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d Institut de Théorie des Phénomènes Physiques, EPFL, CH-1015 Lausanne, Switzerland
e Department of Physics, Boston University, Boston, MA 02215

Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique
to solve strongly coupled QFTs in d = 2 spacetime dimensions. Further theoretical developments
are needed to increase its accuracy and the range of applicability. With this goal in mind, here
we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the
UV cutoff than other existing implementations, and yields more accurate spectra. The key idea
for achieving this consists in integrating out exactly a certain class of high energy states, which
corresponds to performing renormalization at the cubic order in the interaction strength. We test
the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also
be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d > 3.

Introduction. Many interesting strongly interacting
Quantum Field Theories (QFTs) are not amenable to
analytical treatment. Such theories are often studied
via Lattice Monte Carlo (LMC) numerical simulations,
starting from the discretized Euclidean action. However,
LMC has some drawbacks, for example it cannot easily
compute real-time observables, it is rather computation-
ally expensive, and it cannot directly describe renormal-
ization group (RG) flows starting from interacting fixed
points. Therefore, it is worth exploring other numerical
approaches to strongly interacting QFTs. One promis-
ing alternative is provided by the Hamiltonian methods,
which look for the eigenstates of the quantum Hamilto-
nian. These methods use various finite-dimensional ap-
proximations to the full infinite-dimensional QFT Hilbert
space. Notable examples are the methods using Matrix
Product States [1, 2] and more general Tensor Networks
[3] such as MERA [4] or PEPS [5]. In this paper we will
be concerned with another representative of this group
of methods—Hamiltonian Truncation (HT), also known
as the Truncated Spectrum (or Space) Approach, which
is a direct generalization of the variational Rayleigh-Ritz
(RR) method from quantum mechanics. This method
goes back to the seminal work of Yurov and Al. Zamolod-
chikov [6, 7] and has since been applied in many contexts.
See [8] for a recent extensive review and the bibliography.

The idea of HT is simple. The QFT Hamiltonian
operator H is split as H0 + V where H0 is an exactly
solvable Hamiltonian whose eigenstates form the basis of
the Hilbert space. One quantizes at surfaces of constant
time and works in finite volume so that the spectrum
is discrete [9]. The Hilbert space is then truncated to
the low-lying eigenvectors of H0. The matrix of H in

this truncated Hilbert space is diagonalized exactly on a
computer, to find the low-energy spectrum of interacting
eigenstates.
As was understood early on [10], the numerical con-

vergence of the HT depends crucially on the scaling di-
mension ∆V of the interaction V . If the interaction is
strongly relevant, in the RG sense, then HT converges
fast, but convergence rate worsens as ∆V increases. This
is a limitation of the method. For interaction dimensions
larger that d/2, naive HT actually diverges [10]. To en-
sure the convergence, we will assume here that

∆V < d/2 . (1)

Another limitation of HT, as of many variational meth-
ods in general, is that the Hilbert space grows exponen-
tially with the cutoff. Specifically, the dimension grows
as exp(CEα

T ), where C > 0 is a theory-dependent con-
stant and ET is the energy cutoff on the H0 spectrum.
The exponent typically depends on the spacetime dimen-
sion as α = 1−1/d, so this problem becomes more severe
in higher d. These two limitations are the main reason
why the HT has been so far applied mainly in d = 2.
Motivated by the need to mitigate the above limita-

tions, the recent works [11–14] (following notably [15];
see also [16–18]) started developing the theory of renor-
malized HT, in which high-energy modes are not simply
truncated away, but integrated out to produce an effec-
tive low energy Hamiltonian. As a result the convergence
is improved. Renormalized HT has been applied in sev-
eral strongly coupled QFT studies in d = 2 [12–15, 18]
and in one study in d = 2.5 [11]. We hope that in the
future Hamiltonian Truncation will develop into an ac-
curate numerical method, applicable also in d > 3. Here
we will take another step towards this goal by proposing
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a novel and still more accurate approach to renormaliza-
tion. A more detailed technical account of our work will
appear elsewhere [19].
Setup. Consider the Hamiltonian H of a QFT in fi-

nite volume, which we assume can be split into a solv-
able part H0, whose eigenfunction and eigenvectors are
known, plus an interaction V , whose matrix elements are
computable in the basis of eigenstates of H0:

H = H0 + V , H0|i〉 = Ei|i〉 , Vij = 〈i|V |j〉 . (2)

TheH0 can represent a free or an integrable Hamiltonian,
or the Hamiltonian of a conformal field theory (CFT) on
the cylinder Sd−1 ×R. We assume that its finite volume
spectrum is discrete, which is the case for mostH0’s of in-
terest. Notice that although numerical HT calculations
are performed in finite volume, infinite volume observ-
ables can then be extracted via controlled extrapolation.
The spectrum of the interacting theory is found by

solving the eigenvalue equation:

H.c = Ec, c ∈ H , (3)

where E is the energy of a given state, and c the cor-
responding eigenvector living in the Hilbert space H
spanned by the eigenstates of H0. Eq. (3) is infinite-
dimensional and cannot be solved on a computer. So
we split H into a finite-dimensional “low-energy” part
Hl and a “high-energy” part Hh. Motivated by effective
field theory, a natural choice is to include into Hl all the
states with energy below a given cutoff Ei 6 ET , which
plays the role of a UV cutoff. This should provide a good
approximation for the interacting eigenstates with energy
well below the cutoff. Different types of cutoff are possi-
ble but will not be considered here. We then project the
eigenvalue equation onto those subspaces:

Hll.cl + Vlh.ch = Ecl , (4)

Vhl.cl +Hhh.ch = Ech , (5)

where c = (cl, ch) is the low/high energy split of c, i.e.
cl = Plc, ch = Phc, where Pl, Ph are the projectors on
Hl, Hh. Similarly, Hll = PlHPl, and so on.
The raw HT consists in throwing out all the states in

Hh and solving the eigenvalue equation,

Hll.cl = Erawcl . (6)

By the min-max theorem, as the cutoff ET is increased,
the eigenvalues Eraw approach the exact eigenvalues E
from above. As shown in [11], the raw HT numerical
spectrum is expected to converge with polynomial rate
1/Eρ

T , with ρ = d − 2∆V > 0 by our assumption (1).
This polynomial convergence must compete with the ex-
ponential growth of states in the Hilbert space.
It is possible to do better than in (6). Instead of simply

truncating (4), we use (5) to express the high-energy part
ch of the eigenvector in terms of the low-energy part cl:

ch = (E −Hhh)
−1.Vhl.cl . (7)

Plugging this back in (4) gives the equation

Heff .cl = Ecl , (8)

where Heff is the effective Hamiltonian operator acting
on Hl. It is given by

Heff = Hll +∆H(E) , (9)

∆H(E) = Vlh.(E −Hhh)
−1.Vhl . (10)

The solutions of (8) are equivalent to the solutions of the
original eigenvalue problem (3).
Eqs. (9,10) are the starting point of renormalized HT

[20]. Integrating out the high-energy part of ch we cor-
rect or, as we say, renormalize Hll by ∆H . While in
general ∆H cannot be computed exactly, the goal is to
approximate it sufficiently well so that solutions of (8)
become close to the exact eigenenergies. The hope is
that this can be done keeping the cutoff ET , and there-
fore the dimension of Hl, relatively low and manageable
on a computer.
One natural way to approximate ∆H(E) would be via

an expansion in powers of V :

∆H(E) =
∞∑

n=2

∆Hn(E) , (11)

∆Hn = Vlh
1

E −H0hh

(
Vhh

1

E −H0hh

)n−2

Vhl , (12)

truncating it to a fixed order. This is what was done in
the previous works [11–13], where (11) was truncated to
the leading order (LO) n = 2, and ∆H2 was computed
in an analytic local approximation

∆H ≈ ∆H local
2 , (13)

which will be briefly reviewed after Eq. (29) below. This
was shown to improve significantly the numerical con-
vergence of the spectrum in ET . However, in Ref. [14]
it was shown that, first of all, this method is not easily
generalizable to higher orders and second, increasing the
accuracy of the approximation of ∆H2 alone does not
necessarily improve the convergence. Furthermore, the
naive expansion (12) is not convergent and there will ap-
pear unbounded matrix elements as the power of V is
increased [21].
We will now introduce the main novelty of the present

paper—an approach to renormalize the truncated Hamil-
tonian that neatly avoids the problems pointed out by
[14], and leads to a more accurate spectrum than any
previous approach.
NLO-HT as integrating out tails. Let us rethink

