

four quadrants, labelled I, II, III and IV. With this setup, one would expect that the correct

partition PC will be registered in the first quadrant I, while the wrong partition PW can

end up anywhere, including quadrants II, III and IV, which would indicate some sort of an

endpoint violation.

These expectations are confirmed in Fig. 7, which shows scatter plots in the plane of Fig. 6

10For now, as in Refs. [36, 53], we shall focus on the (b`) subsystem, where one would expect the largest

number of endpoint violations for the wrong kinematics [61]. The other two subsystems, (b) and (`), will be

discussed later in section 5.1.
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Figure 7. Scatter plots in the plane of Fig. 6 for the correct partition PC (left panels, red points)

and the wrong partition PW (right panels, blue points). In the top row the x-axis is chosen to be

mt −M (b`)
T2 , while in the bottom row the x-axis is mt −M (b`)

2CC .

for events with the correct partition PC (left panels, red points) and the wrong partition PW
(right panels, blue points). We see that the correct partition mostly populates quadrant I,

although there is some leakage into the other three quadrants due to off-shell effects. On the

other hand, the wrong partition cases are significantly spread out, and the majority of the

events live outside quadrant I. The effect is even more pronounced if we trade M
(b`)
T2 for M

(b`)
2CC

and consider mt −M (b`)
2CC as our x-axis variable (see the plots in the bottom row of Fig. 7).

We are now in position to define the action of Step I of the algorithm. For each event,

there are two possible partitions, PC from (2.9) and PW from (2.10). Since we do not know

which is which, from now on we shall denote them with Pk, (k = 1, 2). (It does not matter

which partition is labelled first and which is labelled second.) Each partition Pk will produce

a point in one of the four quadrants within the plane of Fig. 6. We will then resolve the

partitioning ambiguity according to Table 3. Whenever one of the two partitions falls in

quadrant I while the other does not, then the partition in quadrant I will be declared to be

the correct one (PC). If both partitions fall in the same quadrant, then the event remains

“unresolved” at Step I and we need to wait for the next steps of the algorithm. The situation

becomes more complicated if both partitions fall outside quadrant I, and within different

quadrants. In that case, we shall make the distinction between quadrant III, where both
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Quadrant Quadrant for P2

for P1 I II III IV

I unresolved PC = P1 PC = P1 PC = P1

II PC = P2 unresolved PC = P1 unresolved

III PC = P2 PC = P2 unresolved PC = P2

IV PC = P2 unresolved PC = P1 unresolved

Table 3. Decision table for resolving the combinatorial ambiguity at Step I.

endpoints are violated, and quadrants II and IV, where there is a single endpoint violation.

Correspondingly, if one partition falls in quadrant III while the other does not, the partition

in quadrant III will be declared as the wrong partition (PW ). Finally, if one partition is in

quadrant II while the other in quadrant IV, the event remains unresolved.

As a result of the application of Table 3, each event will fall into one of two categories:

resolved, for which one of the partitions Pk has been declared to be correct, and unresolved,

for which no decision has been reached at that stage. Furthermore, the resolved events will

not always be identified correctly — on occasion, the algorithm will misidentify the wrong

partition PW as being the correct one. In order to better understand the power of each method

below, we shall find it convenient to quote our results in the form of 4× 4 tables like Table 2,

where we separately keep track of the quadrant for the correct partition PC (indicated by

the row label) and the quadrant for the wrong partition PW (indicated by the column label).

Each event will belong to one of the 16 boxes of Table 2, and we will be interested in the

number of events N(I,J) within each box, where the “quadrant indices” I (for the correct

partition) and J (for the wrong partition) take values in the set {I, II, III, IV }. The action

by Table 3 then causes all events within the green-shaded boxes of Table 2 to be correctly

resolved, the events within the red-shaded boxes of Table 2 to be wrongly resolved, while the

events within the unshaded boxes of Table 2 to remain unresolved. Then, for any given event

sample, the total number NC of correctly resolved events will be given by the total number

of events within the green-shaded boxes of Table 2:

NC ≡ N(I,II) +N(I,III) +N(I,IV ) +N(II,III) +N(IV,III). (4.4)

Similarly, the total number of wrongly resolved events NW will be equal to the total number

of events within the red-shaded boxes of Table 2:

NW ≡ N(II,I) +N(III,I) +N(IV,I) +N(III,II) +N(III,IV ). (4.5)

Finally, the total number of unresolved events NU is the sum of all events within the unshaded

(white) boxes of Table 2:

NU ≡ N(I,I) +N(II,II) +N(III,III) +N(IV,IV ) +N(II,IV ) +N(IV,II). (4.6)

The algorithms below will be applied so that once an event is resolved, it does not get

reclassified at a later stage, i.e., subsequent steps of the algorithm only affect the remaining
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Quadrant counts based on M
(b`)
T2 and mb`

Quadrant Quadrant for PW
for PC I II III IV

I 6194 910 9793 1020

II 22 31 106 5

III 29 10 191 4

IV 41 3 91 6

Quadrant counts based on M
(b`)
2CC and mb`

Quadrant Quadrant for PW
for PC I II III IV

I 4494 2317 10222 217

II 168 178 480 5

III 37 26 251 1

IV 17 3 38 2

Table 4. Quadrant counts N(I,J) based on M
(b`)
T2 and mb` (left) and M

(b`)
2CC and mb` (right) after the

basic cuts. The corresponding efficiencies are 82% (left) and 85.3% (right).

unresolved events. Obviously, at different steps of the algorithms, the number of correctly

resolved events (NC), wrongly resolved events (NW ) and unresolved events (NU ) will vary,

but those three numbers will always add up to the total number of events NT in the sample:

NT ≡
∑
I,J

N(I,J) = NC +NW +NU . (4.7)

In order to compare different algorithms, we define the expected efficiency (sometimes

called purity) as

ε =
NC + 0.5NU

NC +NU +NW
=
NC + 0.5NU

NT
. (4.8)

For the purposes of calculating the efficiency, we shall assume that any unresolved events are

eventually decided with a coin flip (50% efficiency).

Our results for N(I,J) are shown in Table 4, where the quadrants from Fig. 6 have been

defined in terms of the variables M
(b`)
T2 and mb` (left 4 × 4 table) and the variables M

(b`)
2CC

and mb` (right 4 × 4 table). As expected, the most populated entries are found in the first

rows, which confirms that in the case of the correct partition PC , endpoint violations are

relatively rare11. We also find a handful of events in the off-diagonal boxes of the first column

— for those events, off-shell effects caused the correct partition PC to violate one or both

of the kinematic endpoints, while the wrong partition PW accidentally happened to satisfy

both kinematic endpoints. Such events are problematic since they will be wrongly identified

— one should keep in mind that only the symmetric combination of events N(I,J) + N(J,I)

is experimentally observable, since a priori we do not know which is the correct partition.

Nevertheless, we observe that in the cases when one of the partitions ends up in quadrant I

while the other does not, the large majority of the events will be correctly identified, since

N(I,II) +N(I,III) +N(I,IV ) � N(II,I) +N(III,I) +N(IV,I). (4.9)

11As a sanity check, we have verified that if we turn off the width effects by hand, by forcing both the top

quarks and the W -bosons on-shell, all entries in the second through fourth rows are exactly zero.
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Another piece of good news is that whenever one of the partitions violates exactly one end-

point, while the other violates both, it is much more likely that the former (latter) is the

correct (wrong) partition:

N(II,III) � N(III,II); N(IV,III) � N(III,IV ). (4.10)

Combining the relations (4.9) and (4.10) and using the definitions (4.4) and (4.5), we conclude

that NC � NW , and therefore Step I of the method works relatively well12. With our

definition for the efficiency (4.8), the classic method based on M
(b`)
T2 and mb` gives an efficiency

of 82%. Looking back at the left side of Table 4, we see that for the standard method, the

efficiency is hurt by the relatively large fraction of events which remain unresolved at this

stage — the unshaded boxes contain a total of NU = 6430 events, or about 35% of the sample.

