
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B. CERN-EP-2017-065
12th June 2017

Measurement of jet fragmentation in 5.02 TeV
proton–lead and proton–proton collisions with the
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A measurement of the fragmentation functions of jets into charged particles in p+Pb colli-
sions and pp collisions is presented. The analysis utilizes 28 nb−1 of p+Pb data and 26 pb−1

of pp data, both at √sNN = 5.02 TeV, collected in 2013 and 2015, respectively, with the
ATLAS detector at the LHC. The measurement is reported in the centre-of-mass frame of
the nucleon–nucleon system for jets in the rapidity range |y∗| <1.6 and with transverse mo-
mentum 45 < pT < 260 GeV. Results are presented both as a function of the charged-particle
transverse momentum and as a function of the longitudinal momentum fraction of the particle
with respect to the jet. The pp fragmentation functions are compared with results from Monte
Carlo event generators and two theoretical models. The ratios of the p+Pb to pp fragmenta-
tion functions are found to be consistent with unity.
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1 Introduction

Heavy-ion collisions at the Large Hadron Collider (LHC) are performed in order to produce and study
the quark–gluon plasma (QGP), a phase of strongly interacting matter which emerges at very high energy
densities; a recent review can be found in Ref. [1]. Measurements of jets and jet properties in heavy-ion
collisions are sensitive to the properties of the QGP. In order to quantify jet modifications in heavy-ion
collisions, proton–proton (pp) collisions are often used as a reference system. Using this reference, rates
of jet production in Pb+Pb collisions are observed to be reduced compared to that expected from the
rates in pp collisions, appropriately scaled to account for the nuclear thickness in Pb+Pb collisions [2, 3].
Charged-particle fragmentation functions are also observed to be modified in Pb+Pb collisions compared
to pp collisions [4–6]. Both of these effects are interpreted as arising predominantly from the modification
of the parton shower in the final state of the collision.

In addition to final-state differences emerging from the presence of the hot and dense matter, jet pro-
duction in Pb+Pb collisions may also differ from that in pp collisions due to effects arising from the
presence of the large nucleus. For example, nucleons bound in a nucleus are expected to have a modi-
fied structure compared to the free nucleon [7], and partons may lose energy in the nuclear environment
before scattering [8]. Proton–nucleus collisions are used to differentiate between initial- and final-state
effects in Pb+Pb collisions. The inclusive jet production rate in proton–lead (p+Pb) collisions at 5.02 TeV
was measured [9–11] at the LHC and found to be only slightly modified after normalization by the nuc-
lear thickness function. Measurements made at the Relativistic Heavy Ion Collider with deuteron–gold
collisions yield similar results [12]. High transverse momentum (pT) charged hadrons originate from
the fragmentation of jets and provide a complementary observable to that of jet production. The CMS
Collaboration observed a small excess in the charged-particle spectrum measured in p+Pb collisions for
pT > 20 GeV particles compared to that expected from pp collisions [13]. Measurements of charged-
particle fragmentation functions for jets in different pT intervals in p+Pb and pp collisions are crucial for
connecting the jet and charged-particle results. Therefore, the measurements reported here are necessary
both to establish a reference for jet fragmentation measurements in Pb+Pb collisions and to determine
any modifications to jet fragmentation in p+Pb collisions due to the presence of a large nucleus.

In this Letter, the jet momentum structure in pp and p+Pb collisions is studied using the distributions of
charged particles associated with jets which have a transverse momentum pjet

T in the range 45 to 260 GeV.
Jets are reconstructed with the anti-kt algorithm [14] using a radius parameter R = 0.4. Charged particles
are assigned to jets via an angular matching ∆R < 0.4,1 where ∆R is the angular distance between the
jet axis and the charged-particle position. Results on the fragmentation functions are presented both
as a function of the ratio between the component of the particle transverse momentum parallel to the
jet direction, and the jet pT, z ≡ pT cos ∆R / pjet

T ,2 and as a function of the charged-particle transverse
momentum with respect to the beam direction, pT:

D(z) ≡
1

Njet

dNch

dz
, (1)

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln E+pz

E−pz
where E

and pz are the energy and the component of the momentum along the beam direction. Angular distance is measured in units
of ∆R ≡

√
(∆η)2 + (∆φ)2.

