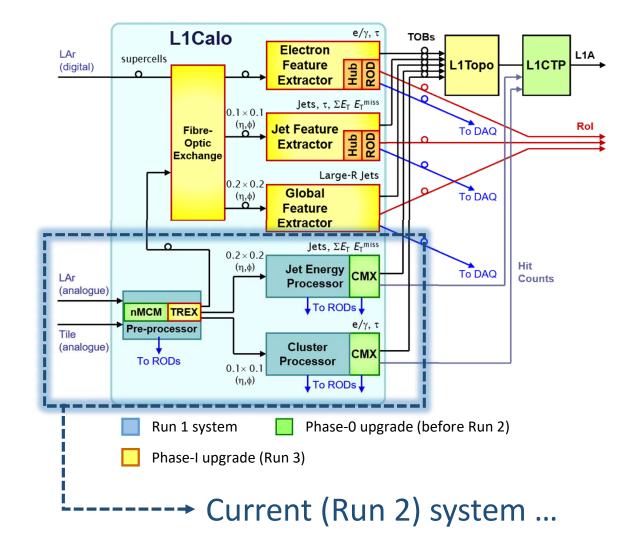

The Phase-I Upgrade of the ATLAS First Level Calorimeter Trigger (L1Calo)

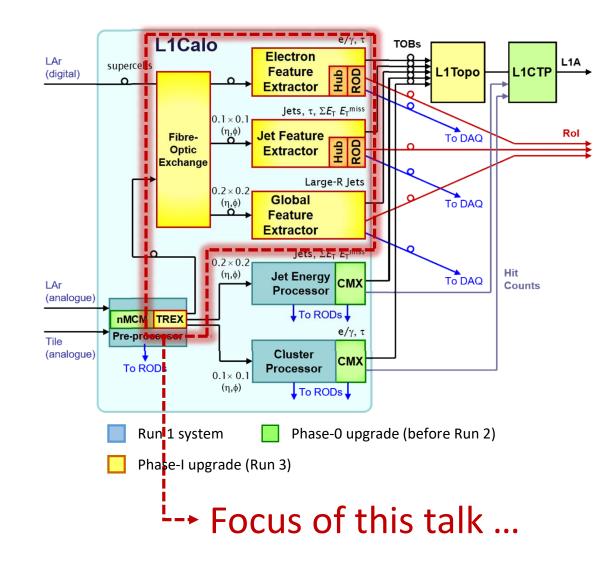
International Conference on Technology and Instrumentation in Particle Physics - 22-26 May 2017, Beijing -

> Victor Andrei (KIP Heidelberg) on behalf of the ATLAS Collaboration



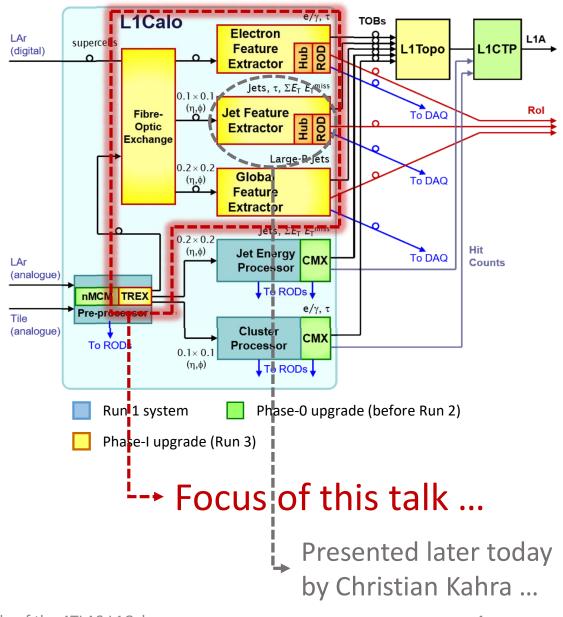
Outline

• ATLAS L1Calo trigger system


- Current architecture (Run 2)
- Phase-I upgrade (Run 3)
- New L1Calo digital trigger
 - Algorithms
 - Prototype modules
- Test results with the prototypes
- Outlook