The situation improves somewhat if we use the M
(b`)
2CC variable instead of M

(b`)
T2 : in that case,

the right 4× 4 table of Table 4 contains fewer unresolved events (NU = 4933, or only 27%),

while the desired relations (4.9) and (4.10) are further enhanced. Both of these effects are

responsible for increasing the efficiency (4.8) of the new M
(b`)
2CC method to 85.3%. Note that in

both methods, the majority of the unresolved events are found in the very first diagonal box

(I, I), where both partitions are fully consistent with the kinematics of the assumed event

topology. This is why, in what follows we shall focus our attention on the additional steps

of the algorithm which can successfully classify the remaining unresolved events, especially

those in the (I, I) box.

4.2 Step II: The presence of complex solutions

In the second step of the method, one attempts to reconstruct the longitudinal momenta of

the invisible particles, by enforcing on-shell conditions for a parent particle (MAOS1) or for

a relative particle (MAOS4). Since the on-shell conditions result in quadratic equations, the

solutions are not guaranteed to be real. The idea of Step II is to compare the two possible

partitions Pk in terms of the number of complex solution pairs C for the longitudinal momenta.

Since there is a separate calculation for each decay chain, there are three possible outcomes:

• C = 0. Both decay chains result in real solutions.

• C = 1. Exactly one decay chain gives a pair of complex solutions, while the other decay

chain has real solutions.

• C = 2. Both decay chains result in complex solutions.

For the purposes of applying Step II of the method, there is no need to distinguish between

the cases of C = 1 and C = 2, since the important point is simply that C > 0. The action of

Step II is the following: if one of the partitions Pk gives C = 0, while the other has C > 0,

then the former (latter) partition is declared to be the correct (wrong) one.

12This can also be seen directly by comparing the green-shaded and the red-shaded boxes of Table 4.
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I II III IV

0 1 2 0 1 2 0 1 2 0 1 2 C
I 6194 0 0 910 0 0 9793 0 0 1020 0 0 PC

6194 0 0 0 1 909 0 7215 2578 1020 0 0 PW

II 0 2 20 0 0 31 0 2 104 0 0 5 PC
22 0 0 0 0 31 0 69 37 5 0 0 PW

III 0 22 7 0 5 5 0 124 67 0 4 0 PC
29 0 0 0 0 10 0 138 53 4 0 0 PW

IV 41 0 0 3 0 0 91 0 0 6 0 0 PC
41 0 0 0 0 3 0 66 25 6 0 0 PW

Table 5. Classification of events according to the complexity of the solutions for the longitudinal

invisible momenta in the case of MAOS1(b`;mt), i.e., the transverse momenta of the neutrinos are

fixed during the minimization of M
(b`)
T2 , while the longitudinal components are obtained from the on-

shell conditions for the top quarks on each side. The table is organized by quadrant counts N(I,J) as in

Table 4. For each (I, J) quadrant pair, we further classify the events according to the number of decay

sides C with complex solutions for the longitudinal momenta, and the table lists the corresponding

values of N
(C)
(I,J). This is done separately for the correct partition PC (upper rows) and for the wrong

partition PW (lower rows).

I II III IV

0 1 2 0 1 2 0 1 2 0 1 2 C
I 5005 1086 103 582 299 29 8245 1497 51 908 109 3 PC

4094 2074 26 136 751 23 3893 5817 83 661 359 0 PW

II 7 14 1 12 16 3 58 46 2 2 3 0 PC
9 13 0 5 24 2 26 79 1 1 4 0 PW

III 12 17 0 5 5 0 84 106 1 3 1 0 PC
22 7 0 3 6 1 96 95 0 3 1 0 PW

IV 36 5 0 3 0 0 78 13 0 6 0 0 PC
31 10 0 1 2 0 58 33 0 6 0 0 PW

Table 6. The same as Table 5, but for the case of MAOS4(b`;mW ), i.e., the transverse momenta of

the neutrinos are still obtained from the minimization of M
(b`)
T2 , but now the longitudinal components

are computed from the on-shell conditions for the W -bosons instead.

As already discussed in section 3, there are several ways to implement the MAOS idea

and compute longitudinal invisible momenta. Tables 5 and 6 show results for the cases

of MAOS1(b`;mt) and MAOS4(b`;mW ), respectively13. Similarly to Table 4, each table is

organized by quadrants, and within each cell (I, J) we show the number of events N
(C)
(I,J) with

a given value of C, for the correct partition (upper rows) and the wrong partition (lower

13The former was the method used in Ref. [53], but the latter is in principle a viable option as well.
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rows).

Let us first focus on Table 5, which shows several interesting trends. First, recall the

motivation behind Step II — one was hoping to find that the correct partition PC would

always give real solutions (C = 0), while the wrong partition PW would always lead to

complex solutions (C > 0). Table 5 reveals that this expectation is indeed true, but only

for certain quadrant pairs: (I, II), (I, III), (IV, II) and (IV, III). For those cases, Step II

would be able to perfectly resolve the combinatorial ambiguity, and it seems that the method

works as designed. Unfortunately, three out of these four quadrant pairs are already shaded

in green (see Table 2), which means that those events were already perfectly resolved by Step

I, thus the additional benefit from Step II for those three quadrant pairs is exactly zero. As

for the fourth quadrant pair, (IV, II), it is very sparsely populated, and furthermore, any

benefit there would be offset by the negative effects from the symmetric case of (II, IV ),

where the results are contrary to our expectations above — now it is the correct partition PC
which leads to complex solutions14. (The same phenomenon is observed for the other three

symmetric pairs as well — see the red-shaded boxes corresponding to (II, I), (III, I), and

(III, IV ), where it is again the correct partition PC which has C > 0.)

Thus we conclude that for the events which were already resolved at Step I (the green-

shaded and red-shaded cells in Table 5), Step II does not bring anything new — its results

are either fully correlated with Step I (as for the quadrant pairs (I, II), (I, III) and (IV, III)

and their red-shaded symmetric partners on the other side of the diagonal), or inconclusive,

since the two partitions behave identically (e.g., for quadrant pairs (I, IV ) and (II, III) and

their partners). Therefore, we need to concentrate on the unresolved events in the unshaded

cells in Table 5, since those were precisely the events which Step II was meant to address.

Unfortunately, we observe that in the unshaded cells along the diagonal in Table 5, the two

partitions lead to the same result and cannot be discriminated, while the remaining two cells

(II, IV ) and (IV, II) were already discussed above — their statistics is too low, and they

tend to cancel each other out, thus they will not appreciably affect the overall efficiency.

