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Université catholique de Louvain,

Chemin du Cyclotron 2, 1348 Louvain-La-Neuve, Belgium

E-mail: delducav@itp.phys.ethz.ch, claude.duhr@cern.ch,

robin.marzucca@uclouvain.be, bram.verbeek@uclouvain.be

Abstract: We study some analytic properties of the BFKL ladder at next-to-leading

logarithmic accuracy (NLLA). We use a procedure by Chirilli and Kovchegov to construct

the NLO eigenfunctions, and we show that the BFKL ladder can be evaluated order by

order in the coupling in terms of certain generalised single-valued multiple polylogarithms
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only fundamental and adjoint matter, all of which have a vanishing one-loop beta function

and a matter content that fits into supersymmetric multiplets. Our findings indicate that
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1 Introduction

In the limit in which the squared center-of-mass energy is much greater than the mo-

mentum transfer, s � |t|, any QCD scattering process is dominated by gluon exchange

in the t channel. In this limit the Balitsky-Fadin-Kuraev-Lipatov (BFKL) theory mod-

els strong-interaction processes by resumming the leading radiative corrections to parton-

parton scattering. This is achieved at leading logarithmic accuracy (LLA), in log(s/|t|),
through the BFKL equation [1–4], to which the corrections at next-to-leading-logarithmic

accuracy (NLLA) were computed in refs. [5, 6].

In this paper, we address three questions related to the next-to-leading-order (NLO)

corrections to the singlet eigenvalue of the BFKL equation. Firstly, the NLO corrections

to the BFKL eigenvalue were computed by Fadin and Lipatov [5] by acting with the

NLO BFKL kernel on the leading order eigenfunctions. This procedure is not consistent,

and it was already clear to Fadin and Lipatov that the terms which make the procedure

inconsistent are related to the running of the coupling. The consistent NLO eigenfunctions

were constructed by Chirilli and Kovchegov [7, 8], who found indeed that the additional

pieces which occur at NLO are proportional to the beta function. We show that the NLO

corrections to the eigenfunctions can be made to vanish by taking the scale of the coupling

to be the geometric mean of the transverse momenta at the ends of the BFKL ladder.

Secondly, in ref. [9] it was shown that the functions which describe the analytic struc-

ture of the BFKL ladder at LLA are single-valued iterated integrals on the moduli space

M0,4 of Riemann spheres with four marked points, which are single-valued harmonic poly-

logarithms (SVHPLs) [10]. We extend the results of ref. [9] and show that the functions

which describe the analytic structure of the BFKL ladder at NLLA are a generalisation of

SVHPLs recently introduced by Schnetz [11]. We use this insight and develop techniques

to evaluate the BFKL ladder in momentum space perturbatively to any loop order, and

we provide explicit results through five loops.

Finally, it has been guessed [12, 13], and verified at NLO accuracy [14], that the

anomalous dimensions of the leading-twist operators which control the Bjorken scaling

violations in N = 4 SYM have a uniform and maximal transcendental weight in moment

space, which matches the maximal weight part of the corresponding anomalous dimensions

in QCD. This has been used to derive the anomalous dimensions in N = 4 SYM at NNLO

accuracy [15] from the known anomalous dimensions in QCD at NNLO [16]. We consider

the BFKL ladder in a generic gauge theory with arbitrary matter content and we use the

explicit results in momentum space through five loops to analyse the transcendental weight

properties of the BFKL ladder at NLLA. It is well known [12, 13] that in moment space

the singlet BFKL eigenvalue in N = 4 SYM is given by the maximal weight part of the

corresponding QCD result. Our results show that the corresponding statement is not true

in momentum space: we find that in momentum space the BFKL ladder in N = 4 SYM is

not identical the maximal weight part of QCD, and, moreover that there is no theory with

additional scalar or fermionic matter with that property. While so far all considerations

were independent of the colour representation of the matter fields, in the case of only

adjoint and fundamental matter we derive a set of necessary conditions for the BFKL
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ladder to have maximal transcendental weight in momentum space to all loop orders. We

find that the theories that satisfy these constraints are extremely rare: there are only four

classes of theories that satisfy these constraints, and all of them have a vanishing one-loop

beta function and a matter content that fits into supersymmetric multiplets. Although our

analysis is restricted to the BFKL ladder at NLLA, our findings indicate that the property

of maximal transcendentality is a very special property shared by only very few and very

special theories.

This paper is organised as follows: in section 2 and 3 we review the BFKL ladder and

its analytic structure in perturbation theory at LLA. In section 4 we review the Chirilli-

Kovchegov procedure to define the NLO eigenfunctions of the BFKL kernel, and we show

that the NLO corrections to the eigenfunctions can be made to vanish by taking the scale of

the coupling to be the geometric mean of the transverse momenta at the ends of the BFKL

ladder. In section 5 we compute the BFKL ladder at NLLA in terms of the generalised

single-valued multiple polylogarithms introduced by Schnetz in ref. [11]. In section 6 we

analyse the transcendental weight properties of the BFKL ladder. The appendices collect

technical proofs omitted throughout the main text as well as explicit results for generalised

single-valued multiple polylogarithms and the BFKL ladder through five loops.

2 The BFKL equation

The main object of interest in this note is the BFKL ladder, which appears in the total

cross section for parton scattering in the high-energy limit,

σ(s) '
∫

d2q1 d
2q2

(2π)2 q2
1 q

2
2

ΦA(q1) ΦB(q2) f(q1, q2, log(s/s0)) , (2.1)

where s is the center-of-mass energy and

s0 ≡
√
q2

1 q
2
2 (2.2)

is the geometric mean of the two transverse momenta. ΦA/B denote the impact factors

and f is the BFKL ladder, which is written as,

f(q1, q2, y) =

∫
C

dω

2πi
ey ω fω(q1, q2) . (2.3)

The integration contour C is a straight vertical line such that all poles in ω are to the right

of the contour and fω is a solution to the BFKL equation,

ω fω(q1, q2) =
1

2
δ(2)(q1 − q2) + (K ? fω)(q1, q2) , (2.4)

where the convolution is defined by

(K ? fω)(q1, q2) ≡
∫
d2kK(q1, k) fω(k, q2) , (2.5)

with K(q1, q2) the BFKL kernel. The kernel is real and symmetric, K(q1, q2) = K(q2, q1),

and so the integral operator K is hermitian and its eigenvalues are real.
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The BFKL equation can be solved by finding a suitable set of eigenfunctions of the

BFKL integral operator,

(K ? Φνn)(q) = ωνn Φνn(q) . (2.6)

The eigenfunctions are labeled by (ν, n), where ν is a real number and n an integer, and

form a complete and orthonormal set of functions. Hence, they satisfy

2

∫
d2qΦνn(q) Φ∗ν′n′(q) =

∫ ∞
0

dq2

∫ 2π

0
dθΦνn(q) Φ∗ν′n′(q) = δ(ν − ν ′) δnn′ , (2.7)

and

+∞∑
n=−∞

∫ +∞

−∞
dν Φνn(q) Φ∗νn(q′) =

1

2
δ(2)(q − q′) = δ

(
q2 − q′2

)
δ(θ − θ′) . (2.8)

In a conformally-invariant theory, the eigenfunctions are fixed by conformal symmetry [17],

ΦCFT
νn (q) ≡ ϕνn(q) =

1

2π
(q2)−1/2+iν einθ . (2.9)

It is easy to check that the functions ϕνn form a complete and orthonormal set of eigen-

functions. In a non conformally-invariant theory, like QCD, the form of the eigenfunctions

may differ.

In terms of the eigenfunctions and eigenvalue, the solution to eq. (2.4) takes the form,

fω(q1, q2) =

+∞∑
n=−∞

∫ +∞

−∞
dν

1

ω − ωνn
Φνn(q1) Φ∗νn(q2) . (2.10)

Indeed, we have

(K ? fω)(q1, q2) =

+∞∑
n=−∞

∫ +∞

−∞
dν

1

ω − ωνn
(K ? Φνn)(q1) Φ∗νn(q2)

=
+∞∑

n=−∞

∫ +∞

−∞
dν

ωνn
ω − ωνn

Φνn(q1) Φ∗νn(q2)

= −1

2
δ(2)(q1 − q2) + ω fω(q1, q2) ,

(2.11)

where in the last step we used the completeness relation satisfied by the eigenfunctions.

Finally, inserting eq. (2.10) into eq. (2.3), we find

f(q1, q2, y) =

+∞∑
n=−∞

∫ +∞

−∞
dν Φνn(q1) Φ∗νn(q2) ey ωνn . (2.12)

In the following we are interested in the perturbative expansion of the BFKL ladder.

The kernel of the integral equation admits the expansion,

K(q1, q2) = αµ

∞∑
l=0

αlµK
(l)(q1, q2) . (2.13)
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where αµ = NC αS(µ2)/π is the renormalised strong coupling constant evaluated at an

arbitrary scale µ2. K(0) is the leading order (LO) BFKL kernel [1–4], which leads to the

resummation of the terms of O ((αµy)n), i.e., terms at LLA, and the NLO kernel K(1) [5, 6]

resums the terms at NLLA, i.e. of O (αµ(αµy)n), and so forth. The BFKL integral operators

K(k) are defined in an obvious way. The BFKL eigenvalue and eigenfunctions also admit

an expansion in the strong coupling,

ωνn = αµ

∞∑
l=0

αlµ ω
(l)
νn and Φνn(q) =

∞∑
l=0

αlµ Φ(l)
νn(q) . (2.14)

Note that in a conformally-invariant theory the quantum corrections to the eigenfunc-

tions must vanish, and so we expect the quantum corrections to the eigenfunctions to be

proportional to the beta function. The truncated eigenvalue and eigenfunctions,

ωN
kLO

νn = αµ

k∑
l=0

αlµ ω
(l)
νn and ΦNkLO

νn (q) =
k∑
l=0

αlµ Φ(l)
νn(q) , (2.15)

are eigenvalues and eigenfunctions of the truncated BFKL integral operator,(
KNkLO ? ΦNkLO

νn

)
(q) = ωN

kLO
νn ΦNkLO

νn (q) +O(αk+1
µ ) , with KNkLO = αµ

k∑
l=0

αlµK(l) .

(2.16)

In the remainder of this note we discuss the first two terms in the expansion of the BFKL

ladder,

f(q1, q2, y) = fLL(q1, q2, ηµ) + αµ f
NLL(q1, q2, ηµ) + . . . , ηµ = αµ y . (2.17)

The LO term fLL(q1, q2, ηµ) is the BFKL ladder at LLA, and the NLO term fNLL(q1, q2, ηµ)

is the ladder at NLLA. We start by discussing the LO case in the next section, before

extending the discussion to NLO in subsequent sections.

3 The BFKL ladder at leading logarithmic accuracy

At LO the BFKL kernel is conformally-invariant (independently of the theory under con-

sideration), and thus the LO eigenfunctions are fixed to eq. (2.9). The LO eigenvalue is

given by [3, 4],

ω(0)
νn ≡ χνn = −2γE − ψ

(
|n|+ 1

2
+ iν

)
− ψ

(
|n|+ 1

2
− iν

)
, (3.1)

where γE = −Γ′(1) is the Euler-Mascheroni constant and ψ(z) = d
dz log Γ(z) is the digamma

function. We thus have

(KLO ? ϕνn)(q) = χνn ϕνn(q) . (3.2)

The LO eigenvalue is symmetric under ν → −ν. Inserting the LO eigenvalue and eigen-

functions into eq. (2.12), we find the expression for the BFKL ladder at LLA,

fLL(q1, q2, ηµ) =
+∞∑

n=−∞

∫ +∞

−∞
dν eηµ χνn ϕνn(q1)ϕ∗νn(q2) . (3.3)
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The dependence of the strong coupling on the renormalisation scale µ2 in eq. (3.3) is

immaterial, since the effect of changing the scale is NLLA, i.e., beyond the LL accuracy at

which we are working. At LLA, we can expand fLL in powers of ηµ,

fLL(q1, q2, ηµ) =
1

2
δ(2)(q1 − q2) +

1

2π
√
q2

1 q
2
2

∞∑
k=1

ηkµ
k!
fLLk (z) . (3.4)

The coefficients of the expansion depend on a single complex variable z defined by

z ≡ q̃1

q̃2
, with q̃k ≡ qxk + iqyk . (3.5)

The coefficients can then be cast in the form of a Fourier-Mellin transform,

fLLk (z) = F
[
χkνn

]
≡

+∞∑
n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν

2π
|z|2iν χkνn . (3.6)

The inverse transform is given by

F−1 [f(z)] =

∫
d2z

π
z−1−iν−n/2 z−1−iν+n/2 f(z) . (3.7)

In ref. [18] it was shown that the natural space of functions to which Fourier-Mellin trans-

forms of this type evaluate are single-valued harmonic polylogarithms (SVHPLs) [10], which

we review in the following.

Ordinary, i.e., not necessarily single-valued, harmonic polylogarithms (HPLs) [19] are

a special class of multiple polylogarithms (MPLs)1 [20, 21]. The latter are defined as the

iterated integrals,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , (3.8)

except if (a1, . . . , an) = (0, . . . , 0), in which case we define

G(0, . . . , 0︸ ︷︷ ︸
n times

; z) =
1

n!
logn z . (3.9)

The case of HPLs is recovered for ai ∈ {−1, 0, 1}. The number n of integrations is called

the weight of the MPL. MPLs are endowed with a lot of algebraic structure. In particular,

they form a shuffle algebra, which allows one to write the product of two MPLs of weight

n1 and n2 as a linear combination of MPLs of weight n1 + n2.

In general, MPLs define multi-valued functions, and the branch cut structure of a

scattering amplitude is connected to the concept of unitarity. It is however possible to

consider linear combinations of MPLs such that all discontinuities cancel and the resulting

function is single-valued. As a simple example, we can consider the linear combination,

G(a; z) ≡ G(a; z) +G(a; z) = log
(

1− z

a

)
+ log

(
1− z

a

)
= log

∣∣∣1− z

a

∣∣∣2 . (3.10)

1There is a conventional sign difference in the literature between HPLs and generic MPLs. Throughout

this paper, we strictly follow the sign convention of eq. (3.8).
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The argument of the logarithm in eq. (3.10) is positive-definite, and thus the function

is single-valued. It is possible to generalise this construction to MPLs of higher weight.

In particular, in the case where the position of the singularities ai is independent of the

variable z (which covers the case of HPLs), one can show that there is a map s which

assigns to an MPL G(~a; z) its single-valued version G(~a; z) ≡ s(G(~a; z)). Single-valued

multiple polylogarithms (SVMPLs) inherit many of the properties of ordinary MPLs. In

particular, SVMPLs form a shuffle algebra and satisfy the same holomorphic differential

equations and boundary conditions as their multi-valued analogues. There are several ways

to explicitly construct the map s, based on the Knizhnik-Zamolodchikov equation [10, 22],

the coproduct and the action of the motivic Galois group on MPLs [23–25] and the existence

of single-valued primitives of MPLs [11].

In ref. [9] a (conjectural) generating functional of the BFKL ladder was given that

allows one to express each coefficient fLLk (z) as a linear combination of SVHPLs without

singularities at z = −1. Writing

fLLk (z) =
|z|

2π |1− z|2
Fk(z) , (3.11)

we can express the first few coefficients as [9],

F1(z) = 1 ,

F2(z) = 2G1(z)− G0(z) ,

F3(z) = 6G1,1(z)− 3G0,1(z)− 3G1,0(z) + G0,0,0(z) ,

F4(z) = 24G1,1,1(z) + 4G0,0,1(z) + 6G0,1,0(z)− 12G0,1,1(z) + 4G1,0,0(z)

− 12G1,0,1(z)− 12G1,1,0(z)− G0,0,0(z) + 8 ζ3 ,

(3.12)

where we used the shorthand Ga1,...,an(z) ≡ G(a1, . . . , an; z). The conjecture of ref. [9]

implies that the functions Fk have a particularly simple form: at any loop order, the

functions Fk are pure [26]. More precisely, the Fk are conjectured to be linear combinations

of SVHPLs of uniform weight (k− 1) with singularities at most at z = 0 or z = 1, and the

coefficients of the linear combination are rational numbers (note that we consider SVHPLs

to include single-valued multiple zeta values [23]). This claim is a consequence of the proof

given in appendix A.

The purpose of this note is to extend the results of ref. [9] and to explore the analytic

structure of the BFKL ladder at NLLA. We start by deriving the correct Fourier-Mellin

representation at NLLA in terms of the NLO BFKL eigenvalue in section 4, and we develop

techniques to evaluate fNLL perturbatively in section 5.