Outline

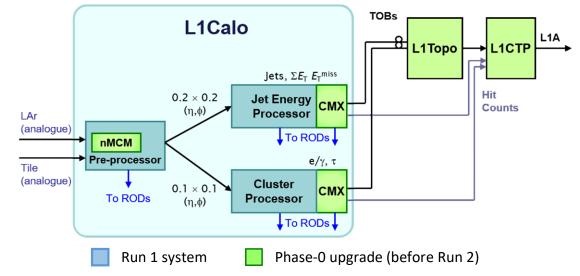
• ATLAS L1Calo trigger system

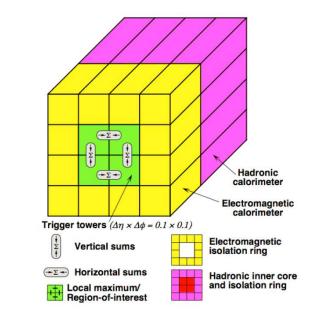

- Current architecture (Run 2)
- Phase-I upgrade (Run 3)
- New L1Calo digital trigger
 - Algorithms
 - Prototype modules
- Test results with the prototypes
- Outlook

Outline

• ATLAS L1Calo trigger system

- Current architecture (Run 2)
- Phase-I upgrade (Run 3)
- New L1Calo digital trigger
 - Algorithms
 - Prototype modules
- Test results with the prototypes
- Outlook

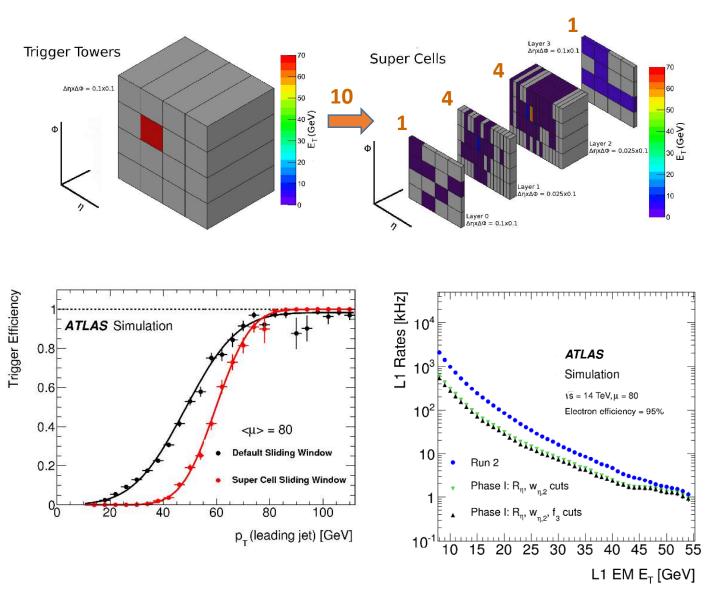



ATLAS L1Calo in Run 2

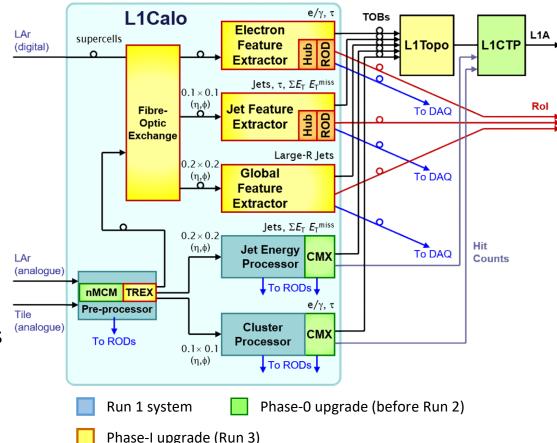
- Hardware-based, pipelined system
- Input
 - Coarse analogue trigger-towers (from LAr & Tile Calorimeters)
- Processing
 - Digitisation, pile-up subtraction, bunch-crossing ID, E_T calibration (PreProcessor)
 - Sliding-window based object identification (Cluster & Jet-Energy Processors)