Based on the results from Table 5, we conclude that if one were to apply Step II based on

the MAOS1(b`;mt) method, which was used in Ref. [53], there would be no additional benefit

beyond Step I, and therefore Step II is unnecessary and can be eliminated. However, this still

leaves open the question whether some modified version of Step II can still be useful, e.g.,

applying a different MAOS scheme like MAOS4(b`;mW ) (see Table 6), or perhaps using one

of the CMAOS schemes based on the M2CC variables (see Tables 7 and 8). But before we

discuss these options, it will be useful to understand the results from Table 5 from a physics

point of view. A careful inspection of Table 5 reveals that its content can be summarized as

follows: for any partition Pk, quadrants I and IV produce only real solutions, while quadrants

II and III lead to only complex solutions. This means that the existence of complex solutions

is correlated with the x-axis variable of Fig. 6 (M
(b`)
T2 ), and not with the y-axis variable

14The fact that the correct partition PC may result in complex momenta should not be surprising — this

can be due to finite width and off-shell effects. As a sanity check, we have verified that in the zero-width limit

only the first row in Table 5 has any non-zero entries, while the second, third and fourth rows are empty.
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I II III IV

0 1 2 0 1 2 0 1 2 0 1 2 C
I 4494 0 0 2317 0 0 10222 0 0 217 0 0 PC

4494 0 0 348 729 1240 62 5482 4678 217 0 0 PW

II 62 70 36 63 64 51 184 168 128 2 1 2 PC
168 0 0 21 53 104 4 211 265 5 0 0 PW

III 2 20 15 4 9 13 7 138 106 0 1 0 PC
37 0 0 3 7 16 0 150 101 1 0 0 PW

IV 17 0 0 3 0 0 38 0 0 2 0 0 PC
17 0 0 0 1 2 0 25 13 2 0 0 PW

Table 7. The same as Table 5, but for the case of CMAOS1(b`;mt), i.e., the transverse momenta of

the neutrinos are now fixed from the minimization of M
(b`)
2CC instead of M

(b`)
T2 , and then the longitudinal

components are again obtained from the on-shell conditions for the top quarks on each side. Here the

quadrants are defined in terms of M
(b`)
2CC and mb` and correspond to the right 4× 4 table in Table 4.

I II III IV

0 1 2 0 1 2 0 1 2 0 1 2 C
I 3840 497 157 1810 385 122 9089 931 202 214 3 0 PC

3652 612 230 397 879 1041 3005 3132 4085 217 0 0 PW

II 52 66 50 65 84 29 228 194 58 1 2 2 PC
113 37 18 30 81 67 121 143 216 5 0 0 PW

III 14 13 10 11 9 6 101 76 74 1 0 0 PC
33 3 1 10 11 5 90 88 73 1 0 0 PW

IV 17 0 0 3 0 0 38 0 0 2 0 0 PC
17 0 0 1 0 2 18 12 8 2 0 0 PW

Table 8. The same as Table 6, but for the case of CMAOS4(b`;mW ), i.e., the transverse momenta

of the neutrinos are now obtained from the minimization of M
(b`)
2CC , then the longitudinal components

are computed from the on-shell conditions for the W -bosons as before.

(mb`). This is easy to understand: mb` is formed from visible particle momenta only, and is

not directly related to any invisible momenta. Therefore, a violation of the mb` kinematic

endpoint by itself does not imply unphysical invisible momenta. On the other hand, the

physical meaning of M
(b`)
T2 is the lowest possible mass of the parent particle, in this case the

top quark. If the value of M
(b`)
T2 strictly violates the kinematic endpoint mt, i.e., M

(b`)
T2 > mt,

then enforcing the on-shell condition for the top quark will necessarily result in unphysical

(complex) values for the momenta. In particular, quadrants II and III, in which the M
(b`)
T2

endpoint is violated by definition, will always produce complex momenta.

While the above logic helps to understand the results from Table 5, it does not carry
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over directly to the case of MAOS4(b`;mW ) shown in Table 6, since now we are enforcing an

on-shell condition for a different (relative) particle. The trends which we previously observed

in Table 5 are still noticeable, but they are not so clear cut. Nevertheless, if we focus on the

unresolved events after Step I (the unshaded cells in Table 6), we again see that Step II does

not do particularly great on those events. The largest effect is in the (I, I) cell, where the

efficiency for resolving the correct partition is 57.4%, which is slightly better than a coin flip.

Adding up the results from all previously unresolved cells, we find that if we were to perform

Step II with the MAOS4(b`;mW ) version of the method instead of the MAOS1(b`;mt) option

used in Ref. [53], the overall efficiency would increase to 84.5%, which is still worse than the

result (85.3%) found in section 4.1 with the improvements in Step I alone, taking advantage

of M
(b`)
2CC (see the right 4× 4 table in Table 4).

Tables 7 and 8 show results from two similar exercises where we use the corresponding

CMAOS methods, i.e., fixing the transverse components of the invisible momenta from M
(b`)
2CC

instead of M
(b`)
T2 , then applying the on-shell conditions for the parent (top quark) or relative

(W -boson) particle. As shown previously in Figs. 2-4, the M
(b`)
2CC variable generally provides a

more accurate estimate of the individual transverse momentum components for the invisible

particles, and one might hope that incorporating M
(b`)
2CC somehow into the Step II algorithm

would improve the performance. However, Table 7 shows that the improvement in the case of

CMAOS1(b`;mt) is very marginal — the efficiency increases from 85.3% after Step I to 85.4%

after Step II. The effect is slightly better in Table 8, which uses the CMAOS4(b`;mW ) option

— there the efficiency increases from 85.3% after Step I to 85.9% after Step II. However,

even this increase is too small to justify the presence of Step II — as we shall see later on,

there exist other, much more effective techniques. Therefore, as a final summary of this

subsection, we conclude that Step II can be safely dropped altogether, since its results are

largely correlated with Step I.

4.3 Step III and possible variations

In this subsection we shall discuss different possible options for the third step of the method

and investigate their performance. To recap the situation: when we used M
(b`)
T2 and mb`

at Step I, we ended up with NC = 11, 920 correctly resolved events, NW = 106 incorrectly

resolved events, and NU = 6, 430 unresolved events, for an efficiency of 82% (see the top

of the middle column in Table 9). If, on the other hand, we choose to use M
(b`)
2CC and mb`

at Step I, we obtain NC = 13, 274 correctly resolved events, NW = 249 incorrectly resolved

events, and NU = 4, 933 unresolved events, for an efficiency of 85.3% (see the top of the right

column in Table 9). Then in section 4.2 we showed that Step II does not add much and can

be ignored. This brings us to Step III, whose purpose is to further classify the remaining

unresolved events after Step I (6,430 and 4,933, respectively) on a statistical basis, using

suitable discriminating variables.

We begin by reviewing the method suggested in Ref. [53], which introduced several kine-

matic variables, Ti, i = 1, . . . , 4. These variables were designed so that their values tend to

– 26 –



Algorithm for Step I

M
(b`)
T2 and mb` M

(b`)
2CC and mb`

Correct Wrong Unresolved Correct Wrong Unresolved

Step I: Quadrant counts 11,920 106 6,430 13,274 249 4,933

efficiency ε = 82.0% ε = 85.3%

Remaining unresolved events 6, 430 4, 933

∆Ti method 3,445 1,573 1,412 2,820 1,462 651

cumulative efficiency ε = 87.1% ε = 89%

∆T2 type cut alone 3,160 3,270 — 2,426 2,507 —

cumulative efficiency ε = 81.7% ε = 85.1%

∆T3 and ∆T4 alone 4,101 1,624 705 2,868 1,328 737

cumulative efficiency ε = 88.7% ε = 89.5%

mreco
t with MAOS4(b`;mW ) 2,392 1,371 2,667 2,212 1,238 1,483

cumulative efficiency ε = 84.8% ε = 87.9%

mreco
t with MAOS1(`;mW ) 4,186 2,188 56 3,033 1,860 40

cumulative efficiency ε = 87.4% ε = 88.5%

mreco
t with CMAOS4(b`;mW ) 2,262 1,307 2,861 2,122 1,228 1,583

cumulative efficiency ε = 84.6% ε = 87.7%

mreco
t with CMAOS1(`;mW ) 2,995 1,790 1,645 2,565 1,617 751

cumulative efficiency ε = 85.3% ε = 87.9%

mreco
W with MAOS1(b`;mt) 4,344 1,856 230 3,044 1,546 343

cumulative efficiency ε = 88.8% ε = 89.3%

mreco
W with MAOS4(`;mt) 1,627 792 4,011 1,505 760 2,688

cumulative efficiency ε = 84.3% ε = 87.3%

mreco
W with CMAOS1(b`;mt) 3,328 1,583 1,519 3,044 1,459 430

cumulative efficiency ε = 86.7% ε = 89.6%

mreco
W with CMAOS4(`;mt) 1,922 947 3,561 1,870 928 2,135

cumulative efficiency ε = 84.7% ε = 87.3%

Table 9. Efficiencies for selecting the correct partitioning (as defined in Eq. (4.8)) for several different

procedures which use the known values of the top mass mt or the W -boson mass mW .

be larger for the case of the wrong partition, i.e.