Eqs. (6-10). Eq. (6) can be viewed as an instance of the
RR approach, where the full Hamiltonian has been pro-
jected on the finite-dimensional subspace Hl ⊂ Hl ⊕Hh.
The high-energy Hilbert spaceHh is infinite-dimensional,
but Eq. (7) implies that we don’t need all of it. Indeed,
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this equation says that one could retrieve the exact re-
sult by truncating Hh to a finite dimensional subspace
Ht spanned by the vectors

(E −Hhh)
−1.Vhl|i〉 , |i〉 ∈ Hl . (14)

Of course, these states are impossible to compute exactly,
so let us approximate them by setting Hhh ≈ H0hh, i.e.

|Ψi〉 ≡ (E∗ −H0)
−1.Vhl|i〉 , (15)

with E∗ a parameter that will be set close to E . We call
these |Ψi〉’s tail states, as their linear combination ap-
proximate the high-energy “tail” of the eigenvectors. We
next consider the eigenvalue equation for the Hamilto-
nian (3) projected on the space spanned by {|i〉, |Ψi〉}:

Hll.cl +Hlt.ct = ERRcl , (16)

Htl.cl +Htt.ct = ERRG.ct , (17)

where Gij = 〈Ψi|Ψj〉 is the Gram matrix of the tail
states, which are not orthonormal, and

(Hlt)ij = 〈i|H |Ψj〉 = [∆H2]ij , (18)

(Htt)ij = 〈Ψi|H |Ψj〉 = [∆H3 −∆H2 + E∗G]ij . (19)

Here ∆H2 and ∆H3 are the same as above with E → E∗.
Assuming that the operators (18,19) can be evaluated

to high accuracy, one can diagonalize (16,17) numerically
on a computer and obtain the Rayleigh-Ritz eigenvalues
ERR. By construction, these eigenvalues have variational
interpretation with an ansatz enlarged with respect to
the raw HT, implying via the min-max theorem that E 6

ERR 6 Eraw [22].
Let us transform equations (16,17) further by integrat-

ing out the tail states. Substituting ct from (17) into (16)
we get an equivalent equation for the RR spectrum:

[Hll +∆H̃ ].cl = ERRcl , (20)

where ∆H̃ is given by

∆H2

1

∆H2 −∆H3 + (ERR − E∗)G
∆H2 . (21)

In our calculations we will have E∗ ≈ ERR [23]. So we will
neglect the last term in the denominator and will use

∆H̃ = ∆H2

1

∆H2 −∆H3

∆H2 . (22)

Now observe that the power expansion of this expression
agrees, up to third order in V , with (11):

∆H̃ = ∆H2 +∆H3 + . . . . (23)

This key observation reveals the connection of the dis-
cussed method with the renormalization idea from the
previous section. Although this was not obvious from

the start, Eq. (23) means that ∆H̃ implements a next-to-
leading (NLO) renormalization correction. The presence
of ∆H3 in the denominator of (23) is crucial to address
the problems originating from the naive truncation of
the expansion (12). [24] We will refer to the spectrum
obtained via this method as NLO-HT.
Testing NLO-HT in the (φ4)2 theory. In the rest

of the paper we will apply NLO-HT to one particular
strongly coupled relativistic QFT—the φ4 theory in 1+1
dimensions. We stress however that the basic ideas of
NLO-HT and of its implementation described below are
general and can be used for many other theories.
We introduce here the (φ4)2 theory very briefly; see

[12, 19] for details. The theory is defined by the normal-
ordered Euclidean action

S = 1
2

∫
dτ dx [: (∂φ)2 +m2φ2 : + g :φ4 :] . (24)

We quantize it canonically with periodic boundary condi-
tions, expanding the field into creation and annihilation
operators:

φ(x, τ = 0) =
∑

k

1√
2Lωk

(ake
ikx + a†ke

−ikx) , (25)

where k = 2πn/L (n ∈ Z), ωk =
√
m2 + k2, [ak, ak′ ] = 0

and [ak, a
†
k′ ] = δkk′ . Here x is the coordinate along the

spacial circle of length L, while τ ∈ R is the Euclidean
time. From now on, we will use the units m = 1.
In terms of normal-ordered operators, the Hamiltonian

is a sum of the free piece and the quartic interaction:

H = H0 + gV4 + . . . , H0 =
∑

k

ωka
†
kak , (26)

V4 = L
∑

∑
ki=0

1∏√
2Lωi

[
ak1

ak2
ak3

ak4
+ . . .

