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We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the
Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and
using experimental input values for the masses and decay constants of the pion and the kaon, we obtain

Λð3Þ
MS

¼ 341ð12Þ MeV. The nonperturbative running up to very high energies guarantees that systematic

effects associated with perturbation theory are well under control. Using the four-loop prediction for

Λð5Þ
MS

=Λð3Þ
MS

yields αð5Þ
MS

ðmZÞ ¼ 0.11852ð84Þ.
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Introduction.—An essential input for theory predictions
of high energy processes, in particular for phenomenology
at the LHC [1–4], is the QCD coupling αsðμÞ ¼ g2sðμÞ=ð4πÞ
at energy scales μ ∼mZ and higher. In this work we present
a subpercent determination of the strong coupling at the Z
pole mass using the masses and decay constants of the pion
and kaon as experimental input and lattice QCD as a
computational tool.
Perturbation theory (PT) predicts the energy dependence

of the coupling as

g2sðμÞ ∼μ→∞ 1

2b0 logðμ=ΛsÞ þ ðb1=b0Þ log logðμ=ΛsÞ
þ � � �

ð1Þ
in terms of known positive coefficients, b0;1, and a single
parameter, Λs, which can also serve as the nonperturbative
scale of the theory. The label s, called scheme, summarizes
all details of the exact definition of gs. Conventionally one
chooses the so-called s ¼ MS scheme [5], butΛ parameters
in different schemes can be exactly related with a one-loop
computation [6].

Our computation of αMS is based on a determination of
the three-flavor Λ parameter. To outline the steps of our
determination, we write

Λð3Þ
MS

¼
Λð3Þ
MS

μPT
×

μPT
μhad

×
μhad
fπK

× fPDGπK : ð2Þ

As experimental input we use the Particle Data Group
(PDG) values [7] for the following combination of decay
constants:

fπK ≡ 1

3
ð2fK þ fπÞ ¼ 147.6 MeV: ð3Þ

The key elements are then the determination of the ratio of
scales μPT=μhad and the ratio μhad=fπK, i.e., our hadronic
scale in units of fπK. Both computations are performed in a
fully nonperturbative way.
By choosing a large enough scale μPT and including

higher orders of PT in Eq. (1), the ratio Λð3Þ
MS

=μPT can be
determined with negligible errors.
With Nf > 2 flavors, so far a single work [8] contains

such a computation with all steps, including the connection
of low energy μhad to large μPT, using numerical simulations
and a step scaling strategy. This strategy, developed by the
ALPHA Collaboration [9–12], suppresses the systematic
errors from the use of PT.
Here, we put together (and briefly review) the first factor

in Eq. (2) and our recent significant improvements in
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statistical and systematic precision in the second one
[13,14], and finally add the missing third one.
QCD with Nf ¼ 3 is the phenomenologically relevant

effective theory at energies E < mcharm with small [15,16]
corrections of order ðE=mcharmÞ2. However, for theory
predictions of high energy processes, with E ∼mZ and
higher, the five- and six-flavor theories are needed.

Fortunately, the ratios ΛðNfÞ
MS

=Λð3Þ
MS

, Nf ¼ 4, 5, 6 are known
to very high order in PT, and successive order contributions

decrease rapidly. This enables us to convert our Λð3Þ
MS

to

precise values for αð5Þ
MS

ðmZÞ and αð6Þ
MS

ð1.508 TeVÞ, which
can be used for high energy phenomenology. Further
below, we will critically discuss the use of PT in this step.
Strategy.—A nonperturbative definition of a coupling is

easily given. Take a short-distance QCD observable,
depending on fields concentrated within a 4D region of
Euclidean space of linear size R ¼ 1=μ and with a
perturbative expansion