Ti(PW ) > Ti(PC). (4.11)

While it is not guaranteed that (4.11) will be true in every single event, if it holds for the

– 27 –



majority of the events, one can attempt to identify the correct partition PC by declaring [53]

PC =

{
P1, if ∆Ti(P2, P1) > 0;

P2, if ∆Ti(P2, P1) < 0;
(4.12)

where

∆Ti(P2, P1) ≡ Ti(P2)− Ti(P1). (4.13)

In the case of several good variables Ti, one can generalize (4.12) by choosing the correct

partition PC to be the partition P1 (P2) if the majority of the quantities ∆Ti(P2, P1) are

positive (negative). In the following, we shall refer to this procedure as the “∆Ti method”

[53].

The Ti variables considered in Ref. [53] were the following:

T1(Pk) ≡ max
j
{m(j)

b` }(Pk) , (4.14)

T2(Pk) ≡ M
(b`)
T2 (Pk) , (4.15)

T3(Pk) ≡
∑
j=1,2;
α=+,−

|mreco
t (j, α)−mt|(Pk) , (4.16)

T4(Pk) ≡
∑
j=1,2;
α=+,−

|mreco
W (j, α)−mW |(Pk) , (4.17)

where Pk is one of two partitions and the index j labels the two decay chains in Fig. 1.

The variable mreco
t (mreco

W ) is the reconstructed mass of the top quark (the W -boson) with

a MAOS-type method which uses the W -boson mass (the top mass) as an input. Since the

longitudinal invisible momenta are obtained from a quadratic equation, in general there are

two solutions, labelled by α = ±, corresponding to the two signs in front of the discriminant.

Thus in each event one can obtain four reconstructed top quark masses, mreco
t (j, α), and

four reconstructed W -boson masses, mreco
W (j, α). The idea behind the T3 and T4 variables

in (4.16) and (4.17) is to compare those reconstructed values to the true values mt and

mW , respectively. For the correct partition PC , on average one might expect to find the

reconstructed values closer to the true ones, in agreement with (4.11).

In Table 9 we test several options for discrimination variables which can be applied at

Step III. Our benchmark is the ∆Ti method of Ref. [53], which made use of only three

variables, T2, T3 and T4, since the fourth one, T1, was found to be significantly correlated

with T2. For consistency, whenever the quadrants from Step I are defined in terms of M
(b`)
2CC

(right column in Table 9), we shall replace (4.15) with T2 = M
(b`)
2CC . Table 9 reports results

from both versions of the ∆Ti method — we see that the overall efficiency can be further

improved to 87.1% and 89%, respectively. The observed improvement at Step III is due to

correctly categorizing (at the rate of about 2:1) the majority of the remaining unresolved

events — see Table 10, which gives the breakdown among the individual “unresolved” cases
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Quadrants Algorithm for Step I

with unresolved M
(b`)
T2 and mb` M

(b`)
2CC and mb`

events Total C W U Total C W U

(I, I) 6,194 3,266 1,521 1,407 4,494 2,471 1,308 715

(II, II) 31 26 5 - 178 147 26 5

(III, III) 191 149 37 5 251 185 55 11

(IV, IV) 6 1 5 - 2 0 2 -

(II, IV) ⊕ (IV, II) 8 3 5 - 8 3 3 2

Total after Step III 6,430 3,445 1,573 1,412 4,933 2,820 1,462 651

Table 10. Breakdown of the events from Table 9 which remained unresolved after Step I (6,430 and

4,933, respectively). The table shows the effect of applying the ∆Ti method at Step III, for the case

of T2 = M
(b`)
T2 (left) and T2 = M

(b`)
2CC (right). The resulting cumulative efficiencies are 87.1% and 89%,

as shown in Table 9.

from Table 3. In spite of this progress, we also notice that a certain number of events

(1,412 and 651, correspondingly) still remain unresolved. At first glance, this seems odd,

since the ∆Ti method uses an odd number of variables, so for each event, there should be

a clear winner between the two candidate partitions P1 and P2. However, recall that the

longitudinal momentum reconstruction sometimes results in complex solutions, in which case

the corresponding variable T3 or T4 is undefined.15 Thus the remaining unresolved events

after Step III are those where only two of the three Ti variables were calculated, and each

preferred a different partition Pk.

Table 10 demonstrates that Step III was relatively successful. Nevertheless, in the re-

mainder of this section we shall investigate whether further improvements at the level of Step

III are still possible. Let us begin by studying the benefit from each individual variable, T2,

T3 and T4, used in the ∆Ti algorithm. Following Ref. [53], in Fig. 8 we show distributions of

the “ordered” differences

∆Ti(PW , PC) ≡ Ti(PW )− Ti(PC) (4.18)

for the three variables T2 (left panels), T3 (middle panels) and T4 (right panels), where we

use MC truth information to make sure that we subtract the variables in the order indicated

in (4.18). For the plots in the top (bottom) row of Fig. 8, the transverse invisible momenta

were obtained with the help of the M
(b`)
T2 (M

(b`)
2CC) variable. Plotting in terms of the ordered

difference (4.18) is very useful, since it allows us to see how often the expected relationship

(4.11) holds: the difference (4.18) is positive (negative) if (4.11) is satisfied (violated). Thus,

by applying the prescription (4.12) for a given variable Ti, we shall correctly resolve all events

with positive values of ∆Ti(PW , PC) (the shaded portions of the distributions in Fig. 8),

and we shall wrongly resolve the events with negative values of ∆Ti(PW , PC) (the unshaded

portions of the distributions in Fig. 8). By comparing the areas of the shaded and unshaded

15This will become more evident when inspecting the normalization of the plots in Fig. 8 below.
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Figure 8. Distributions of the ordered differences (4.18) for T2 (left), T3 (middle) and T4 (right). The

red distributions show all events while the blue distributions only include the events which remain

unresolved after Step I. For the MAOS-type plots in the top row, the transverse invisible momenta were

obtained with the help of M
(b`)
T2 , while for the CMAOS-type plots in the bottom row the transverse

invisible momenta were fixed from M
(b`)
2CC . In the middle and right panels we only plot events with real

solutions for the longitudinal momenta. The shaded (unshaded) portions of the histograms represent

events which will be correctly (incorrectly) resolved with that particular ∆Ti variable alone.

portions of each distribution, we can judge the discrimination power of each variable. For

example, the left panels in Fig. 8 show that when considering the whole event sample (red

histograms), T2 appears to be a good variable, since as many as 79% of the events have positive

values of ∆T2(PW , PC) [53]. Unfortunately, we find that this conclusion is invalidated after the

application of Step I — for the remaining unresolved events after Step I (the blue histograms

in Fig. 8), it is actually more likely to find a negative value of ∆T2(PW , PC) instead, thus

obtaining the wrong answer for PC . This observation reveals that the results from Step I

and Step III are also somewhat correlated — the events which are easy to analyze with T2

at Step III would already be correctly resolved at Step I. Using ∆T2 alone (without ∆T3 or

