
Available on CMS information server CMS CR -2017/100

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
28 March 2017 (v3, 10 May 2017)

FPGA-based Real-time Charged Particle
Trajectory Reconstruction at the Large Hadron

Collider

Edward Bartz, Jorge Chaves, Yuri Gershtein, Eva Halkiadakis, Michael Hildreth, Savvas Kyriacou, Kevin
Lannon, Anthony Lefeld, Anders Ryd, Louise Skinnari, Robert Stone, Charles Strohman, Zhengcheng Tao, Brian

Winer, Peter Wittich, and Zhiru Zhang

Abstract

The upgrades of the Compact Muon Solenoid particle physics experiment at CERN’s Large Hadron
Collider provide a major challenge for the real-time collision data selection. This paper presents a
novel approach to pattern recognition and charged particle trajectory reconstruction using an all-FPGA
solution. The challenges include a large input data rate of about 20 to 40 Tbps, processing a new batch
of input data every 25 ns, each consisting of about 10,000 precise position measurements of particles
(‘stubs’), perform the pattern recognition on these stubs to find the trajectories, and produce the list of
parameters describing these trajectories within 4 µs. A proposed solution to this problem is described,
in particular, the implementation of the pattern recognition and particle trajectory determination using
an all-FPGA system. The results of an end-to-end demonstrator system based on Xilinx Virtex-7
FPGAs that meets timing and performance requirements are presented.

Presented at FCCM 2017 IEEE International Symposium on Field-Programmable Custom Computing Machines

FPGA-based Real-time Charged Particle Trajectory Reconstruction
at the Large Hadron Collider

Edward Bartz†, Jorge Chaves∗, Yuri Gershtein†, Eva Halkiadakis†, Michael Hildreth‡, Savvas Kyriacou†,
Kevin Lannon‡, Anthony Lefeld§, Anders Ryd∗, Louise Skinnari∗, Robert Stone†, Charles Strohman∗,

Zhengcheng Tao∗, Brian Winer§, Peter Wittich∗, Zhiru Zhang∗, and Margaret Zientek∗
∗Cornell University, Ithaca, NY

†Rutgers University, New Brunswick, NJ
‡University of Notre Dame, South Bend, IN
§ The Ohio State University, Columbus, OH

Abstract—The upgrades of the Compact Muon Solenoid par-
ticle physics experiment at CERN’s Large Hadron Collider
provide a major challenge for the real-time collision data
selection. This paper presents a novel approach to pattern
recognition and charged particle trajectory reconstruction us-
ing an all-FPGA solution. The challenges include a large input
data rate of about 20 to 40 Tbps, processing a new batch of
input data every 25 ns, each consisting of about 10,000 precise
pairs of position measurements of particles (‘stubs’), perform
the pattern recognition on these stubs to find the trajectories,
and produce the list of parameters describing these trajectories
within 4 µs. A proposed solution to this problem is described, in
particular, the implementation of the pattern recognition and
particle trajectory determination using an all-FPGA system.
The results of an end-to-end demonstrator system based on
Xilinx Virtex-7 FPGAs that meets timing and performance
requirements are presented.

1. Introduction

This paper describes results from a demonstration sys-
tem for a novel implementation of a charge particle tra-
jectory (‘track’) reconstruction approach based on FPGAs
for proton-collider physics experiments. The implementation
is intended to be used by the upgraded Compact Muon
Solenoid (CMS) experiment [1] at CERN’s Large Hadron
Collider (LHC) [2]. The upgrade of the LHC [3] will
produce more intense collisions, leading to a large increase
in the input data rates that the experiments must process.
These upgrades will enable searches for undiscovered rare
particle physics processes as well as detailed measurements
of the properties of the Higgs boson. The LHC collides
proton bunches every 25 ns; once upgraded, each of these
bunch collisions (an ‘event’) will consist of an average
of 200 proton-proton collisions. Only a small fraction of
these collisions are of interest for further study. A fast real-
time selection, referred to as the ‘trigger’, is applied to
decide whether a given collision should be saved for further
analysis. The trigger is implemented in custom hardware

and sits in a well-shielded cavern away from the detector;
as such radiation and single-event upsets are not a concern.

To reconstruct the trajectories of charged particles, the
CMS experiment includes a tracking detector. Charged par-
ticles leave energy deposits when crossing the detector
material. Pairs of these energy deposits (‘stubs’) can be
linked together to reconstruct the trajectory of the charged
particles. Stubs are selected on detector using an innovative
module concept [1]. The detector layout of the upgraded
device as proposed in [1] is illustrated in Fig. 1.1 Particles
produced at the interaction point, (0,0) in the figure, travel
outwards in a uniform magnetic field parallel to the z axis
with a strength of 3.8 T. A charged particle traversing this
magnetic field is bent such that its trajectory forms a helix.
In the r-φ plane, the helix forms a circle and the radius of
this circle is proportional to the momentum in this plane, the
transverse momentum, or pT, of the particle. In the trigger,
we are interested in particles with pT > 2 GeV/c; this
corresponds to a radius of curvature greater than 1.75 m. Our
challenge lies in linking these stubs to form the trajectories
of the particles. In each collision of counter-rotating bunches
(every 25 ns), about 10,000 stubs are formed. However, only
about 10% of the stubs belong to trajectories of interest, so
many need to be filtered. The remaining stubs are combined
to form on average 180 trajectories every 25 ns. This is the
first time that data from the tracking detector is included
in the CMS trigger; previously, the amount of data to be
processed and the calculational complexity was out of reach
of FPGAs.

To summarize, some of the challenges are:
• Absorb approximately 10,000 stubs arriving each 25 ns.

The input bandwidth is about 20–40 Tbps.
• Perform pattern recognition to identify the stubs that

belong to a given trajectory.
• Fit the stubs to extract optimal trajectory parameters.
• Complete all above steps within 4µs to feed into the

1. We use a right-handed coordinate system, with the origin at the
nominal interaction point, the x axis pointing to the center of the LHC,
the y axis pointing up, and the z axis along the counterclockwise-beam.
The azimuthal angle φ is measured in the x-y plane.

x [mm]
-1000 -500 0 500 1000

y
[m
m
]

-1000

-500

0

500

1000

Figure 1. [Left] One quarter of the layout of the CMS charged particle tracking detector upgrade as proposed in [1]. Collisions take place at (0,0). The
layout shown represents one quarter of the full detector. In the central barrel there are six layers at radii from 23 cm to 110 cm. In the forward region,
there are five disks at z positions from 130 cm to 270 cm. [Right] The x-y view of the barrel. The detector is divided into 28 regions for track finding.

decision of whether to retain the event before the on-
detector hit buffers are exhausted.

The ‘tracklet’ approach for real-time track reconstruction in
the hardware-based trigger system of CMS, presented in this
paper, is one of three possible implementations being con-
sidered by the collaboration.2 It is a ‘road-search’ algorithm,
implemented using commercially available FPGA technol-
ogy. Their ever-increasing capability and programming flex-
ibility make FPGAs ideal for performing fast track finding.
The tracklet approach allows a naturally pipelined imple-
mentation with a modest overall system size. It also allows
for simple software emulation of the algorithm. We present
here results from a demonstrator which implements end-to-
end reconstruction, from input stubs to output trajectories,
within the available trigger processing time (‘latency’) and
with a reasonable system size.

Many software-based particle tracking algorithms use
a road-search technique where track seeds are found and
the trajectories extrapolated to look for matching stubs.
This technique works well with the high-precision hits in
particle detectors such as the CMS tracker. The typical
spatial position resolution of the stubs is about 30 µm in φ
and either 0.5 mm (inner layers) or 1.5 cm (outer layers) in
z in a cylindrical detector volume of about 2 m in diameter
and 5 m in length. Therefore, the search window (road)
around the projected trajectory is small and the probability
for finding false matches is low. However, with previous
generations of FPGAs, the computational power for im-
plementing this type of tracking algorithm in the trigger
was not available. Today, the large number of digital signal
processing blocks (DSPs) and other resources available in
FPGAs make such an approach feasible. Earlier real-time,
hardware implementations of particle tracking made use of
either dedicated ASICs [6], [7] to solve the combinatorics
problem in pattern recognition or used binning of the data
combined with memory lookup tables [8], [9].

2. The two others are a Hough-transform based approach using FPGAs
[4] and an associative memory based approach using a custom ASIC [5].

