Recent LHCb results on hints for New Physics Yes, my friend! This is flavour, you must be patient!

Are you sure this plan will work? Martínez Vidal F.

IFIC-Valencia

On behalf of the LHCb Collaboration

9-23 JUNE, MADRID

CSIC

VNIVERSITAT ID VALÈNCIA

LHCh

Adapted from N. Cabibbo at 1966 Berkeley Conference

Outline

- The LHCb experiment
- Flavour physics, rare decays and LFU
- BFs and angular results
- LFU results
- Global fits and hadronic effects
- Summary and prospects

LHCb experiment

- bb cross section in high energy pp collisions is huge, mainly from gg fusion
 - $\checkmark \approx 300 \ \mu b @ \sqrt{s} = 7 \ TeV$
 - ✓ ≈600 µb @ \sqrt{s} = 13 TeV
- b quarks hadronize in all b-hadron species:
 B, B_s, B^{*}_(s), b baryons...
- Large average b-hadron momentum, ~80 GeV
 - ✓ large boost
 - ✓~1 cm B decay vertex displacement
- LHCb concept: a single-arm forward spectrometer
 - ✓ ≈4% solid angle coverage
 - ✓ ≈30% b-hadron production acceptance $\Rightarrow \sim 1.8 \times 10^{11} \text{ bb}$ pairs produced/fb⁻¹

 $\pi/4$

 $\pi/2$

θ, [rad]

 $3\pi/4$

<L> ~ 1cm

LHCb MC $\sqrt{s} = 7$ TeV

 $3\pi/4$

ππ

θ, [rad]

PRL 118 (2017) 052002

LHCb experiment

Optimized for b- and c-hadron physics at large pseudorapidity (2<η<5)

- ✓ Trigger: >95% (60-70%) efficient for muons (electrons)
- ✓ Tracking: $\sigma_p/p 0.4-1\%$ (*p* from 5 to 200 GeV), $\sigma_{IP} = (15 + 29/p_T [GeV/c]) \mu m$
- ✓ Calorimeter: $\sigma_E / E \sim 10\% / \sqrt{E} \oplus 1\%$
- ✓ PID: 97% µ,e ID for 1-3% π → µ,e misID

Flavour physics

- Study of the different generations of fermions
- The generation of quarks interact via the CKM matrix

- Quark flavour processes have played a central role in the SM construction
- Cornerstone ingredients of the SM are:
 - ✓ Absence of FCNC at tree level
 - ✓ LFU, i.e. the generations of charged leptons are identical copies of each other with regards their EW couplings

h

5

FCNC

• FCNC transitions only occur at loop order in the SM

New particles/interactions can contribute to loop or tree level diagrams

- enhancing/suppressing decay rates
- ✓ introducing new CPV sources
- modifying the angular distribution of the final-state particles

State particles
Probes NP models at energy scale Λ higher than direct searches

 B^0

F. Martínez Vidal, PASCOS 2017, 19-23 June, 2017

 K^{*0}

 μ^+

LFU

- Violation of LFU has been searched for in various systems (Z, W, π, ...)
 ✓ No evidence so far, only 2.8σ tension in W→τν wrt to W→ev & W→μν
- Consider also B decays. Two types:

• Take R_X ratios, e.g. $R_{D^{(*)}}$, $R_{K^{*0}}$, of BFs between (semi)leptonic decays that can be factorised into weak and strong parts, e.g.

 $d\Gamma(B \to D\ell \nu) / dq^2 \propto G_F^2 |V_{cb}|^2 f(q^2)^2$

• Remark: many NP models with LFU breaking imply LF violation

PRD93 (2016) 093008

How

B hadron decay processes over a wide energy range

Prog. Part. Nucl. Phys. 92 (2017) 50

0.2GeV.....4GeV.....80GeV.....~100 TeV ?AQCDAbAEWApplicative regime)(b mass)(W mass)(NP scale)

Described by effective field theory and operator product expansion:
 [OPE: a series of effective vertices multiplied by effective coupling constants C_i and C'_i]

 $A(B \to f) = \left\langle f \left| H_{\text{eff}} \right| B \right\rangle = \frac{G_F}{\sqrt{2}} \sum_{j} V_j^{\text{CKM}} \left(\frac{C_j \left\langle f \left| O_j \right| B \right\rangle}{\int S} + \frac{C'_j \left\langle f \left| O'_j \right| B \right\rangle}{\int S} \right)$