∆T4) in fact lowers the cumulative efficiency, as shown in Table 9. This motivates us to drop

∆T2 from further consideration and repeat Step III without ∆T2, i.e., with only ∆T3 and

∆T4. As shown in Table 9, this leads to a slight improvement of the cumulative efficiency, to

88.7% and 89.5%, respectively, indicating that T3 and T4 retain some discrimination power

even after Step I (this can also be deduced from the blue histograms in the middle and right

panels of Fig. 8).
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Given the large variety of MAOS and CMAOS methods described in section 3 (see Ta-

ble 1), next we check if there exist alternative versions of the T3 and T4 variables which

are better suited for our purpose. In the remainder of Table 9 we study the effect on the

cumulative efficiency if the reconstruction is performed with one of the eight yellow-shaded

methods from Table 1. Taking one variable at a time, we apply Step III as in (4.12) and

quote the resulting cumulative efficiency in the last 8 rows of Table 9. The results are rather

illuminating, and indicate that “not mixing” the subsystems provides the best option for

constructing a useful Ti variable. For example, when the transverse invisible components are

fixed with the help of the (b`) subsystem, in which the top quark is the parent particle, then

we are better off applying the on-shell condition on the same particle in order to reconstruct

the longitudinal invisible momenta. Similarly, if the transverse momenta are obtained from

the (`) subsystem, in which the W -boson is the parent particle, then it is preferable to apply

the on-shell condition on the W -boson as well. For both MAOS and CMAOS reconstructions,

Table 9 shows that the highest efficiencies are obtained in the case of (b`,mt) and (`,mW )

type variables. It is interesting to note that the performance of the modified method above

(which used only ∆T3 and ∆T4) can be matched and even slightly exceeded by using a sin-

gle additional variable at Step III, provided that we pick the right one: the MAOS1(b`;mt)

option gives 88.8% (compare to 88.7% before), while CMAOS1(b`;mt) yields 89.6% (compare

to 89.5%).

Another interesting point is that in all cases, the cumulative efficiencies in the right

column of Table 9 are higher than those in the middle column, thus reinforcing the idea

of using the constrained M2CC variables. In section 4.1 we already established that it is

beneficial to redefine Step I in terms of M2CC variables, and now we see that this advantage

is retained after Step III as well.

Finally, one may wonder if there is any additional benefit in combining at Step III two

or more of the variables considered in Table 9. We test this idea with the following exercise.

Let us revisit Step III, again dropping the T2 variable (4.15) from consideration, while for

the definition of T3 and T4 let us choose the two best performing CMAOS variables from

the right column of Table 9, namely mreco
t with CMAOS1(`;mW ) (87.9%) and mreco

W with

CMAOS1(b`;mt) (89.6%). In this modified scheme, we obtain a cumulative efficiency of ε =

89.2% with NC = 2, 483 correctly identified, NW = 1, 023 wrongly identified and NU = 1, 427

unresolved events. Similarly, choosing the two best MAOS options in the middle column of

Table 9, namely mreco
t with MAOS1(`;mW ) (87.4%) and mreco

W with MAOS1(b`;mt) (88.8%),

we find a final efficiency of ε = 88.3% (with NC = 3, 493 correctly identified, NW = 1, 176

wrongly identified and NU = 1, 761 unresolved events). In both exercises, the final efficiency

is slightly worse than what would be obtained with the single best variable alone, although

the number of unresolved events decreased. These two exercises indicate that there exist non-

trivial correlations between the different variables and an improvement of the efficiency is not

guaranteed by simply merging or combining different methods. This is one of the reasons

why we kept the results for the different methods separate in Table 9.

Up to this point, in Steps II and III we have used reconstruction methods which require
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Algorithm for Step I

M
(b`)
T2 and mb` M

(b`)
2CC and mb`

Correct Wrong Unresolved Correct Wrong Unresolved

Step I: Quadrant counts 11,920 106 6,430 13,274 249 4,933

efficiency ε = 82.0% ε = 85.3%

Remaining unresolved events 6, 430 4, 933

mreco
t with MAOS3(b`;b`) 3,527 2,903 - 2,980 1,953 -

cumulative efficiency ε = 83.7% ε = 88%

mreco
t with CMAOS3(b`;b`) 3,657 2,773 - 2,914 2,019 -

cumulative efficiency ε = 84.4% ε = 87.7%

mreco
t with M2A(b`) 3,495 2,935 - 2,759 2,174 -

cumulative efficiency ε = 83.5% ε = 86.9%

mreco
t with M2A(`) 3,719 2,711 - 2,699 2,234 -

cumulative efficiency ε = 84.7% ε = 88.6%

mreco
W with MAOS3(b`;b`) 3,877 2,553 - 2,783 2,150 -

cumulative efficiency ε = 85.6% ε = 87%

mreco
W with CMAOS3(b`;b`) 3,628 2,802 - 2,622 2,311 -

cumulative efficiency ε = 84.2% ε = 86.1%

mreco
W with M2A(b`) 3,769 2,661 - 2,658 2,275 -

cumulative efficiency ε = 85% ε = 86.3%

mreco
W with M2A(`) 3,448 2,982 - 2,529 2,404 -

cumulative efficiency ε = 83.3% ε = 85.6%

Table 11. The same as Table 9, but for a few representative methods from Table 1 which do not use

mass information.

the knowledge of a particle mass (mt or mW ). However, when the method is being applied in

studies of new physics, such information may not be immediately available. Therefore, it is

prudent to consider modifications of Steps II and III, where one uses methods from Table 1

which do not rely on any mass information. To be specific, we focus on the four methods

listed in the orange-shaded cells of Table 1 and show the corresponding results in Table 11,

which is the direct analogue of Table 9. Once again, it turns out that Step II is unnecessary,

albeit for a different reason — this time in all cases the solutions for the invisible momenta

are found to be real and therefore invisible momentum reconstruction is always possible for

both partitions. It also follows that there will be no unresolved events after Step III, since the

relevant kinematic variables can always be computed and compared for the two partitions.

The results in Table 11 help identify the most promising variables for Step III — mreco
W with

MAOS3(b`;b`) for the middle column (ε = 85.6%) and mreco
t with M2A(`) for the right column

– 32 –



(ε = 88.6%). In both cases, the use of a single variable at Step III leads to an improvement

in the efficiency found after Step I of more than 3%.

In conclusion of this section, we summarize our main findings from the review of the

method of Refs. [36, 53].

1. The efficiency after Step I is increased if we define the quadrants of Fig. 6 in terms of

M
(b`)
2CC instead of M

(b`)
T2 .

2. Step II does not lead to any appreciable effect after Step I, and can be safely omitted

from the algorithm.

3. The use of the variable T2 in Step III is counterproductive, thus T2 can be safely dropped

from consideration.

4. The use of a single optimal variable at Step III (as opposed to a combination of variables)

is generally sufficient to produce the desired result.

5 A few ideas for further improvement

In the previous section, we considered the partitioning method as defined in Refs. [36, 53]

and found that with a few slight tweaks the efficiency (4.8) can reach over 89% (88%) with

(without) mass information. In this section we shall consider a few more serious departures

from the original algorithm, which can potentially further increase the efficiency. Some of the

changes are simply quantitative (as in section 5.1, where we increase the number of variables

used at Step I), others are qualitative (as in sections 5.2 and 5.3).