Alternative commercial technologies to FPGAs were
considered and rejected for this project. While the large
numerical processing capability of graphical processing
units (GPUs) suggests a good match at first glance, these
technologies are optimized for high throughput, not low
latency, and tests have shown they are incompatible with
the 4 µs latency requirement [10]. Additionally, GPUs and
technologies such as many-core processor architectures typ-
ically introduce variable latency associated with non-real-
time operating systems; such variability is incompatible with
the trigger system requirements.

2. Tracklet Algorithm

The goal of the real-time hardware based track finding
is to reconstruct the trajectories of charged particles with
pT > 2 GeV/c and to identify the track z0 position (the z
coordinate where the track intercepts the z axis) with about
1 mm precision, similar to the expected average separation
of proton-proton collisions in the bunch collisions of the
upgraded LHC. The proposed tracklet method forms track
seeds, ‘tracklets’, from pairs of stubs in adjacent layers or
disks. The tracklets provide roads where compatible stubs
are included to form track candidates. A linearized χ2 fit
determines the final track parameters.

2.1. Algorithm overview

A diagram depicting the serial algorithm can be seen in
Fig. 2. Pseudo-code follows.

Form seeds – tracklets
1: for all stubs in layers n = 1, 3, 5 do
2: for all stubs in layer n+ 1 do
3: Consider pairs of stubs as tracklet candidate
4: if pairs meet z0 and pT requirements then
5: add to list of tracklets
6: calculate initial trajectory parameters
7: else
8: discard tracklet candidate

Figure 2. In the first step (left) pairs of stubs (red) are combined to form seeds, or tracklets, for the track finding. Combined with the interaction point
(0,0) a helical trajectory for the particle is formed, assuming a uniform magnetic field. This trajectory is projected (middle) to the other layers. Stubs
in the other layers that are close to the projection (green) are selected as matches (right) to the tracklet to form a track. Final trajectory parameters are
calculated using a linearized χ2 fit.

9: end if
10: end for
11: end for

Look for matching stubs in other layers
12: for all tracklets do
13: Extrapolate track position to all other layers
14: for all layers not part of tracklet do
15: if stub is found close to extrapolated position then
16: add stub to track candidate
17: end if
18: end for
19: if two or more stubs added to tracklet then
20: Create candidate track with seed and matches
21: end if
22: end for

Calculate final track parameters
23: for all candidate tracks do
24: Linearized χ2 fit for final trajectory parameters
25: if bad χ2 then
26: Reject track candidate
27: end if
28: end for

Get rid of duplicates
29: for all final tracks do
30: for all other tracks do
31: Count number of shared stubs to find duplicates
32: Remove duplicated tracks
33: end for
34: end for

In the seeding step, seeds are rejected if they are inconsistent
with a track with pT > 2 GeV/c and |z0| < 15 cm.
In addition to the example listed above, the seeding also
includes pairs between disks 1+2 and 3+4, and between
barrel layer 1+disk 1. When the tracklets are projected to
other layers and disks to search for matching stubs, the
projections use predetermined search windows, derived from
measured residuals between projected tracklets and stubs in
simulated data. The tracklets are projected both towards and

away from the collision point. If a matching stub is found, it
is included in the track candidate and the difference between
the projected tracklet position and the stub position is stored.
The track fit implementation uses pre-calculated derivatives
and the tracklet-stub residuals from the projection step. The
linearized χ2 fit corrects the initial tracklet parameters to
give the final track parameters pT, azimuthal angle, polar
angle φ0, z0 (and optionally d0, the distance of closest
approach to the origin in the x-y plane). Duplicate tracks are
removed by comparing tracks in pairs, counting the number
of independent and shared stubs.

2.2. Parallelization

The algorithm is parallelized in the following manner.
First, the detector is split along azimuth into 28 sections,
called “sectors”. The number of sectors is chosen such that
a track with largest acceptable curvature (pT = 2 GeV/c)
is contained in at most two sectors. A sector processor is
a dedicated processing unit and is assigned to each sector
and tracks are found in parallel on each sector processor.
The tracklet formation is performed within sectors and a
small amount of data are duplicated in the even layers to
allow tracklet formation locally on a sector processing board
and to avoid gaps in any area of the detector coverage. The
system of 28 sectors is replicated n times using a round-
robin time multiplexing approach. Each system is entirely
independent, and therefore, since new data is generated
every 25 ns, each independent time multiplexed unit has
to process a new event every n × 25 ns. The choice of
time multiplexing factor n is driven by a balance of cost,
efficiency and needed processing power. By construction,
the system operates with a fixed latency. Each processing
step proceeds for a fixed amount of time. If we have too
many objects, some will not be processed, leading to an
algorithmic inefficiency. For the system in question, n = 4–
8 have been considered to balance these three factors; the
system currently uses n = 6; that is, each sector processor
receives new data every 150 ns.

Additionally, the algorithm is parallelized within sectors.
In the serial algorithm, there are several places where loops
over stubs or double loops over pairs of stubs are required.
In a naive implementation, the time to process these parts
of the algorithm scales like N or N2 if considering all
possible combinations. The number of combinations, or
combinatorics, is a challenge to the algorithm. The com-
binatorics in forming tracklets and matching projections to
stubs is efficiently reduced by dividing sectors into smaller
units in z and φ to allow additional parallel processing.
These smaller units are referred to as “virtual modules”
(VMs). Only a small fraction of virtual module pairs can
form a valid tracklet – the majority would be inconsistent
with a track originating at the point of collision and with
high enough transverse momentum. Data are distributed into
those VMs satisfying these requirements in an early stage
of the algorithm. This subdivision efficiently reduces the
number of combinations that need to be considered by the
algorithm from the start. Additionally, each VM is processed
in parallel. At the next stage of the algorithm, the amount
of parallelism is reduced when the accepted VM pairs’ (the
tracklets) initial track parameters are calculated.

When implementing this algorithm on an FPGA, we
work with fixed-precision math and low-order Taylor ex-
pansions of trigonometric functions. We adjust the number
of bits kept to ensure adequate precision.

3. Hardware Platform

For the hardware implementation, the design centers
around the sector processors. In the final system, each
sector processor is foreseen to be an ATCA blade with a
Virtex Ultrascale+-class FPGA. The demonstrator system
that is discussed in this paper instead uses Virtex-7 FPGAs,
currently available on processing boards already developed
for other CMS applications. Implementing a full sector in
one FPGA on a processing board is out of reach for Virtex-7
class FPGAs, so for the demonstrator system we focus on
the implementation of a half-sector.

For the final system, input data (stubs) will be received
from upstream over 35 25-Gbps serializer/deserializer
(SERDES) links. Twelve 25 Gbps links provide nearest-
neighbor communication. Output data (reconstructed tracks)
will be sent downstream over a single 25 Gbps link to a cor-
relator system, where the information from the tracking de-
tector is combined with information from other subdetectors
to identify electrons, muons, and other physics quantities.3
The heart of the tracklet approach is the processing FPGA.
It must have adequate DSP resources (about 2000 DSP48E2
equivalent units), I/O (about 50 SERDES links running at
25 Gbps), 2800 18 Kb block RAMs, approximately 2.5 Mb
of distributed (LUT) RAM and adequate LUT resources.
These requirements are met by the Xilinx Virtex UltraScale+
family of chips. With 28 sectors and a factor of six time

3. These quantities are used to decide if the event should be dropped or
stored for further analysis. In total, CMS can store about 0.0025% of the
collisions for offline study.

Sector n-1 Sector n Sector n+1

100 Gbps
240 Gbps

100 Gbps

Track Sink

20 Gbps

160
Gbps

160
Gbps

Stub Source

Figure 3. Schematic of the demonstrator system. Three µTCA blades
implement three sectors and a fourth blade serves as the source and sink
of data. The central sector processor is the actual system under test.

Demonstrator hardware

• Sector boards for demonstrator -- µTCA boards (CTP7)

‣ Xilinix Virtex-7 FPGA + Zynq chip for outside communication

‣ AMC13 card provides central clock distribution

22

USCMS Caltech Meeting - 28-Feb-15B. Winer

Full Demonstrator Hardware (2)
• Sector boards require:

➡ Large high performance FPGA (Vertex 7)
➡ Significant I/O of order 500-600 Gbits/s

• Several options of boards within CMS
➡ ATCA: Pulsar 2b
‣ Advantages:

๏ Take advantage of larger power/cooling capacity
๏ Development for L1 Tracker AM approach

‣ Disadvantage: Uncertain availability
➡ μTCA: MP7, CTP7
‣ L1 Calorimeter Trigger boards
‣ Advantages:

๏ Boards in production and being commissioned.
๏ Significant number of CTP7 spares that could be available very soon.