Output

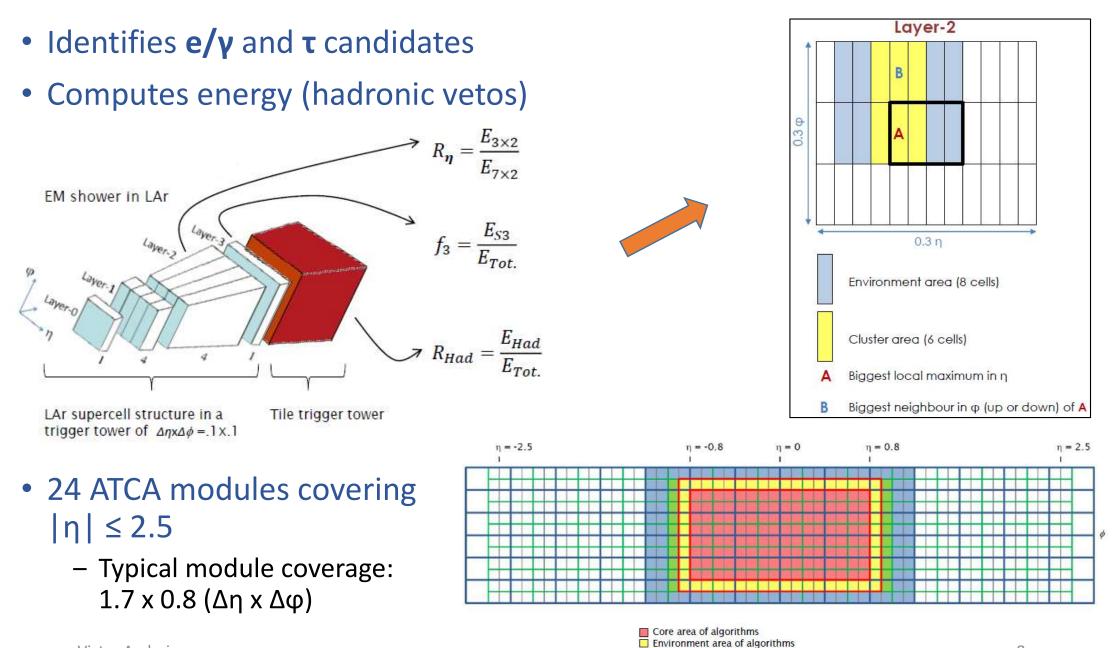
- Real-time digital results to L1Topo and CTP (~2 µs after the collision)
- Event data to DAQ (≤100 kHz)
- Regions-of-Interest (Rol) to HLT



Phase-I Upgrade (2019-2020)


Increased LHC luminosity

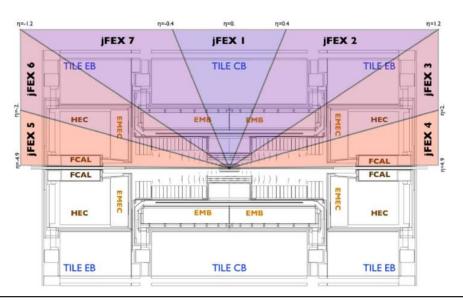
- More interactions per bunch-crossing (μ)
- Higher event rates
- Finer-granularity input from LAr Calorimeter
 - 10 super cells per trigger-tower
 - Better resolution and background rejection