4 The BFKL ladder at next-to-leading logarithmic accuracy

4.1 Beyond the leading order: the Chirilli-Kovchegov procedure

The NLO corrections to the BFKL kernel in QCD were obtained in ref. [5]. The corre-

sponding NLO corrections to the BFKL singlet eigenvalue were computed in ref. [5] for

n = 0 and in refs. [12, 13] for arbitrary n, albeit in the approximation that the NLO

– 7 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

eigenfunctions are identical to the LO eigenfunctions given in eq. (2.9). In other words, the

NLO corrections δνn to the BFKL eigenvalue of refs. [12, 13] are defined by the equation,

(KNLO ? ϕνn)(q) ≡ αS(q2)

(
χνn + αS(q2)

δνn
4

)
ϕνn(q) +O(α3

S(q2)) . (4.1)

The NLO corrections to the eigenvalue δνn in QCD are given in this approximation

by [5, 12, 13],

δνn = 6ζ3 −
1

2
β0 χ

2
νn + 4γ

(2)
K χνn +

i

2
β0 ∂νχνn + ∂2

νχνn (4.2)

− 2Φ(n, γ)− 2Φ(n, 1− γ)−
Γ
(

1
2 + iν

)
Γ
(

1
2 − iν

)
2iν

[
ψ

(
1

2
+ iν

)
− ψ

(
1

2
− iν

)]
×
[
δn0

(
3 +

(
1+

Nf

N3
c

)
2 + 3γ(1− γ)

(3−2γ)(1 + 2γ)

)
− δ|n|2

((
1+

Nf

N3
c

)
γ(1− γ)

2(3− 2γ)(1 + 2γ)

)]
,

with β0 the one-loop beta function and γ
(2)
K the two-loop cusp anomalous dimension for

QCD in the dimensional reduction (DRED) scheme,

β0 =
11

3
−

2Nf

3Nc
, γ

(2)
K =

1

4

(
64

9
−

10Nf

9Nc

)
− ζ2

2
. (4.3)

In eq. (4.2) we use the shorthand γ = 1/2 + iν, with Φ(n, γ) defined as,

Φ(n, γ) =

∞∑
k=0

(−1)k+1

k+γ+|n|/2

{
ψ′(k+|n|+1)− ψ′(k+1) + (−1)k+1[β′(k+|n|+1) + β′(k+1)]

− 1

k + γ + |n|/2
[ψ(k + |n|+ 1)− ψ(k + 1)]

}
, (4.4)

with

β′(z) =
1

4

[
ψ′
(

1 + z

2

)
− ψ′

(z
2

)]
. (4.5)

Note that for N = 4 SYM the eigenvalue is

δN=4
νn = 6ζ3 + 4γ

(2)N=4
K χνn + ∂2

νχνn − 2Φ(n, γ)− 2Φ(n, 1− γ) , (4.6)

with χνn defined in eq. (3.1), and γ
(2)N=4
K the two-loop cusp anomalous dimension in

N = 4 SYM,

γ
(2)N=4
K = −1

2
ζ2 . (4.7)

Equations (4.6) and (4.7) are valid in DRED which preserves supersymmetry. As N = 4

SYM is conformally invariant, the eigenfunctions are fixed to all orders by eq. (2.9),

ΦN=4
νn (q) = ϕνn(q) . (4.8)

Hence, δN=4
νn is the correct NLO BFKL eigenvalue in N = 4 SYM.

While the NLO eigenvalue in eq. (4.2) was derived under the assumption that the

eigenfunctions are the same at LO and NLO, we have seen in section 2 that the LO

– 8 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

eigenfunctions (2.9) may themselves receive higher-order corrections in a non conformally-

invariant theory, cf. eq. (2.14). In fact, the true NLO eigenvalue must be real (as the

eigenvalue of a hermitian operator) and independent of q2. δνn fails to meet either criterion:

the right-hand side of eq. (4.1) depends on q2 through the strong coupling constant and

eq. (4.2) contains the term iβ0 ∂νχνn, which is imaginary. Note that both of these issues

are absent in a conformally-invariant theory, where the strong coupling does not depend

on the scale and the beta function vanishes. In particular, the term proportional to the β

function is absent in N = 4 SYM, cf. eq.(4.6), and in that case the LO eigenfunctions are

indeed eigenfunctions of the NLO kernel.

In ref. [5], Fadin and Lipatov already hinted that one could get rid of the undesired

properties of δνn by modifying the LO eigenfunctions through the running-coupling terms.

This was made explicit by Chirilli and Kovchegov [7, 8]. In the remainder of this sec-

tion we shall review the Chirilli-Kovchegov procedure, and construct accordingly the NLO

eigenfunctions and the corresponding NLO eigenvalue for any value of n.

Our goal is to construct functions ω
(1)
νn and Φ

(1)
νn (q) such that[

KNLO ?
(
ϕνn + αµ Φ(1)

νn

)]
(q) = αµ

(
χνn + αµ ω

(1)
νn

)[
ϕνn(q) + αµ Φ(1)

νn (q)
]

+O(α3
µ) . (4.9)

We parametrise the NLO eigenvalue ω
(1)
νn in terms of δνn and an unknown function cνn as

ω(1)
νn =

δνn
4

+ cνn = i
β0

8
∂νχνn + ∆νn + cνn , (4.10)

where ∆νn collects all the terms in eq. (4.2) that are symmetric under ν → −ν, and we

expect the function ω
(1)
νn to be symmetric. Inserting the parametrisation in eq. (4.10) into

eq. (4.9) and using eq. (4.1) and the one-loop running of the strong coupling,

αS(q2) =
αS(µ2)

1 + β0

4 αS(µ2) log q2

µ2

= αµ

[
1− αµ

β0

4
log

q2

µ2
+O(α2

µ)

]
, (4.11)

we obtain (
KLO ? Φ(1)

νn

)
(q) =

(
cνn +

β0

4
χνn log

q2

µ2

)
ϕνn(q) + χνn Φ(1)

νn (q) . (4.12)

Following Chirilli and Kovchegov [7, 8], since eq. (4.12) must be satisfied for arbitrary values

of q, we must take Φ
(1)
νn proportional to ϕνn. We therefore make the following ansatz,

Φ(1)
νn (q) =

(
a0,νn + a1,νn log

q2

µ2
+ a2,νn log2 q

2

µ2

)
ϕνn(q) , (4.13)

where aj,νn for j = 0, 1, 2 are arbitrary complex coefficients. Inserting eq. (4.13) into (4.12),

one finds

a2,νn = i
β0

8

χνn
∂νχνn

,

cνn = −i a1,νn ∂νχνn + i
β0

8

χνn ∂
2
νχνn

∂νχνn
.

(4.14)
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We emphasise that the previous equations are only valid for ν 6= 0, because the denominator

has a simple pole for ν = 0, ∂νχνn|ν=0 = 0. We ‘regulate’ this singularity by interpreting

the eigenfunctions as distributions, with a principal value prescription for the pole at ν = 0,

a2,νn = i
β0

8
P

χνn
∂νχνn

,

cνn = −i a1,νn ∂νχνn + i
β0

8
P
χνn ∂

2
νχνn

∂νχνn
,

(4.15)

where the principal value is defined by∫ +∞

−∞
dν

(
P

1

ν

)
f(ν) ≡ lim

ε→0

(∫ −ε
−∞

dν

ν
f(ν) +

∫ +∞

ε

dν

ν
f(ν)

)
. (4.16)

Note that if gν is regular at ν = 0, we must have

P (gν/ν) ≡ gν P
1

ν
and Pgν ≡ gν . (4.17)

Hence, it is natural to define the principal value for a function Xν with a simple pole at

ν = 0 to be

PXν ≡ ν Xν P
1

ν
. (4.18)

Then the eigenfunctions can be written as,

Φνn(q) = ϕνn(q)

[
1 + αµ

(
a0,νn + a1,νn log

q2

µ2
+ i

β0

8
P

χνn
∂νχνn

log2 q
2

µ2

)
+O(α2

µ)

]
, (4.19)

with the coefficients a0,νn and a1,νn still to be determined. The free coefficients can be

further constrained by requiring the eigenfunctions in eq. (4.19) to form a complete and or-

thonormal set. In particular, through NLO the completeness relation for the eigenfunctions

implies that

Re[a1,νn] =
β0

8
∂νP

χνn
∂νχνn

,

2Re[a0,νn] = ∂νIm[a1,νn] .

(4.20)

Thus, after imposing the completeness relation (2.8), the NLO eigenfunction can be writ-

ten as,

Φνn(q) = ϕνn(q)

[
1 + αµ

(
1

2
∂νIm[a1,νn] + i Im[a0,νn] + i Im[a1,νn] log

q2

µ2

+
β0

8
log

q2

µ2
∂νP

χνn
∂νχνn

+ i
β0

8
log2 q

2

µ2
P

χνn
∂νχνn

)]
. (4.21)

The orthogonality condition in eq. (2.7) is now automatically fulfilled through NLO and

does not add any new constraint. Hence, the NLO eigenfunctions are determined up to

two unknown real parameters, Im[a0,νn] and Im[a1,νn], which can be absorbed through the
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freedom of defining the phase of the eigenfunctions and the translation invariance of the ν

integral. Thus, one finds the following result for the NLO eigenfunctions,

Φνn(q) = ϕνn(q)

[
1 + αµ

β0

8
log

q2

µ2

(
∂νP

χνn
∂νχνn

+ i log
q2

µ2
P

χνn
∂νχνn

)
+O(α2

µ)

]
, (4.22)

in agreement with ref. [8]. Furthermore, with this choice of eigenfunctions, the NLO

eigenvalue becomes

ω(1)
νn = ∆νn =

δνn
4
− iβ0

8
∂νχνn , (4.23)

where δνn is given in eq. (4.2). Equations (4.22) and (4.23) are the correct BFKL eigenvalue

and eigenfunction through NLO. Let us make some comments about the result. First, we

see that the eigenvalue in eq. (4.23) is the real part of δνn. Hence, the eigenvalue ∆νn

is real and independent of q2, as expected. Note that the eigenvalue is left unchanged

for N = 4 SYM, or more generally any conformally-invariant theory. Furthermore, we see

that the quantum corrections to the eigenfunction in eq. (4.22) are proportional to the beta

function, and so they vanish in a conformally-invariant theory, in agreement with eq. (2.9).

4.2 The BFKL ladder through NLLA

We now discuss the BFKL ladder through NLLA of eq. (2.12) when we use the true NLO

eigenvalue and eigenfunctions of eq. (4.22) and (4.23). We start by expanding the product

of two eigenfunctions through NLO. We have

Φνn(q1) Φ∗νn(q2)

= ϕνn(q1)ϕ∗νn(q2)

[
1 + αµ

β0

8
log

q2
1q

2
2

µ4

(
∂νP

χνn
∂νχνn

+ i log
q2

1

q2
2

P
χνn
∂νχνn

)
+O(α2

µ)

]
= ϕνn(q1)ϕ∗νn(q2)

[
1 + αµ

β0

4
log

s0

µ2
Xνn(q2

1/q
2
2) +O(α2

µ)

]
, (4.24)

where we defined

Xνn(x) = ∂νP
χνn
∂νχνn

+ i log xP
χνn
∂νχνn

, (4.25)

and the scale s0 is the geometric mean defined in eq. (2.2). Inserting the previous expression

into eq. (2.12), we find

f(q1, q2, y) =
+∞∑

n=−∞

∫ +∞

−∞
dν ey ωνn ϕνn(q1)ϕ∗νn(q2)

(
1+ αµ

β0

4
log

s0

µ2
Xνn(q2

1/q
2
2) +O(α2

µ)

)
.

(4.26)

Upon integration by parts, we have

ey ωνn ϕνn(q1)ϕ∗νn(q2) ∂νP
χνn
∂νχνn

= −ey ωνn ϕνn(q1)ϕ∗νn(q2)

(
y ∂νωνn + i log

q2
1

q2
2

)
P

χνn
∂νχνn

= ey ωνn ϕνn(q1)ϕ∗νn(q2)

(
−y αµ ∂νχνn − i log

q2
1

q2
2

+O(α2
µ)

)
P

χνn
∂νχνn

= ey ωνn ϕνn(q1)ϕ∗νn(q2)

(
−i log

q2
1

q2
2

P
χνn
∂νχνn

− y αµ χνn +O(α2
µ)

)
,

(4.27)
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and so

ey ωνn ϕνn(q1)ϕ∗νn(q2)Xνn(q2
1/q

2
2) = ey ωνn ϕνn(q1)ϕ∗νn(q2) (−y αµ χνn +O(α2

µ)) . (4.28)

Finally, we find

f(q1, q2, y) =

+∞∑
n=−∞

∫ +∞

−∞
dν ey ωνn ϕνn(q1)ϕ∗νn(q2)

(
1− α2

µ

β0

4
log

s0

µ2
y χνn +O(α3

µ)

)
.

(4.29)

The previous expression for the BFKL ladder is valid through NLLA, and it agrees with

the result of refs. [7, 8]. Through NLLA, the term proportional to the β function can be

interpreted as resetting the scale used in the strong coupling constant. Indeed, we have

exp y
[
αS(s0)χνn + αS(s0)2 ∆νn +O(α3

S)
]

= exp y

[
αµ

(
1− αµ

β0

4
log

s0

µ2

)
χνn + α2

µ ∆νn +O(α3
µ)

]
= ey ωνn

(
1− α2

µ

β0

4
log

s0

µ2
y χνn +O(α3

µ)

)
.

(4.30)

Hence, through NLLA, we can cast eq. (4.29) in the equivalent form,

f(q1, q2, y) =

+∞∑
n=−∞

∫ +∞

−∞
dν ϕνn(q1)ϕ∗νn(q2) ey αS(s0)[χνn+αS(s0)∆νn] + . . . , (4.31)

where the dots indicate terms that are beyond NLLA. In other words, if we choose the

scale of the strong coupling to be the geometric mean of the transverse momenta, µ2 =

s0 =
√
q2

1q
2
2, then we can use the LO eigenfunctions instead of the NLO ones.

5 Analytic results for the BFKL ladder at NLLA in QCD

5.1 Fourier-Mellin representation of the BFKL ladder at NLLA

In this section we obtain analytic results for the BFKL ladder at NLLA. The discussion from

the previous section implies that it is sufficient to study the case where the renormalisation

scale is set to the geometric mean of the two transverse momenta. We define

fNLL(q1, q2, ηs0) =
1

2π
√
q2

1q
2
2

∞∑
k=1

ηks0
k!

fNLLk+1 (z) , (5.1)

with ηs0 = y αS(s0). The perturbative coefficients are given by the Fourier-Mellin

transform,

fNLLk (z) = F
[
∆νn χ

k−2
νn

]
=

+∞∑
n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν

2π
|z|2iν ∆νn χ

k−2
νn . (5.2)

Our goal is to develop a strategy to evaluate the Fourier-Mellin transform in eq. (5.2). It

will be useful to split the NLO eigenvalue ∆νn into a sum of terms,

∆νn =
1

4
δ(1)
νn +

1

4
δ(2)
νn +

1

4
δ(3)
νn +

3

2
ζ3 + γ

(2)
K χνn −

1

8
β0χ

2
νn , (5.3)
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where we singled out terms proportional to powers of the LO eigenvalue, because their

Fourier-Mellin transform at any order will evaluate to the coefficients appearing in the

expansion of the BFKL ladder at LLA, cf. eq. (3.6). In QCD, the remaining terms are

given by

δ(1)
νn = ∂2

νχνn , (5.4)

δ(2)
νn =− 2Φ(n, γ)− 2Φ(n, 1− γ) , (5.5)

δ(3)
νn =−

Γ
(

1
2 + iν

)
Γ
(

1
2 − iν

)
2iν

[
ψ

(
1

2
+ iν

)
− ψ

(
1

2
− iν

)]
(5.6)

×
[
δn0

(
3 +A

2 + 3γ(1− γ)

(3− 2γ)(1 + 2γ)

)
− δ|n|2

(
A

γ(1− γ)

2(3− 2γ)(1 + 2γ)

)]
,

with

A =

(
1 +

Nf

N3
c

)
. (5.7)

The coefficients in eq. (5.2) can then be written as

fNLLk (z) =
1

4
C

(1)
k (z) +

1

4
C

(2)
k (z) +

1

4
C

(3)
k (z) +

3

2
ζ3 f

LL
k−2(z) + γ

(2)
K fLLk−1(z)− 1

8
β0 f

LL
k (z) ,

(5.8)

where we set fLL0 (z) = F [1] = π δ(2)(1 − z). The only unknowns in eq. (5.8) are the

functions C
(i)
k , which are defined by

C
(i)
k (z) = F

[
δ(i)
νn χ

k−2
νn

]
, (5.9)

with k ≥ 2. In the remainder of this section we discuss the computation of each of these

quantities in turn.

