

Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

ANIMMA 2017 – 21 June 2017

Alexis Vallier (LAPP, Annecy) On behalf of the ATLAS Liquid Argon Calorimeter group

Outline

Introduction

- Large Hadron Collider
- ATLAS detector
- Liquid Argon Calorimeter (LAr)
- Phase-I upgrade
- LAr Front End electronics upgrade
- LAr Back End electronics upgrade
- Demonstrator

Large Hadron Collider

ATLAS detector

Multi-purpose detector with Forward-backward symmetric cylindrical geometry

- Designed to study elementary particles and their interactions
- Tracking system
- Solenoid and Toroidal Magnet

4

ATLAS Liquid Argon calorimeter

Main goal : measure **energy** and **position** of **electrons** and **photons**

- Lead / Liquid Argon sampling with accordion geometry
- Copper /Kapton electrodes
- Total of 180k calorimeter cells (4 different layers)
- 3k Trigger Towers : group of cells in (η, Φ) of size 0.1 x 0.1
- Barrel: 6x4 m, 114t ; End-Cap: radius 3m, 27t

LAr measurement in a nutshell

ATLAS and CMS experiments at CERN's Large Hadron Collider"

LAr ionisation pulse

٠

- Current is collected on electrodes and converted in Voltage
- Voltage is amplified, shaped, sampled (@40MHz) and digitized
- LAr Hardware computes the cell energy from digitized samples and send it to central DAQ

Current LAr readout electronics

Counting Room

21/06/2017

Cooling Manifold

LHC / HL-LHC Plan

• In 2016 ATLAS ran with $\mathcal{L}_{max} = 1.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\langle \mu \rangle = 24.2$ Average number of pp collision per bunch crossing

For ATLAS, upgrade planned in two phases:

- Phase-I (2019-2020) : essentially trigger path upgrade $\mathcal{L} \sim 3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, < \mu > \sim 80$
 - Level 1 hardware trigger maximal rate : 100 kHz
 - Single Electromagnetic trigger has to stay to 20 kHz
- Phase-II (2024-2026) : includes main data path upgrade $\mathcal{L} \sim 7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \ <\mu > \sim 200$

21/06/2017

Current LAr readout electronics

Counting Room

21/06/2017

Cooling Manifold

Higher granularity for Trigger

- Current Trigger Tower too large : provide limited performance at high detector occupancy
- Despite luminosity increase keep low-pT thresholds and bandwidth similar to current one
- Improvement : Trigger Tower → Super Cells (lateral + longitudinal segmentation)
 - 10-fold increase in granularity : Layer info + Finer segmentation in η for Layer 1 and 2
 - Higher resolution $1 \text{ GeV} \rightarrow 125 \text{ MeV}$ in Layer 2, 62 MeV elsewhere
 - Shower shape info sent to L1 trigger \rightarrow Apply rejection algorithms similar to offline selection

21/06/2017

Performance Enhancement

- Example of performance gain in trigger bandwidth for electron
- For same bandwidth as in Run2 (20 kHz) : can lower electron threshold by 7 GeV

LAr Phase 1 upgrade project

New Front End (FE) electronics :

- Layer sum board
 - Higher granularity
- Baseplane

Baseplane

- Increase #channels (~x10)
- LTDB
 - Digitize Super Cell Signals
 @ 40MHz
 - 12 bits precision
 - Send ADC data to Back End
 - Send old layer sum to present analog trigger system, kept as backup

LAr Phase 1 upgrade project

New Back End (BE) electronics :

• LDPS

- Read Super Cell ADC data @40MHz
- Compute Super Cell E_T (E_T^{SC}) @40MHz
- Send it to Phase-1 trigger system
 - Feature EXtractor (FEX)
- Real time processing with fixed latency (1.625 µs)

New electronic board

LAr Phase 1 upgrade project (2)

• Goal of the chain:

- Convert SC signals to $E_{\rm \scriptscriptstyle T}$ (GeV) @ 40 MHz
- Identify the Bunch Crossing of the signal
- 34 000 Super Cells to process
- ~41 Tbps to Trigger system

New Front End :

FEX (new trigger system)

New baseplane

Latency Budget

- LAr + FEX system should have a latency below 65 Bunch Crossings (BCs) = $1.625 \ \mu s$
- The estimated latency is 44.2 (LAr) + 14 (FEX) = 58.2 BCs
- LAr main latency sources : Digitization, FE \rightarrow BE data transfer, E_T computation