‣ Disadvantages:
๏ Might not be final choice of architecture.

• Using CTP7 probably gives us the fastest
 path to a demonstrator system.

12

CTP7

U. Wisconsin
Note: Vertex-7 chip used on

CTP7 is the same as on
VC709 board.

CTP7

Jorge Chaves

Demonstrator (2)
• We currently have 4 CTP7

boards in a µTCA crate in
building 904 at the Prevessin
site

• These will be the basis for the
tracklet demonstrator

• 3 sector processor boards

• Input and output are
handled by a single board

• AMC13 card for central clock
distribution and
synchronization

7

Special thanks to the
Wisconsin group

Test stand @ CERN
Boards developed by University of Wisconsin

for current 2016 L1 trigger upgrade

Figure 4. The demonstrator test system. The system is based on the CTP7
µTCA blade, used in the current CMS trigger. The system consists of four
CTP7s. Each CTP7 has 63 input and 48 output 10 Gbps optical links.

multiplexing, we anticipate that the complete system will
consist of 168 blades.

The demonstrator system consists of three φ sectors
and one time-multiplexing slice. A total of four processing
blades are used, one for the central φ sector, two for its
nearest neighbor sectors, and one blade that acts as a data
source (providing input stubs) and a data sink (accepting the
final output tracks.) The system configuration is shown in
Fig. 3. The demonstrator is fed with simulated data derived
from a GEANT-based simulation of the CMS detector [11].
The boards used for the demonstrator system are µTCA
boards with a Xilinx Virtex-7 (XC7VX690T-2) FPGA [12]
and a Xilinx Zynq-7000 SoC for configuration and outside
communication. These CTP7 boards [13] were developed
for the current CMS trigger [14]. An AMC13 [15] card
provides the central clock distribution. The inter-board com-
munication uses 8b/10b encoding with 10 Gbps link speed.
The demonstrator system is shown in Fig. 4.

4. Implementation

The tracklet algorithm is implemented in VERILOG
HDL as nine processing steps and two transmission steps
[16]. These processing steps are illustrated in Fig. 5. The
red boxes are processing modules and the data are stored
in memories, blue boxes, between the different processing
steps. The implementation of the algorithm in the FPGA
takes place in the following processing steps.
• Stub organization: (1) Sort the input stubs by their

corresponding layer (LayerRouter), and (2) into smaller
units in z and φ, referred to as “virtual modules” (VM-
Router).

• Tracklet formation: (3) Select candidate stub pairs for
the formation of tracklets (TrackletEngine), and (4)
calculate the tracklet parameters and projections to other
layers (TrackletCalculator module).

• Projections: (5) Transmission of projections pointing to
neighboring sectors (ProjectionTranceiver). (6) Route
the projections based on smaller units (virtual modules)
in z and φ (ProjectionRouter).

• Stub matching: (7) Match projected tracklets to stubs
(MatchEngine), and (8) calculate the difference in po-
sition between the stubs and projected tracklet (Match-
Calculator). (9) Transmission of matches between sec-
tors (MatchTransceiver).

• Track fit: (10) Perform track fit; update the initial tracklet
parameter estimate (TrackFit).

• Duplicate Removal: (11) Remove tracks found multiple
times (PurgeDuplicate).

Each of the steps outlined above corresponds to HDL mod-
ules (named in bold). These modules are hand-optimized.
They can be customized with VERILOG parameter state-
ments on instantiation to account for differences between
use cases. For example, in the second step of stub or-
ganization, six sorter modules are needed to process the
stubs in each layer. The bit assignment in the data differs
between the inner and outer three layers of the barrel. On
instantiation, a parameter is used to select the appropriate
version. The project illustrated in Fig. 5 corresponds to
1/4 of the barrel in one sector. A complete project would
contain approximately eight times as many instantiations of
the same modules. The wiring between modules is specified
in a master project configuration file. This configuration file
is processed with PYTHON scripts to generate the top-level
VERILOG, which is then synthesized using Xilinx Vivado
2016.1. These PYTHON scripts also generate the module
connection diagram shown in Fig. 5 and drive a bit-level
C++ emulation of the system.

All processing modules follow a similar format where
the input is read from memories filled by the previous
step and the output is written to another set of memories.
All processing modules across all sector processors are
synchronized to a single common clock (240 MHz). As soon
as a new event arrives, the next step in the chain will start
processing the previous event. This implies that at any given
time, more than ten events are in the processing pipeline.

An event identifier propagates with the data and is used
by the processing steps to access the appropriate data. We
use the event identifier in the top bits of the memory address.
This assumes a fixed maximum number of entries per event
in the memory buffer. The fixed latency design implies that
the maximum number of entries that can be processed is
known and as such the limitation due to the fixed number
can be understood and tuned. Most of the data from a
processing step is only used in the next step and thus we can
make very shallow buffers that will hold only two events at
the same time (writing one and reading the other). These
small buffers are implemented as distributed RAM in order
to minimize the block ram (BRAM) resource usage in the
FPGA. On the other hand, some data need to be stored for
up to eight events since it will only be used later in the chain.
This data is stored in BRAMs, but we try to minimize the
usage of this resource as we have observed correlation of
routing difficulties with the number of BRAMs used.

Since the calculations needed for routing the data are
simple and using LUTs is quick, most of the processing
modules take only a few clock cycles to complete. We do
not send the data to the next step immediately, but buffer
it in memories until the allocated time is finished for the
processing step. At this time, the module corresponding to
the next step in the processing will request the data for the
previous event and new data will be written for the current
event. We use the true dual-port memories available in the
Xilinx FPGAs for our buffers such that we can write the
data from one event while simultaneously reading from the
previous one. These dual-port memories also allow different
modules to exist in separate clock domains.

In addition to the nine processing modules, we also
implement two steps of neighbor communication using
SERDES optical links. As discussed above, the charged par-
ticles bend in the strong magnetic field of the CMS detector.
This bend can cause the tracks of low-momentum particles
to curl into neighboring sectors. If a tracklet projects into
a neighboring sector, the projected position of the track
is sent across fiber links to the neighbor sector processor
to look for matching stubs. Simultaneously as each sector
processor is sending data to its left and right neighbors, it is
also receiving from them as well for the same purpose. This
system configuration reduces the amount of data duplication
globally at the cost of some increase in latency; preliminary
studies have shown that at the cost of 40% increase in data
duplication we could save approximately 1 µs of latency.

5. Module Examples

To illustrate the method in more detail, we present the
functionality of two processing modules. Figure 6 shows
schematically how the virtual module router works. It re-
ceives a start signal every 150 ns for every new event.
This VMRouter module reads stubs from three input layer
memories. The stub format uses 36 bits per stub to encode
its geometric position. All stubs are written to the ‘AllStubs’
memory in the full format. In addition, based on their coor-
dinates (φ and z), the stubs are routed to an output memory