2 The ∆R is an approximation of the opening angle
√

(∆θ)2 + (∆φ)2.
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and
D(pT) ≡

1
Njet

dNch

dpT
, (2)

where Nch is the number of charged particles and Njet is the number of jets under consideration. The frag-
mentation functions are per-jet normalized and the correction for the nuclear thickness in p+Pb collisions
is therefore not needed.

The fragmentation functions are compared in p+Pb and pp collisions at a centre-of-mass energy of
5.02 TeV. In order to quantify any difference between p+Pb and pp collisions, the ratios of the frag-
mentation functions are measured:

RD(z) ≡
D(z)pPb

D(z)pp
. (3)

In Pb+Pb collisions, such measurements are also presented as a function of charged-particle pT [4, 6]
to explore the absolute pT scale of the modifications and to reduce jet-related uncertainties. Thus, in
addition to the more commonly used fragmentation functions as a function of z, this Letter also presents
the analogous distributions and their ratios as a function of charged particle pT:

RD(pT) ≡
D(pT)pPb

D(pT)pp
. (4)

2 Experimental set-up

The measurements presented here are performed using the ATLAS calorimeter, inner detector, trigger,
and data acquisition systems [15]. The calorimeter system consists of a sampling liquid argon (LAr)
electromagnetic (EM) calorimeter covering |η| < 3.2, a steel–scintillator sampling hadronic calorimeter
covering |η| < 1.7, a LAr hadronic calorimeter covering 1.5 < |η| < 3.2, and two LAr forward calori-
meters (FCal) covering 3.2 < |η| < 4.9. The hadronic calorimeter has three sampling layers longitudinal
in shower depth. The EM calorimeters are segmented longitudinally in shower depth into three layers
plus an additional pre-sampler layer. The EM calorimeter has a granularity that varies with layer and
pseudorapidity, but which is generally much finer than that of the hadronic calorimeter. The minimum-
bias trigger scintillators (MBTS) [15] detect charged particles over 2.1 < |η| < 3.9 using two segmented
counters placed at z = ±3.6 m. Each counter provides measurements of both the pulse heights and the
arrival times of ionization energy deposits.

A two-level trigger system was used to select the p+Pb and pp collisions analysed here. The first, the
hardware-based trigger stage Level-1, is implemented with custom electronics. The second level is the
software-based High Level Trigger (HLT). Jet events were selected by the HLT with Level-1 seeds from
jet, minimum-bias, and total-energy triggers. The total-energy trigger required a total transverse energy
measured in the calorimeter of greater than 5 GeV. The HLT jet trigger operated a jet reconstruction
algorithm similar to that applied in the offline analysis and selected events containing jets with transverse
energy thresholds ranging from 20 GeV to 75 GeV in p+Pb collisions and up to 85 GeV in pp collisions.
In both the pp and p+Pb collisions, the highest-threshold jet trigger sampled the full delivered luminosity.
Minimum-bias p+Pb events were required to have at least one hit in a counter on each side of the MBTS
detector at the Level-1 trigger.

The inner detector measures charged-particle tracks within the pseudorapidity interval |η| < 2.5 using
a combination of silicon pixel detectors, silicon microstrip detectors (SCT), and a straw-tube transition
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radiation tracker (TRT), all immersed in a 2 T axial magnetic field [15]. Each of the three detectors is
composed of a barrel and two symmetric end-cap sections. The pixel detector is composed of three layers
of sensors with a nominal pixel size of 50 µm × 400 µm. Following the p+Pb data-taking and prior to
the 5 TeV pp data-taking an additional silicon tracking layer, the “insertable B-layer” (IBL) [16], was
installed closer to the interaction point than the other three layers. The SCT barrel section contains four
layers of modules with 80 µm pitch sensors on both sides, and each end-cap consists of nine layers of
double-sided modules with radial strips having a mean pitch of 80 µm. The two sides of each SCT layer
in both the barrel and the end-caps have a relative stereo angle of 40 mrad. The TRT contains up to 73
(160) layers of staggered straws interleaved with fibres in the barrel (end-cap).