]
. (27)

The ellipsis in H in (26) refer to the Casimir energy and
other exponentially suppressed corrections needed to cor-
rectly put the theory in finite volume. They are discussed
in detail in [12] and defined in Eqs. (2.10, 2.18) of that
paper. The Hamiltonian H acts in the free theory Fock
space. There are three conserved quantum numbers: to-
tal momentum P , spatial parity P (x → −x), and field
parity Z2 (φ → −φ). We will focus on the invariant
subspaces H± consisting of states with P = 0, P = +,
Z2 = ±. The states in H+ (resp. H−) contain even
(resp. odd) number of free quanta. The basic problem
is to find eigenstates of H belonging to H±. The two
subspaces do not mix, and the diagonalization can be
done separately.
Let’s describe briefly how the matrices entering the

NLO-HT eigenvalue equation (20) are computed in prac-
tice. The matrix elements ofHll are known in closed form
and are straightforward to evaluate, taking advantage of
the sparsity for efficiency. The matrices ∆H2,3 in (22)
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FIG. 1: Convergence of NLO-HT vs other HT methods.

involve infinite sums over states in Hh. We approximate
∆H2 to high accuracy by splitting it as [14]

∆H2 = ∆H<
2 +∆H>

2 . (28)

Here the matrix ∆H<
2 involves a finite sum over the

states in Hh of energies ET < Ei 6 EL which is eval-
uated exactly. On the other hand, the matrix ∆H>

2 in-
volves an infinite sum over the states with Ei > EL, for
which we use a local approximation [11, 12]:

∆H>
2 ≈

∑

i

κi(EL)

∫ L

0

dxOi(x) . (29)

Here the Oi are a finite number of local Lorentz-invariant
operators; for the (φ4)2 theory these are 1, :φ2 :, :φ4 :.
The coefficients κi(EL) are known analytically. This
approximation is most accurate for matrix elements
(∆H2)ij such that Ei, Ej ≪ EL. Its validity is justified
by the operator product expansion.

The original local approximation in Eq. (13) was given
by the same formula (29) but with EL = ET . So it was
not accurate for states close to the cutoff. Instead, the
error in evaluating ∆H2 via (28) can be made arbitrar-
ily small throughout the low-energy Hilbert space Hl by
raising EL above ET . In our calculations we find that
EL = 3ET provides a sufficient approximation. The er-
ror can also be further reduced by including subleading
(higher derivative) operators in (29).

The strategy for computing ∆H3 is analogous. We
break down the matrix into various contributions. Some
of those involve a finite sum over elements in Hh close
to the cutoff and are computed exactly. The remaining
pieces contain the contributions of the states much above
the cutoff. Those are approximated by a sum of local
operators, with analytically known coefficients [19].
Numerical results. The basic features of the low-

lying φ4 spectrum are as follows. The lowest eigenstate
E0 belongs to H+ and is the ground state in finite volume
(the interacting vacuum). The second-lowest eigenstate

belongs to H− and is interpreted as the one-particle ex-
citation at zero momentum. The excitation energy over
the ground state E1 − E0 measures the physical particle
mass mph. The above is true for moderate quartic cou-
pling g < gc ≈ 2.8, when the vacuum preserves the Z2

invariance. At g = gc the particle mass goes to zero and
the theory undergoes a second order phase transition to
the phase of spontaneously broken Z2 symmetry, with
critical exponents given by the 2d critical Ising model.

We will now use the NLO-HT method to provide ac-
curate non-perturbative predictions for E0 and mph as
functions of the coupling g. Notice that perturbation
theory ceases to be accurate for g & 0.2 ([12], appendix
B). We will only study here the Z2-invariant phase. The
Z2-broken phase at g > gc was studied previously in
[13, 25, 26].

While here we will focus on the vacuum and the first
excited state, we stress that higher excited states and
other observables are both possible and interesting to
study using the HT. E.g. one can extract the S-matrix
from the volume dependence of the two-particle state en-
ergies [7].