OsðμÞ ¼ kg2
MS

ðμÞ½1þ cs1g
2

MS
ðμÞ þ � � ��: ð4Þ

Then the nonperturbative coupling,

g2sðμÞ≡OsðμÞ=k ¼ g2
MS

ðμÞ þ cs1g
4

MS
ðμÞ þ � � � ; ð5Þ

runs with μ. This property also allows us to define scales μ
by fixing g2sðμÞ to particular values (see Table I). However,
there is a challenge to reach the asymptotic region of small
g2sðμÞ, where Eq. (1) is useful and its corrections can be
controlled, using lattice simulations.
Challenge.—Numerical computations involve both a

discretization length, the lattice spacing a, and a total size
of the system L, that is simulated. For standard observables,
control over finite volume effects of order expð−mπLÞ
requires L to be several fm. At the same time, one needs to
suppress discretization errors and should extrapolate
ðaμÞ2 → 0 at fixed μ. The necessary restrictions

L ≫ 1=mπ; 1=a ≫ μ ⇒ L=a⋙μ=mπ ð6Þ
translate into very large lattices. Figure 1 displays the
region in αðμÞ vs ðaμÞ2 for the range a ≥ 0.04 fm which
can be realized nowadays in large volumes (mπL ≥ 4). This
shaded region is quite far from small coupling and
small ðaμÞ2.

Finite-size schemes.—The way out has long been known
[9,12]. One may identify R ¼ L ¼ 1=μ by choosing Os to
depend only on the scale L, not on any other ones. Finite-
size effects become part of the observable rather than one of
its uncertainties. Equation (6) is then relaxed to

L=a ≫ 1; ð7Þ
such that L=a ¼ 10–50 is sufficient.
Different scales μ are then connected by the step scaling

function

σðuÞ≡ g2sðμ=2Þjg2sðμÞ¼u: ð8Þ
It describes scale changes by discrete factors of 2, in
contrast to the β function which is defined by infinitesimal
changes. For a chosen value of u, σðuÞ can be computed by
determining g2 on lattices of size L=a and 2L=a and
performing an extrapolation a → 0 at L ¼ 1=μ, fixed
through g2ðμÞ ¼ u. In fact, in the process also the β
function can be computed as long as σðuÞ is a smooth
function of u. A recent detailed description of step scaling
is given in Ref. [18].
Running coupling in the three-flavor theory between

200 MeV and 100 GeV.—We impose Schrödinger
Functional (SF) boundary conditions on all fields
[19,20], i.e., Dirichlet boundary conditions in Euclidean
time at x0 ¼ 0, L, and periodic boundary conditions in
space with period L. With this choice, one can define
different renormalized couplings in the massless theory
[14,19,21] and complications with perturbation theory [22]
are avoided.
First, we consider the SF coupling [19,23], gSFðμÞ, which

measures how the system reacts to a particular change of
the boundary conditions. When computed by Monte Carlo
methods, this coupling has a statistical uncertainty that
scales as Δstatg2SF ∼ g4SF, leading to good precision at high
energies. Moreover, its β function is known to NNLO

TABLE I. Summary of various scales used in this work.

Scale definition Purpose μ=GeV

μPT ¼ 16μ0
Matching with the asymptotic ≈70
perturbative behavior

g2SFðμ0Þ ¼ 2.012
Nonperturbative matching ≈4
between the GF and SF schemes

g2∞ðμ⋆refÞ ¼ 1.6π2
Setting scale in physical units ≈0.5
by experimental value for fπK

g2GFðμhadÞ ¼ 11.31
Matching between GF scheme ≈0.2
and infinite-volume scheme FIG. 1. The shaded area shows the a > 0.04 fm region of large

volume results which dominate the present PDG and FLAG
estimates [7,17] of αMSðμÞ. The boundary of the shaded area is
determined by αMSðμÞ evaluated at two-loop order forNf ¼ 3 and

Λð3Þ
MS

¼ 341 MeV. The x coordinate is then obtained by setting
a ¼ 0.04 fm, the smallest value of lattice spacings reached in the
large volume simulations entering [7,17]. The data points on the
left are finite-size scaling computations [8,13,14].
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[24,25]. These two properties make it an ideal choice to
match with the asymptotic perturbative regime of QCD.
Second, one can use the gradient flow (GF) to define

renormalized couplings [26]. For this purpose, one introdu-
ces a flow time t ≥ 0 and defines the flow fieldBμðt; xÞ as the
solution of the gradient flow equation