5.2 The contribution from δ
(3)
νn

We start by discussing the computation of C
(3)
k = C

(3,0)
k (z) + C

(3,2)
k (z), where C

(3,i)
k (z) is

due to the terms proportional to δ|n|i. Since the dependence of δ
(3)
νn on n is only through

Kronecker deltas, the Fourier-Mellin transform reduces to an ordinary Mellin-type integral,

C
(3)
k (z) = −

∫ +∞

−∞

dν

2π
|z|2iν

Γ(1
2 + iν)Γ(1

2 − iν)

2iν

[
ψ

(
1

2
+ iν

)
− ψ

(
1

2
− iν

)]
×
[
χk−2
ν0 A0(ν) +

(
z

z
+
z

z

)
χk−2
ν2 A2(ν)

]
,

(5.10)

with

A0(ν) = 3 + A
2 + 3γ(1− γ)

(3− 2γ)(1 + 2γ)
and A2(ν) = −A γ(1− γ)

2(3− 2γ)(1 + 2γ)
. (5.11)

The integral in eq. (5.10) can be evaluated by closing the contour in the upper half-plane

and summing up the residues at ν = i
(

1
2 +m

)
, m ∈ N. The resulting sum of residues can

always be performed using the techniques of refs. [27–29], and the result can be expressed

in terms of MPLs of the type G(a1, . . . , an; |z|), with ak ∈ {−i, 0, i}. One can check that
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these functions are single-valued functions of the complex variable z, because the functions

have no branch cut on the positive real axis.

Complex conjugation acts in a simple and natural way on this class of functions: it

leaves |z| invariant and exchanges the purely imaginary arguments. It is then natural to

decompose the functions into real and imaginary parts. For example, we can write

G(0, i; |z|)±G(0,−i; |z|) =

{
1
2G(0,−1, |z|2) ,

2iTi2(|z|) ,
(5.12)

where Tin(z) are the inverse tangent integrals,

Tin(z) = Im Lin(i z) = −ImG(~0n−1, 1; i z) = ImG(~0n−1, i; z) , (5.13)

with ~0n = (0, . . . , 0︸ ︷︷ ︸
n times

). We observe that we can always express the results for C
(3)
k in terms

of HPLs of the form G(b1, . . . , bn; |z|2), with bi ∈ {−1, 0}, and generalised inverse tangent

integrals,

Tim1,...,mk(|z|) = Im Lim1,...,mk(σ1, . . . , σk−1, i σk |z|) , σj = sign(mj) , (5.14)

where Lim1,...,mk denotes the sum representation of MPLs,

Lim1,...,mk(z1, . . . , zk) =
∑

0<n1<n2<···<nk

zn1
1 . . . znkk

nm1
1 . . . nmkk

= (−1)kG

(
0, . . . , 0︸ ︷︷ ︸
mk−1

,
1

zk
, . . . , 0, . . . , 0︸ ︷︷ ︸

m1−1

,
1

z1 . . . zk
; 1

)
.

(5.15)

The explicit results for the functions C
(3)
k in QCD are rather lengthy and are not

shown here, can be found through five loops in appendix C.3. We observe that neither of

the functions C
(3,i)
k is uniform in transcendental weight, but both C

(3,0)
k and C

(3,2)
k involve

functions of weight 0 ≤ w ≤ k.

5.3 The contribution from δ
(1)
νn

The term δ
(1)
νn is given by the second derivative of the LO eigenvalue χνn, and so the

functions C
(1)
k can be computed using the same techniques as for the BFKL ladder in LLA,

by closing the contour in the upper half of the complex ν-plane and summing the residues

of the poles of the polygamma functions. The resulting double sums can be performed

in terms of S-sums [27, 28]. As a result, we find that C
(1)
k can be expressed in terms of

SVHPLs with singularities at most for z = 0 and z = 1, just like at LLA. In the following we

describe an alternative method for computing the functions C
(1)
k , which can be generalised

to more general functions, in particular C
(2)
k .

The Fourier-Mellin transform maps ordinary products into convolutions,

F [AνnBνn] = F [Aνn] ∗ F [Bνn] , (5.16)
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where the convolution product is defined by

(f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
. (5.17)

We can use eq. (5.16) to obtain a recursion in the number of loops for the perturbative

coefficients [25],

C
(1)
k+1(z) =

(
X ∗ C(1)

k

)
(z) , (5.18)

with k ≥ 2, and where we defined

X (z) ≡ F [χνn] = fLL1 (z) =
|z|

2π |1− z|2
. (5.19)

The starting point of the recursion is the two-loop coefficient. In order to compute it, we

start by noting that

F [∂νAνn] = −iF [Aνn] log |z|2 = −iF [Aνn] G0(z) . (5.20)

Hence, we find

C
(1)
2 (z) = F

[
∂2
νχνn

]
= −X (x) log2 |z|2 = − |z|

π |1− z|2
G0,0(z) . (5.21)

Next, we can increase the loop number by convoluting with X (z), and the convolution

integral can always be reduced to a sum over residues. Indeed, consider a single-valued

function f(z) with isolated singularities at z = ai and z = ∞. Close to any of these

singularities, f can be expanded into a series of the form,

f(z) =
∑
k,m,n

caik,m,n logk
∣∣∣∣1− z

ai

∣∣∣∣2 (z − ai)m (z − āi)n , z → ai ,

f(z) =
∑
k,m,n

c∞k,m,n logk
1

|z|2
1

zm
1

zn
, z →∞ .

(5.22)

The holomorphic residue of f at the point z = a is then defined as the coefficient of the

simple holomorphic pole without logarithmic singularities,

Resz=af(z) ≡ ca0,−1,0 . (5.23)

Antiholomorphic residues Resz̄=āf(z) are defined in a similar manner.

In ref. [30] it was shown that the integral of f over the whole complex plane, if it

exists, can be computed in terms of holomorphic residues. More precisely, if F is an

antiholomorphic primitive of f , ∂̄zF = f , then∫
d2z

π
f(z) = Resz=∞F (z)−

∑
i

Resz=aiF (z) . (5.24)

This result is essentially an application of Stokes’ theorem to the punctured complex plane.
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Since X and C
(1)
2 only have isolated singularities at z = 0 and z = 1, we can perform all

convolution integrals in terms of holomorphic residues. We have computed the functions

C
(1)
k for k ≤ 5. The results are presented in appendix C.1. We observe that, up to an

overall algebraic prefactor, the functions C
(1)
k in eq. (C.2) are pure functions of weight k.

In appendix A we show that this feature is true at any loop order: C
(1)
k can be expressed

as a linear combination of uniform weight k of SVHPLs with singularities at most at z = 0

and z = 1.

5.4 The contribution from δ
(2)
νn

We now apply the convolution-based technique from the previous section to the computa-

tion of C
(2)
k . Unlike δ

(1)
νn , the contribution from δ

(2)
νn cannot be related to the LO eigenvalue.

The start of the loop recursion is the two-loop result, which we compute by closing the

contour in the complex ν-plane and summing residues. We find

C
(2)
2 (z) = F

[
δ(2)
νn

]
= C

(2,1)
2 (z) + C

(2,2)
2 (z) , (5.25)

with

C
(2,1)
2 (z) =

|z| (z − z)

2π |1 + z|2|1− z|2
[G1,0(z)− G0,1(z)] ,

C
(2,2)
2 (z) =

|z| (1− |z|2)

2π |1 + z|2|1− z|2
[
G1,0(z) + G0,1(z)−G−1,0

(
|z|2
)
− ζ2

]
.

(5.26)

We see that the contribution from δ
(2)
νn is not only very different from the contribution of

δ
(1)
νn in moment space, but also the analytic structure of the Fourier-Mellin transform is

very different. First, we see that unlike C
(1)
2 , C

(2)
2 is not a pure function (up to an overall

rational prefactor), but it is the sum of two pure functions C
(2,1)
2 and C

(2,2)
2 appearing with

different rational prefactors. Second, we see that C
(2)
2 has a different analytic structure,

with singularities at z = −1. While C
(2,1)
2 is a linear combination of SVHPLs with sin-

gularities at most at z = 0 and z = 1, C
(2,2)
2 is expressed in terms of both SVHPLs and

ordinary HPLs evaluated at |z|2. We note that C
(2,2)
2 is still single-valued as a function of

the complex variable z, because the argument of G−1,0

(
|z|2
)

is positive-definite and the

function has no branch cut on the positive real axis. In the next section we review the

generalised SVMPLs introduced by Schnetz, which allow us to extend the technique used

for the computation of C
(1)
k (z) to the functions C

(2)
k (z).

5.4.1 Generalised SVMPLs

Since the two-loop result in eq. (5.26) is single-valued, all the convolutions resulting from the

loop recursion will also be single-valued at any loop order. Hence, we would like to perform

the convolution integrals in terms of residues using Stokes’ theorem. The single-valued

polylogarithms in eq. (5.26), however, do not all fall into the class of SVMPLs studied

in refs. [10, 22], because the holomorphic derivative involves non-holomorphic rational

functions, e.g.,

∂zG−1

(
|z|2
)

=
1

z + 1/z
. (5.27)
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A detailed understanding of the functions and their properties is needed for the computation

of the holomorphic residues and the antiholomorphic primitives.

In ref. [11] Schnetz defined a more general class of single-valued multiple polylogarithms

in one complex variable with singularities at

z =
α z + β

γ z + δ
, α, β, γ, δ ∈ C . (5.28)

These functions obviously reduce to the SVMPLs of refs. [10, 22] in the case where the

singularities are at constant locations. Since eq. (5.27) has a singularity at z = −1/z, we

expect that the coefficients C(2,1)
k can be expressed in terms of Schnetz’ generalised SVMPLs

(gSVMPLs). In the following we show that that is indeed the case.

We start by reviewing the definition and the construction of gSVMPLs [11]. Consider

a set of functions G (a1, . . . , an; z) defined by the following conditions,

1. The functions G (a1, . . . , an; z) are single-valued.

2. They form a shuffle algebra.

3. They satisfy the holomorphic differential equation,

∂zG (a1, . . . , an; z) =
1

z − a1
G (a2, . . . , an; z) . (5.29)

4. They vanish for z = 0, except if all ai are 0, in which case we have

G (0, . . . , 0︸ ︷︷ ︸
n times

; z) =
1

n!
logn |z|2 . (5.30)

5. The singularities in eq. (5.29) are antiholomorphic functions of z of the form,

ai =
α z + β

γ z + δ
, for some α, β, γ, δ ∈ C . (5.31)

In ref. [11] it is shown that these conditions uniquely define the functions G (a1, . . . , an; z).

Every linear combination f of such functions with singularities at most for z = ai, with

ai defined in eq. (5.31), has both a single-valued holomorphic and antiholomorphic primi-

tive [11], i.e., there are single-valued functions F1 and F2 such that

∂zF1 = f = ∂zF2 . (5.32)

If we denote a single-valued holomorphic (antiholomorphic) primitive of f by
∫
SV dz f

(
∫
SV dz f), then it agrees with any ordinary (i.e., not necessarily single-valued) holomorphic

primitive up to an arbitrary antiholomorphic function, e.g.,∫
SV

dz f = δ(z) +

∫
dz f . (5.33)

In particular, any two single-valued holomorphic primitives must agree up to an antiholo-

morphic rational function.
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Figure 1. Commutative diagrams of ref. [11] illustrating the computation of the single-valued

primitive.

A single-valued primitive F can be computed in an algorithmic way using the commuta-

tive diagram of figure 1 [11], where π0 (or π̄0) denotes the projection onto the corresponding

function with no holomorphic (or antiholomorphic) residues,

π0 : f 7→ f −
∑
z0∈C

Resz=z0f

z − z0
,

π̄0 : f 7→ f −
∑
z0∈C

Resz=z0f

z − z0
,

(5.34)

where the sum runs over all the poles of f .

More concretely, assume that we want to compute the single-valued holomorphic prim-

itive F of a single-valued function f = ∂zF of weight n. The commutativity of the diagram

in figure 1 implies that any single-valued holomorphic primitive can be expressed as a

single-valued antiholomorphic primitive. Let us define,

F1(z, z) =

∫
dz π0(∂zF (z, z)) and F 2(z, z) =

∫
dz π̄0(∂zF (z, z)) . (5.35)

Note that the diagram in figure 1 implies that F1 and F 2 can be computed explicitly if we

assume recursively how to compute single-valued primitives of lower weight. It is clear that

these functions must equal the single-valued primitive up to an (anti)holomorphic function,

F (z, z) = F1(z, z) + δ1(z) = F 2(z, z) + δ2(z) . (5.36)

From this, one can see that

F1(z, z)− F 2(z, z) = δ2(z)− δ1(z) , (5.37)

and so we can determine δ1 and δ2 up to a constant from F1 and F 2. The single-valued
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primitive of f is then recovered by adding back the residues,

F = δ(z) +

∫
SV

dz f

= δ(z) +

∫
SV

dz π0(f) +
∑
z0∈C

Resz=z0f

∫
SV

dz

z − z0

= δ(z) +

∫
SV

dz π0(f) +
∑
z0∈C

Resz=z0f G (z0; z) ,

(5.38)

where δ(z) is any antiholomorphic rational function.

In our case we need to consider gSVMPLs with ai ∈ {−1, 0, 1,−1/z}. One can use

the existence of the single-valued primitive and the commutative diagram of figure 1 to

explicitly construct a basis for the gSVMPLs [11]. Assume that we have constructed all

gSVMPLs up to weight n. Equation (5.29) implies that gSVMPLs of weight n+ 1 can be

obtained by computing single-valued holomorphic primitives. The primitive is only defined

up to an arbitrary constant, which can be fixed from eq. (5.30). Note that the algebra

generated by these gSVMPLs contains two natural subalgebras,

1. If ai 6= −1/z, then the gSVMPL reduces to an ordinary SVMPL,

G (a1, . . . , an; z) = G(a1, . . . , an; z) , if ai ∈ {−1, 0, 1} . (5.39)

2. If ai 6= ±1, then the gSVMPL reduces to an ordinary HPL evaluated at |z|2,

G (a1, . . . , an; z) = G(z a1, . . . , z an; |z|2) , if ai ∈ {0,−1/z} . (5.40)

These subalgebras cover the class of functions encountered in eq. (5.26). As we will see, at

higher loops we obtain functions that cannot be reduced to these two subalgebras.

Let us illustrate the construction of the gSVMPLs on the example of the function

F (z, z) = G−1/z,1(z), where we introduce the same shorthand notation as for SVMPLs.

Equation (5.29) implies that F satisfies the holomorphic differential equation,

∂zF (z, z) = ∂zG−1/z,1(z) =
1

z + 1/z
G1(z) =

1

z + 1/z
G1(z) ≡ f(z, z) . (5.41)

The initial condition is given by the requirement that F vanishes at the origin. Our goal is

thus to compute the holomorphic single-valued primitive of f that vanishes at the origin.

Clearly, the denominator in eq. (5.41) never vanishes. Hence, f is free of poles, and so

π0(f) = f . We start by computing a non single-valued holomorphic primitive of f ,

F1(z, z) =

∫ z

0

dt

t+ 1/z
G1(t) = G1(z)G−1/z(z) +G−1/z,1(z) . (5.42)

Then there is a antiholomorphic function δ1 such that

F (z, z) = F1(z, z) + δ1(z) . (5.43)
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This completes the evaluation of one branch of the commutative diagram in figure 1. The

value of δ1 is at this point undetermined.

Next, let us compute the antiholomorphic derivative of f ,

∂zf(z, z) =
1

(1 + |z|2)2
G1(z) +

1

(z − 1) (z + 1/z)
. (5.44)

All the terms in ∂zf have either lower weight or poles of higher order. Using partial

fractioning, we can compute the holomorphic single-valued primitive of ∂zf

F
′
2(z, z) =

∫
SV

dz ∂zf(z, z̄)

=
1

z + 1/z
G1(z)− 1

z
G−1/z(z) +

1

z − 1
G−1/z(z) +

1

z + 1
[G−1/z(z)− G1(z)] .

(5.45)

F
′
2 has antiholomorphic poles at z = 0 and z = ±1. The residue at z = 0 vanishes, while

Resz=±1F
′
2(z, z) = ± log 2 . (5.46)

Hence we have

π0(F
′
2(z, z)) =

1

z + 1/z
G1(z)− 1

z
G−1/z(z) +

1

z − 1
[G−1/z(z)− log 2]

+
1

z + 1
[G−1/z(z)− G1(z) + log 2] .