The first step is to compute the spectrum as a function
of ET for fixed g and L and to extrapolate ET → ∞. Our
NLO-HT calculations explored the couplings g 6 3 and
the volumes L 6 10, while ET was fixed for each L to
have about 104 states in Hl. For comparison, we will also
report raw and local LO renormalized HT calculations,
which were pushed to much higher ET , corresponding to
about 106 states. As an indication of the needed com-
puter resources, our most expensive NLO-HT data points
(L = 10, ET = 20) required 40 CPU hours and 80 Gb
RAM per coupling value.

Empirically, the NLO-HT spectrum was observed to
converge with cutoff as 1/E3

T . A representative plot, for
the vacuum energy at g = 2, is in Fig. 1(left). This
is much faster than the raw and the local LO renor-
malized HT predictions for the same observable, which
show ∼ 1/E2

T convergence, although LO renormalization
reduces the prefactor significantly, Fig. 1(right). The
smooth behavior of the NLO-HT data with ET allows us
to extrapolate to ET = ∞. For this we fit the NLO-HT
data points with the function F (ET ) = α+β/E3

T+γ/E4
T ,

with α, β and γ free parameters, and use F (∞) = α [27].

Next we discuss how the spectrum depends on L.
There are precise theoretical expectations for this depen-
dence, which allows us to perform interesting consistency
checks, and helps to extrapolate the mass gap and the
vacuum energy density to their infinite volume limits (for
g not too close to gc). For the mass gap at Lmph ≫ 1
we expect, in a 1+1 dimensional QFT with unbroken Z2
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FIG. 2: The mass gap E1(L)− E0(L) as a function of L.

symmetry [28, 29]:

E1(L)− E0(L) = mph +∆m(L) +O(e−σmphL) , (30)

∆m(L) = − 1

8πmph

∫
dθ e−mphL cosh θF (θ + iπ/2) , (31)

F (θ) = −4im2
ph sinh(θ) (S(θ)− 1) , (32)

where σ >
√
3, and S(θ) is the S-matrix for 2 → 2 scat-

tering, with θ the rapidity difference.
We neglect the third term in the r.h.s. of (30), while we

approximate the second one as follows. In this work we
will not measure the S-matrix, [30] but we will instead
parametrize it by replacing S(θ+ iπ/2) with a series ex-
pansion around θ = 0. This is reasonable because the
integral in ∆m(L) is dominated by small θ. Eq. (31)
then implies:

∆m(L)/mph ≈ bK1(mphL) +
c

(mphL)3/2
e−Lmph . (33)

The Bessel function comes from the constant term of the
S(θ) expansion, while the second term comes from doing
the integral via the steepest descent of the θ2 term (the
linear term vanishes in the integral). Further corrections
are suppressed by additional powers of mphL.
In Fig. 2 the above expectations are compared to the

g = 2 NLO-HT data. We include the NLO-HT data
points at the highest ET we could reach for the given L
(blue), and the NLO-HT data extrapolated to ET = ∞
as discussed above (red error bars). We also include the
fit of the extrapolated data using Eq. (33) (green curve).
The fit has three parameters (mph, b, c) and works well in
the whole range of L. We extract the value ofmph at L →
∞ from the fit, with the uncertainty determined by fitting
the upper and lower ends of the error bars. We have done
analogous L → ∞ extrapolations for all couplings g 6 2.6
in steps of 0.2. These are shown in Fig. 3 (red error
bars), where the L = 10 results extrapolated to ET = ∞
are also shown for comparison (green error bars). A few
L = ∞ results are also reported in Table I. For g > 2.6,
close to the critical point, the described fitting procedure

g mph Λ
0.2 0.979733(5) −0.0018166(5)
1 0.7494(2) −0.03941(2)
2 0.345(2) −0.1581(1)

TABLE I: mph and Λ extracted with NLO-HT.

cannot be used, as the physical mass approaches zero,
and the condition Lmph ≫ 1 is not satisfied.
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FIG. 3: mph(g); compare with Fig. 11 in [12].