IL1_D3

IL2_D3

IL3_D3

SL1_L1D3

SL2_L1D3

SL3_L1D3

SL1_L3D3

SL2_L3D3

SL3_L3D3

SL1_L5D3

SL2_L5D3

SL3_L5D3

SL1_L2D3

SL2_L2D3

SL3_L2D3

SL1_L4D3

SL2_L4D3

SL3_L4D3

SL1_L6D3

SL2_L6D3

SL3_L6D3

VMS_L1D3PHI1Z1

VMS_L2D3PHI1Z1

VMS_L2D3PHI2Z1

VMS_L1D3PHI2Z1

VMS_L2D3PHI3Z1

VMS_L1D3PHI3Z1

VMS_L2D3PHI4Z1

VMS_L2D3PHI1Z2

VMS_L2D3PHI2Z2

VMS_L2D3PHI3Z2

VMS_L2D3PHI4Z2

VMS_L1D3PHI1Z2

VMS_L1D3PHI2Z2

VMS_L1D3PHI3Z2

VMS_L3D3PHI1Z1

VMS_L4D3PHI1Z1

VMS_L4D3PHI2Z1

VMS_L3D3PHI2Z1

VMS_L4D3PHI3Z1

VMS_L3D3PHI3Z1

VMS_L4D3PHI4Z1

VMS_L3D3PHI1Z2

VMS_L4D3PHI1Z2

VMS_L4D3PHI2Z2

VMS_L3D3PHI2Z2

VMS_L4D3PHI3Z2

VMS_L3D3PHI3Z2

VMS_L4D3PHI4Z2

VMS_L5D3PHI1Z1

VMS_L6D3PHI1Z1

VMS_L6D3PHI2Z1

VMS_L5D3PHI2Z1

VMS_L6D3PHI3Z1

VMS_L5D3PHI3Z1

VMS_L6D3PHI4Z1

VMS_L6D3PHI1Z2

VMS_L6D3PHI2Z2

VMS_L6D3PHI3Z2

VMS_L6D3PHI4Z2

VMS_L5D3PHI1Z2

VMS_L5D3PHI2Z2

VMS_L5D3PHI3Z2

SP_L1D3PHI1Z1_L2D3PHI1Z1

SP_L1D3PHI1Z1_L2D3PHI2Z1

SP_L1D3PHI2Z1_L2D3PHI2Z1

SP_L1D3PHI2Z1_L2D3PHI3Z1

SP_L1D3PHI3Z1_L2D3PHI3Z1

SP_L1D3PHI3Z1_L2D3PHI4Z1

SP_L1D3PHI1Z1_L2D3PHI1Z2

SP_L1D3PHI1Z1_L2D3PHI2Z2

SP_L1D3PHI2Z1_L2D3PHI2Z2

SP_L1D3PHI2Z1_L2D3PHI3Z2

SP_L1D3PHI3Z1_L2D3PHI3Z2

SP_L1D3PHI3Z1_L2D3PHI4Z2

SP_L1D3PHI1Z2_L2D3PHI1Z2

SP_L1D3PHI1Z2_L2D3PHI2Z2

SP_L1D3PHI2Z2_L2D3PHI2Z2

SP_L1D3PHI2Z2_L2D3PHI3Z2

SP_L1D3PHI3Z2_L2D3PHI3Z2

SP_L1D3PHI3Z2_L2D3PHI4Z2

AS_L1D3

AS_L2D3

SP_L3D3PHI1Z1_L4D3PHI1Z1

SP_L3D3PHI1Z1_L4D3PHI2Z1

SP_L3D3PHI2Z1_L4D3PHI2Z1

SP_L3D3PHI2Z1_L4D3PHI3Z1

SP_L3D3PHI3Z1_L4D3PHI3Z1

SP_L3D3PHI3Z1_L4D3PHI4Z1

SP_L3D3PHI1Z1_L4D3PHI1Z2

SP_L3D3PHI1Z1_L4D3PHI2Z2

SP_L3D3PHI2Z1_L4D3PHI2Z2

SP_L3D3PHI2Z1_L4D3PHI3Z2

SP_L3D3PHI3Z1_L4D3PHI3Z2

SP_L3D3PHI3Z1_L4D3PHI4Z2

SP_L3D3PHI1Z2_L4D3PHI1Z2

SP_L3D3PHI1Z2_L4D3PHI2Z2

SP_L3D3PHI2Z2_L4D3PHI2Z2

SP_L3D3PHI2Z2_L4D3PHI3Z2

SP_L3D3PHI3Z2_L4D3PHI3Z2

SP_L3D3PHI3Z2_L4D3PHI4Z2

AS_L3D3

AS_L4D3

SP_L5D3PHI1Z1_L6D3PHI1Z1

SP_L5D3PHI1Z1_L6D3PHI2Z1

SP_L5D3PHI2Z1_L6D3PHI2Z1

SP_L5D3PHI2Z1_L6D3PHI3Z1

SP_L5D3PHI3Z1_L6D3PHI3Z1

SP_L5D3PHI3Z1_L6D3PHI4Z1

SP_L5D3PHI1Z1_L6D3PHI1Z2

SP_L5D3PHI1Z1_L6D3PHI2Z2

SP_L5D3PHI2Z1_L6D3PHI2Z2

SP_L5D3PHI2Z1_L6D3PHI3Z2

SP_L5D3PHI3Z1_L6D3PHI3Z2

SP_L5D3PHI3Z1_L6D3PHI4Z2

SP_L5D3PHI1Z2_L6D3PHI1Z2

SP_L5D3PHI1Z2_L6D3PHI2Z2

SP_L5D3PHI2Z2_L6D3PHI2Z2

SP_L5D3PHI2Z2_L6D3PHI3Z2

SP_L5D3PHI3Z2_L6D3PHI3Z2

SP_L5D3PHI3Z2_L6D3PHI4Z2

AS_L5D3

AS_L6D3

TPROJ_FromPlus_L1D3_L3L4

TPROJ_FromMinus_L1D3_L3L4

TPROJ_L3D3L4D3_L1D3

TPROJ_FromPlus_L2D3_L3L4

TPROJ_FromMinus_L2D3_L3L4

TPROJ_L3D3L4D3_L2D3

TPROJ_FromPlus_L5D3_L3L4

TPROJ_FromMinus_L5D3_L3L4

TPROJ_L3D3L4D3_L5D3

TPROJ_FromPlus_L6D3_L3L4

TPROJ_FromMinus_L6D3_L3L4

TPROJ_L3D3L4D3_L6D3

TPROJ_FromPlus_L3D3_L1L2

TPROJ_FromMinus_L3D3_L1L2

TPROJ_L1D3L2D3_L3D3

TPROJ_FromPlus_L4D3_L1L2

TPROJ_FromMinus_L4D3_L1L2

TPROJ_L1D3L2D3_L4D3

TPROJ_FromPlus_L5D3_L1L2

TPROJ_FromMinus_L5D3_L1L2

TPROJ_L1D3L2D3_L5D3

TPROJ_FromPlus_L6D3_L1L2

TPROJ_FromMinus_L6D3_L1L2

TPROJ_L1D3L2D3_L6D3

TPROJ_FromPlus_L1D3_L5L6

TPROJ_FromMinus_L1D3_L5L6

TPROJ_L5D3L6D3_L1D3

TPROJ_FromPlus_L2D3_L5L6

TPROJ_FromMinus_L2D3_L5L6

TPROJ_L5D3L6D3_L2D3

TPROJ_FromPlus_L3D3_L5L6

TPROJ_FromMinus_L3D3_L5L6

TPROJ_L5D3L6D3_L3D3

TPROJ_FromPlus_L4D3_L5L6

TPROJ_FromMinus_L4D3_L5L6

TPROJ_L5D3L6D3_L4D3

TPROJ_ToPlus_L1D3L2D3_L3

TPROJ_ToPlus_L1D3L2D3_L4

TPROJ_ToPlus_L1D3L2D3_L5

TPROJ_ToPlus_L1D3L2D3_L6

TPROJ_ToPlus_L3D3L4D3_L1

TPROJ_ToPlus_L3D3L4D3_L2

TPROJ_ToPlus_L3D3L4D3_L5

TPROJ_ToPlus_L3D3L4D3_L6

TPROJ_ToPlus_L5D3L6D3_L1

TPROJ_ToPlus_L5D3L6D3_L2

TPROJ_ToPlus_L5D3L6D3_L3

TPROJ_ToPlus_L5D3L6D3_L4

TPROJ_ToMinus_L1D3L2D3_L3

TPROJ_ToMinus_L1D3L2D3_L4

TPROJ_ToMinus_L1D3L2D3_L5

TPROJ_ToMinus_L1D3L2D3_L6

TPROJ_ToMinus_L3D3L4D3_L1

TPROJ_ToMinus_L3D3L4D3_L2

TPROJ_ToMinus_L3D3L4D3_L5

TPROJ_ToMinus_L3D3L4D3_L6

TPROJ_ToMinus_L5D3L6D3_L1

TPROJ_ToMinus_L5D3L6D3_L2

TPROJ_ToMinus_L5D3L6D3_L3

TPROJ_ToMinus_L5D3L6D3_L4

VMPROJ_L3L4_L1D3PHI1Z1

VMPROJ_L3L4_L1D3PHI1Z2

VMPROJ_L3L4_L1D3PHI2Z1

VMPROJ_L3L4_L1D3PHI2Z2

VMPROJ_L3L4_L1D3PHI3Z1

VMPROJ_L3L4_L1D3PHI3Z2

VMPROJ_L3L4_L2D3PHI1Z1

VMPROJ_L3L4_L2D3PHI1Z2

VMPROJ_L3L4_L2D3PHI2Z1

VMPROJ_L3L4_L2D3PHI2Z2

VMPROJ_L3L4_L2D3PHI3Z1

VMPROJ_L3L4_L2D3PHI3Z2

VMPROJ_L3L4_L2D3PHI4Z1

VMPROJ_L3L4_L2D3PHI4Z2

VMPROJ_L3L4_L5D3PHI1Z1

VMPROJ_L3L4_L5D3PHI1Z2

VMPROJ_L3L4_L5D3PHI2Z1

VMPROJ_L3L4_L5D3PHI2Z2

VMPROJ_L3L4_L5D3PHI3Z1

VMPROJ_L3L4_L5D3PHI3Z2

VMPROJ_L3L4_L6D3PHI1Z1

VMPROJ_L3L4_L6D3PHI1Z2

VMPROJ_L3L4_L6D3PHI2Z1

VMPROJ_L3L4_L6D3PHI2Z2

VMPROJ_L3L4_L6D3PHI3Z1

VMPROJ_L3L4_L6D3PHI3Z2

VMPROJ_L3L4_L6D3PHI4Z1

VMPROJ_L3L4_L6D3PHI4Z2

VMPROJ_L1L2_L3D3PHI1Z1

VMPROJ_L1L2_L3D3PHI1Z2

VMPROJ_L1L2_L3D3PHI2Z1