(5.47)

An ordinary antiholomorphic primitive of this expression is easily obtained,

F 2(z, z) =

∫ z

0
dt̄ π0(F

′
2(z, t̄))

= G1(z)G−1/z(z) +G−1/z,1(z)−G−1,1(z) + log 2G−1(z)− log 2G1(z) .

(5.48)

Then there is a holomorphic function δ2 such that

F (z, z) = F 2(z, z) + δ2(z) . (5.49)

This completes the evaluation of second branch of the commutative diagram in figure 1.

The value of δ2 is at this point undetermined.

The values of δ1 and δ2 can be determined by comparing eq. (5.43) and (5.49). We find,

δ1(z)− δ2(z) = F 2(z, z)− F1(z, z) = −G−1,1(z) + log 2G−1(z)− log 2G1(z) , (5.50)

and so

δ1(z) = −G−1,1(z) + log 2G−1(z)− log 2G1(z) + a ,

δ2(z) = a ,
(5.51)

for some constant a ∈ C. The value of a is fixed by requiring F to vanish at the origin,

and we find a = 0. Hence,

F (z, z) = G−1/z,1(z) = G1(z)G−1/z(z)+G−1/z,1(z)−G−1,1(z)+ log 2G−1(z)− log 2G1(z) .

(5.52)

We have applied the previous algorithm to the construction of all gSVMPLs with ai ∈
{−1, 0, 1,−1/z} up to weight five. The results are shown in appendix B up to weight three.
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5.4.2 The contribution from C
(2)
k

Let us now return to the computation of the coefficients C
(2)
k . We start by writing the

two-loop coefficient of eq. (5.26) in terms of gSVMPLs,

C
(2)
k (z) = C

(2,1)
k (z) + C

(2,2)
k (z) , (5.53)

with

C
(2,1)
2 (z) =

|z| (z − z)

2π |1 + z|2|1− z|2
[G1,0(z)− G0,1(z)] ,

C
(2,2)
2 (z) =

|z| (1− |z|2)

2π |1 + z|2|1− z|2
[
G0,1(z) + G1,0(z)− 2G−1/z,0(z)− ζ2

]
.

(5.54)

Higher loop results can then be obtained from the recursion in the number of loops,

C
(2)
k+1(z) =

(
X ∗ C(2)

k

)
(z) . (5.55)

Since 1 + |z|2 is never zero, all singularities of the integrand in the convolution integral are

isolated, and so we can use Stokes theorem to reduce the convolution integral to a sum over

residues of the single-valued antiholomorphic primitive. The single-valued antiholomorphic

primitive can be computed using the algorithm outlined in the previous section. We thus

obtain an effective way to obtain higher loop results in terms of gSVMPLs. Results through

weight five are collected in appendix C.2. We observe that we can write the results in

the form,

C
(2)
k (z) =

|z| (z − z)

2π |1 + z|2|1− z|2
C(2,1)
k +

|z| (1− |z|2)

2π |1 + z|2|1− z|2
C(2,2)
k , (5.56)

where the functions C(2,i)
k have uniform weight k. It follows from the argument in ap-

pendix A that this structure holds at any loop order. Finally, we note that at two and

three loops, the results can be expressed in terms of SVHPLs and ordinary HPLs evalu-

ated at |z|2. Starting from four loops, we obtain genuine gSVMPLs that can no longer be

expressed in terms of HPLs.

6 Transcendental weight properties of the BFKL ladder at NLLA

6.1 Transcendental weight of the BFKL ladder in QCD

In the previous section we have determined the BFKL ladder at NLLA in QCD through five

loops in momentum space. We have observed that the full result involves polylogarithms

of different weight. More precisely, the BFKL ladder at NLLA in QCD at k loops in

momentum space involves functions of weights up to k, and so the QCD result is not a

maximal weight function, as expected. This matches the corresponding analysis in moment

space [12–14], where it was observed that the anomalous dimensions of the leading-twist

operators which control the Bjorken scaling violations in N = 4 SYM have a uniform and

maximal transcendental weight in moment space which matches the maximal weight part
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of the corresponding anomalous dimensions in QCD. The goal of this section is to extend

the analysis of the transcendental weight from moment to momentum space. We start by

analysing the BFKL ladder at NLLA in QCD and we identify the terms which contribute

to the maximal weight part, before extending the analysis to more general SU(Nc) gauge

theories in subsequent sections.

In order to understand the transcendental weight properties of the QCD result, we

start from eq. (5.8) and we classify the contributions which give rise to functions of weight

k in momentum space. Using the results of appendix A, we can show that the functions

fLLk and C
(i)
k for i ∈ {1, 2} have uniform weight k−1 and k respectively. Hence, we see that

terms of weight strictly less than k arise in eq. (5.8) only in a limited number of places:

1. The term β0 f
LL
k (z) involving the beta function has weight k− 1, and so it is always

of lower weight.

2. The contribution from the cusp anomalous dimension in eq. (5.8), γ
(2)
K fLLk−1(z), in-

volves a mixture of weights k−2 ≤ w ≤ k. Lower weight terms arise entirely because

the cusp anomalous dimension in QCD is not of maximal weight.

3. Using the explicit results through five loops of section 5.2, we see that in QCD the

functions C
(3)
k involve terms of weight 0 ≤ w ≤ k.

Let us compare our analysis in momentum space to the corresponding analysis in

moment space of refs. [12–14], and let us compare the QCD result to the corresponding

result in N = 4 SYM. The analysis of the terms involving the beta function and the cusp

anomalous dimension is identical in moment and momentum space. The contribution from

C
(3)
k , however, is substantially different in QCD and N = 4 SYM, because it vanishes

in the maximally supersymmetric Yang-Mills theory [12] (cf. eq. (4.2) and (4.6)). Since

C
(3)
k contains terms of weight k, we conclude that, unlike for the analysis of anomalous

dimensions in moment space, the BFKL ladder in momentum space at NLLA in N = 4

SYM is not equal to the maximal weight terms in QCD. This prompts the question if there

is any other theory which agrees with the maximal weight part of the BFKL ladder in

QCD order by order in the perturbative expansion. This question will be analysed in the

next section.

6.2 The BFKL ladder in generic gauge theories

We study the transcendental weight properties of the BFKL ladder at NLLA in a generic

SU(Nc) gauge theory with scalar or fermionic matter in arbitrary representations. Our

starting point is the BFKL eigenvalue at NLO in a generic theory [12]. Inspired by eq. (5.8),

we write the BFKL eigenvalue in a generic theory as

∆νn =
1

4
δ(1)
νn +

1

4
δ(2)
νn +

1

4
δ(3)
νn (Ñf , Ñs) +

3

2
ζ3 + γ(2)(ñf , ñs)χνn −

1

8
β0(ñf , ñs)χ

2
νn . (6.1)

The quantities δ
(1)
νn and δ

(2)
νn are independent of the theory under consideration, and so

they are the same as in QCD [12], i.e., they are given by eq. (5.4) and eq. (5.5). The
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one-loop beta function and the two-loop cusp anomalous dimension depend on the details

of the theory only through one-loop corrections to the gluon propagator, and so they are

independent of the details of the theory (e.g., Yukawa couplings or the scalar potential).

In DRED, they are given by

β0(ñf , ñs) =
11

3
−

2ñf
3Nc

− ñs
6Nc

,

γ(2)(ñf , ñs) =
1

4

(
64

9
−

10 ñf
9Nc

− 4 ñs
9Nc

)
− ζ2

2
,

(6.2)

where we defined

ñf =
∑
R

nRf TR and ñs =
∑
R

nRs TR , (6.3)

where the sum runs over all irreducible representations R of SU(Nc), and nRf and nRs de-

note the number of Weyl fermions and real scalars transforming in the representation R.

The index TR of the representation is defined through Tr(T aRT
b
R) = TR δ

ab, with T aR the

infinitesimal generators of the representation R. We fix the normalisation of the structure

constants of SU(Nc) such that for the fundamental representation TF = 1/2. The contri-

bution from δ
(3)
νn comes from (scalar) QED-type diagrams [12], and it is determined entirely

by the matter content of the theory. We find

δ(3)
νn (Ñf , Ñs) = δ(3,1)

νn (Ñf , Ñs) + δ(3,2)
νn (Ñf , Ñs) , (6.4)

with

Ñx =
1

2

∑
R

nRx TR (2CR −Nc) , x = f, s , (6.5)

and CR is the quadratic Casimir of the representation R. The functions δ
(3,i)
νn are given by

δ(3,1)
νn (Ñf , Ñs) =

f(γ)

8

[
δn0

(
2Ñs + 12Ñf − 30N2

c

)
+ δ|n|2

(
N2
c − 2Ñf + Ñs

)]
,

δ(3,2)
νn (Ñf , Ñs) =

f(γ)

8

[
(3δ|n|2 − 2δn0)(2γ − 1)

2(2γ − 3)(2γ + 1)

(
N2
c − 2Ñf + Ñs

)]
,

(6.6)

with γ = 1
2 + iν and

f(γ) =
1

4π2(1− 2γ)
Γ(1− γ)Γ(γ)

[
ψ(1− γ)− ψ(γ)

]
. (6.7)

We have checked by explicit computations through five loops that the Fourier-Mellin trans-

forms of the type F
[
δ

(3,1)
νn χkνn

]
give rise to functions of uniform weight k + 2, while the

remaining contributions from δ
(3,2)
νn only produce lower weight terms. While we currently

have no proof that this statement holds at arbitrary loop orders, we believe that our explicit

results through five loops provide compelling evidence that this is indeed the case.

In a theory where the gauge group is minimally coupled to matter, the BFKL eigenvalue

at NLLA is determined entirely by the gauge group and matter content of the theory [12],

but it is independent of the details of the other interactions in the theory (e.g., the Yukawa
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couplings between the fermions and the scalar). As a consequence, we can repeat the

analysis of the transcendental weight properties for generic gauge theories as a function

of the fermionic and scalar matter content of the theory. Following our analysis in QCD

in the previous section, a set of necessary and sufficient conditions for a theory to have a

BFKL ladder at NLLA of uniform transcendental weight in momentum space are:

1. The one-loop beta function vanishes, i.e., we have

11

3
−

2ñf
3Nc

− ñs
6Nc

= 0 . (6.8)

2. The two-loop cusp anomalous dimension is proportional to ζ2. In DRED, this implies

the following constraint on the matter content,

16

9
−

5 ñf
18Nc

− ñs
9Nc

= 0 . (6.9)

3. The contribution from δ
(3,2)
νn vanishes, which implies

2Ñf = N2
c + Ñs . (6.10)

We interpret eq. (6.8), (6.9) and (6.10) as a set of conditions on the matter content of

a theory for the BFKL ladder at NLLA to have maximal weight. Before we solve the

constraints in the next section in the case of adjoint and fundamental matter, we make the

following observation which is independent of the representations of the matter fields. If

eq. (6.10) is satisfied, then the term proportional to δ|n|2 is absent from δ
(3,1)
νn ,

δ(3,1)
νn (Ñf , 2Ñf −N2

c ) = 2f(γ) δn0

(
Ñf − 2N2

c

)
. (6.11)

As the missing terms evaluate to terms of maximal weight, we are led to conclude that

there is no theory such that the BFKL ladder at NLLA has uniform and maximal weight

and agrees with the maximal weight terms in QCD.

6.3 Theories with adjoint and fundamental matter

In this section we study the conditions in eq. (6.8), (6.9) and (6.10) in the case of theories

with matter only in the fundamental and adjoint representations. The indices and Casimir

operators of the adjoint and fundamental representations are

TA = CA = Nc and CF = TF
N2
c − 1

Nc
. (6.12)

We can then write

ñx = TAn
A
x + TF n

F
x and Ñx =

1

2
TA (2CA −Nc)n

A
x +

1

2
TF (2CF −Nc)n

F
x , x = s, f .

(6.13)
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In the following we only look for solutions to the constraints in eq. (6.8), (6.9) and (6.10)

that are valid for an arbitrary number Nc of colours.2 Inserting eq. (6.13) into eq. (6.10),

we find

TF (2CF −Nc)n
F
f +N2

c n
A
f = N2

c +
1

2
N2
c n

A
s +

1

2
TF (2CF −Nc)n

F
s . (6.14)

Since we are looking for solutions that are valid for an arbitrary number of colours, we

find a relation between the number of fermions and scalars in the adjoint and fundamental

representations,

2nFf = nFs and 2nAf = 2 + nAs . (6.15)

Inserting this solution into the constraints (6.8) and (6.9), we see that the number of

fermions in the adjoint and fundamental representations must be related by

4− nAf − TF
nFf
Nc

= 0 . (6.16)

The relations (6.15) and (6.16) are necessary conditions for a gauge theory to have a BFKL

ladder at NLLA of uniform and maximal transcendental weight.

At this point we observe that eq. (6.15) describes the spectrum of a gauge theory with

N supersymmetries and nF ≡ nFf chiral multiplets3 in the fundamental representation

and nA ≡ nAf −N chiral multiplets in the adjoint representation. Indeed, in terms of the

parameters N , nF and nA, eq. (6.15) can be cast in the form,

nAf = N + nA ,

nFf = nF ,

nAs = 2(N − 1) + 2nA ,

nFs = 2nF .

(6.17)

We stress that our analysis can only constrain the scalar and fermionic matter of the theory,

and it is insensitive to other aspects like supersymmetry. As a consequence, classifying the

matter content in terms of supersymmetric multiplets is at this point merely a matter of

convenience, and any theory with the same fermionic and scalar matter content would

equally well solve the constraints, independently of supersymmetry.

We can insert eq. (6.17) into eq. (6.16), and obtain the equation,

nA +
nF
2Nc

+N = 4 . (6.18)

This equation has only four positive integer solutions which are shown in table 1. For these

theories, the BFKL eigenvalue at NLO takes the form,

∆νn =
1

4
δ(1)
νn +

1

4
δ(2)
νn +

3

2
ζ3 +

ζ2

2
χνn + f(γ) (N2

c + 1) (nAf − 4) δn0 . (6.19)

2We have also searched for other solutions by varying the parameters Nc, n
F
f , nFs , nAf and nAs inde-

pendently between 0 and 35, and we have not found any other solutions than those described here. We

therefore conjecture that these are the only solutions.
3We consider chiral multiplets in N = 1 supersymmetry, consisting of a Weyl fermion and two real scalar

on-shell degrees of freedom.
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N 4 2 1 1

nA 0 0 0 2

nF 0 4Nc 6Nc 2Nc

Table 1. The four solutions to the constraints in eq. (6.17) into eq. (6.8) and (6.9).

It is easy to see that theories with (N , nA, nF ) = (4, 0, 0) have the same field content as N =

4 SYM, and so N = 4 SYM satisfies all the constraints, as expected. Similarly, theories

with (N , nA, nF ) = (2, 0, 4Nc) have the same field content as N = 2 superconformal QCD

with Nf = 2Nc hypermultiplets [31]. The remaining theories have the field content of

an N = 1 theory. We observe that (N , nA, nF ) = (1, 0, 6Nc) corresponds to the matter

content of N = 1 super-QCD. Moreover, the matter content is such that the theory is at the

upper end of the conformal window [32]. Note that the lower end of the conformal window,

corresponding to (N , nA, nF ) = (1, 0, 3Nc), does not solve our constraints for uniform and

maximal transcendental weight. We currently do not have any interpretation of the second

N = 1 solution as a superconformal theory.

6.4 Discussion

In the previous sections we have derived a set of conditions on the matter content of a

gauge theory so that the BFKL ladder at NLLA is a function of uniform transcendental

weight in momentum space. In this section we discuss some implications of our analysis.

Our analysis is valid only for a specific gauge-theory correlator, namely the BFKL

ladder at NLLA, and so we can strictly speaking not make any statement about generic

scattering amplitudes or correlations functions. In other words, we cannot exclude that

there are theories that do not fulfil the criteria of the previous sections, but where all the

scattering amplitudes or other correlators are functions of uniform and maximal weight.

However, we deem it unnatural that the same mechanism which would make scattering

amplitudes and correlation functions have uniform weight would fail for the BFKL ladder.

We therefore expect that the conditions derived in the previous section are more generally

necessary conditions for a theory to have the property of maximal transcendental weight

similar to the N = 4 SYM theory.