3 Event selection and data sets

The p+Pb data used in this analysis were recorded in 2013. The LHC was configured with a 4 TeV proton
beam and a 1.57 TeV per nucleon Pb beam producing collisions with √sNN = 5.02 TeV and a rapidity
shift of the centre-of-mass frame, ∆y = 0.465, relative to the laboratory frame. The data collection was
split into two periods with opposite beam configurations. The first period consists of approximately 55%
of the integrated luminosity with the Pb beam travelling toward positive rapidity and the proton beam to
negative rapidity. The remaining data were taken with the beams of protons and Pb nuclei swapped. The
total p+Pb integrated luminosity is 28 nb−1. Approximately 26 pb−1 of

√
s = 5.02 TeV pp data from

2015 was used. The instantaneous luminosity conditions provided by the LHC resulted in an average
number of p+Pb interactions per bunch crossing of 0.03. During pp data-taking, the average number of
interactions per bunch crossing varied from 0.6 to 1.3.

The p+Pb events selected are required to have a reconstructed vertex, at least one hit in each MBTS
detector, and a time difference measured between the two MBTS sides of less than 10 ns. The pp events
used in this analysis are required to have a reconstructed vertex; no requirement on the signal in the MBTS
detector is imposed. In p+Pb collisions the event centrality is determined by the FCal in the Pb-going
direction as in Ref. [9]. The p+Pb events used here belong to the 0–90% centrality interval.

The performance of the ATLAS detector and offline analysis in measuring fragmentation functions in
p+Pb collisions is evaluated using a sample of Monte Carlo (MC) events obtained by overlaying simu-
lated hard-scattering pp events generated with Pythia version 6.423 (Pythia6) [17] onto minimum-bias
p+Pb events recorded during the same data-taking period. A sample consisting of 2.4×107 pp events is
generated with Pythia6 using parameter values from the AUET2B tune [18] and the CTEQ6L1 parton
distribution function (PDF) set [19], at

√
s = 5.02 TeV and with a rapidity shift equivalent to that in the

p+Pb collisions is used in the overlay procedure. Half of the events are simulated with one beam config-
uration and the second half with the other. The detector response is simulated using GEANT4 [20, 21],
and the simulated hits are combined with those from the data event. An additional sample of 2.6×107

pp hard-scattering events simulated with Pythia version 8.212 (Pythia8) [22] at
√

s = 5.02 TeV with the
A14 tune [23] and NNPDF23LO PDF set [24] is used to evaluate the performance for measuring frag-
mentation functions in the 2015 pp data. Finally, fragmentation functions at generator-level evaluated
from 1.5×107 5.02 TeV pp events [25] generated with Herwig++ using the UEEE5 tune [26] and the
CTEQ6L1 PDFs [19] are compared to the fragmentation function measured in 5.02 TeV pp data.
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4 Jet and track selection

Jets are reconstructed with the same heavy-ion jet reconstruction algorithm used in previous measure-
ments in p+Pb collisions [9]. The anti-kt algorithm [14] is first run in four-momentum recombination
mode using as input the signal in ∆η × ∆φ = 0.1 × 0.1 calorimeter towers with the anti-kt radius para-
meter R set to 0.4 and 0.2 (R = 0.4 jets are used for the main analysis and the R = 0.2 jets are used
to improve the jet position resolution as discussed below). The energies in the towers are obtained by
summing the energies of calorimeter cells at the electromagnetic energy scale within the tower boundar-
ies. Then, an iterative procedure is used to estimate the layer- and η-dependent underlying event (UE)
transverse energy density, while excluding the regions populated by jets. The UE transverse energy is
subtracted from each calorimeter cell and the four-momentum of the jet is updated accordingly. Then,
a jet η- and pT-dependent correction factor derived from the simulation samples is applied to correct
the jet momentum for the calorimeter response. An additional correction based on in situ studies of the
transverse momentum balance of jets recoiling against photons, Z bosons, and jets in other regions of the
calorimeter is applied [27, 28].