VMPROJ_L1L2_L3D3PHI2Z2

VMPROJ_L1L2_L3D3PHI3Z1

VMPROJ_L1L2_L3D3PHI3Z2

VMPROJ_L1L2_L4D3PHI1Z1

VMPROJ_L1L2_L4D3PHI1Z2

VMPROJ_L1L2_L4D3PHI2Z1

VMPROJ_L1L2_L4D3PHI2Z2

VMPROJ_L1L2_L4D3PHI3Z1

VMPROJ_L1L2_L4D3PHI3Z2

VMPROJ_L1L2_L4D3PHI4Z1

VMPROJ_L1L2_L4D3PHI4Z2

VMPROJ_L1L2_L5D3PHI1Z1

VMPROJ_L1L2_L5D3PHI1Z2

VMPROJ_L1L2_L5D3PHI2Z1

VMPROJ_L1L2_L5D3PHI2Z2

VMPROJ_L1L2_L5D3PHI3Z1

VMPROJ_L1L2_L5D3PHI3Z2

VMPROJ_L1L2_L6D3PHI1Z1

VMPROJ_L1L2_L6D3PHI1Z2

VMPROJ_L1L2_L6D3PHI2Z1

VMPROJ_L1L2_L6D3PHI2Z2

VMPROJ_L1L2_L6D3PHI3Z1

VMPROJ_L1L2_L6D3PHI3Z2

VMPROJ_L1L2_L6D3PHI4Z1

VMPROJ_L1L2_L6D3PHI4Z2

VMPROJ_L5L6_L1D3PHI1Z1

VMPROJ_L5L6_L1D3PHI1Z2

VMPROJ_L5L6_L1D3PHI2Z1

VMPROJ_L5L6_L1D3PHI2Z2

VMPROJ_L5L6_L1D3PHI3Z1

VMPROJ_L5L6_L1D3PHI3Z2

VMPROJ_L5L6_L2D3PHI1Z1

VMPROJ_L5L6_L2D3PHI1Z2

VMPROJ_L5L6_L2D3PHI2Z1

VMPROJ_L5L6_L2D3PHI2Z2

VMPROJ_L5L6_L2D3PHI3Z1

VMPROJ_L5L6_L2D3PHI3Z2

VMPROJ_L5L6_L2D3PHI4Z1

VMPROJ_L5L6_L2D3PHI4Z2

VMPROJ_L5L6_L3D3PHI1Z1

VMPROJ_L5L6_L3D3PHI1Z2

VMPROJ_L5L6_L3D3PHI2Z1

VMPROJ_L5L6_L3D3PHI2Z2

VMPROJ_L5L6_L3D3PHI3Z1

VMPROJ_L5L6_L3D3PHI3Z2

VMPROJ_L5L6_L4D3PHI1Z1

VMPROJ_L5L6_L4D3PHI1Z2

VMPROJ_L5L6_L4D3PHI2Z1

VMPROJ_L5L6_L4D3PHI2Z2

VMPROJ_L5L6_L4D3PHI3Z1

VMPROJ_L5L6_L4D3PHI3Z2

VMPROJ_L5L6_L4D3PHI4Z1

VMPROJ_L5L6_L4D3PHI4Z2

CM_L3L4_L1D3PHI1Z1

CM_L3L4_L1D3PHI1Z2

CM_L3L4_L1D3PHI2Z1

CM_L3L4_L1D3PHI2Z2

CM_L3L4_L1D3PHI3Z1

CM_L3L4_L1D3PHI3Z2

AP_L3L4_L1D3

CM_L3L4_L2D3PHI1Z1

CM_L3L4_L2D3PHI1Z2

CM_L3L4_L2D3PHI2Z1

CM_L3L4_L2D3PHI2Z2

CM_L3L4_L2D3PHI3Z1

CM_L3L4_L2D3PHI3Z2

CM_L3L4_L2D3PHI4Z1

CM_L3L4_L2D3PHI4Z2

AP_L3L4_L2D3

CM_L3L4_L5D3PHI1Z1

CM_L3L4_L5D3PHI1Z2

CM_L3L4_L5D3PHI2Z1

CM_L3L4_L5D3PHI2Z2

CM_L3L4_L5D3PHI3Z1

CM_L3L4_L5D3PHI3Z2

AP_L3L4_L5D3

CM_L3L4_L6D3PHI1Z1

CM_L3L4_L6D3PHI1Z2

CM_L3L4_L6D3PHI2Z1

CM_L3L4_L6D3PHI2Z2

CM_L3L4_L6D3PHI3Z1

CM_L3L4_L6D3PHI3Z2

CM_L3L4_L6D3PHI4Z1

CM_L3L4_L6D3PHI4Z2

AP_L3L4_L6D3

CM_L5L6_L1D3PHI1Z1

CM_L5L6_L1D3PHI1Z2

CM_L5L6_L1D3PHI2Z1

CM_L5L6_L1D3PHI2Z2

CM_L5L6_L1D3PHI3Z1

CM_L5L6_L1D3PHI3Z2

AP_L5L6_L1D3

CM_L5L6_L2D3PHI1Z1

CM_L5L6_L2D3PHI1Z2

CM_L5L6_L2D3PHI2Z1

CM_L5L6_L2D3PHI2Z2

CM_L5L6_L2D3PHI3Z1

CM_L5L6_L2D3PHI3Z2

CM_L5L6_L2D3PHI4Z1

CM_L5L6_L2D3PHI4Z2

AP_L5L6_L2D3

CM_L5L6_L3D3PHI1Z1

CM_L5L6_L3D3PHI1Z2

CM_L5L6_L3D3PHI2Z1

CM_L5L6_L3D3PHI2Z2

CM_L5L6_L3D3PHI3Z1

CM_L5L6_L3D3PHI3Z2

AP_L5L6_L3D3

CM_L5L6_L4D3PHI1Z1

CM_L5L6_L4D3PHI1Z2

CM_L5L6_L4D3PHI2Z1

CM_L5L6_L4D3PHI2Z2

CM_L5L6_L4D3PHI3Z1

CM_L5L6_L4D3PHI3Z2

CM_L5L6_L4D3PHI4Z1

CM_L5L6_L4D3PHI4Z2

AP_L5L6_L4D3

CM_L1L2_L3D3PHI1Z1

CM_L1L2_L3D3PHI1Z2

CM_L1L2_L3D3PHI2Z1

CM_L1L2_L3D3PHI2Z2

CM_L1L2_L3D3PHI3Z1

CM_L1L2_L3D3PHI3Z2

AP_L1L2_L3D3

CM_L1L2_L4D3PHI1Z1

CM_L1L2_L4D3PHI1Z2

CM_L1L2_L4D3PHI2Z1

CM_L1L2_L4D3PHI2Z2

CM_L1L2_L4D3PHI3Z1

CM_L1L2_L4D3PHI3Z2

CM_L1L2_L4D3PHI4Z1

CM_L1L2_L4D3PHI4Z2

AP_L1L2_L4D3

CM_L1L2_L5D3PHI1Z1

CM_L1L2_L5D3PHI1Z2

CM_L1L2_L5D3PHI2Z1

CM_L1L2_L5D3PHI2Z2

CM_L1L2_L5D3PHI3Z1

CM_L1L2_L5D3PHI3Z2

AP_L1L2_L5D3

CM_L1L2_L6D3PHI1Z1

CM_L1L2_L6D3PHI1Z2

CM_L1L2_L6D3PHI2Z1

CM_L1L2_L6D3PHI2Z2

CM_L1L2_L6D3PHI3Z1

CM_L1L2_L6D3PHI3Z2

CM_L1L2_L6D3PHI4Z1

CM_L1L2_L6D3PHI4Z2AP_L1L2_L6D3

FM_L3L4_L1D3_ToMi

FM_L3L4_L2D3_ToMi

FM_L3L4_L5D3_ToMi

FM_L3L4_L6D3_ToMi

FM_L5L6_L1D3_ToMi

FM_L5L6_L2D3_ToMi

FM_L5L6_L3D3_ToMi

FM_L5L6_L4D3_ToMi

FM_L1L2_L3D3_ToMi

FM_L1L2_L4D3_ToMi

FM_L1L2_L5D3_ToMi

FM_L1L2_L6D3_ToMi

FM_L3L4_L1D3_ToPlus

FM_L3L4_L2D3_ToPlus

FM_L3L4_L5D3_ToPlus

FM_L3L4_L6D3_ToPlus

FM_L5L6_L1D3_ToPlus

FM_L5L6_L2D3_ToPlus

FM_L5L6_L3D3_ToPlus

FM_L5L6_L4D3_ToPlus

FM_L1L2_L3D3_ToPlus

FM_L1L2_L4D3_ToPlus

FM_L1L2_L5D3_ToPlus

FM_L1L2_L6D3_ToPlus

FM_L1L2_L3D3

FM_L1L2_L4D3

FM_L1L2_L5D3

FM_L1L2_L6D3

TPAR_L1D3L2D3

FM_L3L4_L1_FromPlus

FM_L3L4_L2_FromPlus

FM_L3L4_L5_FromPlus

FM_L3L4_L6_FromPlus

FM_L3L4_L1_FromMi

FM_L3L4_L2_FromMi

FM_L3L4_L5_FromMi

FM_L3L4_L6_FromMi

FM_L3L4_L1D3

FM_L3L4_L2D3

FM_L3L4_L5D3

FM_L3L4_L6D3

TPAR_L3D3L4D3

FM_L5L6_L1_FromPlus

FM_L5L6_L2_FromPlus

FM_L5L6_L3_FromPlus

FM_L5L6_L4_FromPlus

FM_L5L6_L1_FromMi

FM_L5L6_L2_FromMi

FM_L5L6_L3_FromMi

FM_L5L6_L4_FromMi

FM_L5L6_L1D3

FM_L5L6_L2D3

FM_L5L6_L3D3

FM_L5L6_L4D3TPAR_L5D3L6D3

FM_L1L2_L3_FromPlus

FM_L1L2_L4_FromPlus

FM_L1L2_L5_FromPlus

FM_L1L2_L6_FromPlus

FM_L1L2_L3_FromMi

FM_L1L2_L4_FromMi

FM_L1L2_L5_FromMi

FM_L1L2_L6_FromMi

TF_L1L2

TF_L3L4

TF_L5L6

LR1_D3

LR2_D3

LR3_D3

VMR_L1D3

VMR_L3D3

VMR_L5D3

VMR_L2D3

VMR_L4D3

VMR_L6D3

TE_L1D3PHI1Z1_L2D3PHI1Z1

TE_L1D3PHI1Z1_L2D3PHI2Z1

TE_L1D3PHI2Z1_L2D3PHI2Z1

TE_L1D3PHI2Z1_L2D3PHI3Z1

TE_L1D3PHI3Z1_L2D3PHI3Z1

TE_L1D3PHI3Z1_L2D3PHI4Z1

TE_L1D3PHI1Z1_L2D3PHI1Z2

TE_L1D3PHI1Z1_L2D3PHI2Z2