The analysis of the previous section shows that the theories with the maximal weight

property have a highly constrained matter content. We find it intriguing that in all cases

the field content can be arranged into supersymmetric multiplets, although supersymmetry

was not an input to our analysis. The different choices for the matter content that solve all

the constraints, arranged into supersymmetric multiplets, is shown in table 1. Note that

we cannot distinguish, e.g., an N = 2 theory from an N = 1 theory with additional chiral

multiplets in the adjoint representation. Moreover, we find that the vanishing of the beta

function is not independent from the other constraints, but eq. (6.9) and (6.10) alone are

sufficient to find all the solutions in table 1, and all of these solutions have a vanishing

one-loop beta function. The N = 4 and N = 2 solutions are known to be superconformal,

while one of the N = 1 solutions in table 1 has a matter content that puts it right at

the edge of the conformal window of N = 1 super-QCD. We currently ignore if there is a

– 26 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

superconformal theory that matches the second N = 1 solution, but if there is, this may

point to the intriguing possibility of a connection between the maximal weight property

and superconformal symmetry.

We stress that our results are a necessary condition for a theory to have the property

of maximal weight. Indeed, even if the BFKL ladder is of uniform and maximal weight,

this may not be the case for other quantities in the same theory. It is therefore interesting

to analyse the theories that we have identified further. We have checked that all theories

with a matter content as in table 1 give rise to one-loop amplitudes with maximal tran-

scendental weight [33–36]. The same conclusion holds for the single-emission soft gluon

current through two loops [37–39] in all of these theories. The cusp anomalous dimension

and the beta function are known to three [16, 40–42] and five loops [43–49] respectively.

These quantities, however, depend on the details of the theory under consideration (e.g.,

Yukawa and scalar couplings), and so it is hard to make generic statements only based on

the matter content of the theory. It would be interesting to confront the theories described

in table 1 to explicit computations, in order to further constrain the space of possible max-

imal weight theories. For example, it is known that the four-point two-loop amplitude in

N = 2 superconformal QCD (SCQCD) does not have maximal weight [50–52], which rules

out N = 2 SCQCD as a candidate for a maximal weight theory like N = 4 SYM.

We conclude this section by commenting on possible shortcomings of our analysis.

First, our results only hold for SU(Nc) gauge theories in four dimensions with additional

scalar or fermionic matter in the adjoint or fundamental representations. It would be

interesting to repeat the analysis of sections 6.2 and 6.3 for matter transforming in other

irreducible representations of SU(Nc). Second, since our analysis relies on the BFKL ladder,

the conclusions are only valid for theories where the gauge bosons are minimally coupled to

the matter. Indeed, if additional (higher-dimensional) operators are present in the theory,

they may alter the high-energy behaviour of the theory, and therefore the BFKL ladder,

which would invalidate our analysis.

7 Concluding remarks

In this paper, we have addressed three questions related to the NLO corrections to the

eigenvalue of the BFKL equation. Firstly, we have noted that the NLO corrections to the

eigenfunctions computed by Chirilli and Kovchegov can be made to vanish by taking the

scale of the coupling to be the geometric mean of the transverse momenta at the ends

of the BFKL ladder. Secondly, we have found the functions which describe the analytic

structure of the BFKL ladder at NLLA. These are the gSVMPLs recently introduced by

Schnetz [11], and we have developed techniques to evaluate the BFKL ladder at NLLA

to high loop order. Finally, using the freedom in defining the matter content of the NLO

BFKL eigenvalue, we have proven that there is no gauge theory of uniform and maximal

transcendental weight such that in momentum space it matches the maximal weight part

of QCD. However, we have identified a set of conditions which allow us to constrain the

field content of theories for which the BFKL ladder has maximal weight.
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Let us comment on potential ramifications of our work. First, we have only been

concerned with the study of formal analytic properties of the BFKL ladder at NLLA. It

would be interesting to investigate potential phenomenological applications of our results.

Second, it is natural to ask if or how some of the properties of the BFKL ladder that

we have studied manifest themselves also beyond NLLA. A study of the BFKL ladder

beyond NLLA, however, is yet to be undertaken. The keystone of the BFKL theory is

the gluon Reggeisation at leading logarithmic [53, 54] and NLL [55–59] accuracy. This

entails the multi-Regge pole structure of (the real part of) the QCD amplitudes in multi-

Regge kinematics and the Regge factorisation of those amplitudes. We already know that

the Regge factorisation is broken at NNLO accuracy [60]. The violation can be explained

through the infrared structure of massless gauge theories by showing that the real part of the

amplitudes becomes non-diagonal in the t-channel-exchange basis [61, 62]. Accordingly, it

can be predicted how the violation propagates to higher loops, and the three-loop prediction

for the violation [63, 64] has been confirmed by the explicit computation of the three-loop

four-point function of N = 4 SYM [65]. In the Regge theory, that violation is due to the

contribution of the three-Reggeised-gluon exchange [66, 67]. Thus, it is conceivable that the

violations of the BFKL-ladder structure can be computed and kept under control, allowing a

study of the BFKL ladder beyond NLLA, which would likely provide more analytic tools to

examine the behaviour of QCD and of massless gauge theories, and thereby help to unravel

even more the fascinating mathematical structure underlying gauge theory amplitudes.
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A Pure functions from convolutions

In this appendix we present the proof that the functions fLLk , C
(1)
k and C

(2)
k have uniform

weight at any loop order. We first prove the following result: assume that we have a

function aνn in moment space whose Fourier-Mellin transform evaluates to an expression

of the form,

F [aνn] =
|z|A(z)

(z − b)(z − c)
, (A.1)

where A(z) is a single-valued pure function of weight k, and b and c are complex numbers.

We wish to show that F [aνnχνn] consists of a single-valued pure function of weight k + 1
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multiplied by the same rational prefactor. Using the convolution product, we find

F [aνnχνn] = F [aνn] ∗ F [χνn]

=

∫
d2ω

|z|A(ω)

(ω − b)(ω − c)(ω − z)(ω − z)

=
|z|

(z − b)(z − c)

∫
d2ω

(
1

ω − z
− 1

ω − b

)(
1

ω − z
− 1

ω − c

)
A(ω) .

(A.2)

We can solve this integral in terms of residues as described in section 5.3. We start by

computing the single-valued primitive,∫
SV

dω

(
1

ω − z
− 1

ω − c

)
A(ω) ≡ Ã(ω) . (A.3)

Since A(ω) is assumed to be a pure function of weight k, Ã(ω) is a pure function of weight

k + 1. The holomorphic residues are

F [aνnχνn] =
|z|

(z − b)(z − c)

(
Resω=b

Ã(ω)

ω − b
− Resω=z

Ã(ω)

ω − z

)

=
|z|

(z − b)(z − c)

(
Regω=bÃ(ω)− Regω=zÃ(ω)

)
,

(A.4)

where Regω=aÃ(ω) denotes the shuffle-regulated value of Ã(ω) at the point ω = a, defined

as follows: since Ã has weight k + 1, close to every point ω = a it admits an expansion of

the type,

Ã(ω) =
k+1∑
i=0

logi
∣∣∣1− ω

a

∣∣∣2 Ã(i)(ω) , (A.5)

where the functions Ã(i) are analytic at ω = a, i.e., they admit a Taylor expansion in a

neighbourhood of ω = a. The shuffle-regulated value of Ã at ω = a is then defined as

Regω=aÃ(ω) ≡ Ã(0)(a) . (A.6)

Since Ã(ω) is a pure function of weight k + 1, its shuffle-regulated values remain pure and

have the same weight. We have thus shown that

F [aνnχνn](z) =
|z|

(z − b)(z − c)

[
Ã(0)(b)− Ã(0)(z)

]
, (A.7)

where the right-hand side is a pure function of weight k + 1, which completes the proof.

We can use the previous result to prove that the functions fLLk , C
(1)
k and C

(2)
k have

uniform weight at any loop order. We know by explicit computation that this statement is

true for small numbers of loops. Using partial fractioning, the loop recursion in eq. (5.18)

and (5.55) can be written in a form that matches eq. (A.1). Hence, the loop recursion will

increase the weight of the functions by precisely one unit.
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B Generalised single-valued multiple polylogarithms

In this section we present the generalised single-valued polylogarithms that cannot be

expressed in terms of ordinary SVMPLs,

G−1/z(z) =G−1/z(z)

G−1,−1/z(z) =G−1,−1/z(z) +G1,−1(z) + log 2G−1(z)− log 2G1(z)

G0,−1/z(z) =G0,−1/z(z)

G1,−1/z(z) =G−1,1(z) +G1,−1/z(z)− log 2G−1(z) + log 2G1(z)

G−1/z,−1(z) = −G1,−1(z) +G−1/z,−1(z) +G−1/z(z)G−1(z)− log 2G−1(z) + log 2G1(z)

G−1/z,0(z) =G−1/z,0(z) +G0(z)G−1/z(z)

G−1/z,1(z) = −G−1,1(z) +G−1/z,1(z) +G1(z)G−1/z(z) + log 2G−1(z)− log 2G1(z)

G−1/z,−1/z(z) =G−1/z,−1/z(z)

G−1,−1,−1/z(z) =G−1(z)G1,−1(z) +G−1,−1,−1/z(z) +G0,1,−1(z) +G1,−1,−1(z)−G1,1,−1(z)

+ log 2G−1,−1(z) + log 2G0,−1(z)− log 2G0,1(z)− 2 log 2G1,−1(z)

+ log 2G1,1(z) +
1

2
ζ2G1(z)− log2 2G−1(z) + log2 2G1(z)

+ log 2G−1(z)G−1(z)− log 2G−1(z)G1(z)

G−1,0,−1/z(z) =G−1,0,−1/z(z) +G0,1,−1(z) + log 2G0,−1(z)− log 2G0,1(z) +
1

2
ζ2G−1(z)

G−1,1,−1/z(z) =G−1(z)G−1,1(z) +G−1,1,−1/z(z) +G0,1,−1(z)− log 2G−1,1(z) + log 2G0,−1(z)

− log 2G0,1(z) + log 2G1,−1(z) +
1

2
ζ2G−1(z) + 2 log2 2G−1(z)

− 2 log2 2G1(z)− log 2G−1(z)G−1(z) + log 2G−1(z)G1(z)

G−1,−1/z,−1(z) =G−1(z)G−1,−1/z(z)−G−1(z)G1,−1(z) +G−1,1,−1(z) +G−1,−1/z,−1(z)

− 2G0,1,−1(z) + 2G1,1,−1(z)− log 2G−1,1(z)− 2 log 2G0,−1(z)

+ 2 log 2G0,1(z) + 3 log 2G1,−1(z)− 2 log 2G1,1(z)− ζ2G1(z)

+ 2 log2 2G−1(z)− 2 log2 2G1(z)− log 2G−1(z)G−1(z)

+ log 2G−1(z)G1(z)

G−1,−1/z,0(z) =G0(z)G−1,−1/z(z) +G−1,−1/z,0(z) +G1,0,−1(z)− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z)

G−1,−1/z,1(z) = −G−1(z)G−1,1(z) +G1(z)G−1,−1/z(z) +G−1,−1/z,1(z)−G0,−1,1(z)

−G0,1,−1(z) +G1,−1,1(z) + 2G1,1,−1(z) + log 2G−1,1(z) + log 2G1,−1(z)

− 2 log 2G1,1(z)− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z) + log 2G−1(z)G−1(z)

− log 2G−1(z)G1(z)

G−1,−1/z,−1/z(z) =G−1,−1/z,−1/z(z) +G1,1,−1(z) + log 2G1,−1(z)− log 2G1,1(z)

− 1

2
ζ2G1(z) +

1

2
log2 2G−1(z)− 1

2
log2 2G1(z)

G0,−1,−1/z(z) =G0(z)G1,−1(z) +G0,−1,−1/z(z) +G1,−1,0(z) + log 2G−1,0(z)− log 2G1,0(z)

+
1

2
ζ2G1(z) + log 2G−1(z)G0(z)− log 2G1(z)G0(z)

G0,0,−1/z(z) =G0,0,−1/z(z)
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G0,1,−1/z(z) =G0(z)G−1,1(z) +G−1,1,0(z) +G0,1,−1/z(z)− log 2G−1,0(z) + log 2G1,0(z)

+
1

2
ζ2G−1(z)− log 2G−1(z)G0(z) + log 2G1(z)G0(z)

G0,−1/z,−1(z) =G0(z)(−G1,−1(z)) +G−1(z)G0,−1/z(z)−G0,1,−1(z) +G0,−1/z,−1(z)

−G1,−1,0(z)− log 2G−1,0(z)− log 2G0,−1(z) + log 2G0,1(z) + log 2G1,0(z)

− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z)− log 2G−1(z)G0(z) + log 2G1(z)G0(z)

G0,−1/z,0(z) =G0(z)G0,−1/z(z) +G0,−1/z,0(z)

G0,−1/z,1(z) =G0(z)(−G−1,1(z)) +G1(z)G0,−1/z(z)−G−1,1,0(z)−G0,−1,1(z) +G0,−1/z,1(z)

+ log 2G−1,0(z) + log 2G0,−1(z)− log 2G0,1(z)− log 2G1,0(z)

− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z) + log 2G−1(z)G0(z)− log 2G1(z)G0(z)

G0,−1/z,−1/z(z) =G0,−1/z,−1/z(z)

G1,−1,−1/z(z) =G1(z)G1,−1(z) +G0,−1,1(z) +G1,−1,−1/z(z) + log 2G−1,1(z)− log 2G0,−1(z)

+ log 2G0,1(z)− log 2G1,−1(z) +
1

2
ζ2G1(z)− 2 log2 2G−1(z)

+ 2 log2 2G1(z) + log 2G1(z)G−1(z)− log 2G1(z)G1(z)

G1,0,−1/z(z) =G0,−1,1(z) +G1,0,−1/z(z)− log 2G0,−1(z) + log 2G0,1(z) +
1

2
ζ2G1(z)

G1,1,−1/z(z) =G1(z)G−1,1(z)−G−1,−1,1(z) +G−1,1,1(z) +G0,−1,1(z) +G1,1,−1/z(z)

+ log 2G−1,−1(z)− 2 log 2G−1,1(z)− log 2G0,−1(z) + log 2G0,1(z)

+ log 2G1,1(z) +
1

2
ζ2G−1(z) + log2 2G−1(z)− log2 2G1(z)

− log 2G1(z)G−1(z) + log 2G1(z)G1(z)

G1,−1/z,−1(z) =G1(z)(−G1,−1(z)) +G−1(z)G1,−1/z(z) + 2G−1,−1,1(z) +G−1,1,−1(z)

−G0,−1,1(z)−G0,1,−1(z) +G1,−1/z,−1(z)− 2 log 2G−1,−1(z)

+ log 2G−1,1(z) + log 2G1,−1(z)− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z)

− log 2G−1(z)G1(z) + log 2G1(z)G1(z)

G1,−1/z,0(z) =G0(z)G1,−1/z(z) +G−1,0,1(z) +G1,−1/z,0(z)− 1

2
ζ2G−1(z)− 1

2
ζ2G1(z)

G1,−1/z,1(z) = −G1(z)G−1,1(z) +G1(z)G1,−1/z(z) + 2G−1,−1,1(z)− 2G0,−1,1(z) +G1,−1,1(z)

+G1,−1/z,1(z)− 2 log 2G−1,−1(z) + 3 log 2G−1,1(z) + 2 log 2G0,−1(z)

− 2 log 2G0,1(z)− log 2G1,−1(z)− ζ2G−1(z)− 2 log2 2G−1(z)

+ 2 log2 2G1(z) + log 2G1(z)G−1(z)− log 2G1(z)G1(z)

G1,−1/z,−1/z(z) =G−1,−1,1(z) +G1,−1/z,−1/z(z)− log 2G−1,−1(z) + log 2G−1,1(z)

− 1

2
ζ2G−1(z)− 1

2
log2 2G−1(z) +

1

2
log2 2G1(z)

G−1/z,−1,−1(z) =G−1(z)G−1/z,−1(z) +G−1/z(z)G−1,−1(z)−G−1,1,−1(z) +G0,1,−1(z)

−G1,−1,−1(z)−G1,1,−1(z) +G−1/z,−1,−1(z)− log 2G−1,−1(z)

+ log 2G−1,1(z) + log 2G0,−1(z)− log 2G0,1(z)− log 2G1,−1(z)

+ log 2G1,1(z) +
1

2
ζ2G1(z)− log2 2G−1(z) + log2 2G1(z)
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G−1/z,−1,0(z) =G−1/z(z)G0,−1(z) +G0(z)G−1/z,−1(z)−G0,1,−1(z)−G1,0,−1(z)

+G−1/z,−1,0(z)− log 2G0,−1(z) + log 2G0,1(z) +
1

2
ζ2G1(z)