5.1 Generalizing the quadrant counts

Recall that the main idea at Step I was to use two kinematic variables, in this case mb`

and M
(b`)
T2 , which have clear kinematic endpoints for the case of the correct partition PC .

The resulting efficiency after Step I was 82%, and when we replaced M
(b`)
T2 with M

(b`)
2CC , the

efficiency increased to 85.3%. But one should be able to do even better at Step I. The main

point is that in the event topology of Fig. 1 there are not two, but three independent kinematic

endpoints (they allow for a complete measurement of the mass spectrum [46, 61]). Therefore,

one can expect that the addition of a third variable at Step I, i.e., generalizing the plane

of Fig. 6 to a three-dimensional parameter space divided into eight octants, would further

improve the performance of Step I.

In order to test this idea, we need to pick a suitable third variable to go along with our

original two. We focus on the MT2 and M2CC variables in the remaining two subsystems, (b)

and (`), and show their distributions in Fig. 9. The plots in the bottom row indicate that

the variables M
(b)
T2 and M

(`)
T2 are not suitable for our purpose since they do not depend on

the chosen partition — the distributions for PC (red solid lines) exactly coincide with the

distributions for PW (blue dotted lines). On the other hand, the distributions of M
(b)
2CC (top
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Figure 9. Distributions of M2CC (top row) and MT2 (bottom row) for the case of subsystem (b) (left

panels) or subsystem (`) (right panels). The result for the correct (wrong) partition is shown in red

(blue).

left panel) and M
(`)
2CC (top right panel) by construction depend on the partition via the mass

shell constraint for the relative particle. The differences are more pronounced in the case of

M
(`)
2CC , which we shall choose as our third variable to go along with the previous two, mb`

and M
(b`)
2CC .

We can now generalize our previous discussion of the quadrant counts in Fig. 6 by pop-

ulating our events in the three-dimensional space

(x, y, z) ≡
(
mmax
b` −max

j
{m(j)

b` }, mt −M (b`)
2CC , mW −M (`)

2CC

)
. (5.1)

As before, we expect that for the correct partition PC , the events will be populating predom-

inantly the first octant, where (sign(x), sign(y), sign(z)) = (+,+,+), while for the wrong par-

tition PW , the events will be more randomly distributed throughout the eight octants. These

expectations are tested in Table 12, which generalizes the right table in Table 4 by addition-

ally incorporating the subsystem variable M
(`)
2CC . In Table 12, each of the eight octants of the

parameter space (5.1) is labelled by its corresponding sign signature (sign(x), sign(y), sign(z)),

and rows (columns) correspond to the correct (wrong) partition. Just like Table 4 earlier,
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C \W (+,+,+) (+,+,−) (+,−,+) (−,+,+) (+,−,−) (−,+,−) (−,−,+) (−,−,−)

(+,+,+) 3,697 621 615 216 1,581 0 3,325 6,611

(+,+,−) 108 68 8 1 113 0 76 210

(+,−,+) 70 21 40 3 80 0 90 243

(−,+,+) 17 0 1 2 2 0 14 24

(+,−,−) 52 25 12 2 46 0 38 109

(−,+,−) 0 0 0 0 0 0 0 0

(−,−,+) 10 5 6 0 7 0 48 55

(−,−,−) 19 3 8 1 5 0 46 102

Table 12. Octant counts utilizing the set of three variables (5.1), where rows (columns) are labelled

by the sign signature (sign(x), sign(y), sign(z)) for the correct (wrong) partition.

C \W 0 1 2 3

0 3,697 1,452 4,906 6,611

1 195 144 375 477

2 62 50 139 164

3 19 12 51 102

Table 13. Event counts summarizing the number of endpoint violations in Table 12. Unresolved

events are in the diagonal entries, while events above (below) the diagonal are correctly (wrongly)

resolved. The resulting final efficiency after Step I is 86.8%.

Table 12 reveals that the endpoint violations are more likely to occur in the case of the wrong

partition. We note that the entries in the (−,+,−) row and column are identically zero —

this is due to the fact that the values of m
(j)
b` are direct input to the calculation of M

(b`)
2CC ,

so that once the mb` endpoint is violated in both decay chains (j = 1 and j = 2), it is very

difficult to satisfy the endpoint of M
(b`)
2CC , unless the invisible momenta are rather soft (in the

b` rest frame). Note that under those circumstances the M
(`)
2CC endpoint would be satisfied

as well, which explains the nonzero entries in the (−,+,+) row and column.

We are now in position to evaluate the effect of Step I in the presence of the additional

variable — we simply compare the number of endpoint violations (0, 1, 2 or 3) for each

partition Pk, and declare the winner PC to be the case with fewer endpoint violations, as

illustrated in Table 13. The events for which both partitions give the same number of endpoint

violations, remain unresolved — adding up the diagonal (unshaded) cells of Table 13, we find

NU = 4, 082. The events above (below) the diagonal cells are correctly (wrongly) resolved,

giving NC = 13, 985 and NW = 389, for a final efficiency of 86.8%.16 This result should be

contrasted with the 85.3% efficiency found in the right column of Table 9. Thus the benefit

from adding a third variable to Step I can be quantified as an extra 1.5% in the efficiency.

16We have checked that adding a fourth variable, M
(b)
2CC , and repeating the procedure in four dimensions,

leads to a very marginal improvement: NU = 3, 962, NC = 14, 076 and NW = 418, and efficiency of 87%.
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C \W (+,+,+) (+,+,−) (+,−,+) (−,+,+) (+,−,−) (−,+,−) (−,−,+) (−,−,−)

(+,+,+) 2,388 500 353 0 2,526 0 187 8,662

(+,+,−) 69 41 8 0 124 0 6 352

(+,−,+) 157 26 65 0 156 0 23 809

(−,+,+) 0 0 0 0 0 0 0 0

(+,−,−) 174 70 15 0 485 0 6 879

(−,+,−) 0 0 0 0 0 0 0 0

(−,−,+) 11 1 5 0 3 0 2 38

(−,−,−) 21 2 6 0 34 0 1 251

Table 14. The same as Table 12, but using the set of variables (5.2).

C \W 0 1 2 3

0 2,277 887 2,663 8,425

1 260 152 357 1,376

2 191 95 508 949

3 21 8 35 252

Table 15. The same as Table 13 but based on the results from Table 14. The final efficiency is 88.1%.

5.2 Utilizing the variables M
(b`)
2CW and M

(`)
2Ct

In this section we shall have in mind situations where full mass information is available, such

as polarization studies in dilepton top events. Given the known values of mt and mW , the

relevant question is whether they have been optimally utilized in the algorithm. With the

MAOS method, this mass information is not used at all during the reconstruction of the

transverse invisible components. One way to incorporate the mass information from the very

beginning is to consider the additionally constrained variables M
(b`)
2CW and M

(`)
2Ct defined in

(2.11) and (2.12), respectively [44]. We have already seen that those variables show the best

performance in terms of reconstructing the neutrino momenta (see Figs. 2 and 3). This

motivates us to perform Step I as in the previous section 5.1, but in terms of the alternative

parameter space

(x, y, z) ≡
(
mmax
b` −max

j
{m(j)

b` }, mt −M (b`)
2CW , mW −M (`)

2Ct

)
(5.2)

instead of (5.1). The corresponding results are shown in Tables 14 and 15. We use the

OPTIMASS package [67] to compute the values of M
(b`)
2CW and M

(`)
2Ct. It should be noted that

in certain cases OPTIMASS is unable to find a viable solution, since all constraints cannot

be simultaneously satisfied. This can happen, e.g., when we consider the wrong partition of

an event, or if some particles are produced off-shell. For the purposes of tabulating the results

in Tables 14 and 15, such cases are assigned a “minus” sign.