Wilson coefficients (*a*) the b quark scale μ_b

(perturbative, short-distance physics, sensitive to $E > \Lambda_{EW}$)

 $\begin{array}{lll} i=1,2 & Tree \\ i=3-6,8 & Gluon penguin \\ i=7 & Photon penguin \\ i=9,10 & Electroweak penguin \\ i=S & Higgs (scalar) penguin \\ i=P & Pseudoscalar penguin \end{array}$

Hadronic matrix elements (a) μ_b scale \checkmark (include non-perturbative QCD,

long-distance physics; HQE, LQCD, LCSR, fQCD)

How

• NP expected to affect the Wilson coefficients:

Today

Semileptonic B decays (b→sll transitions)

 $d[BFs]/dq^2 \text{ of } B^{0/+} \rightarrow K^{(*)0/+}\mu\mu, B^0_s \rightarrow \phi\mu\mu, \Lambda_b \rightarrow \Lambda\mu\mu$ Hadronic uncertainties in theory predictions Angular analyses of $B \rightarrow K^{(*)}\mu\mu, B^0_s \rightarrow \phi\mu\mu, \Lambda_b \rightarrow \Lambda\mu\mu$ Observables less form factor dependent

Enormous physics program constantly expanding. Will cover small part

F. Martínez Vidal, PASCOS 2017, 19-23 June, 2017

Recent LHCb results on hints for New Physics

10

$B \rightarrow \mu \mu$

- Additional helicity & CKM suppression, theoretically clean
- Searched for over 30 years
- $B_s^0 \rightarrow \mu\mu$ observed (6.2 σ) from LHCb & CMS Run I combination, 3.0 σ evidence for $B^0 \rightarrow \mu\mu$, consistent with SM Nature 522 (2015) 68
- Recent new result from LHCb adding 1.4 fb⁻¹ from Run II & improved analysis PRL 118 (2017) 191801

F. Martínez Vidal, PASCOS 2017, 19-23 June, 2017

 $BF(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \qquad 7.8\sigma$ $BF(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} @95\%$ CL

Recent LHCb results on hints for New Physics

 $BF(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$ $BF(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

PRL112 (2014) 101801

LHCb experiment Run: 101412 Event: 8681643 Date: 8 Sep 2011 Time: 16:04:18

b→sll differential BFs

• Measured differential BFs in q² for B⁰ \rightarrow K^{(*)0}µµ, B⁺ \rightarrow K^{(*)+}µµ, B⁰_s \rightarrow ϕ µµ, $\Lambda_b \rightarrow \Lambda_{\mu\mu}$ consistently lower than SM predictions at 2-3 σ

✓ SM predictions limited by hadronic uncertainties on form factors

B→K^{*0}µµ angular analysis

- Study of the full angular distribution of the final state particles $(\theta_l, \theta_K, \phi)$
- Measure all CP-averaged angular, described by eight observables S_i, F_L, A_{FB}, function of Wilson coefficients

B→K^{*0}µµ angular analysis

- P'₅ LHCb local deviation from SM
 - ✓ 2.8 σ in 4 < q² < 6 GeV²/c⁴

$$\sim 3.0\sigma$$
 in $6 < q^2 < 8 \text{ GeV}^2/c^4$

- $B \rightarrow J/\psi K^{*0}$ angular distribution in excellent agreement with existing measurements

LFU with NC: $R_{K^{(*)}}$

• Take ratio of lighter leptons, $R_{K^{(*)}} = \frac{BF(B \to K^{(*)} \mu^+ \mu^-)}{BF(B \to K^{(*)} e^+ e^-)}$

 $R_{K^{(*)}} = 1 \pm O(m_{\mu}^2 / m_b^2)$

- Precise theory prediction due to cancellation of hadronic form factor uncertainties
- Experimentally, use

$$B \to K^{(*)}J / \psi(e^+e^-)$$
 and $B \to K^{(*)}J / \psi(\mu^+\mu^-)$

- ✓ to perform a double ratio
- to correct simulation and extract signal mass shapes
- \checkmark to cross check
- If NP doesn't couple to 1st generation, from b \rightarrow sµµ d[BFs]/dq² lower than SM one naively would expect $R_{K^{(*)}} < 1$