TE_L1D3PHI2Z1_L2D3PHI2Z2

TE_L1D3PHI2Z1_L2D3PHI3Z2

TE_L1D3PHI3Z1_L2D3PHI3Z2

TE_L1D3PHI3Z1_L2D3PHI4Z2

TE_L1D3PHI1Z2_L2D3PHI1Z2

TE_L1D3PHI1Z2_L2D3PHI2Z2

TE_L1D3PHI2Z2_L2D3PHI2Z2

TE_L1D3PHI2Z2_L2D3PHI3Z2

TE_L1D3PHI3Z2_L2D3PHI3Z2

TE_L1D3PHI3Z2_L2D3PHI4Z2

TE_L3D3PHI1Z1_L4D3PHI1Z1

TE_L3D3PHI1Z1_L4D3PHI2Z1

TE_L3D3PHI2Z1_L4D3PHI2Z1

TE_L3D3PHI2Z1_L4D3PHI3Z1

TE_L3D3PHI3Z1_L4D3PHI3Z1

TE_L3D3PHI3Z1_L4D3PHI4Z1

TE_L3D3PHI1Z2_L4D3PHI1Z2

TE_L3D3PHI1Z2_L4D3PHI2Z2

TE_L3D3PHI2Z2_L4D3PHI2Z2

TE_L3D3PHI2Z2_L4D3PHI3Z2

TE_L3D3PHI3Z2_L4D3PHI3Z2

TE_L3D3PHI3Z2_L4D3PHI4Z2

TE_L3D3PHI1Z1_L4D3PHI1Z2

TE_L3D3PHI1Z1_L4D3PHI2Z2

TE_L3D3PHI2Z1_L4D3PHI2Z2

TE_L3D3PHI2Z1_L4D3PHI3Z2

TE_L3D3PHI3Z1_L4D3PHI3Z2

TE_L3D3PHI3Z1_L4D3PHI4Z2

TE_L5D3PHI1Z1_L6D3PHI1Z1

TE_L5D3PHI1Z1_L6D3PHI2Z1

TE_L5D3PHI2Z1_L6D3PHI2Z1

TE_L5D3PHI2Z1_L6D3PHI3Z1

TE_L5D3PHI3Z1_L6D3PHI3Z1

TE_L5D3PHI3Z1_L6D3PHI4Z1

TE_L5D3PHI1Z1_L6D3PHI1Z2

TE_L5D3PHI1Z1_L6D3PHI2Z2

TE_L5D3PHI2Z1_L6D3PHI2Z2

TE_L5D3PHI2Z1_L6D3PHI3Z2

TE_L5D3PHI3Z1_L6D3PHI3Z2

TE_L5D3PHI3Z1_L6D3PHI4Z2

TE_L5D3PHI1Z2_L6D3PHI1Z2

TE_L5D3PHI1Z2_L6D3PHI2Z2

TE_L5D3PHI2Z2_L6D3PHI2Z2

TE_L5D3PHI2Z2_L6D3PHI3Z2

TE_L5D3PHI3Z2_L6D3PHI3Z2

TE_L5D3PHI3Z2_L6D3PHI4Z2

TC_L1D3L2D3

TC_L3D3L4D3

TC_L5D3L6D3

PR_L1D3_L3L4

PR_L2D3_L3L4

PR_L5D3_L3L4

PR_L6D3_L3L4

PR_L3D3_L1L2

PR_L4D3_L1L2

PR_L5D3_L1L2

PR_L6D3_L1L2

PR_L1D3_L5L6

PR_L2D3_L5L6

PR_L3D3_L5L6

PR_L4D3_L5L6

PT_Plus

PT_Minus

ME_L3L4_L1D3PHI1Z1

ME_L3L4_L1D3PHI1Z2

ME_L3L4_L1D3PHI2Z1

ME_L3L4_L1D3PHI2Z2

ME_L3L4_L1D3PHI3Z1

ME_L3L4_L1D3PHI3Z2

ME_L3L4_L2D3PHI1Z1

ME_L3L4_L2D3PHI1Z2

ME_L3L4_L2D3PHI2Z1

ME_L3L4_L2D3PHI2Z2

ME_L3L4_L2D3PHI3Z1

ME_L3L4_L2D3PHI3Z2

ME_L3L4_L2D3PHI4Z1

ME_L3L4_L2D3PHI4Z2

ME_L3L4_L5D3PHI1Z1

ME_L3L4_L5D3PHI1Z2

ME_L3L4_L5D3PHI2Z1

ME_L3L4_L5D3PHI2Z2

ME_L3L4_L5D3PHI3Z1

ME_L3L4_L5D3PHI3Z2

ME_L3L4_L6D3PHI1Z1

ME_L3L4_L6D3PHI1Z2

ME_L3L4_L6D3PHI2Z1

ME_L3L4_L6D3PHI2Z2

ME_L3L4_L6D3PHI3Z1

ME_L3L4_L6D3PHI3Z2

ME_L3L4_L6D3PHI4Z1

ME_L3L4_L6D3PHI4Z2

ME_L1L2_L3D3PHI1Z1

ME_L1L2_L3D3PHI1Z2

ME_L1L2_L3D3PHI2Z1

ME_L1L2_L3D3PHI2Z2

ME_L1L2_L3D3PHI3Z1

ME_L1L2_L3D3PHI3Z2

ME_L1L2_L4D3PHI1Z1

ME_L1L2_L4D3PHI1Z2

ME_L1L2_L4D3PHI2Z1

ME_L1L2_L4D3PHI2Z2

ME_L1L2_L4D3PHI3Z1

ME_L1L2_L4D3PHI3Z2

ME_L1L2_L4D3PHI4Z1

ME_L1L2_L4D3PHI4Z2

ME_L1L2_L5D3PHI1Z1

ME_L1L2_L5D3PHI1Z2

ME_L1L2_L5D3PHI2Z1

ME_L1L2_L5D3PHI2Z2

ME_L1L2_L5D3PHI3Z1

ME_L1L2_L5D3PHI3Z2

ME_L1L2_L6D3PHI1Z1

ME_L1L2_L6D3PHI1Z2

ME_L1L2_L6D3PHI2Z1

ME_L1L2_L6D3PHI2Z2

ME_L1L2_L6D3PHI3Z1

ME_L1L2_L6D3PHI3Z2

ME_L1L2_L6D3PHI4Z1

ME_L1L2_L6D3PHI4Z2

ME_L5L6_L1D3PHI1Z1

ME_L5L6_L1D3PHI1Z2

ME_L5L6_L1D3PHI2Z1

ME_L5L6_L1D3PHI2Z2

ME_L5L6_L1D3PHI3Z1

ME_L5L6_L1D3PHI3Z2

ME_L5L6_L2D3PHI1Z1

ME_L5L6_L2D3PHI1Z2

ME_L5L6_L2D3PHI2Z1

ME_L5L6_L2D3PHI2Z2

ME_L5L6_L2D3PHI3Z1

ME_L5L6_L2D3PHI3Z2

ME_L5L6_L2D3PHI4Z1

ME_L5L6_L2D3PHI4Z2

ME_L5L6_L3D3PHI1Z1

ME_L5L6_L3D3PHI1Z2

ME_L5L6_L3D3PHI2Z1

ME_L5L6_L3D3PHI2Z2

ME_L5L6_L3D3PHI3Z1

ME_L5L6_L3D3PHI3Z2

ME_L5L6_L4D3PHI1Z1

ME_L5L6_L4D3PHI1Z2

ME_L5L6_L4D3PHI2Z1

ME_L5L6_L4D3PHI2Z2

ME_L5L6_L4D3PHI3Z1

ME_L5L6_L4D3PHI3Z2

ME_L5L6_L4D3PHI4Z1

ME_L5L6_L4D3PHI4Z2

MC_L3L4_L1D3

MC_L3L4_L2D3

MC_L3L4_L5D3

MC_L3L4_L6D3

MC_L5L6_L1D3

MC_L5L6_L2D3

MC_L5L6_L3D3

MC_L5L6_L4D3

MC_L1L2_L3D3

MC_L1L2_L4D3

MC_L1L2_L5D3

MC_L1L2_L6D3

MT_L3L4_Minus

MT_L5L6_Minus

MT_L1L2_Minus

MT_L3L4_Plus

MT_L5L6_Plus

MT_L1L2_Plus

FT_L1L2

FT_L3L4

FT_L5L6

{ { { { { { {

Stub Organization Forming Tracklets
Projection Transmission

to Neighbors
Organize

Projections
Match Projections

to Stubs
Match

Transmission
Track

Fit

Figure 5. A high-level routing diagram for the tracklet project. As described in the text, the project consists of nine processing steps and two transmission
steps indicated in red, and memories, shown in blue, in which the data are stored between the processing steps. The input stubs arrive from the left in
the picture and the first two processing modules sort the stubs into the correct virtual modules based on the physical location of the stubs. The next two
stages involve the tracklet finding and projection calculation. Next the projections are routed to the correct virtual modules and then the projections are
matched to stubs and the matches are then used to perform the track fit. Duplicate removal is not shown.

Figure 6. Schematic illustrating the connections of the VMRouter process-
ing modules. The module reads input stubs from the input memories and
routes them to the correct virtual modules based on the stubs coordinates
(z and φ).

(VM stub memory) corresponding to a specific small area
of the detector. Here, only coarse position information is