∂tBμðt; xÞ ¼ DνGνμðt; xÞ;
Gμνðt; xÞ ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν�; ð9Þ

with the initial value Bμð0; xÞ ¼ AμðxÞ given in terms of the
original gauge field. The flow time t has the dimension of a
squared length and is a new external scale which can be
chosen at will. For t > 0, fluctuations of AμðxÞ at length

scalesmuch smaller than
ffiffiffiffi
8t

p
are suppressed in the flow field

Bμðt; xÞ. This smoothing property implies that gauge invari-
ant composite fields made out of Bμðt; xÞ are finite [27] and
can be used to define renormalized couplings. In particular,
in infinite volume such a coupling can be defined as

g2∞ðμÞ ¼
16π2

3
× t2hEðtÞijμ¼1=

ffiffiffi
8t

p ; ð10Þ

in terms of the action density [26] EðtÞ¼1
4
Ga

μνðt;xÞGa
μνðt;xÞ.

In finite volume the coupling g2GFðμÞ is defined by
imposing a fixed relation,

ffiffiffiffi
8t

p ¼ cL, between the flow
time and the volume [21,28]. Details can be found in the
original work [14]. Since the statistical precision is gen-
erally good and scales as Δstatg2GF ∼ g2GF, this coupling is
well suited at low energies.
In order to exploit the advantages of both finite-volume

schemes, we use the GF scheme at low energies, between
μhad and μ0. There we switch nonperturbatively to the SF
scheme (see Fig. 2). Then we run up to μPT. In this way, we
connected hadronic scales to μPT [13,14], cf. Table I.

In Table II we show our intermediate results for g2SFðμPTÞ
and μPT=μhad for two choices of a typical hadronic scale
μhad of a few hundred MeV. (In Ref. [14] only μhad;1 was
considered. Here we extend the analysis to μhad;2 in order to
have an additional check of our connection of large and

small volume physics.) In addition, we give Λð3Þ
MS

=μhad,
obtained by the NNLO perturbative asymptotic relation and
the exact conversion to the MS scheme. We have verified
that the systematic uncertainty ∼α2ðμPTÞ and power cor-
rections ∼ðΛ=μPTÞk from this limited use of perturbation
theory at scales above μPT are negligible compared to our
statistical uncertainties [13,29].
Connection to the hadronic world.—The second key

element is the nonperturbative determination of μhad in
units of the experimentally accessible fπK. Our determi-
nation is based on CLS ensembles [30] of Nf ¼ 3 QCD
with mu ¼ md ≡ m̂ in large volume. It is convenient to
define a scale μref by the condition

g2∞ðμrefÞ ¼ 1.6π2 ≈ 15.8; ð11Þ
and trajectories in the (bare) quark mass plane ðm̂; msÞ by
keeping the dimensionless ratio

ϕ4 ¼ ðm2
K þm2

π=2Þ=μ2ref ð12Þ
constant. (Note that μref is defined ensemble by ensemble,
and therefore it is a function of the quark masses. Instead of
μref , it is customary in the lattice literature to quote

ffiffiffiffiffiffi
8t0

p ¼
1=μref [26].) Moreover, we define a reference scale μ⋆ref at
the symmetric point (mu ¼ md ¼ ms) by

μ⋆ref ≡ μref jϕ4¼1.11;mu¼md¼ms
: ð13Þ

The requirement that the ϕ4 ¼ constant trajectory passes
through the physical point, defined by

m2
π=f2πK ¼ 0.8341; m2

K=f
2
πK ¼ 11.21; ð14Þ

results in ϕ4 ¼ 1.11ð2Þ in the continuum limit [31] and
motivates the particular choice in Eq. (13).
Since the combination fπK has a weak and well under-

stood dependence on the pion mass along trajectories with
constant ϕ4, a precise extrapolation from the symmetric
point to the physical point can be performed [31,32], see
Fig. 3. Continuum extrapolations with four lattice spacings,
0.05 fm≲ a≲ 0.09 fm, together with the PDG value of
Eq. (3), yield [31]

FIG. 2. Running couplings of Nf ¼ 3 QCD from integrating
the nonperturbative β functions in the SF and GF schemes
[13,14]. They are matched nonperturbatively by defining
g2SFðμ0Þ ¼ 2.012 and computing g2GFðμ0=2Þ ¼ 2.6723ð64Þ.