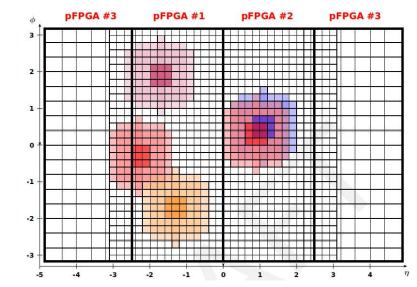
L1Calo in Phase-I Upgrade

- New Feature Extractor (FEX) processors
 - Improved object-finding algorithms
- Digital super-cells from LAr
 - ≤ 12.8 Gbps optical links
- Analogue trigger-towers from Tile
 - Tile Rear Extension (TREX) modules in the PreProcessor
 - provide Tile digitised results to FEXes
 - maintain legacy trigger data path
 - Replaced by digital Tile PreProcessor in Phase-II
- Fibre Optic Exchange (FOX)
 - Re-maps LAr & Tile input to FEXes
- Trigger rate and latency as in Run 2

Electromagnetic Feature Extractor (eFEX)

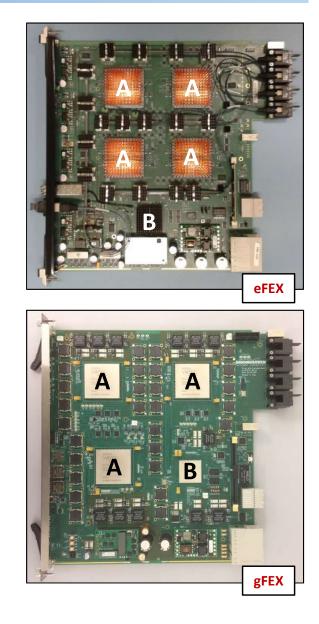

8

Extra area in LAr + Tile carried within fibres, but not used by algorithms Extra area in Tile carried within fibres, but not used by algorithms


Victor Andrei

Jet Feature Extractor (jFEX)

- Identifies jets (large τ), ΣE_T , E_T^{miss}
 - Gaussian weighting jets
 (1.7 x 1.7 and 0.9 x 0.9)
- 7 ATCA modules covering $|\eta| \le 4.9$
 - Each jFEX processes a whole ϕ ring
 - 0.1 x 0.1 input trigger-tower data
- Covered by Christian Kahra's talk

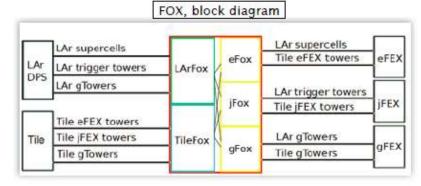


- Identifies large-radius jets
 - Jet-level pile-up subtraction
- Computes global event observables
 - E_t^{miss} , jets-without-jets, centrality, etc.
- Single ATCA module to process the entire calorimeter data
 - 0.2 x 0.2 input tower-sum data

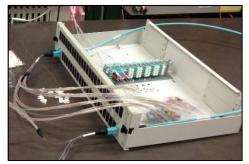
eFEX & gFEX Prototype Modules

- PCBs: 22-layer (eFEX), 26-layer (gFEX)
- FPGAs (Xilinx)
 - <u>Algorithms (A)</u>: Virtex-7 (eFEX),
 Virtex UltraScale (gFEX)
 - <u>Control, readout, monitoring (B)</u>: Virtex-7 (eFEX), Zynq (gFEX)
- High speed optical links (≤ 12.8 Gbps)
 - eFEX: 144 inputs, 36 outputs, 17 MiniPODs
 - gFEX: 280 inputs, 60 outputs, 28 MiniPODs
- High speed data sharing (≤ 12.8 Gbps)
 - Up to 424 on-board differential pairs
- Status
 - Full prototypes manufactured and under test
 - Firmware algorithms in development

Tile Rear Extension (TREX)


Fibre Optical Exchange (FOX)

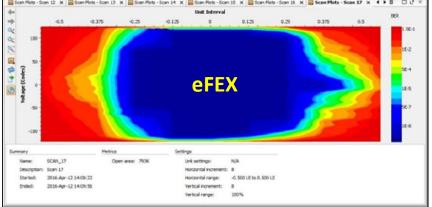
Sends Tile digitised results to FEXes and to legacy processors