G−1/z,−1,1(z) =G−1/z(z)G1,−1(z) +G1(z)G−1/z,−1(z) +G0,−1,1(z)−G1,−1,1(z)−2G1,1,−1(z)

+G−1/z,−1,1(z)− log 2G0,−1(z) + log 2G0,1(z)− 2 log 2G1,−1(z)

+ 2 log 2G1,1(z) +
1

2
ζ2G1(z)− 2 log2 2G−1(z) + 2 log2 2G1(z)

+ 2 log 2G−1/z(z)G−1(z)− 2 log 2G1(z)G−1/z(z)

G−1/z,−1,−1/z(z) =G−1/z(z)G1,−1(z)− 2G1,1,−1(z) +G−1/z,−1,−1/z(z)− 2 log 2G1,−1(z)

+ 2 log 2G1,1(z) + ζ2G1(z)− log2 2G−1(z) + log2 2G1(z)

+ log 2G−1/z(z)G−1(z)− log 2G1(z)G−1/z(z)

G−1/z,0,−1(z) =G−1/z(z)G−1,0(z) +G−1(z)G−1/z,0(z) +G0,1,−1(z) +G−1/z,0,−1(z)

+ log 2G0,−1(z)− log 2G0,1(z) +
1

2
ζ2G−1(z)

G−1/z,0,0(z) =G−1/z(z)G0,0(z) +G0(z)G−1/z,0(z) +G−1/z,0,0(z)

G−1/z,0,1(z) =G−1/z(z)G1,0(z) +G1(z)G−1/z,0(z) +G0,−1,1(z) +G−1/z,0,1(z)

− log 2G0,−1(z) + log 2G0,1(z) +
1

2
ζ2G1(z)

G−1/z,0,−1/z(z) =G−1/z,0,−1/z(z)

G−1/z,1,−1(z) =G−1(z)G−1/z,1(z) +G−1/z(z)G−1,1(z)− 2G−1,−1,1(z)−G−1,1,−1(z)

+G0,1,−1(z) +G−1/z,1,−1(z) + 2 log 2G−1,−1(z)− 2 log 2G−1,1(z)

+ log 2G0,−1(z)− log 2G0,1(z) +
1

2
ζ2G−1(z) + 2 log2 2G−1(z)

− 2 log2 2G1(z)− 2 log 2G−1/z(z)G−1(z) + 2 log 2G1(z)G−1/z(z)

G−1/z,1,0(z) =G−1/z(z)G0,1(z) +G0(z)G−1/z,1(z)−G−1,0,1(z)−G0,−1,1(z) +G−1/z,1,0(z)

+ log 2G0,−1(z)− log 2G0,1(z) +
1

2
ζ2G−1(z)

G−1/z,1,1(z) =G−1/z(z)G1,1(z) +G1(z)G−1/z,1(z)−G−1,−1,1(z)−G−1,1,1(z) +G0,−1,1(z)

−G1,−1,1(z) +G−1/z,1,1(z) + log 2G−1,−1(z)− log 2G−1,1(z)

− log 2G0,−1(z) + log 2G0,1(z) + log 2G1,−1(z)− log 2G1,1(z)

+
1

2
ζ2G−1(z) + log2 2G−1(z)− log2 2G1(z)

G−1/z,1,−1/z(z) =G−1/z(z)G−1,1(z)− 2G−1,−1,1(z) +G−1/z,1,−1/z(z) + 2 log 2G−1,−1(z)

− 2 log 2G−1,1(z) + ζ2G−1(z) + log2 2G−1(z)− log2 2G1(z)

− log 2G−1/z(z)G−1(z) + log 2G1(z)G−1/z(z)

G−1/z,−1/z,−1(z) =G−1(z)G−1/z,−1/z(z)−G−1/z(z)G1,−1(z) +G1,1,−1(z) +G−1/z,−1/z,−1(z)

+ log 2G1,−1(z)− log 2G1,1(z)− 1

2
ζ2G1(z) +

1

2
log2 2G−1(z)

− 1

2
log2 2G1(z)− log 2G−1/z(z)G−1(z) + log 2G1(z)G−1/z(z)

G−1/z,−1/z,0(z) =G0(z)G−1/z,−1/z(z) +G−1/z,−1/z,0(z)
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G−1/z,−1/z,1(z) =−G−1/z(z)G−1,1(z) +G1(z)G−1/z,−1/z(z) +G−1,−1,1(z) +G−1/z,−1/z,1(z)

− log 2G−1,−1(z) + log 2G−1,1(z)− 1

2
ζ2G−1(z)− 1

2
log2 2G−1(z)

+
1

2
log2 2G1(z) + log 2G−1/z(z)G−1(z)− log 2G1(z)G−1/z(z)

G−1/z,−1/z,−1/z(z) =G−1/z,−1/z,−1/z(z)

C Analytic results for the BFKL ladder through five loops

C.1 Analytic results for the functions C
(1)
k

In this appendix we present the analytic results for the functions C
(1)
k through five loops.

Writing

C
(1)
k (z) =

|z|
2π |1− z|2

C(1)
k (z) , (C.1)

we find for the first few orders

C(1)
2 (z) = − G0,0(z) ,

C(1)
3 (z) = 2G0,0,0(z)− 2G0,0,1(z)− 2G1,0,0(z)− 8ζ3 ,

C(1)
4 (z) = − 2G0,0,0,0(z) + 4G0,0,0,1(z) + 2G0,0,1,0(z) + 4G0,0,1,1(z) + 2G0,1,0,0(z)

+ 4G1,0,0,0(z)− 4G1,0,0,1(z)− G1,1,0,0(z) + 12ζ3G0(z)− 16ζ3G1(z) ,

C(1)
5 (z) = 2G0,0,0,0,0(z)− 6G0,0,0,0,1(z)− 6G0,0,0,1,0(z) + 12G0,0,0,1,1(z)− 4G0,0,1,0,0(z)

+ 6G0,0,1,0,1(z) + 6G0,0,1,1,0(z)− 12G0,0,1,1,1(z)− 6G0,1,0,0,0(z) + 6G0,1,0,0,1(z)

+ 6G0,1,1,0,0(z)− 6G1,0,0,0,0(z) + 12G1,0,0,0,1(z) + 6G1,0,0,1,0(z)− 12G1,0,0,1,1(z)

+ 6G1,0,1,0,0(z) + 12G1,1,0,0,0(z)− 12G1,1,0,0,1(z)− 12G1,1,1,0,0(z)

− 16ζ3G0,0(z) + 24ζ3G0,1(z) + 36ζ3G1,0(z)− 48ζ3G1,1(z)− 36ζ5 . (C.2)

C.2 Analytic results for the functions C
(2)
k

In this section we present the results through weight five for the functions C(2,i)
k defined in

eq. (5.56).

C(2,1)
2 = G1,0(z)− G0,1(z) ,

C(2,2)
2 = − 2G− 1

z̄
,0(z) + G0,1(z) + G1,0(z)− ζ2 ,

C(2,1)
3 = G0,0,1(z)− 2G0,1,1(z)− G1,0,0(z) + 2G1,1,0(z) ,

C(2,2)
3 = 2G0,− 1

z̄
,0(z) + 2G− 1

z̄
,0,0(z)− 4G− 1

z̄
,− 1

z̄
,0(z)− G0,0,1(z)− 2G0,1,0(z)

+ 2G0,1,1(z)− G1,0,0(z) + 2G1,1,0(z) + ζ2G0(z)− 2ζ2G− 1
z̄
(z)− 2ζ3 ,

(C.3)
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C(2,1)4 = − 2G−1,−1,− 1
z̄ ,0

(z) + G−1,0,− 1
z̄ ,0

(z) + G0,−1,− 1
z̄ ,0

(z)− G0,1,− 1
z̄ ,0

(z)− G1,0,− 1
z̄ ,0

(z)

+ 2G1,1,− 1
z̄ ,0

(z) + 2G−1,−1,0,1(z) + G−1,0,1,0(z)− 2G−1,0,1,1(z)− G0,−1,0,1(z)

− G0,0,0,1(z)− G0,0,1,0(z) + 4G0,0,1,1(z) + G0,1,0,0(z) + 3G0,1,0,1(z)− 6G0,1,1,1(z)

+ G1,0,0,0(z)− 3G1,0,1,0(z)− 4G1,1,0,0(z) + 6G1,1,1,0(z)− ζ2G−1,−1(z)− 1

2
ζ2G−1,0(z)

+
1

2
ζ2G0,−1(z)− 1

2
ζ2G0,1(z) +

1

2
ζ2G1,0(z) + ζ2G1,1(z) +

1

2
ζ3G−1(z)− 15

2
ζ3G1(z) ,

C(2,2)4 = 2G−1,−1,− 1
z̄ ,0

(z)− G−1,0,− 1
z̄ ,0

(z)− G0,−1,− 1
z̄ ,0

(z)− 2G0,0,− 1
z̄ ,0

(z)− G0,1,− 1
z̄ ,0

(z)

− 4G0,− 1
z̄ ,0,0

(z) + 8G0,− 1
z̄ ,−

1
z̄ ,0

(z)− G1,0,− 1
z̄ ,0

(z) + 2G1,1,− 1
z̄ ,0

(z)− 2G− 1
z̄ ,0,0,0

(z)

+ 8G− 1
z̄ ,0,−

1
z̄ ,0

(z) + 8G− 1
z̄ ,−

1
z̄ ,0,0

(z)− 16G− 1
z̄ ,−

1
z̄ ,−

1
z̄ ,0

(z)− 2G−1,−1,0,1(z)

− G−1,0,1,0(z) + 2G−1,0,1,1(z) + G0,−1,0,1(z) + G0,0,0,1(z) + 3G0,0,1,0(z)

− 4G0,0,1,1(z) + 3G0,1,0,0(z)− 3G0,1,0,1(z)− 6G0,1,1,0(z) + 6G0,1,1,1(z)

+ G1,0,0,0(z)− 3G1,0,1,0(z)− 4G1,1,0,0(z) + 6G1,1,1,0(z) + 8ζ3G− 1
z̄
(z)

+ 4ζ2G0,− 1
z̄
(z) + 2ζ2G− 1

z̄ ,0
(z)− 8ζ2G− 1

z̄ ,−
1
z̄
(z) + ζ2G−1,−1(z)

+
1

2
ζ2G−1,0(z)− 1

2
ζ2G0,−1(z)− ζ2G0,0(z)− 1

2
ζ2G0,1(z) +

1

2
ζ2G1,0(z)

+ ζ2G1,1(z)− 1

2
ζ3G−1(z) + 2ζ3G0(z)− 15

2
ζ3G1(z)− 5ζ4

4
,

C(2,1)5 = 12G−1,−1,−1,0,1(z)− 12G−1,−1,−1,− 1
z̄ ,0

(z)− 6G−1,−1,0,0,1(z) + 12G−1,−1,0,− 1
z̄ ,0

(z)

+ 6G−1,−1,− 1
z̄ ,0,0

(z)− 12G−1,−1,− 1
z̄ ,−

1
z̄ ,0

(z)− 6G−1,0,−1,0,1(z) + 6G−1,0,−1,− 1
z̄ ,0

(z)

− 3G−1,0,0,1,0(z) + 6G−1,0,0,1,1(z)− 4G−1,0,0,− 1
z̄ ,0

(z)− 2G−1,0,1,0,0(z) + 6G−1,0,1,0,1(z)

+ 6G−1,0,1,1,0(z)− 12G−1,0,1,1,1(z)− 3G−1,0,− 1
z̄ ,0,0

(z) + 6G−1,0,− 1
z̄ ,−

1
z̄ ,0

(z)

− 6G0,−1,−1,0,1(z) + 6G0,−1,−1,− 1
z̄ ,0

(z) + 3G0,−1,0,0,1(z)− 6G0,−1,0,− 1
z̄ ,0

(z)

− 3G0,−1,− 1
z̄ ,0,0

(z) + 6G0,−1,− 1
z̄ ,−

1
z̄ ,0

(z) + 2G0,0,−1,0,1(z)− 2G0,0,−1,− 1
z̄ ,0

(z)

+ G0,0,0,0,1(z) + 2G0,0,0,1,0(z)− 6G0,0,0,1,1(z)− 9G0,0,1,0,1(z)− 5G0,0,1,1,0(z)

+ 18G0,0,1,1,1(z) + 2G0,0,1,− 1
z̄ ,0

(z)− 2G0,1,0,0,0(z)− 4G0,1,0,0,1(z) + 12G0,1,0,1,1(z)

+ 6G0,1,0,− 1
z̄ ,0

(z) + 5G0,1,1,0,0(z) + 12G0,1,1,0,1(z)− 24G0,1,1,1,1(z)− 6G0,1,1,− 1
z̄ ,0

(z)

+ 3G0,1,− 1
z̄ ,0,0

(z)− 6G0,1,− 1
z̄ ,−

1
z̄ ,0

(z)− G1,0,0,0,0(z) + 4G1,0,0,1,0(z) + 4G1,0,0,− 1
z̄ ,0

(z)

+ 9G1,0,1,0,0(z)− 12G1,0,1,1,0(z)− 6G1,0,1,− 1
z̄ ,0

(z) + 3G1,0,− 1
z̄ ,0,0

(z)− 6G1,0,− 1
z̄ ,−

1
z̄ ,0

(z)

+ 6G1,1,0,0,0(z)− 12G1,1,0,1,0(z)− 12G1,1,0,− 1
z̄ ,0

(z)− 18G1,1,1,0,0(z) + 24G1,1,1,1,0(z)

+ 12G1,1,1,− 1
z̄ ,0

(z)− 6G1,1,− 1
z̄ ,0,0

(z) + 12G1,1,− 1
z̄ ,−

1
z̄ ,0

(z)− 6G−1,−1,−1(z)ζ2

− 6G−1,−1,− 1
z̄
(z)ζ2 + 3G−1,0,−1(z)ζ2 + G−1,0,0(z)ζ2 + 3G−1,0,− 1

z̄
(z)ζ2 + 3G0,−1,−1(z)ζ2

+ 3G0,−1,− 1
z̄
(z)ζ2 − G0,0,−1(z)ζ2 + G0,0,1(z)ζ2 − 3G0,1,1(z)ζ2 − 3G0,1,− 1

z̄
(z)ζ2

− G1,0,0(z)ζ2 − 3G1,0,1(z)ζ2 − 3G1,0,− 1
z̄
(z)ζ2 + 6G1,1,1(z)ζ2 + 6G1,1,− 1

z̄
(z)ζ2

− 3G−1,−1(z)ζ3 −
3

2
G−1,0(z)ζ3 +

3

2
G0,−1(z)ζ3 +

23

2
G0,1(z)ζ3 +

21

2
G1,0(z)ζ3

− 39G1,1(z)ζ3 −
3

4
G−1(z)ζ4 +

3

4
G1(z)ζ4 ,

(C.4)
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C(2,2)5 = − 12G−1,−1,−1,0,1(z) + 12G−1,−1,−1,− 1
z̄ ,0

(z) + 6G−1,−1,0,0,1(z)− 12G−1,−1,0,− 1
z̄ ,0

(z)

− 6G−1,−1,− 1
z̄ ,0,0

(z) + 12G−1,−1,− 1
z̄ ,−

1
z̄ ,0

(z) + 6G−1,0,−1,0,1(z)− 6G−1,0,−1,− 1
z̄ ,0

(z)

+ 3G−1,0,0,1,0(z)− 6G−1,0,0,1,1(z) + 4G−1,0,0,− 1
z̄ ,0

(z) + 2G−1,0,1,0,0(z)− 6G−1,0,1,0,1(z)

− 6G−1,0,1,1,0(z) + 12G−1,0,1,1,1(z) + 3G−1,0,− 1
z̄ ,0,0

(z)− 6G−1,0,− 1
z̄ ,−

1
z̄ ,0

(z)

+ 6G0,−1,−1,0,1(z)− 6G0,−1,−1,− 1
z̄ ,0

(z)− 3G0,−1,0,0,1(z) + 6G0,−1,0,− 1
z̄ ,0

(z)

+ 3G0,−1,− 1
z̄ ,0,0

(z)− 6G0,−1,− 1
z̄ ,−

1
z̄ ,0

(z)− 2G0,0,−1,0,1(z) + 2G0,0,−1,− 1
z̄ ,0

(z)

− G0,0,0,0,1(z)− 4G0,0,0,1,0(z) + 6G0,0,0,1,1(z) + 2G0,0,0,− 1
z̄ ,0

(z)− 6G0,0,1,0,0(z)