Table 15 shows that when Step I is performed in terms of the alternative variables (5.2),

the efficiency of Step I alone is as high as 88.1%. This is comparable to the results with
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several versions of the full algorithm (including Step III) which were considered in the previous

section. Thus we conclude that in cases where the masses of the intermediate particles are

known, it is best to perform Step I in terms of the parameters (5.2) which use the variables

M
(b`)
2CW and M

(`)
2Ct.

5.3 Using reconstructed event kinematics: the
√
ŝ− cos θ method

In this section, we shall use the fact that once we choose an ansatz for the invisible momenta

via one of the methods from Table 1, the full event kinematics is completely fixed as well.

This means that when it comes to discriminating the unresolved events after Step I, we are

not limited to only invariant mass variables, but we have the full set of kinematics tools at our

disposal. In particular, we can study angular variables, as well as global inclusive variables,

whose definition does not rely on partitioning the event.

An example of the latter type of variables is the total invariant mass in the event,
√
ŝ,

where

ŝ ≡

 2∑
j=1

(
paj + pbj + qj

)2

. (5.3)

It has been shown that a preselection cut on
√
ŝ improves the efficiency at the cost of lowering

the statistics [53]. This suggests that
√
ŝ can potentially be a useful variable for categorizing

the unresolved events after Step I. The idea is tested in the left panels of Fig. 10. The upper

left panel shows
√
ŝ distributions obtained with the M2A(b`) method from Table 1, for the

NU = 4, 933 unresolved events arising after Step I when it is done in terms of M
(b`)
2CC and

mb` (see the right columns in Tables 9 and 11). The green dotted (blue dashed) line shows

the case of the correct (wrong) partition. For reference, the solid red line gives the true
√
ŝ

distribution. As previously observed in Ref. [16], the reconstructed
√
ŝ distribution peaks at

threshold (2mt). We also notice that the distribution for the wrong partition PW is slightly

harder, which suggests to investigate the ordered difference

∆
√
ŝ(PW , PC) ≡

√
ŝ(PW )−

√
ŝ(PC) (5.4)

in analogy to (4.18). The distribution of the variable (5.4) is shown in the lower left panel of

Fig. 10. If we attempt to resolve events by applying the condition (4.12) to the variable
√
ŝ,

we find NC = 2, 926 correctly resolved events (the shaded portion of the distribution in the

lower left panel of Fig. 10) and NW = 2, 007 wrongly resolved events (the unshaded portion

of the distribution). The overall efficiency is then increased from 85.3% after Step I to 87.8%

(see Table 16).

An alternative handle to sort the unresolved events is provided by the angular distribution

of the parent particles at production. For concreteness, in the upper right panel of Fig. 10

we compare the distributions of the scattering angle θ of the top quarks in their center of

mass frame, for the case of the correct partition (green dotted line), the wrong partition (blue

dashed line) and the MC truth (solid red line). We notice that in reality, the top quarks
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Figure 10. Upper panels: unit-normalized distributions of the reconstructed variables
√
ŝ (left) and

cos θ (right) for the unresolved events after Step I. The green dotted (blue dashed) lines correspond to

results obtained with the correct (wrong) partition. The solid red line shows the MC truth distribution.

Bottom plots: distributions of the ordered differences (5.4) (left panel) and (5.5) (right panel).

are produced predominantly in the forward direction, due to the presence of t-channel and

u-channel diagrams. When the momenta are reconstructed using the correct partition, this

tendency is retained, while the distribution obtained with the wrong partition is mostly flat

in cos θ. This motivates us to consider the corresponding ordered difference

∆(−| cos θ|)(PW , PC) ≡ (−| cos θ|)(PW )− (−| cos θ|)(PC) (5.5)

whose distribution is shown in the lower right panel of Fig. 10. As before, events with

positive17 values of the ordered difference (5.5) will be correctly resolved, and they represent

the shaded portion of the distribution. As summarized in Table 16, by applying the condition

17This is why in the definition (5.5) we chose to consider the function −| cos θ| instead of simply | cos θ|.

– 38 –



method NC NW NU ε√
ŝ 2926 2007 - 87.8 %

−| cos θ| 2836 2097 - 87.3 %

P(
√
ŝ, cos θ) 3199 1720 14 89.2 %

Table 16. Results from alternative methods for classifying the NU = 4, 933 unresolved events remain-

ing after Step I when done in terms of M
(b`)
2CC and mb`. The two partitions are compared based on the

resulting values of
√
ŝ, of (−| cos θ|), or probabilistically based on the templates in Fig. 11.

Figure 11. The two-dimensional templates PC (left) and PW (right) in the (cos θ,
√
ŝ) plane.

(4.12) to the cos θ variable, we obtain NC = 2, 836 (NW = 2, 097) correctly (wrongly) resolved

events and an overall efficiency of 87.3%.

Table 16 demonstrates that both variables cos θ and
√
ŝ are useful in categorizing the

unresolved events, if applied separately. We now check whether they can be combined into a

single method leading to an even higher efficiency. Since it is not possible to derive analytical

expressions for the expected 2D distribution in (cos θ,
√
ŝ), we shall use a template method.

Fig. 11 shows the relevant two-dimensional distributions using only unresolved events. In the

left (right) plot the invisible momenta were reconstructed with the correct (wrong) partition.

These two plots define two probability distributions, PC and PW . Each of the two possible

partitions Pk in an event comes with its own values of cos θ and
√
ŝ, say cos θk and

√
ŝk. Since

we do not know whether P1 corresponds to PC or PW , we try it both ways, and select

PC =

{
P1, if PC(P1)PW (P2) > PC(P2)PW (P1);

P2, if PC(P2)PW (P1) > PC(P1)PW (P2).
(5.6)

As shown in Table 16, the prescription (5.6) results in NC = 3, 199 correctly resolved events

and NW = 1, 720 wrongly resolved events,18 and the overall efficiency is increased to 89.2%,

which ranks among the best results we have found so far at the end of Step I.

18The NU = 14 unresolved events seen in Table 16 are due to our finite binning — for those events, the

two points (cos θk,
√
ŝk), k = 1, 2, happened to fall within the same bin, which resulted in a tie. Since the
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6 Finding the correct partition without any mass or endpoint information

The potential improvements considered in the previous section relied on some prior knowledge

about the masses of the particles involved in the decay chains. However, in new physics

applications of our event topology from Fig. 1, such information may be difficult to get at

first. This is why in this section we shall consider scenarios where no mass information is

available, i.e., the masses of the particles Ai, Bi and Ci are a priori unknown, and furthermore,

kinematic endpoint measurements are also unavailable or have very large uncertainties to be

useful.

Let us now revisit the method under those assumptions. Steps I and II do require mass

information (for defining the quadrants of Fig. 6 and for longitudinal momentum reconstruc-

tion, respectively) and therefore cannot be used. Similarly, two of the variables from Step

III, namely ∆T3 and ∆T4, also need mass inputs for their calculation. For the moment, this

leaves us with only ∆T1 and ∆T2 at our disposal. Since for the correct partition the values

of T1 and T2 are in principle limited from above by a kinematic endpoint, we can still expect

(4.11) to be mostly true. In fact, it is known that with the simple prescription (4.12) using

∆T1 (∆T2) alone, the efficiency is 80% (79%) over all events [53]. As before, we can combine

the two variables ∆T1 and ∆T2 and assign the correct partition PC to be the one chosen by

both variables. In order to estimate the resulting efficiency, in the first row of Table 17 we list

the number of events with a given sign signature (sign(∆T1(PW , PC)), sign(∆T2(PW , PC))).