- 32 VME-RTM modules
 covering |η| < 1.6
- PCB: 18-layer (prototype)
- FPGAs (Xilinx)
 - 4 Artix-7 (LVDS fan-out)
 - 1 Kintex UltraScale (processing, control, readout & monitoring)
- High-speed links (≤ 12.8 Gbps)
 - Optical: 13 input, 49 output
 - 6 Samtec FireFly (O-Tx/Rx)
 - LVDS (≤ 1 Gbps):
 170 on-board, 73 output
- Status
 - Prototype being manufactured
 - Firmware under development

- Re-maps signals from LAr and TREX/Tile to FEXes
 - ~7100 input links
- Passive optical devices for re-mapping and splitting

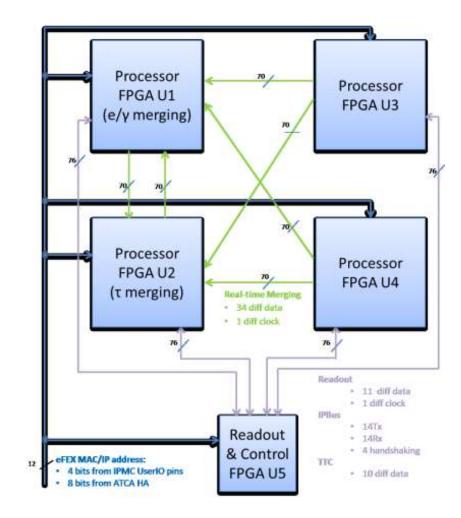
- Status
 - Demonstrator manufactured & tested
 - Mapping mostly defined

eFEX Test Results (1)

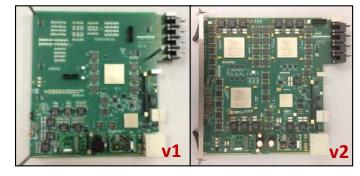

- 3 prototypes manufactured and tested
- Link tests @11.2 Gbps
 - @CERN: with LATOME (LAr)
 - 1st eFEX prototype and partial link tests only
 - FOX demonstrator
 - @RAL: with 2 FEX Test Modules (FTMs)
 - all 3 eFEX prototypes and all optical I/O links
 - 32 inter-FPGA links
 - 14 backplane links (@10.24 Gbps)
 - IBERT PRBS-31, 8b/10b encoding
 - No errors down to BER < 10^{-14} for 99% of links
 - Faulty links due to
 - a few bad high-speed buffers
 - poor PCB routing on one link
 - power sag because of insufficient copper in power plane

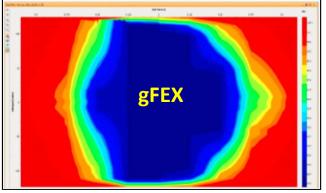
12

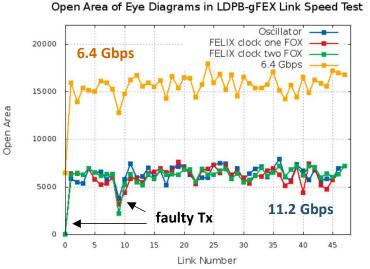
Typical channel 2-D eye scans @11.2 Gbps



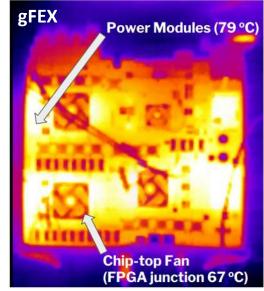
eFEX Test Results (2)

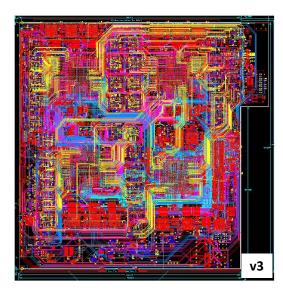

• GPIO tests


- Dual-star communication
- Readout & TTC distribution
- 362 LVDS pairs, >25% error-free margin
- IPBus & IPMC tests
 - All interfaces work properly including basic IPMC functionality
- Power consumption
 - ATCA blade limit: 400 W
 - Measured: ~280 W (all MGTs on)
- Temperature
 - Max 67°C (3 adjacent, fully powered eFEXes)
- Very good results, handful of modifications required for pre-production


gFEX Test Results (1)