Also in Table I, we report analogous measurements of
the infinite volume vacuum energy density Λ (the cos-
mological constant). The NLO-HT data for E0(L)/L are
extrapolated to ET = ∞ and then are fitted with the
theoretical expectation at Lmph ≫ 1:

E0(L)
L

= Λ− mph

πL
K1(mphL) + a

√
mph

16πL3
e−2mphL + . . . ,

where a = O(1). This formula is valid in any massive
quantum field theory in 1+1 dimensions in absence of
bound states [12, 31].
Coming back to Fig. 3, we see by eye that the mass

gap vanishes somewhere close to gc ≈ 2.8, signaling a
quantum critical point. This is in accord with previous
theoretical [32] and numerical [12, 26, 33–36] studies [37].
For a better estimate of gc, we fit the L = ∞ data points
in the range g 6 2.6 with the rational function

f(g) =
(1 + g( 1

g1
+ 1

g2
+ 1

g3
+ 1

gc
) + rg2)(1− g

gc
)ν

(1 + g
g1
)(1 + g

g2
)(1 + g

g3
)

,

(34)
with fit parameters r, g1, g2, g3, gc, and ν. We have
f(gc) = 0 by construction. We impose g1, g2, g3 > 0 so
that f(g) has poles on the negative real axis. The critical
coupling estimate from this fit is [38]

gc = 2.76(3) . (35)

The ν parameter in the above fit is a critical exponent.
Assuming the Ising model universality class for the phase
transition, we expect ν = (2 −∆ǫ)

−1 = 1, using ∆ǫ = 1,
the dimension of the most relevant non-trivial Z2-even
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FIG. 4: Energy levels at g = gc vs CFT predictions.

operator of the critical Ising model. In the fit leading to
(35) we fixed ν = 1. Relaxing this assumption gives the
same central value with slightly larger error bars.
The rationale behind introducing the poles into the

ansatz f(g) is that they are supposed to approximate the
branch cut at g < 0 that the analytically continued func-
tionmph(g) is expected to have. We checked that modify-
ing our ansatz, and in particular increasing the number of
poles, does not affect appreciably the confidence interval
for gc. We also checked that the g2 and g3 coefficients of
our best fit are roughly consistent with the perturbation
theory predictionmph(g) = 1−1.5g2+2.86460(20)g3+. . .
[12]. With a more complicated ansatz, we found fits per-
fectly agreeing with perturbation theory. The resulting
gc values are nearly identical to (35). This is not surpris-
ing, since most of fit power relevant for constraining gc
comes from 1 . g . 2, not from the region of small g
where perturbation theory is accurate.
Finally, we compare the NLO-HT results to the expec-

tations for the finite volume spectra at the critical point.
CFT predicts that the energy levels at g = gc should vary
with L as

EI(L)− E0(L) ≈ 2π∆I/L , (36)

where ∆I are operator dimensions in the critical Ising
model. This relation should hold at L ≫ 1, where cor-
rections due to irrelevant couplings die out. In Fig. 4 we
test it for the first three energy levels above the vacuum,
which should correspond to the operators with dimen-
sions ∆σ = 1/8, ∆ǫ = 1, ∆∂2σ = 2 + 1/8. The error
comes from extrapolating to ET = ∞ and (the largest
contribution) from varying g in the range (35). We see
reasonable agreement for σ and ǫ, while it looks like the
agreement for ∂2σ will be reached at higher values of L.
This figure can be compared to Fig. 6 of [12] and Figs. 22,
23 of [26], which show similar behavior.
Conclusions. In this work we proposed a variant of

renormalized Hamiltonian Truncation called NLO-HT.
Its main idea is to integrate out exactly a certain class of
high-energy states, which allows for variational interpre-
tation, and furthermore implements the renormalization

corrections up to cubic order in the interaction strength.

We tested NLO-HT by computing the low-lying spec-
tra of the strongly coupled two-dimensional φ4 theory.
Numerical spectra in finite volume were found to con-
verge rapidly with the Hilbert space cutoff ET , faster
than for other existing versions of Hamiltonian Trunca-
tion, and allowing controlled extrapolation to the contin-
uum limit ET = ∞. The finite volume corrections were
then removed using the theoretical knowledge of these
effects in QFT. In this way we extracted highly accu-
rate predictions for the vacuum energy density and the
physical mass in the infinite volume limit, for a range of
non-perturbative coupling constants.

In the future NLO-HT will be used to perform accurate
studies in other strongly coupled RG flows in d = 2. In
particular, it can be applied to flows starting from an
interacting CFTs. We also believe that our ideas will
be useful to extend Hamiltonian Truncation to weakly
relevant interactions, with scaling dimension in the range
∆V > d/2 excluded in this paper, and in particular to
flows in higher dimensions d > 3, most of which fall into
this category.
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