Jets are required to have jet centre-of-mass rapidity, |y∗jet| < 1.6,3 which is the largest symmetric overlap
between the two collision systems for which there is full charged-particle tracking coverage within a jet
cone of size ∆R = 0.4. To prevent neighbouring jets from distorting the measurement of the fragmentation
functions, jets are rejected if there is another jet with higher pT within a distance ∆R = 1.0. To reduce the
effects of the broadening of the jet position measurement due to the UE, for R = 0.4 jets, the jet direction
is taken from that of the closest matching R = 0.2 jet within ∆R = 0.3 when such a matching jet is found.
All jets included in the analysis are required to have pT sufficiently large for the jet trigger efficiency to
be higher than 99%. Jets originating from high-pT electrons [29] are excluded from this analysis.

The MC samples are used to evaluate the jet reconstruction performance and to correct the measured
distributions for detector effects. The p+Pb jet reconstruction performance is described in Ref. [9]; the jet
reconstruction performance in pp collisions is found to be similar to that in p+Pb collisions. In the MC
samples, the kinematics of the particle-level jets are reconstructed from primary particles4 with the anti-kt

algorithm with radius parameter R = 0.4. In these studies, particle-level jets are matched to reconstructed
jets with a ∆R < 0.2.

Tracks used in the analysis of p+Pb collisions are required to have at least one hit in the pixel detector
and at least six hits in the SCT. Tracks used in the analysis of pp collisions are required to have at least
9 or 11 total silicon hits for |η| < 1.65 or |η| > 1.65, respectively, including both the pixel layers and the
SCT. This includes a hit in the first (first or second) pixel layer if expected from the track trajectory for the
p+Pb (pp) data. All tracks used in this analysis are required to have pT > 1 GeV. In order to suppress the
contribution of secondary particles, the distance of closest approach of the track to the primary vertex is
required to be less than 1.5 mm along the beam axis and less than a value which varies from approximately
0.6 mm at pT = 1 GeV to approximately 0.2 mm at pT = 20 GeV in the transverse plane.

The efficiency for reconstructing charged particles within jets in p+Pb and pp collisions is evaluated using
Pythia6 and Pythia8 MC samples, respectively, and is computed by matching the reconstructed tracks
to generator-level primary particles. The association is done based on contributions of generator-level

3 The jet centre-of-mass rapidity y∗jet is defined as y∗jet ≡ yjet − ∆y where yjet is the jet rapidity in the ATLAS rest frame and ∆y

is the rapidity shift of the centre-of-mass frame.
4 Primary particles are defined as particles with a mean lifetime τ > 0.3 × 10−10 s either directly produced in pp interactions or

from subsequent decays of particles with a shorter lifetime. All other particles are considered to be secondary.
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Figure 1: Tracking efficiency as a function the primary particle momentum at generation level, ptruth
T , in pp collisions

(left) and in p+Pb collisions for one of the two beam configurations (right). The different sets of points show the
primary particle pseudorapidity, ηtruth, intervals in which the track reconstruction efficiency has been performed.
The different ηtruth intervals in pp and p+Pb plots reflect the different regions of the tracking system used in the two
cases due to the boosted p+Pb system. The solid curves show parameterizations of efficiencies.

particles to the hits in the detector layers. A reconstructed track is matched to a generator-level particle if
it contains hits produced primarily by this particle [21]. The efficiencies are determined separately for the
two p+Pb running configurations because the η regions of the detector used for the track measurement are
different for the two beam configurations. The charged-particle reconstruction efficiencies as a function
of the primary particle’s transverse momentum, ptruth

T , in coarse ηtruth intervals, are shown in Figure 1 in
pp and p+Pb collisions. The ptruth

T dependence of the efficiencies is parameterized using a fifth-order
polynomial in log(ptruth