- 2 prototype versions manufactured and tested
- Link tests
 - @CERN: with LATOME (LAr)
 - gFEX v1 prototype and partial link (48) tests only
 - FOX demonstrator
 - IBERT PRBS-31, ≤11.2 Gbps, 8b/10b encoding
 - BER < 10⁻¹⁴
 - Faulty links due to bad transmitters
 - @BNL: loopback mode
 - gFEX v1 & v2 prototypes
 - all optical I/O links up to 12.8 Gbps
 - on-board electrical links up to 25.6 Gbps
 - GPIO up to 1.2 Gbps
 - All links stable


Typical channel 2-D eye scans @11.2 Gbps

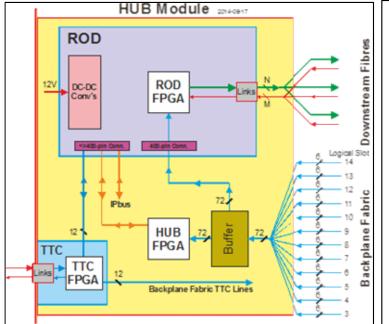

The Phase-I Upgrade of the ATLAS L1Calo

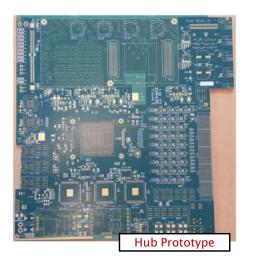
gFEX Test Results (2)

- Integration tests with FELIX (DAQ)
 - Input link : 4.8 Gbps (timing & control)
 - Output links : 9.6 Gbps (event data)
 - All links stable
- IPMC tests
 - Environment set up, tests in progress
- Power consumption & temperature
 - 300 W/module (v2 gFEX, all MGTs enabled)
 - $\le 80^{\circ}$ C (without cooling)
- gFEX pre-production module (v3)
 - − 26 \rightarrow 30 layer PCB
 - 28 \rightarrow 35 MiniPODs
 - UltraScale → UltraScale+ (Virtex & Zynq)
 - Routing completed, manufacturing to start soon

Measured outside ATCA w/o cooling

Outlook

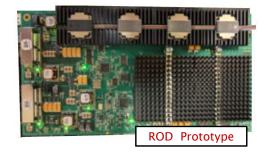

- Prototyping and testing to continue during 2017
 - Next hardware iterations in preparation
 - Main testing at home institutes, joint tests @CERN (with LAr and DAQ)
- Surface test facility @CERN
 - To include all Phase-I L1Calo modules & external source/receiving modules
 - Verify hardware and algorithms
 - Prepare for system integration & commissioning
 - In long-term: testing & debugging platform for Run 3
- Final production to start in 2018
- Underground installation scheduled for 2019
 - After the official end of Run 2
- Integration & commissioning during the entire LHC long shutdown (2019-2021)


BACK-UP

L1Calo Hub

Control and clock hub in eFEX & jFEX shelves

- 2 modules per shelf
- FPGA
 - Xilinx Virtex UltraScale
- High-speed links
 - Electrical @6.4 Gbps: 72
 inputs, 12 outputs,
 2 bidirectional (Hub-to-Hub)
 - Optical @4.8 Gbps: 1 input
- Status
 - Prototypes out for manufacture
 - Firmware in development



Hosted on Hub

- Sends FEX data (Rol & event data) to HLT & DAQ
- FPGA
 - Xilinx Virtex-7
- High-speed links
 - 24 optical links @9.6 Gbps (2 MiniPODs)

• Status

- Prototypes manufactured and under test (all links ok)
- Firmware in development