	Latency		Sub-total [BCc]	Total (BCa)
	[ns]	[BCs]		
Time-of-flight at $\eta = 2$	15	0.6		
Cable to pulse preamplifier	30	1.2		
Preamplifier and shaper	10	0.4		
			2.2	2.2
Digitization on LTDB	200	8.0		
Multiplexing on LTDB	25	1.0		
Serializer on LTDB	50	2.0		
Optical Cable (70 m) from LTDB to LDPS	349	14.0		
			25.0	27.2
Deserializer on LDPS	50	2.0		
Channel Demultiplexing on LDPS	25	1.0		
Pedestal Subtraction	25	1.0		
$E_{\rm T}$ with forward correction	125	5.0		
Digital summation	50	2.0		
Multiplexing $40 - 320$ MHz on LDPS	25	1.0		
Serializer on LDPS	50	2.0		
Optical cable (15 m) from LDPS to FEX	75	3.0		
			17.0	44.2

Front End Electronics Upgrade

New Front End Components

- New Baseplane
 - Drives new analog signals
 - Compatible with current setup
- New Layer Sum Board
 - Analog sum to make Super Cells
- LTDB
 - custom ASICs to be radiation tolerant and have low power consumption
 - ADC
 - Serializer : LOCx2
 - Transmitter : LOCld
 - Receive Trigger, Timing and Control (TTC) signals via GBT link

LTDB

- 124 LTDB to read 34k Super Cells (SC) analog signal
- Each LTDB reads up to 320 SC
- Digitize with 12 bits @ 40 MHz
- Do analog sums for present trigger (Tower Builder Board)
- Transmit data via optical links @ 5.12 Gbps (LOCx2+LOCld)
- **Power provided by a Power Distribution Board** (PDB mezzanine)
 - flexibility in phase 2 upgrade
- Pre-prototype use FPGA instead of LOCx2
- Prototype using almost final ASICs under tests

ADC custom ASIC

- 12 bits radiation-hard pipeline ADC
 - TSMC 130 nm CMOS, 40 MS/s
 - ADC stages of 1.5 bits: determine the 4 most significant bits
 - 8 bits Successive Approximation Register (SAR): lower 8 bits
 - ENOB : 11
 - Die: 3.6 x 3.6 mm, 72 pins on Quad Flat No-Lead (QFN)
- Status:
 - 180 chips produced to validate Quality Assurance & Control procedure (QA/QC)
- Radiation tolerance established up to 10 MRad (only 100kRad is required) 21/06/2017

Optical Links

• Serializer : LOCx2

- 250 nm Silicon-On-Sapphire
- Dual channel 14 bits serializer
- Output @ 5.12 Gbps
- Power consuption : 1 W
- Die : 6.036x3.68 mm, 100 pins QFN
- Optical emitter : LOCld
 - Dual channel VCSEL driver
 - Same technology as LOCx2
 - Die : 2.114x1.090mm, 40 pins QFN

LOCx2 eye-diagram after 182 kRad

- Chips QA should start in July
- ASICs are radiation tolerant
 - No change of output eye-diagram after
 200kRad of irradiation (LOCx2 & LOCld)

Back End Electronics Upgrade

Phase 1 Back End System

- Input :
 - ADC from FE (25.2 Tbps)
 - Trigger Timing and Control signals (TTC)
- Output :
 - Super Cells energy to Trigger (41.1 Tbps)
 - Data monitoring through 10 GbE
 - Data readout via regular ATLAS DAQ (FELIX)
- Main Boards : LAr Digital
 Processing Blade (LDPB)
 - 31 blades to read 124 LTDB

LDPB

LDPB ATCA boards :

- 1 carrier: LArC
 - Drives 1/10 GbE, GBT and TTC communications
 - Power management by IPMC card
 - FPGA : Virtex7 (Xilinx)
- 4 Advanced Mezzanine Card: LATOME
 - 192 input fibres @ 5.12 Gbps
 - 192 output fibres @ 11.2 Gbps
 - Main data flow : compute E_T^{SC}
 - FPGA : Arria10 (Intel)

Carrier – LArC

LArC (carrier)