+ 9G0,0,1,0,1(z) + 13G0,0,1,1,0(z)− 18G0,0,1,1,1(z) + 2G0,0,1,− 1
z̄ ,0

(z) + 6G0,0,− 1
z̄ ,0,0

(z)

− 12G0,0,− 1
z̄ ,−

1
z̄ ,0

(z)− 4G0,1,0,0,0(z) + 4G0,1,0,0,1(z) + 12G0,1,0,1,0(z)− 12G0,1,0,1,1(z)

+ 6G0,1,0,− 1
z̄ ,0

(z) + 13G0,1,1,0,0(z)− 12G0,1,1,0,1(z)− 24G0,1,1,1,0(z) + 24G0,1,1,1,1(z)

− 6G0,1,1,− 1
z̄ ,0

(z) + 3G0,1,− 1
z̄ ,0,0

(z)− 6G0,1,− 1
z̄ ,−

1
z̄ ,0

(z) + 6G0,− 1
z̄ ,0,0,0

(z)

− 24G0,− 1
z̄ ,0,−

1
z̄ ,0

(z)− 24G0,− 1
z̄ ,−

1
z̄ ,0,0

(z) + 48G0,− 1
z̄ ,−

1
z̄ ,−

1
z̄ ,0

(z)− G1,0,0,0,0(z)

+ 4G1,0,0,1,0(z) + 4G1,0,0,− 1
z̄ ,0

(z) + 9G1,0,1,0,0(z)− 12G1,0,1,1,0(z)− 6G1,0,1,− 1
z̄ ,0

(z)

+ 3G1,0,− 1
z̄ ,0,0

(z)− 6G1,0,− 1
z̄ ,−

1
z̄ ,0

(z) + 6G1,1,0,0,0(z)− 12G1,1,0,1,0(z)− 12G1,1,0,− 1
z̄ ,0

(z)

− 18G1,1,1,0,0(z) + 24G1,1,1,1,0(z) + 12G1,1,1,− 1
z̄ ,0

(z)− 6G1,1,− 1
z̄ ,0,0

(z) + 12G1,1,− 1
z̄ ,−

1
z̄ ,0

(z)

+ 2G− 1
z̄ ,0,0,0,0

(z)− 16G− 1
z̄ ,0,0,−

1
z̄ ,0

(z)− 24G− 1
z̄ ,0,−

1
z̄ ,0,0

(z) + 48G− 1
z̄ ,0,−

1
z̄ ,−

1
z̄ ,0

(z)

− 12G− 1
z̄ ,−

1
z̄ ,0,0,0

(z) + 48G− 1
z̄ ,−

1
z̄ ,0,−

1
z̄ ,0

(z) + 48G− 1
z̄ ,−

1
z̄ ,−

1
z̄ ,0,0

(z)− 96G− 1
z̄ ,−

1
z̄ ,−

1
z̄ ,−

1
z̄ ,0

(z)

+ 6G−1,−1,−1(z)ζ2 + 6G−1,−1,− 1
z̄
(z)ζ2 − 3G−1,0,−1(z)ζ2 − G−1,0,0(z)ζ2 − 3G−1,0,− 1

z̄
(z)ζ2

− 3G0,−1,−1(z)ζ2 − 3G0,−1,− 1
z̄
(z)ζ2 + G0,0,−1(z)ζ2 + G0,0,0(z)ζ2 + G0,0,1(z)ζ2

− 6G0,0,− 1
z̄
(z)ζ2 − 3G0,1,1(z)ζ2 − 3G0,1,− 1

z̄
(z)ζ2 − 6G0,− 1

z̄ ,0
(z)ζ2 + 24G0,− 1

z̄ ,−
1
z̄
(z)ζ2

− G1,0,0(z)ζ2 − 3G1,0,1(z)ζ2 − 3G1,0,− 1
z̄
(z)ζ2 + 6G1,1,1(z)ζ2 + 6G1,1,− 1

z̄
(z)ζ2

− 2G− 1
z̄ ,0,0

(z)ζ2 + 24G− 1
z̄ ,0,−

1
z̄
(z)ζ2 + 12G− 1

z̄ ,−
1
z̄ ,0

(z)ζ2 − 48G− 1
z̄ ,−

1
z̄ ,−

1
z̄
(z)ζ2

+
4

3
log3(2)ζ2 + 3G−1,−1(z)ζ3 +

3

2
G−1,0(z)ζ3 −

3

2
G0,−1(z)ζ3 − 2G0,0(z)ζ3 +

55

2
G0,1(z)ζ3

− 24G0,− 1
z̄
(z)ζ3 +

21

2
G1,0(z)ζ3 − 39G1,1(z)ζ3 − 12G− 1

z̄ ,0
(z)ζ3 + 48G− 1

z̄ ,−
1
z̄
(z)ζ3 − 6ζ2ζ3

+
3

4
G−1(z)ζ4 +

5

4
G0(z)ζ4 +

3

4
G1(z)ζ4 −

21

2
G− 1

z̄
(z)ζ4 − 2ζ5 −

4

3
ζ2 log3 2 .

(C.5)

C.3 Analytic results for the functions C
(3)
k

The functions C
(3,0)
k (z) and C

(3,2)
k (z) can through five loops be written in the form

C
(3,0)
k (z) =R(0)

maxa
(0)
k +A

1 + |z|2

|z|
b

(0)
k,sym +A

1− |z|2

|z|
b

(0)
k,asym +A

1 + |z|4

|z|2
c
(0)
k,sym

C
(3,2)
k (z) =R(2)

maxa
(2)
k +A

1 + |z|2

|z|

(z
z̄

+
z̄

z

)
b

(2)
k,sym +A

1− |z|2

|z|

(z
z̄

+
z̄

z

)
b

(2)
k,asym

+A
1 + |z|4

|z|2
(z
z̄

+
z̄

z

)
c
(2)
k,sym +A

(z
z̄

+
z̄

z

)
d

(2)
k ,
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where the functions R
(i)
max are the rational functions multiplying the highest weight terms

at each order,

R(0)
max = A

|z|4 − 22 |z|2 + 1

|z|2
− 96

R(2)
max = A

3 |z|4 − 2 |z|2 + 3

|z|2

[(z
z̄

)2
+
( z̄
z

)2
]
.

(C.6)

The transcendental coefficients appearing in the expansion of C
(3,0)
k are

a
(0)
2 =

1

32
G0(|z|2)Ti1(|z|)− 1

16
Ti2(|z|) ,

b
(0)
2,sym =

1

16
,

b
(0)
2,asym = − 1

32
G0(|z|2) ,

c
(0)
2,sym = 0 ,

a
(0)
3 = − 1

32
Ti1(|z|)G0,0(|z|2) +

1

16
G0(|z|2)

(
− Ti−1,1(|z|)− Ti1,1(|z|) + Ti2(|z|)

)
+

1

8
Ti−2,1(|z|) +

1

8
Ti−1,2(|z|) +

1

8
Ti1,2(|z|) +

1

8
Ti2,1(|z|) +

1

32
ζ2Ti1(|z|)− 1

8
Ti3(|z|) ,

b
(0)
3,sym = − 1

8
,

b
(0)
3,asym =

1

32
G0,0(|z|2) +

1

16
G0(|z|2)− 1

16
G−1,0(|z|2)− 1

32
ζ2 ,

c
(0)
3,sym = − 1

8
G0(|z|2)Ti1(|z|) +

1

4
Ti2(|z|) ,

a
(0)
4 = +

1

32
Ti1(|z|)G0,0,0(|z|2) +

1

16
G0,0(|z|2)

(
2Ti−1,1(|z|) + 2Ti1,1(|z|)− Ti2(|z|)

)
+

1

32
G0(|z|2)

(
− 8Ti−1,2(|z|)− 8Ti1,2(|z|) + 8Ti−1,−1,1(|z|) + 8Ti−1,1,1(|z|) + 8Ti1,−1,1(|z|)

+ 8Ti1,1,1(|z|)− ζ2Ti1(|z|) + 4Ti3(|z|)
)
− 1

8
ζ2Ti−1,1(|z|)− 1

8
ζ2Ti1,1(|z|)− 1

2
Ti−3,1(|z|)

+
1

2
Ti−1,3(|z|) +

1

2
Ti1,3(|z|)− 1

2
Ti3,1(|z|)− 1

2
Ti−2,−1,1(|z|)− 1

2
Ti−2,1,1(|z|)

− 1

2
Ti−1,−2,1(|z|)− 1

2
Ti−1,−1,2(|z|)− 1

2
Ti−1,1,2(|z|)− 1

2
Ti−1,2,1(|z|)− 1

2
Ti1,−2,1(|z|)

− 1

2
Ti1,−1,2(|z|)− 1

2
Ti1,1,2(|z|)− 1

2
Ti1,2,1(|z|)− 1

2
Ti2,−1,1(|z|)− 1

2
Ti2,1,1(|z|)− 1

8
ζ3Ti1(|z|)

+
1

16
ζ2Ti2(|z|)− Ti4(|z|)

4
,

b
(0)
4,sym =− 1

16
G0,0(|z|2) +

ζ2
16

+
1

4
,

b
(0)
4,asym =− 1

32
G0,0,0(|z|2)− 1

8
G0,0(|z|2) +

1

32
G0(|z|2)(ζ2 − 4) +

1

4
G−1,0(|z|2)− 1

4
G−1,−1,0(|z|2),

+
1

8
G−1,0,0(|z|2) +

1

8
G0,−1,0(|z|2) +

ζ2
8

+
ζ3
8
− 1

8
ζ2G−1(|z|2)

c
(0)
4,sym =

1

4
Ti1(|z|)G0,0(|z|2) +

1

2
G0(|z|2)

(
Ti−1,1(|z|) + Ti1,1(|z|) + Ti1(|z|)− Ti2(|z|)

)
− Ti−2,1(|z|)

− Ti−1,2(|z|)− Ti1,2(|z|)− Ti2,1(|z|)− 1

4
ζ2Ti1(|z|)− Ti2(|z|) + Ti3(|z|),
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J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

a
(0)
5 =− 1

32
G0,0,0,0(|z|2)Ti1(|z|) +

1

16
G0,0,0(|z|2)

(
Ti2(|z|)− 3Ti−1,1(|z|)− 3Ti1,1(|z|)

)
+

1

32
G0,0(|z|2)

(
− 4Ti3(|z|)− 12Ti−2,1(|z|) + 12Ti−1,2(|z|) + 12Ti1,2(|z|)− 12Ti2,1(|z|)

− 24Ti−1,−1,1(|z|)− 24Ti−1,1,1(|z|)− 24Ti1,−1,1(|z|)− 24Ti1,1,1(|z|) + Ti1(|z|)ζ2
)

+
1

16
G0(|z|2)

(
4Ti4(|z|) + 20Ti−3,1(|z|) + 12Ti−2,2(|z|)− 12Ti−1,3(|z|)− 12Ti1,3(|z|)

+ 12Ti2,2(|z|) + 20Ti3,1(|z|) + 24Ti−1,−1,2(|z|) + 24Ti−1,1,2(|z|) + 24Ti1,−1,2(|z|)
+ 24Ti1,1,2(|z|)− 24Ti−1,−1,−1,1(|z|)− 24Ti−1,−1,1,1(|z|)− 24Ti−1,1,−1,1(|z|)
− 24Ti−1,1,1,1(|z|)− 24Ti1,−1,−1,1(|z|)− 24Ti1,−1,1,1(|z|)− 24Ti1,1,−1,1(|z|)

− 24Ti1,1,1,1(|z|)− Ti2(|z|)ζ2 + 3Ti−1,1(|z|)ζ2 + 3Ti1,1(|z|)ζ2 + 3Ti1(|z|)ζ3
)

+
21

128
ζ4Ti1(|z|)− Ti5(|z|)

2
− 3

2
Ti−4,1(|z|)− 5

2
Ti−3,2(|z|)− 3

2
Ti−2,3(|z|) +

3

2
Ti−1,4(|z|)

+
3

2
Ti1,4(|z|)− 3

2
Ti2,3(|z|)− 5

2
Ti3,2(|z|)− 3

2
Ti4,1(|z|) + 3Ti−3,−1,1(|z|) + 3Ti−3,1,1(|z|)

+ 3Ti−2,−2,1(|z|) + 3Ti−2,2,1(|z|) + 3Ti−1,−3,1(|z|)− 3Ti−1,−1,3(|z|)− 3Ti−1,1,3(|z|)
+ 3Ti−1,3,1(|z|) + 3Ti1,−3,1(|z|)− 3Ti1,−1,3(|z|)− 3Ti1,1,3(|z|) + 3Ti1,3,1(|z|)
+ 3Ti2,−2,1(|z|) + 3Ti2,2,1(|z|) + 3Ti3,−1,1(|z|) + 3Ti3,1,1(|z|) + 3Ti−2,−1,−1,1(|z|)
+ 3Ti−2,−1,1,1(|z|) + 3Ti−2,1,−1,1(|z|) + 3Ti−2,1,1,1(|z|) + 3Ti−1,−2,−1,1(|z|)
+ 3Ti−1,−2,1,1(|z|) + 3Ti−1,−1,−2,1(|z|) + 3Ti−1,−1,−1,2(|z|) + 3Ti−1,−1,1,2(|z|)
+ 3Ti−1,−1,2,1(|z|) + 3Ti−1,1,−2,1(|z|) + 3Ti−1,1,−1,2(|z|) + 3Ti−1,1,1,2(|z|) + 3Ti−1,1,2,1(|z|)
+ 3Ti−1,2,−1,1(|z|) + 3Ti−1,2,1,1(|z|) + 3Ti1,−2,−1,1(|z|) + 3Ti1,−2,1,1(|z|) + 3Ti1,−1,−2,1(|z|)
+ 3Ti1,−1,−1,2(|z|) + 3Ti1,−1,1,2(|z|) + 3Ti1,−1,2,1(|z|) + 3Ti1,1,−2,1(|z|) + 3Ti1,1,−1,2(|z|)
+ 3Ti1,1,1,2(|z|) + 3Ti1,1,2,1(|z|) + 3Ti1,2,−1,1(|z|) + 3Ti1,2,1,1(|z|) + 3Ti2,−1,−1,1(|z|)

+ 3Ti2,−1,1,1(|z|) + 3Ti2,1,−1,1(|z|) + 3Ti2,1,1,1(|z|) +
1

8
Ti3(|z|)ζ2 +

3

8
Ti−2,1(|z|)ζ2

− 3

8
Ti−1,2(|z|)ζ2 −

3

8
Ti1,2(|z|)ζ2 +

3

8
Ti2,1(|z|)ζ2 +

3

4
Ti−1,−1,1(|z|)ζ2 +

3

4
Ti−1,1,1(|z|)ζ2

+
3

4
Ti1,−1,1(|z|)ζ2 +

3

4
Ti1,1,1(|z|)ζ2 −

3

8
Ti2(|z|)ζ3 +

3

4
Ti−1,1(|z|)ζ3 +

3

4
Ti1,1(|z|)ζ3,

b
(0)
5,sym =

1

8
G0,0,0(|z|2) +

3

8
G0,0(|z|2)− 1

8
ζ2G0(|z|2)− 1

4
G0,−1,0(|z|2)− 3

8
ζ3 −

3

8
ζ2 −

1

2
,

b
(0)
5,asym = +

1

32
G0,0,0,0(|z|2) +

3

16
G0,0,0(|z|2) +

1

32
G0,0(|z|2)(16− ζ2) +

1

16
G0(|z|2)(−3ζ2 − 3ζ3 + 4)

+
3

16
ζ2G−1,0(|z|2)− 3

4
ζ2G−1,−1(|z|2) +

3

8
ζ2G0,−1(|z|2)−G−1,0(|z|2) +

3

2
G−1,−1,0(|z|2)

− 3

4
G−1,0,0(|z|2)− 3

4
G0,−1,0(|z|2)− 3

2
G−1,−1,−1,0(|z|2) +

3

4
G−1,−1,0,0(|z|2)

+
3

4
G−1,0,−1,0(|z|2)− 3

16
G−1,0,0,0(|z|2) +

3

4
G0,−1,−1,0(|z|2)− 3

8
G0,−1,0,0(|z|2)

− 1

4
G0,0,−1,0(|z|2)− ζ2

2
− 3ζ3

4
− 21ζ4

128
+

3

4
ζ2G−1(|z|2) +

3

4
ζ3G−1(|z|2),

c
(0)
5,sym =− 3

8
Ti1(|z|)G0,0,0(|z|2)− 3

4
G0,0(|z|2)

(
2Ti−1,1(|z|) + 2Ti1,1(|z|) + 2Ti1(|z|)− Ti2(|z|)