T ) which describes the efficiency behaviour in the range of particle ptruth
T from 1.0

to 150 GeV. The tracking efficiency is observed to be constant above 150 GeV and a constant efficiency
value is used for particles with ptruth

T > 150 GeV due to the limited size of the MC samples in that phase
space region. To account for finer scale variations of the tracking efficiency with pseudorapidity, the
parameterizations are multiplied by an η-dependent scale factor evaluated in ηtruth intervals of 0.1 units in
coarse ptruth

T intervals. The dependence of the charged-particle efficiency on pjet
T is found to be negligible

for the pjet
T selections used here. The contribution of reconstructed tracks which cannot be matched to a

generated primary particle in the MC samples produced without minimum bias interactions overlaid and
the residual contribution of tracks matched to secondary particles are together called the contribution from
“fake” tracks. The fraction of fake tracks is found to be below 2% of the tracks that pass the selection in
any track and jet kinematic region. The contribution from these tracks to the fragmentation functions is
subtracted from the measured fragmentation functions in both the pp and p+Pb collisions.

5 Analysis procedure

Reconstructed charged particle tracks are associated with a reconstructed jet if they fall within ∆R =

0.4 of the jet axis. For each of these particles the momentum fraction, z, is calculated. The measured
fragmentation functions are constructed as:

D(z)meas ≡
1

Njet

1
ε(η, pT)

∆Nch(z)
∆z

(5)
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and
D(pT)meas ≡

1
Njet

1
ε(η, pT)

∆Nch(pT)
∆pT

, (6)

where ε(η, pT) is the track reconstruction efficiency, and Njet is the total number of jets in a given pjet
T

bin. The quantities ∆Nch(z) and ∆Nch(pT) are the numbers of associated tracks within the given z or pT
range, respectively. The efficiency correction is applied on a track-by-track basis, assuming pT = ptruth

T .
While that assumption is not strictly valid, the efficiency varies sufficiently slowly with ptruth

T that the error
introduced by this assumption is negligible.

In p+Pb collisions the UE contribution to the fragmentation functions from charged particles not asso-
ciated with the jet constitutes a background that needs to be subtracted. It originates in soft interactions
that accompany the hard process in the same p+Pb collision and depends on charged-particle pT and η.
This background is determined event by event for each measured jet by using a grid of ∆R = 0.4 cones
that span the full coverage of the inner detector. The cones have a fixed distance between their centres
chosen such that the coverage of the inner detector is maximized while the cones do not overlap each
other. Any such cone containing a charged particle with pT > 3.5 GeV is assumed to be associated with
a real jet and is excluded from the UE contribution. The 3.5 GeV threshold is derived from studies of
UE contribution in MC samples. The estimated contribution from UE particles in each cone is corrected
to account for differences in the average UE particle yield at a given pT between the η position of the
cone and the η position of the jet. The correction is based on a parameterization of the pT and η depend-
ence of charged-particle yields in minimum-bias collisions. The resulting UE contribution is evaluated
for charged particles in the transverse momentum interval of 1 < pT < 3.5 GeV and averaged over all
cones. The UE contribution is further corrected for the correlation between the actual UE yield within
the jet cone and the jet energy resolution discussed in Ref. [5]. This effect is corrected by a multiplicative
correction factor, dependent on the track pT (or z) and the jet pT. The correction is estimated in MC
samples as the ratio of the UE contribution calculated from tracks within the area of a jet that do not have
an associated generator-level particle to the UE contribution estimated by the cone method. Corrected UE
contributions are then subtracted from measured distributions. The maximum size of the UE contribution
is 20% for the lowest track pT (or z). No UE subtraction is performed for the pp measurement due to
negligible UE contribution.

