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Problem

• Minimizing the material to be crossed by a particle in a high
energy physics particle tracker is one of the main constraints
superimposed by physics onto the detector design

• The smaller the Material Budget the more accurate the
detector

• This also applies for the cooling technology selected for the
detector

• Conventional cooling methods use metallic pipes and ledges

• However, pipes, heat spreaders, thermal contact materials
and local heat sinks add to the material budget and increase
the mismatch of coefficient of thermal expansion (CTE)
between the materials which may lead to mechanical stresses
in the detector structure

How can these disadvantages be minimized to
create an even more accurate detector?

A novel answer  

A rather novel detector cooling method is the so-called

MICRO-CHANNEL COOLING

a method which was transferred from cooling of computer chips to
high energy physics (HEP) experiments.

METHOD:

Micrometer sized channels are implemented into silicon 
wafers to form a microfluidic heat exchanger, where it is 
possible to circulate various coolants according to the 
wanted performance

ADVANTAGES for HEP experiments: 
• Reduction of material crossed by the particles
• Since this cooling method is designed mainly for the Silicon

Semiconductor Pixel detectors a mismatch in CTE can be avoided
• The micro-channels can be placed in direct contact with the silicon

surface of the detector and no heat spreaders are needed
• The large heat transfer surface involved allows for low temperature

differences between heat source and heat sink
• Many different geometries are possible with micro-channel cooling

to adapt to different detector configurations and is therefore a quite
flexible approach

A rather novel refrigerating option is 

EVAPORATIVE CARBON DIOXIDE

Unlike single phase heat transfer, which relies totally on the coolant’s
sensible heat rise, two-phase heat transfer uses the coolant’s
combined sensible and latent heat. Thus far greater amounts of heat
can be absorbed [Kim, 2014].

Furthermore CO2 …
• is an ozone friendly fluid with a Global Warming Potential of 1
• has a very good heat transfer coefficient compared to traditional

refrigeration fluids [Zhao, 2000]
• has a higher reduced pressure for a given saturation temperature

[Ducoulombier, 2011].

This leads to …
• higher vapour density, lower liquid viscosity and lower surface

tension [Ducoulombier, 2011].
• lower pressure drops (very important for small tubes) [Yun, 2005]
… just to mention a few benefits

Experimental activity 
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Experimental Setup

• Carry out the above mentioned measurements
• Compare with data and correlations found in literature
• Use findings for better understanding of the physical behavior of 

the flow and base a possible non-empirical model on them 
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An extensive literature review has been carried out during the first
year of activity:

LITERATURE REVIEW FINDINGS

• Many publications on micro-channel cooling seem to contradict
each other. Reason for this is the fact that no systematic research
was carried out so far (same refrigerant, same channel size, same
flow parameters)

• Some publications are acknowledging certain uncertainty factors,
some do not

• An arbitrary definition of micro-channels is used so far and no
general definition is yet given

• Many correlations on fluid flow and heat transfer in micro-channels
are found empirically and thus can not predict very well a different
data set

• Non-empirical models are still rare and some physical behaviors in
the channels are still subject of speculation

Based on the above given issues we have launched a very ambitious

RESEARCH PROGRAMME

• Minimize the uncertainty of the experiments by better controlling of
possible error sources

• Create a bigger database with experiments carried out at different
research sites (in collaboration with Universities in Manchester,
Oxford & Twente)

• Finding and testing a theoretical micro-channel definition [based on
the preliminary work of Y. Moussy]

• Furthermore this project seeks to extend the research with
evaporative CO2 in micro-channels further towards negative fluid
temperatures and actual micrometer sized channel diameters

STEP 1 : Test simple single channels / tubes
To address the complexity of the physical processes occurring in
micro-channels and for their better understanding

STEP 2 : Test more complex channel geometries
To address the immediate need for micro-channel cooling in HEP
experiments using the gathered insights and results from Step 1

Parameters under test Method

Fluid flow properties DIRECT: flow visualization with high speed 
camera 

INDIRECT: Temperature & Pressure 
measurements

Heat transfer DIRECT: Temperature measurements in the 
flow and on surrounding equipment

INDIRECT: heat transfer visualization with 
infrared camera

Pressure drop Absolute & relative pressure transducers

A new test stand has been designed for testing micro-channel cooling
with 2-phase CO2 in a more controlled surrounding. The main
components are:
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SAMPLES under test: 

MEASUREMENTS inside the vacuum vessel: 

MEASUREMENTS outside the vessel: 
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Preliminary tests

Preliminary tests were carried out on a setup at Manchester
University with a so-called CO2-Blow-System. Here CO2 from a gas
bottle is ‘blown’ into an experimental tube for measurements (CO2 is
not recirculated!)

MEASUREMENTS:
• Pressure (P1 & P2)
• Internal 

Temperatures             
(T1 & T2)

• External 
Temperatures 
(Thermocouple 1-6)

• Heat generation via 
Joule heating to 
simulate heat source 

FINDINGS:
• It was difficult to set 

a constant flow for 
the experiment

• Thus steady-state 
data was not easily 
obtained

The gathered data was
compared with a sophisticated
model developed at CERN for
evaporative CO2 flow and
heat transfer (COBRA = CO2
Branch Calculator). The data
is predicted well for a 1 mm
tube since COBRA is
established for tube diameters
from 0.6 mm to 10 mm. For
smaller channel sizes the
validity of the model still has
to be confirmed.

Fig. 2 Silicon micro-channels etched by plasma to 
obtain vertical sidewalls [Mapelli, 2012]

Fig. 1 Micro-channels for the LHCb – Velo
Upgrade

Fig. 3 Setup for evaporative CO2 flow measurements 

Fig. 5 New setup for evaporative 
CO2 flow measurements 

Fig. 6 Vacuum vessel for the new setup
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CONCLUSION: To gather more accurate data a different setup is needed.

Fig. 4 Comparison of gathered data with COBRA model
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