B decay anomalies at LHCb

-969

A. Oyanguren (IFIC – CSIC UV) (for the LHCb Coll.)

E

Granada, Spain

Lattice2017

Outline

- Introduction
- The LHCb experiment
- Rare B decays
- Semileptonic B decays
- Wish list for Lattice
- Conclusions

Introduction

• In the Standard Model of Particle Physics, transitions between different quarks are governed by the CKM mechanism:

$$\begin{array}{c} \mathbf{Q}=+2/3\\ \mathbf{Q}=-1/3 \end{array} \begin{array}{c} \mathbf{U} \\ \mathbf{Q}=-1/3 \end{array} \begin{array}{c} \mathbf{C} \\ \mathbf{V} \\$$

• The amplitude of a hadron decay process can be described using Effective Field Theories: Operator Product Expansion (OPE)

$$A(M \to F) = \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$$

$$\begin{array}{c} \mathsf{q} & \mathsf{W} \\ \mathsf{q} & \mathsf{Q} & \mathsf{CKM} & \mathsf{Wilson} \\ \mathsf{couplings} & \mathsf{Coefficients} \\ (\mu = \mathsf{scale}) & \mathsf{Hadronic Matrix} \\ \end{array}$$

Why B decays?

- The *b*-quark is the heaviest quark forming hadronic bound states (m~4.7 GeV)
- Must decay outside the 3rd family
 - \rightarrow Long lifetime (~1.6 ps)
 - \rightarrow Many accessible decay channels (small BR's)
- Type of processes:

Dominant: $b \rightarrow c$ (favoured) and $b \rightarrow u$ (suppressed)

Rare: Flavour Changing Neutral Current (FCNC): $b \rightarrow s, d$

Flavour oscillations and CP violation

xkcd

Good for

experimentalists!

Good for theorists!

The EHCb experime

1.000

• The LHCb idea: to build a single-arm forward spectrometer: ~ 4% of the solid angle (2 < η < 5), ~ 30% of the *b* hadron production

$B_s \rightarrow \mu^+ \mu^-$ event

 $B_s \rightarrow \mu^+ \mu^-$ event

 Very good performance: 3 fb⁻¹ accumulated in Run1 at 7 TeV, Working well for Run2 at 13TeV, expected 5 fb⁻¹ at the end of 2017

LHCb Integrated Recorded Luminosity in pp, 2010-2016

In terms of *b*-hadrons: $N=\int \mathcal{L}\sigma$

 $\rightarrow \sigma \sim 600 \ \mu b$ at 13TeV, x 30% (due to the acceptance) = 180 μb $\rightarrow b\overline{b}$ pairs produced in 1 fb⁻¹ \rightarrow \sim **1.8 x 10**¹¹

Rare B decays

Portrait of Picasso (1947)

Rare B decays

 b→s,d quark transitions are Flavor Changing Neutral Currents (FCNCs),
 → they only can occur through loops (penguin and box diagrams), excellent probe for physics beyond the SM

Experimentally \rightarrow leptons/photons with high transverse momenta **Theoretically** \rightarrow observables can be calculated in terms of Wilson coefficients

Ex:
$$\Gamma(B_s^0 \to \mu^+ \mu^-) \sim \frac{G_F^2 \alpha^2}{64\pi^3} m_{Bs}^2 f_{Bs}^2 |V_{tb} V_{ts}|^2 |2m_\mu C_{10}|^2$$

Hadronic uncertainties in decay constants or form factors

Rare B decays: $B_s \rightarrow \mu^+ \mu^-$

- Very rare decay:
 FCNC and helicity suppressed
 BR_{SM} = 3.66(23) x 10⁻⁹
- Searched for over the last 30 years, observed by LHCb and CMS [Nature 522 (2015) 68]

Updated analysis by LHCb, including Run2 data [PRL 118 (2017) 191801]

• $B_s \rightarrow \tau^+ \tau^-$ also searched for at LHCb:

 $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\%$

[arXiv:1703.02508 [hep-ex]]

→ In agreement with the SM → Theoretical uncertainties $(f_{B_{(s)}}, V_{CKM})$ well below statistical uncertainty

b

Differential branching fraction: $d\Gamma/dq^2$ Each q^2 region probes different processes

(Primed C'_i \rightarrow right handed currents:

• Differential decay width as function of $q^2 = m_{\mu\mu}^2$

Theory affected by hadronic uncertainties: LCSR + LQCD

• Angular distribution in $B \rightarrow K^* \ell^- \ell^+$: q² and three angles

Understanding effects from charm:

• Phase difference between short- and long-distance amplitudes in the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay [EPJ C(2017) 77]

- $\rightarrow\,d\Gamma/dm_{\mu\mu}\,$ is a function of form factors and $\bm{C_i}$
- → C_i^{eff} expressed as a sum of relativistic Breit-Wigner amplitudes: magnitudes and phases extracted from data
- → Form factors from FNAL & MILC [PRD 93(16)025026]

→ Small effect of hadronic resonances in Wilson coefficients

Rare B decays: R_K

• In the SM all leptons are expected to behave in the same way:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = 1.000 + O(m_{\mu}^{2}/m_{b}^{2}) \text{ (SM)}$$

- Experimentally, use the $B^+ \rightarrow K^+ J/\psi(\rightarrow e^+e^-)$ and $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+\mu^-)$ to perform a double ratio
- Precise theory prediction due to cancellation of hadronic form factor uncertainties

1 GeV < q² < 6 GeV [PRL 113 (2014) 151601]

 $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$

 \rightarrow Consistent, but lower, than the SM at $\textbf{2.6\sigma}$

Rare B decays: R_K

B mass vesus q^2 for $B^+ \rightarrow K^+ \ell^+ \ell^-$

Rare B decays: R_{K*}

Rare B decays: R_{K^(*)}

Quick note on experimental issues:

- LHCb is far better with muons than electrons
- *Trigger*, reconstruction, selection and particle identification are harder with electrons
- Mass resolution affected by *e bremsstrahlung* → need energy recovery
- Mass shape modelled according to the number of *bremsstrahlung* recovered

22

Rare B decays: $B_s \rightarrow \phi \gamma$

• Ratio of branching fractions: [Nuc. Phys. B 867 (2013) 1]

$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.23 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \pm 0.10 \text{ (}f_s/f_d\text{)}$$

• Time dependent distribution for $B_s \rightarrow \phi \gamma$ is sensitive to the photon polarization (predicted to be right-handed in the SM)

Rare B decays

New Physics hypothesis preferred over SM by more than 4 - 5σ Main effect on the C_{9µ} coefficient: **4.27SM -1.1**^{NP}

Triggered models with Z', leptoquarks (LQ), and composite Higgs

Shirley Temple, The Youngest, Most Sacred Monster of the Cinema in Her Time (1939)

Semileptonic B decays

Semileptonic B decays

• $b \rightarrow c, u$ quark transitions proceed at tree level Vub is the smallest CKM element ~ 4‰

đ

Large discrepancies between $|V_{ub}|$ from different determinations (~3 σ)

u

d

Semileptonic B decays: V_{cb}, V_{ub}

• Using semileptonic decays of *b*-baryons: [Nature Physics 10 (2015) 1038]

Semileptonic B decays: R_D, R_{D*}

• Another test of lepton universality (now at tree level):

Ratio of semi-tauonic and semi-muonic branching fractions:

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} \qquad \overline{B}\{\begin{array}{c} W^-/H^- & \overline{\nu}_{\tau} \\ \overline{q} & \overline{q} & \overline{q} \end{array}\} D^{(*)}$$

Sensitive to charged Higgs bosons and leptoquarks

<u>SM predictions very precise</u>: (V_{cb} and form factors (partially) cancel)