retained as a six bit index into the AllStubs memory such

that we can later retrieve the precise stub position. The
process loops over the input stubs and writes them out to
different memories based on their position information.

A more complex example is the TrackletEngine process-
ing module illustrated in Fig. 7. This module forms pairs of
stubs as seed candidates. As such, this module reads input
stubs from two VM stub memories filled by the VMRouter
module described previously, but since we are interested in
forming pairs of stubs, this module implements a double
nested loop over all pairs. For each pair the coarse position
information is used in two LUTs to check that the seed
candidate is consistent with a trajectory with the pT and z0
requirements described above. If the stub pair passes this
check, the indices of the stubs in the AllStub memories are
saved in the output memory of candidate stub pairs. These
indices are used in the next step, the TrackletCalculator,
to retrieve the stubs and calculate the precise trajectory.
Figure 8 shows the distributions of the number of stub pairs
that each tracklet engine has to process. Since each step
operates with a fixed latency, we have a maximum number
of stub pairs that can be processed per event. With 150 ns
per event and a clock speed of 240 MHz a maximum of 36
input stub pairs can be considered. As can be seen in the
figure, there are cases where there are more than 36 input
stubs; the 37th stub and later will not be processed and could

Figure 7. Schematic illustrating the connections of the TrackletEngine
processing module. The module reads stubs from two virtual module
memories. Two lookup tables are used to check consistency with the
momentum and z vertex. If the pair of stubs passes the selection, a stub-pair
tracklet candidate is written out.

Figure 8. Simulation of the distribution of the number of stub pairs that
TrackletEngines seeding in L1+L2 have to process. The red curve shows
the number of stub pairs that the module has to consider, while the blue
curve shows the number that pass. The non-smooth red curve is due to the
fact that the number of tried combinations is a product of two integers.
Only 36 stub pairs can be processed in the amount of time available.

lead to an inefficiency of the tracking algorithm. However,
due to the built-in redundancy of seeding in multiple layers,
the ultimate effect of this truncation on the final efficiency
is observed to be small.

The half-sector project includes seeding in multiple
layer and disk combinations (L1+L2, L3+L4, F1+F2, and
F3+F4). This project consists of the following process-
ing modules: 12 LayerRouters, 22 VMRouters, 126 Track-
letEngines, 8 TrackletCalculators, 22 ProjectionRouters, 156
MatchEngines, 22 MatchCalculators, 4 TrackFits and one
PurgeDuplicate. In Table 1, resource usage is summarized
from the VERILOG synthesis. The most heavily used re-
source is BRAMs.

TABLE 1. FPGA RESOURCE UTILIZATION AS REPORTED BY VIVADO
FOR THE SECTOR PROJECT. THE TOP LINE SHOWS THE NEEDS FOR THE

FINAL PROJECT. THE LINES BELOW SHOW WHAT FRACTION OF THE
RESOURCES THIS PROJECT WOULD FILL IN VIRTEX-7 690-T (TOP LINE)

AND VIRTEX ULTRASCALE+ FPGAS (OTHERS).

LUT Logic LUT Memory BRAM DSP
Full sector 279733 151191 2721.5 1818
V7 690T 65% 87% 185% 51%

VU3P 32% 81% 85% 80%
VU5P 21% 53% 58% 52%
VU7P 16% 40% 42% 40%
VU9P 11% 27% 28% 27%
VU11P 10% 27% 29% 20%
VU13P 7% 20% 22% 15%

6. Demonstrator Tests

Events are processed through the demonstrator as illus-
trated in Fig. 3. First, input stubs obtained from simula-
tions are written to the data trigger and control emulator
board. On a GO signal, stubs are sent to the three sector
processor boards. A new event is sent to each sector board
every 150 ns. The events are processed and projections and
matches are sent to and received from neighboring boards
as in the final system. The final output tracks are received
by the track sink board. Systematic studies are performed
to compare the integer-based emulation of the tracklet algo-
rithm with a HDL simulation of the FPGA using Xilinx Vi-
vado, as well as with the output tracks from the demonstrator
system. Full agreement is observed in processing single-
track events between the emulation, FPGA simulation, and
board output. Better than 99.9% agreement is observed with
many-track events with high pileup. The demonstrator has
a 28-fold azimuthal symmetry, so we test the full +z range
by using different input data, corresponding to the different
sectors, without any modifications of the demonstrator itself.