F. Martínez Vidal, PASCOS 2017, 19-23 June, 2017 Recent LHCb results on hints for New Physics

Determine signal yields from B mass fits in q² bins

arXiv:1705.05802

LFU with NC: $R_{K^{(*)}}$

LFU with NC: $R_{K^{(*)}}$ results

• Correct yields for J/ ψ vs non-resonant efficiency differences (only due to kinematics) to obtain $R_{K^{(*)}}$

• LHCb results for R_{K^+} , $R_{K^{*0}}$ (low q^2), $R_{K^{*0}}$ (central q^2) are 2.6, 2.4 and 2.2 σ from SM prediction, all in the same direction

F. Martínez Vidal, PASCOS 2017, 19-23 June, 2017

18

LFU with CC: $R_{D^{(*)}}$

Precise theory prediction due to cancellation of hadronic uncertainties

- Highly sensitive to NP models favouring 3rd generation leptons, e.g. charged Higgs or leptoquarks up ~1 TeV
- BaBar first measured an excess of $\overline{B}^0 \to D^{(*)+} \tau^- \overline{\nu}$, $\sim 3\sigma$ away SM
- LHCb has measured R_{D*} using
 - ✓ Muonic $\tau^+ \rightarrow \mu^+ \nu \nu$ decays
 - ✓ Hadronic $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \nu$ (3-prong) decays NEW!

PRD 88 (2013) 072012 Nature 546 (2017) 227

LFU with CC: *R*_{*D*}* muonic mode

- $D^*\mu$ final state with $3 v's \Rightarrow$ no sharp peak in any variable
- Exploit large boost, kinematic & topological properties, and huge B prod.
- Signal yields from 3D fit to kinematic variables able to discriminate τ/μ modes

LFU with CC: R_D* hadronic mode

LHCb-PAPER-2017-017, in preparation

- $D^*3\pi$ final state with 2 v's
- D*3πX is one of the most common B decay final states, large background
- Suppress through τ vertex displacement wrt B vertex (large boost)
- Data driven modelling of backgrounds due to B→D*(D_s/D/D⁰)X decays
- BF for B⁰→D^{*}3π normalization mode measured by BaBar

PRD94 (2016) 091101

 Signal yields from 3D fit to q², 3π decay time and BDT

Global fits

• Global fits using b \rightarrow s*ll*, B \rightarrow µµ, LFU data, ~100 observables

- NP contributions to Wilson coefficients preferred over SM at $4-5\sigma$ level
- Preference on C_9 at $\sim 4\sigma$ level
- Z', leptoquarks and composite Higgs models could explain

Understanding effects from charm

- Or there is a problem with the understanding of QCD, e.g. estimating the contributions from charm loops?
- Measure resonance effects in C₉ in inclusive analysis ^{*b*} of $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ X_{c\bar{c}}(\mu^+ \mu^-)$
- Fit μμ mass spectrum to dΓ/dm_{μμ}, function of form factors and C_i
 ✓ Model resonances as RBW × relative scale and phase (9 vector poles)

Summary

- Many FCNC and LFU observables measured, few anomalies
- $B^0/B^0_s \rightarrow \mu\mu$ BF probed down to $10^{-9}/10^{-10}$ level, consistent with SM, challenging NP scenarios
- Individual 2-3σ tensions in b→sµµ differential BFs and P'₅ angular observable, tree- and loop-level LFU tests with semileptonic B decays
- The pattern is coherent with NP models coupling more strongly to 2nd or 3rd generations
- Global fits accommodate consistently all these anomalies with a preference for NP in C_9 at ~4 σ level

Prospects

- Run II will last until end 2018
 ✓ ~factor ×5 on yields
- More R_X's and angular measurements
- Precise angular measurements with electrons

LHCb Cumulative Integrated Recorded Luminosity in pp. 2010-2016

 \checkmark Expect similar yields to muons with Run I

✓ Exploration of potential link between angular and LFU anomalies, e.g. $Q_5 = P'_5(ee) - P'_5(\mu\mu)$

- LFV, eg. B→eµ, τµ, Keµ
- The LHCb upgrade will start taking data in 2021
 ✓ ~factor ×40 wrt Run I, ignoring trigger improvements

Exciting times