BaBar measured an excess of $\overline{B^0} \rightarrow D^{(*)}\tau^-\overline{\nu}_{\tau}$ (3 σ away from SM) [PRD 88 (2013) 072012] [Nature 546(2017)227]

■ $\overline{B^0}$ → D^{*+} $\tau \overline{\nu}_{\tau}$, with $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$ [PRL 115 (2015) 111803]

■ B⁰→D^{*-} $\tau^+\nu$, with $\tau^+ \rightarrow \pi^+\pi^-\pi^+\pi^{(0)} \overline{\nu}_{\tau}$ (NEW!) [LHCb-PAPER-2017-17]

Semileptonic B decays

- Using $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$
- Information from the missing mass squared $m_{miss}^2 = (P_B P_{D^*} P_{\mu})^2$ and muon energy in several q² bins $\mathcal{R}(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$

- New analysis by LHCb: using $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu_{\tau}}$
- Information from the position of the three pions
- Normalized to $B^0 \rightarrow D^{*}\pi^+\pi^-\pi^+$

 $\mathcal{R}(D^{*-}) = 0.285 \pm 0.019 \pm 0.025 \pm 0.014$

[LHCb-PAPER-2017-17]

[PRL 115 (2015) 111803]

Semileptonic B decays

\bullet Global picture of R_{D} and $R_{D^{\ast}}$

 \rightarrow About 4σ deviation from SM

Wish list for Lattice

Galatea of the Spheres (1952)

Wish list for Lattice

• Decisive inputs to solve some long-standing puzzles:

Wish list for Lattice

 $B \rightarrow D^{(*)}$ form factors, affecting $V_{cb},\,R_{D^{(*)}}$, at different $q^2\,$ values.

Other form factors (B_s, B_c and $\Lambda_{\rm b}$ decays) to perform semitauonic over semileptonic rates; $\Lambda_{\rm b} \rightarrow p \ell \nu$ form factors from other group.

 $\stackrel{\scriptstyle <}{\sim}$ V_{cb} and V_{ub}, they are inputs for BR calculation in many rare decays.

 $B_{(s)}$ decay constant, even if at present the $B_s \rightarrow \mu^+ \mu^- BR$ is limited by experimental uncertainties, it will be key in the coming years to confirm new physics scenarios.

 $B \rightarrow K^{(*)}$ form factors; effect from unstable vector resonances in form factor predictions; form factors for higher states.

Charm contributions in $b \rightarrow s\ell\ell$ transitions, maybe above the open-charm threshold to be checked against data.

Conclusions

• Deviations from the Standard Model in the flavour sector have been found by LHCb and other experiments:

* <u>Differential branching fractions</u>: $B^0 \rightarrow K^{(*)0} \mu^+ \mu^-$, $B^+ \rightarrow K^{(*)+} \mu^+ \mu^-$, $B_s \rightarrow \phi \mu^+ \mu^-$, $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

 \rightarrow Affected by hadronic uncertainties in the theory predictions

* <u>Angular analyses</u>: $B^0 \rightarrow K^{(*)0}\mu^+\mu^-$, $B_s \rightarrow \phi\mu^+\mu^-$, $B^0 \rightarrow K^{*0}e^+e^-$ and $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$

 \rightarrow Observables with smaller theory uncertainties

* <u>Test of Lepton Flavour Universality</u>: $B^+ \rightarrow K^+ \ell^+ \ell^-$ and $B^0 \rightarrow K^{*0} \ell^+ \ell^-$; $B \rightarrow D^{(*)} \tau \nu$

 \rightarrow Hadronic uncertainties in theory predictions cancel in ratios

• Deviations show a consistent pattern in global fits, pointing to new physics in the Wilson coefficient $C_{9\mu}$, affecting differently to lepton families.

 \rightarrow Difficult to be explained by just experimental effects.

 \rightarrow Difficult to be explained by just QCD effects...

Conclusions

And many new and interesting results from Lattice at this conference!

Time is a great thickener of things...

Conclusions

Swans Reflecting Elephants (1937)

Thanks!