TABLE II. Scale ratios and values of the coupling determined
from nonperturbative running from μhad to μ0=2 in the GF and
from μ0 to μPT in the SF scheme.

g2GFðμhadÞ g2SFðμPTÞ μPT=μhad Λð3Þ
MS

=μhad

11.31 1.193(5) 349.7(6.8) 1.729(57)
10.20 1.193(5) 322.2(6.3) 1.593(53)
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μ⋆ref ¼ 478ð7Þ MeV: ð15Þ

Note that μ⋆ref is defined at a point with unphysical quark
masses, where finite-size effects are smaller and simula-
tions are easier than close to the physical point. This allows
us to include in the following analysis a CLS ensemble at a
fifth lattice spacing, a ≈ 0.039 fm.
For the determination of μ⋆ref=μhad, we need pairs of

values aμhad and aμ⋆ref at the same value of a. This requires
either an interpolation of the data for aμhad, or an inter-
polation of the data for aμ⋆ref. We denote these two options
as set A and B, respectively.
The dimensionless ratio μ⋆ref=μhad can then be extrapo-

lated to the continuum as shown in Fig. 4. Extrapolations,
linear in a2 dropping data above ðaμ⋆refÞ2 ¼ 0.07with either
set A or B, are fully compatible. They are also stable under
changes in the number of points used to extrapolate and the
particular functional form. These stabilities are expected
since our smallest lattice spacing is a ≈ 0.039 fm. We
repeat the computation of μref=μhad for two different values
of μhad (see Fig. 4). Tables of the various numbers that enter

and further details can be found in the Supplemental
Material [33], which includes Refs. [34–43].
As our final estimates we take set B, which has somewhat

larger errors, and obtain

μ⋆ref
μhad;1

¼ 2.428ð18Þ;
Λð3Þ
MS

μ⋆ref
¼ 0.712ð24Þ;

μ⋆ref
μhad;2

¼ 2.233ð17Þ;
Λð3Þ
MS

μ⋆ref
¼ 0.713ð24Þ: ð16Þ

The close agreement in Λð3Þ
MS

=μ⋆ref is reassuring. With
Eq. (15) we arrive at our central result

Λð3Þ
MS

¼ 341ð12Þ MeV: ð17Þ
It has a remarkable precision given that we ran the
couplings nonperturbatively up to about 70 GeV and only
then used perturbation theory.
Λ parameters and couplings of five- and six-flavor

theories.—By itself our Λð3Þ is of limited phenomenologi-
cal use. The three-flavor effective field theory (EFT) is
valid for energies below mcharm ¼ 1.28 GeV. There per-
turbation theory cannot be expected to be precise.
However, QCDðNfÞ, the Nf-flavor effective theory, can

be matched to QCDðNfþ1Þ and one can eventually arrive at
QCDð6Þ [44]. This matching relates the couplings such that
the low(er) energy EFTagrees with the (more) fundamental
one up to power law corrections. These OðΛ2=m2

hÞ cor-
rections can only be studied nonperturbatively. They are
very small already for mh ¼ mcharm [15,16].
Ignoring 1=m2

h effects, matching means

gðNfÞðμÞ ¼ gðNfþ1ÞðμÞ × ξ

�
gðNfþ1ÞðμÞ; mh

μ

�
ð18Þ

and the Λ parameters are related by

ΛðNfÞ

ΛðNfþ1Þ ¼
φðNfÞðgðNfþ1Þ × ξÞ
φðNfþ1ÞðgðNfþ1ÞÞ ; ð19Þ

where

φðNfÞðgÞ ¼ ðb0g2Þ−b1=ð2b20Þe−1=ð2b0g2Þ

× exp

�
−
Z

g

0

dx

�
1

βðxÞ þ
1

b0x3
−

b1
b20x

��
ð20Þ

is defined in terms of the Nf-flavor β function in the chosen
scheme.
When inserting the perturbative expansions of ξ and β,

we choose the mass mh in Eq. (18) as the MS mass at its
own scale, m� ¼ mMSðm�Þ, and set μ ¼ m�. Then the
one-loop term vanishes in the perturbative expansion

ξðg; 1Þ ¼ 1þ c2g4 þ c3g6 þ c4g8 þOðg10Þ: ð21Þ
For numerical results, we use c2, c3, c4 [45–49] together
with the appropriate five-loop β function [50–54] to arrive
at Table III.