The measured D(z) and D(pT) distributions are corrected for detector effects by means of a two-dimensional
Bayesian unfolding procedure [30] using the RooUnfold package [31]. The unfolding procedure removes
the effect of bin migration due to the jet energy and the track momentum resolutions. Using the MC
samples, four-dimensional response matrices are created using the particle-level and reconstructed pjet

T ,
and generator-level and reconstructed track pT (z). Separate unfolding matrices are constructed for the
p+Pb and pp data. An independent bin-by-bin unfolding procedure is used to correct the measured pjet

T
spectra, which is used to normalize the unfolded fragmentation functions by the number of jets. The
response matrices are reweighted such that the shapes of the measured fragmentation functions and jet
spectra in the simulation match those in the data. The number of iterations in the Bayesian unfolding
is selected to be the minimum number for which the relative change in the fragmentation function at
z = 0.1 is smaller than 0.2% per additional iteration in all pjet

T bins. This condition ensures the stability
of the unfolding and minimizes statistical fluctuations due to the unfolding in the high z and pT regions.
The resulting number of iterations is driven by the low pjet

T intervals, which require the most iterations to
converge. The systematic uncertainty due to the unfolding is typically much larger than the impact of the
stability requirement, especially for the lowest pjet

T values used in this analysis (discussed in Section 6).
Following this criterion, 14 iterations are used for both the p+Pb and pp data sets. The analysis procedure
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Figure 2: Summary of the systematic uncertainties in the fragmentation function, D(z), in p+Pb collisions (top) and
pp collisions (bottom) for jets in the 45–60 GeV pjet

T interval (left) and in the 160–210 GeV pjet
T interval (right). The

systematic uncertainties due to JES, JER, unfolding, MC non-closure and tracking are shown along with the total
systematic uncertainty from all sources.

is tested by dividing the MC event sample in half and using one half to generate response matrices with
which the other half is unfolded. Good recovery of the generator-level distributions is observed for the
unfolded events and the deviations from perfect closure are incorporated into the systematic uncertain-
ties.

6 Systematic uncertainties

The systematic uncertainties in the measurement of the fragmentation functions and their ratios are de-
scribed in this section. The following sources of systematic uncertainty in the measurement of the frag-
mentation functions and their ratios are considered: the jet energy scale (JES), the jet energy resolution
(JER), the dependence of the unfolded results on the choice of the starting MC distributions, the residual
non-closure of the unfolding and the tracking-related uncertainties. For each variation reflecting a sys-
tematic uncertainty the fragmentation functions are re-evaluated and the difference between the varied
and nominal fragmentation functions is used as an estimate of the uncertainty. The systematic uncertain-
ties in the D(z) and D(pT) measurements in both collision systems are summarized in Figures 2 and 3,
respectively, for two different jet pT bins. The systematic uncertainties from each source are taken as
uncorrelated and combined in quadrature to obtain the total systematic uncertainty.
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Figure 3: Summary of the systematic uncertainties in the fragmentation function, D(pT), in p+Pb collisions (top)
and pp collisions (bottom) for jets in the 45–60 GeV pjet

T interval (left) and in the 160–210 GeV pjet
T interval (right).

The systematic uncertainties due to JES, JER, unfolding, MC non-closure and tracking are shown along with the
total systematic uncertainty from all sources.

The JES uncertainty is determined from in situ studies of the calorimeter response [27, 32, 33], and
studies of the relative energy-scale difference between the jet reconstruction procedure in heavy-ion col-
lisions and the procedure used in pp collisions [34]. The impact of the JES uncertainty on the measured
distributions is evaluated by constructing new response matrices where all reconstructed jet transverse
momenta are shifted by ±1 standard deviation (±1σ) of the JES uncertainty. The data are then unfolded
with these matrices. Each component that contributes to the JES uncertainty is varied separately. The JES
uncertainty increases with increasing z and particle pT at fixed pjet

T and decreases with increasing pjet
T .

The uncertainty in the fragmentation functions due to the JER is estimated by repeating the unfolding
procedure with modified response matrices, where the resolution of the reconstructed jet pjet

T is broadened
by Gaussian smearing. The smearing factor is evaluated using an in situ technique involving studies of
dijet energy balance [35, 36]. The systematic uncertainty due to the JER increases with increasing z and
particle pT at fixed pjet

T and decreases with increasing pjet
T .