The events with signature (+,+) (green-shaded cells) will be correctly identified, the events

with signature (−,−) (red-shaded cells) will be wrongly identified, while the events with sig-

natures (+,−) or (−,+) (unshaded cells) will remain unresolved at this point. The resulting

efficiency of this combined ∆T1 ⊕∆T2 method is 81.8%.

We emphasize that the ∆T1⊕∆T2 method does not use any mass information: we simply

compare the two possible values for T1(Pk) (as well as the two possible values for T2(Pk)) for

k = 1 and k = 2, and choose the larger (the smaller) to indicate the wrong (correct) partition.

However, a potential problem with the method is that the variables T1 and T2 were found to

be correlated [53]. This motivates us to look for an alternative set of variables. Since we saw

previously that M
(b`)
2CC is more efficient than M

(b`)
T2 (compare the middle and right panels in

Fig. 5), we can try to replace T2 with

T5(Pi) ≡M (b`)
2CC(Pi). (6.1)

The efficiency of the resulting ∆T1 ⊕ ∆T5 method is 83.6%, as shown in the second row of

Table 17. One can go one step further and add a third variable to the mix, e.g., M
(`)
2CC , as

was done in section 5.1:

T6(Pi) ≡M (`)
2CC(Pi). (6.2)

The resulting combined method ∆T1⊕∆T5⊕∆T6 involves an odd number of variables, thus

each event will be resolved based on the sign signature. This is illustrated in Table 18, which

templates of Fig. 11 are built from Monte Carlo, in principle one can use more statistics for their generation,

and correspondingly smaller bin sizes, which will make such ties increasingly rare.
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(+,+) (+,−) (−,+) (−,−) efficiency

(sign(∆T1(PW , PC)), sign(∆T2(PW , PC))) 14,477 693 559 2,727 81.8%

(sign(∆T1(PW , PC)), sign(∆T5(PW , PC))) 14,677 493 1,003 2,283 83.6%

Table 17. Categorizing events by their sign signature for (∆T1,∆T2) or (∆T1,∆T5).

(sign(∆T1(PW , PC)), sign(∆T5(PW , PC)), sign(∆T6(PW , PC)))

(+ + +) (+ +−) (+−+) (−+ +) (+−−) (−+−) (−−+) (−−−)

12,301 2,376 175 856 318 147 1,017 1,266

Table 18. The same as Table 17, but for the combined ∆T1 ⊕ ∆T5 ⊕ ∆T6 method. The resulting

efficiency is 85.1%.

Figure 12. Efficiencies for choosing the correct partitioning for the ∆T1 ⊕∆T5 ⊕∆T6 method (left

panel) and the hemisphere (i.e., ∆T1) method (middle panel), as a function of the mass spectrum, for

fixed mA = 500 GeV and for mB > mC . The right panel compares the efficiencies of the two methods.

does not contain any unshaded cells. The corresponding efficiency of the method is 85.1%,

which is a noticeable improvement over the results in Table 17.

Until now, we have tested the efficiencies of the methods with a SM sample of dilepton tt̄

events, i.e., the masses of the particles Ai, Bi and Ci were respectively the top mass mt, the

W -boson mass mW , and the neutrino mass mν . One may wonder how sensitive the results

are to the choice of a benchmark study point. This issue is investigated in Fig. 12, where

we fix the mass of particle A to mA = 500 GeV, and then freely vary the other two masses

mB and mC . The left panel in Fig. 12 shows the efficiency of the ∆T1 ⊕∆T5 ⊕∆T6 method

considered above. The efficiency varies noticeably throughout the mass parameter space, and

seems to be correlated mostly with mB and less with mC . The highest efficiency is obtained

in the region where the spectrum becomes relatively degenerate — in that case the visible

decay products ai and bi are highly correlated with the direction of the parent particle Ai.

For completeness, in Fig. 12 we also show results for the standard hemisphere method [31–

34] when applied to our event topology. In the hemisphere method, one clusters the visible

particles into two groups trying to keep the invariant mass of each cluster to a minimum.

It is not difficult to see that in our language this is nothing but the ∆T1 method. The
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corresponding efficiency is shown in the middle panel of Fig. 12 and it exhibits the same

qualitative behavior. The right panel of Fig. 12 compares the two methods by plotting the

fractional difference of their efficiencies. We see that throughout most of the parameter space,

the efficiency of the ∆T1 ⊕∆T5 ⊕∆T6 method is higher by 2-5%.

7 Summary and outlook

The combinatorial problem is a very important issue in experimental particle physics. Identi-

fying the correct event topology on an event by event basis is a key element of many analyses

which attempt to measure particle properties such as spin, couplings, CP quantum num-

bers, etc. A successful method which can avoid combinatorial ambiguities, especially in jetty

events, is bound to improve the sensitivity of new physics searches as well.

In this paper, we revisited some of the existing methods [36, 53] for resolving the com-

binatorial ambiguity in the dilepton tt̄ event topology of Fig. 1. To summarize our main

findings:

1. The efficiency after Step I can be increased if a) the quadrants of Fig. 6 are defined in

terms of M
(b`)
2CC instead of M

(b`)
T2 and b) if the quadrants are generalized to “octants” as

discussed in section 5.1.

2. Step II does not lead to any appreciable effect after Step I, and can be safely omitted

from the algorithm.

3. The use of the variable T2 in Step III is counterproductive, and T2 can also be dropped

from consideration.

4. The use of a single optimal variable at Step III (as opposed to a combination of variables)

is generally sufficient to produce the desired result.

5. The efficiency is also increased if the available mass information is incorporated as early

as possible, e.g., by utilizing the variables M
(b`)
2CW and M

(`)
2Ct, as discussed in section 5.2.

6. We investigated further improvements of the algorithm, by invoking other types of

variables, including a global inclusive variable like
√
ŝ and an angular variable like

cos θ, see section 5.3.

7. In section 6 we discussed a more general approach which does not rely on any mass

information.

One should keep in mind that the efficiency can always be further improved at the cost of

statistics. For instance, a cut on
√
ŝmin reduces the number of signal events, but the resulting

efficiency can be increased beyond 90% [53].

Our results are directly applicable to any studies of final states containing bb̄W+W−. In

searches for new physics, dilepton tt̄ would be the dominant background and our results should
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help in reducing it and increasing the sensitivity. In addition, there are several interesting

physics scenarios where a similar combinatorial problem plagues the signal itself:

• resonant di-Higgs production in the bb̄W+W− channel [71];

• direct CP measurement of the Higgs-top coupling [72];

• constraining new resonant physics with top spin polarization information [73];

• triple Higgs boson production [74];

• multi-boson production processes such as W±W∓H or W±W∓HH [75];

• studies of anomalous triple and quartic gauge coupling such as W+W−γ, W+W−Z,

γγW+W− and γZW+W− [76–78].

Looking ahead, there are several directions in which the study presented here can be

evolved.

1. Following the previous literature, in this initial investigation we considered a relatively

simple situation, where there were only two possible alternatives, and we had to pick

one of them. As we increase the number of indistinguishable objects in the final state,

things get much more complicated. We intend to tackle this more difficult problem in

the very near future.

2. As the number of jets in the signature is increased, it becomes important to cross-check

the parton-level results with more detailed simulations including detector effects, initial

and final state radiation, etc.

3. The kinematic variables which we used here were designed for event topologies with 2

missing particles. It would be interesting to generalize our analysis to event topologies

with more than 2 missing particles, where one would have to use a different set of M2

variables suitably adapted for that case.
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