IPMC (power management)

Rear Transition Module

- GBT SFP

- 22 layers PCB
- Max power load : 400W
- Features validated:
 - Power management
 - 1 and 10 GbE interfaces
 - GBT SFP input link
 - Communications w/ AMC FPGA

Mezzanine – LATOME

LATOME (advanced mezzanine)

2 Gb DDR3

- LATOME LAr Trigger prOcessing Mezzanine :
 - 16 layers PCB
 - 8 Broadcom µPods : 8 x 12 links
 - Receive LTDB data @ 5.12 Gbps (up to 48 links)
 - Compute E_T^{SC} , remap data to ease FEX algorithm, send results @ 11.2 Gbps (48 links)
 - TTC signals from carrier
- Features validated :
 - Optical links up to 11.2 Gbps
 - 1 GbE interface
 - GBT interface

LATOME Firmware

- LATOME firmware divided in several functional blocks
 - different clocks: 240, 280 and 320 $\rm MHz$
- Input stage
 - Synchronisation of input LTDB data
- Configurable remapping
 - Group Super Cells as expected by FEX
- User code :
 - Compute E_T^{SC}
 - Bunch crossing assignment
- **TTC :** Decode TTC info
- TDAQ/Monitoring
 - Synchronise data with TTC info
 - Sent it via GBT/10GbE

- **Output summing :** Compute sums for FEX
- **IPbus controller :** Slow control via 1GbE

21/06/2017

Back End Integration Test

Goal : validate that system works without power & thermal issues before large scale production of the boards **Planned Integration Test** LArC Connect boards to real **Optical** splitter x48 1
ightarrow 2setup @ CERN FEX x48 ITDE Inject & Read carrier **1 Inject & Read carrier :** FEX LTDB FEX Inject « LTDB » data, Read « FEX » data \rightarrow data verification LArC LArC LArC 3 carriers w/ user code : compute E_{T} for L1 (FEX) LATOME x48 GB **Carriers** running user code Send monitoring data **GB** GB via GBT & 10 GbE LATOME ITDB FEX Decodes TTC signals 10 GbE miniFELIX miniFELIX Data monitoring

•

Integration Test Status

- ATCA crate to host LDPB
- FELIX pc for TTC and DAQ
- PC with 10 GbE for data monitoring
- Ongoing: Main data path validation
- Tests will take place up to fall 2017

21/06/2017

Demonstrator

Demonstrator System

- LAr Phase 1 Upgrade proof of principle
 - Demonstrator installed on 1/32 of barrel region (summer 2014)
 - FE : two LTDBs demonstrators
 - BE : ATCA test Board for Baseline Acquisition (ABBA)
 - Reads super cells data to enable offline analysis

• LTDB demontrator :

- Commercial 12 bits ADC (not radiation-hard)
- Multiplexing of data output via FPGA
- ABBA :
 - ATCA boards with 3 FPGA
 - Data readout via IPbus protocol on 10 GbE network

Demonstrator Data

Calibration

- Inject calibration pulses with different amplitudes (DAC)
- Size and shape of pulses are as expected
- Good linearity
- Collisions (pp and Heavy Ions)
 - Collect demonstrator data when ATLAS triggers in demonstrator acceptance
 - Compare Demonstrator readout and ATLAS one
 - Noise level well below 1 ADC count : consistent with test bench measurements
- Early 2018 : replace boards by LTDB and LDPB final prototypes

Conclusion

- The ATLAS Liquid Argon calorimeter electronics will be upgraded during LHC Long-Shutdown 2 (2019-2020)
- Only the trigger path will change
 - Increase of granularity to improve trigger performances
 - Digitization and Readout @ 40 MHz
- The LTDB (Front End) and LPDS (Back End) systems are being developed and tested
 - Data output total rate to trigger system : 41.1 Tbps
 - Radiation tolerant custom ASICs are produced
 - LTDB prototype is being tested
 - LDPS integration tests have started
 - Production will start in 2018
- A demonstrator of the new trigger scheme is already installed and took some data with LTDB and ATCA pre-prototype → useful experience gain

BACKUP

LAr calorimeter cells

$\mathbf{Pulse} \rightarrow \mathbf{Energy}$

LAr Readout System

21/06/2017

Phase 1 Back End System

Phase 1 Back End System (2)