The unfolding uncertainty is estimated by generating the response matrices from the MC distributions
without reweighting to match the shapes of the reconstructed data in pjet

T and D(z) or D(pT). Conser-
vatively, an additional uncertainty to account for possible residual limitations in the analysis procedure
was assigned by evaluating the non-closure of the unfolded distributions in simulations, as described in
Section 5. The magnitude of both of these uncertainties is typically below 5% except for the highest z
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and track pT bins.

The uncertainties related to the track reconstruction and selection originate from several sources. Un-
certainties related to the rate of fake tracks, the material description in the simulation, and the track’s
transverse momentum were obtained from studies in data and simulation described in Ref. [37]. The sys-
tematic uncertainty in the fake-track rate is 30% in pp collisions and 50% in p+Pb. The contamination
by fake tracks is at most 2%, the resulting uncertainty in the fragmentation functions is at most 1%. The
sensitivity of the tracking efficiency to the description of the inactive material in the MC samples is eval-
uated by varying the material description. This uncertainty is between 0.5 and 2% (depending on track
η) in the track pT range used in the analysis. Uncertainty in the tracking efficiency due to the high local
track density in the cores of jets is 0.4% [38] for all pjet

T selections in this analysis. The uncertainty due
to the track selection criteria is evaluated by repeating the analysis with an additional requirement on the
significance of the distance of closest approach of the track to the primary vertex. This uncertainty affects
both the track reconstruction efficiency and the rate of fake tracks. The resulting uncertainty typically
varies from 1% at low track pT and low z to 5% at high track pT and high z. The systematic uncertainties
in the fragmentation functions due to the parameterization of the efficiency corrections is less than 1%.
An additional uncertainty takes into account a possible residual misalignment of the tracking detectors
in pp data-taking. The alignment in this data was checked in situ with Z → µ+µ− events, and thus a
track-pT dependent uncertainty arises from the finite size of this sample. The resulting uncertainties in
the fragmentation functions are typically smaller than 1% except at large z where they are as large as 4%.
Finally, the track-to-particle matching requirements are varied. This variation affects the track reconstruc-
tion efficiency, the track momentum resolution, and the rate of fake tracks. The resulting uncertainties
in the fragmentation functions are smaller than 1%. After deriving new response matrices and efficiency
corrections, the resulting systematic uncertainty in the fragmentation functions is found to be less than
0.5%. The tracking uncertainties shown in Figures 2 and 3 include all the above explained track-related
systematic uncertainties added in quadrature.

The correlations between the various systematic components in the two collision systems are considered
when taking the ratios of p+Pb to pp fragmentation functions. For the JES uncertainty, each source
of uncertainty is classified as either correlated or uncorrelated between the two systems depending on
its origin. The JER, unfolding and MC non-closure uncertainties are taken to be uncorrelated. For the
tracking-related uncertainties the variation in the selection requirements, tracking in dense environments,
fake rates, and parameterization of the efficiency corrections are taken as uncorrelated. The first three
of these are conservatively considered as uncorrelated because the tracking system was augmented with
the IBL and the tracking algorithm changed between the p+Pb and pp data-taking periods. For the
correlated uncertainties the ratios are re-evaluated applying the variation to both collision systems; the
resulting variations of the ratios from their central values is used as the correlated systematic uncertainty.
The uncertainties due to the track-to-particle matching and the inactive material in the MC samples are
taken as correlated between p+Pb and pp collisions. The total systematic uncertainties in the RD(z) and
RD(pT) distributions are shown in Figures 4 and 5, respectively, for two pjet

T intervals.

7 Results

The D(z) and D(pT) distributions in both collision systems are shown in Figures 6 and 7, respectively.
Figure 8 compares the D(z) distribution in pp collisions at 5.02 TeV to the predictions from three event
generators (Pythia6, Pythia8, and Herwig++) using the parameter-value tunes and PDF sets described
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and tracking are shown along with the total systematic uncertainty from all sources.

in Section 3 for the six pjet
T intervals. The Pythia8 generator provides the best description of the data,

generally agreeing within about 5 to 10% over the kinematic range used here. Pythia6 agrees within
approximately 25% when compared to the data and Herwig++ agrees within approximately 20% except
for the highest z region, where there are some larger deviations. Similar agreement with these generators
was reported by ATLAS in the measurement of fragmentation functions in 7 TeV pp collisions [39].