7. Demonstrator Tracking System Latency

Each processing step of the tracklet algorithm takes a
fixed number of clock cycles to process its input data. The
processing modules’ latency from receiving upstream data
to producing the first result varies between 1–50 cycles
depending on the module. Each module then continues to
handle the data of the same event and write to the memories
for 150 ns before switching to the next event. For some of
the steps where data transmission between the neighboring
sectors is necessary, latency due to inter-board links is also
included. The measured transmission latency is 316.7 ns (76
clock cycles), which includes SERDES transceiver trans-
mit/receive, data propagation in 15 m optical fibers, channel
bonding, and time needed to prepare and pass data from
processing modules to the transceivers. The total latency
of the algorithm is therefore the sum of the processing
module latencies and processing time, as well as inter-board
data transmission latency, of all the processing steps. The
latency of the hardware demonstrator also includes the data
transmission latency for receiving stubs from and sending

TABLE 2. DEMONSTRATOR LATENCY MODEL. FOR EACH STEP, THE
PROCESSING TIME AND LATENCY IS GIVEN. FOR STEPS INVOLVING
DATA TRANSFERS, THE LINK LATENCY IS GIVEN. THE MODEL AND

MEASURED LATENCY AGREE WITHIN 0.4% (THREE CLOCK CYCLES).

Step Proc. Step Step Link Step
time latency latency delay total
(ns) (CLK) (ns) (ns) (ns)

Input link 0.0 1 4.2 316.7 320.8
Layer Router 150.0 1 4.2 - 154.2
VM Router 150.0 4 16.7 - 166.7
Tracklet Engine 150.0 5 20.8 - 170.8
Tracklet Calculation 150.0 43 179.2 - 329.2
Projection Trans. 150.0 13 54.2 316.7 520.8
Projection Router 150.0 5 20.8 - 170.8
Match Engine 150.0 6 25.0 - 175.0
Match Calculator 150.0 16 66.7 - 216.7
Match Trans. 150.0 12 50.0 316.7 516.7
Track Fit 150.0 26 108.3 - 258.3
Duplicate Removal 0.0 6 25.0 - 25.0
Output Link 0.0 1 4.2 316.7 320.8
Total 1500.0 139 579.2 1266.7 3345.8

final tracks back to the data source/sink blade. A summary of
the estimated latency is shown in Table 2. With a 240 MHz
clock and a time-multiplex factor of six, the total estimated
latency is 3345.8 ns. The total latency of the demonstrator
has also been measured with a clock counter on the data
source/sink blade. The measured latency is 3333 ns, which
agrees within three clock cycles (0.4%) with the model.

8. Conclusions

For the upgraded LHC, the CMS experiment will require
a new tracking system that enables the identification of
charged particle trajectories in real-time to maintain high
efficiencies for identifying physics objects at manageable
rates. The tracklet approach is one of the proposed methods
for performing the real-time track finding. The method is
based on a road-search algorithm and uses commercially
available FPGA technology for maximum flexibility. An
end-to-end system demonstrator consisting of a slice of the
detector in azimuth has been implemented using a Virtex-
7 FPGA-based µTCA blade. The final system, which is to
be deployed in 2025, will use future-generation FPGAs. To
scale the demonstrator to the final system, only a small
extrapolation is required. Currently, the demonstrator only
covers the +z side of the detector; in the full system, both
sides will be covered. The detector is largely symmetric
in ±z, so the addition of the −z side only results in
increased occupancy, which is handled by more instances
of already-existing HDL modules. The occupancy within the
modules, and therefore the algorithmic inefficiency due to
truncation, will not change. Since more data is coming into
the sector processor, the total I/O requirements will increase
by roughly a factor of three, taking into account both the
increase of the total data rate and the cabling scheme of the
new detector. These I/O requirements are within the capa-
bilities of the specifications of the Xilinx Virtex UltraScale+
family of FPGAs (Table 1). These changes represent only
an evolution of the demonstrator. The demonstrator has been

used to validate the algorithm and board-to-board commu-
nication, to measure timing and latency, and to establish
the algorithm performance. Studies from the demonstrator,
processing events from the input stubs to the final output
tracks, show that the tracklet algorithm meets timing and
efficiency requirements for the final system.

Acknowledgments
The authors would like to thank the Wisconsin CMS

group for their support of the CTP7 platform. This work was
supported by the US National Science Foundation through
the grants NSF-PHY-1607096, NSF PHY-1312842, NSF-
PHY-1307256, NSF-PHY-1120138 and the US Department
of Energy Office of Science DE-SC0011726.

References
[1] The CMS Collaboration, “Technical proposal for the Phase-II upgrade

of the CMS detector,” Tech. Rep. CERN-LHCC-2015-010, 2015.
[2] Two LHC experiments (CMS and ATLAS) jointly announced the

discovery of the Higgs boson in 2012; see Science 338 (2012), 1569.
[3] F. Zimmermann, “CERN upgrade plans for the LHC and its

injectors,” PoS, vol. EPS-HEP 2009, p. 140, 2009. [Online].
Available: https://cds.cern.ch/record/1211584

[4] G. Hall, “A time-multiplexed track-trigger for the CMS HL-
LHC upgrade,” Nucl. Instr. Meth. A, vol. 824, p. 292, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0168900215011304

[5] G. Fedi, “Associative memory pattern matching for the L1 track
trigger of CMS at the HL-LHC,” Eur. Phys. J. Conf., vol.
127, p. 7, 2016. [Online]. Available: https://doi.org/10.1051/epjconf/
201612700008

[6] J. Adelman et al., “The silicon vertex trigger upgrade at CDF,”
Nucl. Instr. Meth. A, vol. 572, p. 361, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.nima.2006.10.383

[7] M. Shochet et al., “Fast TracKer (FTK) Technical Design Report,”
Tech. Rep. CERN-LHCC-2013-007, 2013. [Online]. Available:
https://cds.cern.ch/record/1552953

[8] E. J. Thomson et al., “Online track processor for the CDF upgrade,”
IEEE Trans. Nucl. Sci., vol. 49, p. 1063, 2002. [Online]. Available:
http://dx.doi.org/10.1109/TNS.2002.1039615

[9] M. Abolins et al., “The Run IIB trigger upgrade for the D0
experiment,” IEEE Trans. Nucl. Sci., vol. 51, p. 340, 2004. [Online].
Available: http://dx.doi.org/10.1109/TNS.2004.828811

[10] S. Amerio et al., “Many-core applications to online track
reconstruction,” JPCS, vol. 513, p. 012002, 2014. [Online].
Available: http://dx.doi.org/10.1088/1742-6596/513/1/012002

[11] A. Rybin et al., “Geant 4 - a simulation toolkit,” Nucl. Instr.
Meth. A, vol. 506, no. 3, p. 250, 2003. [Online]. Available:
http://dx.doi.org/10.1016/S0168-9002(03)01368-8

[12] Xilinx Incorporated, “7 Series FPGAs Overview,” https://www.
xilinx.com/products/silicon-devices/fpga/virtex-7.html, last accessed
on 2017-03-28.

[13] A. Svetek et al., “The Calorimeter Trigger Processor Card,”
JINST, vol. 11, p. C02011, 2016. [Online]. Available: http:
//stacks.iop.org/1748-0221/11/i=02/a=C02011

[14] The CMS Collaboration, “CMS technical design report for the Level-
1 trigger upgrade,” Tech. Rep. CERN-LHCC-2013-011, 2013.

[15] Boston University, “The AMC13 Project,” http://bucms.bu.edu/twiki/
bin/view/BUCMSPublic/HcalDTC, last accessed on 2017-03-28.

[16] J. Chaves, “Implementation of FPGA-based level-1 tracking at
CMS for the HL-LHC,” JINST, vol. 9, p. C10038, 2014. [Online].
Available: http://stacks.iop.org/1748-0221/9/i=10/a=C10038