FIG. 3. Dependence of fπK at ϕ4 ¼ 1.11 on the pion mass
through ϕ2 ¼ m2

π=μ2ref [31]. We normalized to fsymπK at the
symmetric point mu ¼ md ¼ ms. The ratio follows the param-
eter-free prediction of NLO chiral PT.

FIG. 4. Continuum extrapolations described in the text.
Extrapolated values are shown in proximity of a ¼ 0.
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The first error in αðμÞ is due to Λð3Þ
MS

and the quark mass
uncertainties, where the latter are hardly noticeable. The
second error listed represents our estimate of the truncation

error in PT in the connection Λð3Þ
MS

→ Λð4Þ
MS

− Λð6Þ
MS

. We
arrive at it as follows. The 2-, 3-, 4-loop terms in Eq. (21)
combined with the 3-, 4-, 5-loop β functions in Eq. (20)

lead, e.g., to contributions 128,19,6 in units of 10−5 to αð5Þ
MS

.
We take the sum of the last two contributions as our
perturbative uncertainty. Within PT, this is conservative.
Recently, Herren and Steinhauser [56] considered also
μ ≠ m in Eq. (18). Their error estimate, 0.0004, would
change little in the uncertainty of our final result

αð5Þ
MS

ðmZÞ ¼ 0.11852ð84Þ: ð22Þ

Summary and conclusions.—QCD offers a plethora of
quantities, like hadron masses and meson decay constants,
that can be used as precise experimental input to compute
the strong coupling and quark masses. However, the
nonperturbative character of the strong interactions makes
these computations difficult. Lattice QCD offers a unique
tool to connect, from first principles, well-measured QCD
quantities at low energies to the fundamental parameters of
the standard model. As perturbative expansions are not
convergent, but only asymptotic, the challenge for precise
results is to nonperturbatively reach energy scales where
the strong coupling is small enough [13]. Because of the
slow running of αs, the hadronic and perturbative regimes
are separated by 2 to 3 orders of magnitude.
Finite-size scaling allows one to bridge such large energy

differences nonperturbatively. It trades the systematic
uncertainties associated with the truncation of the pertur-
bative series at relatively low energies for statistical
uncertainties which are easy to estimate.
Our precise data for the running coupling [13,14],

together with the high-quality set of ensembles provided
by the CLS initiative [30] at lattice spacings as small as
a ≈ 0.039 fm, and an accurate determination of the scale

[31], allow us to reach a precision of 0.7% in αð5Þ
MS

ðmZÞ.

The factor μPT=μhad contributes 87% of the uncertainty in

αð5Þ
MS

. This uncertainty is dominantly statistical and could
certainly be reduced significantly by some additional effort.
While present knowledge indicates small and perturba-
tively computable quark-loop effects in the matching at the
heavy-quark thresholds, the uncomfortable need of using
PT at scales as low as mcharm can only be avoided by a full
four-flavor computation. This is a mandatory step as soon
as one attempts another controlled reduction of the total
uncertainty.

We finally note, that our result αð6Þ
MS

ð1.508 TeVÞ ¼
0.0852ð4Þ is in good agreement with the recent CMS
determination [57] from jet cross sections with pT ∈
½1.41; 2.5� TeV. Reference [57] gives αð5Þ

MS
ð1.508 TeVÞ ¼

0.0822ð33Þ which was already converted to

αð6Þ
MS

ð1.508 TeVÞ ¼ 0.0840ð35Þ in [56]. Although LHC
data do not yet reach the precision of our result (evolved
from lower energy), comparisons at such high energies are
an excellent test of QCD and of the existence of massive
colored quanta.
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gradient flow. We would like to express our gratitude to
Martin, Peter, and Ulli for collaborative work, numerous
enlightening discussions and advice over the years.
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