Figure 9 shows the pp fragmentation functions compared to two theoretical calculations. These predic-
tions use a slightly different definition of z compared to the definition used in this measurement. This
can introduce a difference between the fragmentation functions of approximately 1%. The calculation in
Refs. [40, 41] provides fragmentation functions with next-to-leading-order (NLO) accuracy as well as a
resummation of logarithms in the jet cone size. The calculation in Ref. [42] is at NLO and uses the ap-
proximation that the jet cone is narrow. For the parton-to-charged-hadron fragmentation functions, both
calculations use DSS07 fragmentation functions [43]. The uncertainties in the theoretical calculation are
not estimated, including the uncertainty in DSS07, which is common to both calculations. The calcula-
tions are systematically higher than the data and generally agree within 20–30%. Larger deviations are
observed at the low and high z regions. The DSS07 fragmentation functions have a minimum z of 0.05
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Figure 6: Fragmentation functions as a function of the charged particle z in pp (left) and p+Pb collisions (right)
for the pjet

T intervals used in this analysis. The fragmentation functions in both collision systems are offset by
multiplicative factors for clarity as noted in the legend. The statistical uncertainties are shown as error bars and the
systematic uncertainties are shown as shaded boxes. In many cases the statistical uncertainties are smaller than the
marker size.

and the calculations use extrapolated fragmentation functions in the region below z = 0.05.

Figures 10 and 11 show the ratios of fragmentation functions in p+Pb collisions to those in pp collisions,
as a function of z and pT respectively for pjet

T from 45 to 260 GeV. Over the kinematic range selected
here, the RD(z) and RD(pT) distributions show deviations from unity of up to approximately 5% (up to 10%
for 60–80 GeV jet selections) for z < 0.1 and pT < 10 GeV. The deviations are larger than the reported
systematic uncertainties by at most a couple of percent and always less than 1.5σ of the systematic
uncertainties. At higher z and pT values the ratios are consistent with unity. At the highest z points for the
160–210 GeV and 210–260 GeV jet selections, deviations from unity of approximately 0.9σ and 1.3σ of
combined statistical and systematic uncertainties, respectively, are observed. This is not observed in the
D(pT) distributions. In most pjet

T bins there is a slight decrease of the central values of RD(z) and RD(pT)
with increasing z and pT; however the size of the effect is smaller than the systematic uncertainties.
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8 Summary

This Letter presents measurements of the jet charged-particle fragmentation functions for |y∗jet| < 1.6 and

pjet
T from 45 to 260 GeV in √sNN = 5.02 TeV p+Pb and pp collisions with the ATLAS detector at the

LHC. The measurement utilizes 28 nb−1 of p+Pb data and 26 pb−1 of pp data. The pp fragmentation
functions are compared to predictions from the Pythia6, Pythia8 and Herwig++ generators. The gener-
ators show deviations from the pp data of up to approximately 25%, depending on z and the choice of
generator. Pythia8 with the A14 tune and NNPDF23LO PDF set matches the data most closely. The pp
D(z) distributions are also compared to two theoretical calculations based on next-to-leading-order QCD
and DSS07 fragmentation functions. The calculations are systematically higher than the data and agree
generally within 20–30%, with larger deviations at small and large values of z. These measurements help
constrain jet fragmentation in pp collisions. The ratios of fragmentation functions in p+Pb collisions to
those in pp collisions show no evidence for modification of jet fragmentation in p+Pb collisions. Finally,
these measurements of jet fragmentation functions for different intervals of jet transverse momentum
provide necessary baseline measurements for quantifying the effects of the quark-gluon plasma in Pb+Pb
collisions.
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