)
+

1

8
G0(|z|2)

(
− 24Ti−1,1(|z|) + 24Ti−1,2(|z|)− 24Ti1,1(|z|) + 24Ti1,2(|z|)− 24Ti−1,−1,1(|z|)

− 24Ti−1,1,1(|z|)− 24Ti1,−1,1(|z|)− 24Ti1,1,1(|z|) + 3ζ2Ti1(|z|)− 16Ti1(|z|) + 24Ti2(|z|)

− 12Ti3(|z|)
)

+
3

2
ζ2Ti−1,1(|z|) +

3

2
ζ2Ti1,1(|z|) + 6Ti−3,1(|z|) + 6Ti−2,1(|z|) + 6Ti−1,2(|z|)

− 6Ti−1,3(|z|) + 6Ti1,2(|z|)− 6Ti1,3(|z|) + 6Ti2,1(|z|) + 6Ti3,1(|z|) + 6Ti−2,−1,1(|z|)
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J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

+ 6Ti−2,1,1(|z|) + 6Ti−1,−2,1(|z|) + 6Ti−1,−1,2(|z|) + 6Ti−1,1,2(|z|) + 6Ti−1,2,1(|z|)
+ 6Ti1,−2,1(|z|) + 6Ti1,−1,2(|z|) + 6Ti1,1,2(|z|) + 6Ti1,2,1(|z|) + 6Ti2,−1,1(|z|) + 6Ti2,1,1(|z|)

+
3

2
ζ2Ti1(|z|) +

3

2
ζ3Ti1(|z|)− 3

4
ζ2Ti2(|z|) + 4Ti2(|z|)− 6Ti3(|z|) + 3Ti4(|z|),

The transcendental coefficients appearing in the expansion of C
(3,2)
k are

a
(2)
2 =

1

64
G0(|z|2)Ti1(|z|)− 1

32
Ti2(|z|),

b
(2)
2,sym =

3

32
,

b
(2)
2,asym =− 3

64
G0(|z|2),

c
(2)
2,sym =d

(2)
2 = 0,

a
(2)
3 =− 1

64
Ti1(|z|)G0,0(|z|2) +

1

32
G0(|z|2)

(
− Ti−1,1(|z|)− Ti1,1(|z|) + Ti2(|z|)

)
+

1

16
Ti−2,1(|z|)

+
1

16
Ti−1,2(|z|) +

1

16
Ti1,2(|z|) +

1

16
Ti2,1(|z|) +

1

64
ζ2Ti1(|z|)− Ti3(|z|)

16
,

b
(2)
3,sym =− 1

16
,

b
(2)
3,asym =

3

64
G0,0(|z|2) +

1

32
G0(|z|2)− 3

32
G−1,0(|z|2)− 3ζ2

64
,

c
(2)
3,sym =d

(2)
3 = −1

8
G0(|z|2)Ti1(|z|) +

1

4
Ti2(|z|),

a
(2)
4 =

1

64
Ti1(|z|)G0,0,0(|z|2) +

1

32
G0,0(|z|2)

(
2Ti−1,1(|z|) + 2Ti1,1(|z|)− Ti2(|z|)

)
+

1

64
G0(|z|2)

(
− 8Ti−1,2(|z|)− 8Ti1,2(|z|) + 8Ti−1,−1,1(|z|) + 8Ti−1,1,1(|z|) + 8Ti1,−1,1(|z|)

+ 8Ti1,1,1(|z|)− ζ2Ti1(|z|) + 4Ti3(|z|)
)
− 1

16
ζ2Ti−1,1(|z|)− 1

16
ζ2Ti1,1(|z|)− 1

4
Ti−3,1(|z|)

+
1

4
Ti−1,3(|z|) +

1

4
Ti1,3(|z|)− 1

4
Ti3,1(|z|)− 1

4
Ti−2,−1,1(|z|)− 1

4
Ti−2,1,1(|z|)

− 1

4
Ti−1,−2,1(|z|)− 1

4
Ti−1,−1,2(|z|)− 1

4
Ti−1,1,2(|z|)− 1

4
Ti−1,2,1(|z|)− 1

4
Ti1,−2,1(|z|)

− 1

4
Ti1,−1,2(|z|)− 1

4
Ti1,1,2(|z|)− 1

4
Ti1,2,1(|z|)− 1

4
Ti2,−1,1(|z|)− 1

4
Ti2,1,1(|z|)

− 1

16
ζ3Ti1(|z|) +

1

32
ζ2Ti2(|z|)− Ti4(|z|)

8
,

b
(2)
4,sym =− 1

96
G0,0(|z|2) +

ζ2
96

+
1

24
,

b
(2)
4,asym =− 3

64
G0,0,0(|z|2)− 7

48
G0,0(|z|2) +

1

192
(9ζ2 − 4)G0(|z|2) +

7

24
G−1,0(|z|2)− 3

8
G−1,−1,0(|z|2)

+
3

16
G−1,0,0(|z|2) +

3

16
G0,−1,0(|z|2) +

7ζ2
48

+
3ζ3
16
− 3

16
ζ2G−1(|z|2),

c
(2)
4,sym = +

1

4
Ti1(|z|)G0,0(|z|2) +

1

6
G0(|z|2)

(
3Ti−1,1(|z|) + 3Ti1,1(|z|) + 2Ti1(|z|)− 3Ti2(|z|)

)
− Ti−2,1(|z|)− Ti−1,2(|z|)− Ti1,2(|z|)− Ti2,1(|z|)− 1

4
ζ2Ti1(|z|)− 2Ti2(|z|)

3
+ Ti3(|z|),

d
(2)
4 = +

1

4
Ti1(|z|)G0,0(|z|2) +

1

2
G0(|z|2)

(
Ti−1,1(|z|) + Ti1,1(|z|) + Ti1(|z|)− Ti2(|z|)

)
− Ti−2,1(|z|)− Ti−1,2(|z|)− Ti1,2(|z|)− Ti2,1(|z|)− 1

4
ζ2Ti1(|z|)− Ti2(|z|) + Ti3(|z|),
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J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

a
(2)
5 =− 1

64
G0,0,0,0(|z|2)Ti1(|z|) +

1

32
G0,0,0(|z|2)

(
Ti2(|z|)− 3Ti−1,1(|z|)− 3Ti1,1(|z|)

)
+

1

64
G0,0(|z|2)

(
− 4Ti3(|z|)− 12Ti−2,1(|z|) + 12Ti−1,2(|z|) + 12Ti1,2(|z|)− 12Ti2,1(|z|)

− 24Ti−1,−1,1(|z|)− 24Ti−1,1,1(|z|)− 24Ti1,−1,1(|z|)− 24Ti1,1,1(|z|) + Ti1(|z|)ζ2
)

+
1

32
G0(|z|2)

(
4Ti4(|z|) + 20Ti−3,1(|z|) + 12Ti−2,2(|z|)− 12Ti−1,3(|z|)− 12Ti1,3(|z|)

+ 12Ti2,2(|z|) + 20Ti3,1(|z|) + 24Ti−1,−1,2(|z|) + 24Ti−1,1,2(|z|) + 24Ti1,−1,2(|z|)
+ 24Ti1,1,2(|z|)− 24Ti−1,−1,−1,1(|z|)− 24Ti−1,−1,1,1(|z|)− 24Ti−1,1,−1,1(|z|)
− 24Ti−1,1,1,1(|z|)− 24Ti1,−1,−1,1(|z|)− 24Ti1,−1,1,1(|z|)− 24Ti1,1,−1,1(|z|)

− 24Ti1,1,1,1(|z|)− Ti2(|z|)ζ2 + 3Ti−1,1(|z|)ζ2 + 3Ti1,1(|z|)ζ2 + 3Ti1(|z|)ζ3
)

+
21

256
ζ4Ti1(|z|)− Ti5(|z|)

4
− 3

4
Ti−4,1(|z|)− 5

4
Ti−3,2(|z|)− 3

4
Ti−2,3(|z|) +

3

4
Ti−1,4(|z|)

+
3

4
Ti1,4(|z|)− 3

4
Ti2,3(|z|)− 5

4
Ti3,2(|z|)− 3

4
Ti4,1(|z|) +

3

2
Ti−3,−1,1(|z|) +

3

2
Ti−3,1,1(|z|)

+
3

2
Ti−2,−2,1(|z|) +

3

2
Ti−2,2,1(|z|) +

3

2
Ti−1,−3,1(|z|)− 3

2
Ti−1,−1,3(|z|)− 3

2
Ti−1,1,3(|z|)

+
3

2
Ti−1,3,1(|z|) +

3

2
Ti1,−3,1(|z|)− 3

2
Ti1,−1,3(|z|)− 3

2
Ti1,1,3(|z|) +

3

2
Ti1,3,1(|z|)

+
3

2
Ti2,−2,1(|z|) +

3

2
Ti2,2,1(|z|) +

3

2
Ti3,−1,1(|z|) +

3

2
Ti3,1,1(|z|) +

3

2
Ti−2,−1,−1,1(|z|)

+
3

2
Ti−2,−1,1,1(|z|) +

3

2
Ti−2,1,−1,1(|z|) +

3

2
Ti−2,1,1,1(|z|) +

3

2
Ti−1,−2,−1,1(|z|)

+
3

2
Ti−1,−2,1,1(|z|) +

3

2
Ti−1,−1,−2,1(|z|) +

3

2
Ti−1,−1,−1,2(|z|) +

3

2
Ti−1,−1,1,2(|z|)

+
3

2
Ti−1,−1,2,1(|z|) +

3

2
Ti−1,1,−2,1(|z|) +

3

2
Ti−1,1,−1,2(|z|) +

3

2
Ti−1,1,1,2(|z|)

+
3

2
Ti−1,1,2,1(|z|) +

3

2
Ti−1,2,−1,1(|z|) +

3

2
Ti−1,2,1,1(|z|) +

3

2
Ti1,−2,−1,1(|z|)

+
3

2
Ti1,−2,1,1(|z|) +

3

2
Ti1,−1,−2,1(|z|) +

3

2
Ti1,−1,−1,2(|z|) +

3

2
Ti1,−1,1,2(|z|)

+
3

2
Ti1,−1,2,1(|z|) +

3

2
Ti1,1,−2,1(|z|) +

3

2
Ti1,1,−1,2(|z|) +

3

2
Ti1,1,1,2(|z|) +

3

2
Ti1,1,2,1(|z|)

+
3

2
Ti1,2,−1,1(|z|) +

3

2
Ti1,2,1,1(|z|) +

3

2
Ti2,−1,−1,1(|z|) +

3

2
Ti2,−1,1,1(|z|) +

3

2
Ti2,1,−1,1(|z|)

+
3

2
Ti2,1,1,1(|z|) +

1

16
Ti3(|z|)ζ2 +

3

16
Ti−2,1(|z|)ζ2 −

3

16
Ti−1,2(|z|)ζ2 −

3

16
Ti1,2(|z|)ζ2

+
3

16
Ti2,1(|z|)ζ2 +

3

8
Ti−1,−1,1(|z|)ζ2 +

3

8
Ti−1,1,1(|z|)ζ2 +

3

8
Ti1,−1,1(|z|)ζ2

+
3

8
Ti1,1,1(|z|)ζ2 −

3

16
Ti2(|z|)ζ3 +

3

8
Ti−1,1(|z|)ζ3 +

3

8
Ti1,1(|z|)ζ3,

b
(2)
5,sym =

1

48
G0,0,0(|z|2)− 5

144
G0,0(|z|2)− 1

48
ζ2G0(|z|2)− 1

24
G0,−1,0(|z|2) +

5ζ2
144
− ζ3

16
− 1

36
,

b
(2)
5,asym = +

3

64
G0,0,0,0(|z|2) +

25

96
G0,0,0(|z|2) +

1

576
G0,0(|z|2)

(
272− 27ζ2

)
+

1

288
G0(|z|2)

(
− 75ζ2 − 81ζ3 + 4

)
+

9

32
ζ2G−1,0(|z|2)− 9

8
ζ2G−1,−1(|z|2)

+
9

16
ζ2G0,−1(|z|2)− 17

18
G−1,0(|z|2) +

7

4
G−1,−1,0(|z|2)− 7

8
G−1,0,0(|z|2)− 7

8
G0,−1,0(|z|2)

− 9

4
G−1,−1,−1,0(|z|2) +

9

8
G−1,−1,0,0(|z|2) +

9

8
G−1,0,−1,0(|z|2)− 9

32
G−1,0,0,0(|z|2)

+
9

8
G0,−1,−1,0(|z|2)− 9

16
G0,−1,0,0(|z|2)− 3

8
G0,0,−1,0(|z|2)− 17ζ2

36
− 7ζ3

8
− 63ζ4

256

+
7

8
ζ2G−1(|z|2) +

9

8
ζ3G−1(|z|2),

– 39 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
1

c
(2)
5,sym =− 3

8
Ti1(|z|)G0,0,0(|z|2) +

1

4
G0,0(|z|2)

(
− 6Ti−1,1(|z|)− 6Ti1,1(|z|)− 4Ti1(|z|) + 3Ti2(|z|)

)
+

1

72
G0(|z|2)

(
− 144Ti−1,1(|z|) + 216Ti−1,2(|z|)− 144Ti1,1(|z|) + 216Ti1,2(|z|)

− 216Ti−1,−1,1(|z|)− 216Ti−1,1,1(|z|)− 216Ti1,−1,1(|z|)− 216Ti1,1,1(|z|) + 27ζ2Ti1(|z|)

− 64Ti1(|z|) + 144Ti2(|z|)− 108Ti3(|z|)
)

+
3

2
ζ2Ti−1,1(|z|) +

3

2
ζ2Ti1,1(|z|) + 6Ti−3,1(|z|)

+ 4Ti−2,1(|z|) + 4Ti−1,2(|z|)− 6Ti−1,3(|z|) + 4Ti1,2(|z|)− 6Ti1,3(|z|) + 4Ti2,1(|z|)
+ 6Ti3,1(|z|) + 6Ti−2,−1,1(|z|) + 6Ti−2,1,1(|z|) + 6Ti−1,−2,1(|z|) + 6Ti−1,−1,2(|z|)
+ 6Ti−1,1,2(|z|) + 6Ti−1,2,1(|z|) + 6Ti1,−2,1(|z|) + 6Ti1,−1,2(|z|) + 6Ti1,1,2(|z|)

+ 6Ti1,2,1(|z|) + 6Ti2,−1,1(|z|) + 6Ti2,1,1(|z|) + ζ2Ti1(|z|) +
3

2
ζ3Ti1(|z|)− 3

4
ζ2Ti2(|z|)

+
16

9
Ti2(|z|)− 4Ti3(|z|) + 3Ti4(|z|),

d
(2)
5 =− 3

8
Ti1(|z|)G0,0,0(|z|2)− 3

4
G0,0(|z|2)

(
2Ti−1,1(|z|) + 2Ti1,1(|z|) + 2Ti1(|z|)− Ti2(|z|)

)
+

1

8
G0(|z|2)

(
− 24Ti−1,1(|z|) + 24Ti−1,2(|z|)− 24Ti1,1(|z|) + 24Ti1,2(|z|)− 24Ti−1,−1,1(|z|)

− 24Ti−1,1,1(|z|)− 24Ti1,−1,1(|z|)− 24Ti1,1,1(|z|) + 3ζ2Ti1(|z|)− 16Ti1(|z|) + 24Ti2(|z|)

− 12Ti3(|z|)
)

+
3

2
ζ2Ti−1,1(|z|) +

3

2
ζ2Ti1,1(|z|) + 6Ti−3,1(|z|) + 6Ti−2,1(|z|) + 6Ti−1,2(|z|)

− 6Ti−1,3(|z|) + 6Ti1,2(|z|)− 6Ti1,3(|z|) + 6Ti2,1(|z|) + 6Ti3,1(|z|) + 6Ti−2,−1,1(|z|)
+ 6Ti−2,1,1(|z|) + 6Ti−1,−2,1(|z|) + 6Ti−1,−1,2(|z|) + 6Ti−1,1,2(|z|) + 6Ti−1,2,1(|z|)
+ 6Ti1,−2,1(|z|) + 6Ti1,−1,2(|z|) + 6Ti1,1,2(|z|) + 6Ti1,2,1(|z|) + 6Ti2,−1,1(|z|) + 6Ti2,1,1(|z|)

+
3

2
ζ2Ti1(|z|) +

3

2
ζ3Ti1(|z|)− 3

4
ζ2Ti2(|z|) + 4Ti2(|z|)− 6Ti3(|z|) + 3Ti4(|z|).
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