
Eur. Phys. J. C (2018) 78:98
https://doi.org/10.1140/epjc/s10052-017-5513-2

Addendum

GAMBIT: the global and modular beyond-the-standard-model
inference tool

Addendum for GAMBIT 1.1: Mathematica backends, SUSYHD interface and updated likelihoods

The GAMBIT Collaboration: Peter Athron1,2, Csaba Balazs1,2, Torsten Bringmann3, Andy Buckley4,
Marcin Chrząszcz5,6, Jan Conrad7,8, Jonathan M. Cornell9, Lars A. Dal3, Hugh Dickinson10, Joakim Edsjö7,8,
Ben Farmer7,8,a, Tomás E. Gonzalo3, Paul Jackson2,11, Abram Krislock3, Anders Kvellestad12,b,
Johan Lundberg7,8, James McKay13, Farvah Mahmoudi14,15,24, Gregory D. Martinez16, Antje Putze17,
Are Raklev3, Joachim Ripken18, Christopher Rogan19, Aldo Saavedra2,20, Christopher Savage12, Pat Scott13,c ,
Seon-Hee Seo21, Nicola Serra5, Christoph Weniger22,d, Martin White2,11, Sebastian Wild23

1 School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
2 Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia, http://www.coepp.org.au/
3 Department of Physics, University of Oslo, 0316 Oslo, Norway
4 SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
5 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
6 H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
7 Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden
8 Department of Physics, Stockholm University, 10691 Stockholm, Sweden
9 Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8, Canada

10 Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455, USA
11 Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
12 NORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
13 Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
14 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, 69230 Saint-Genis-Laval, France
15 Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
16 Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
17 LAPTh, Université de Savoie, CNRS, 9 chemin de Bellevue B.P.110, 74941 Annecy-le-Vieux, France
18 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
19 Department of Physics, Harvard University, Cambridge, MA 02138, USA
20 Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, The University of Sydney,

Sydney, NSW 2006, Australia
21 Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
22 GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
23 DESY, Notkestraße 85, 22607 Hamburg, Germany
24 Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

Received: 3 November 2017 / Accepted: 28 December 2017
© The Author(s) 2018. This article is an open access publication

Abstract In Ref. (GAMBIT Collaboration: Athron et. al.,
Eur. Phys. J. C. arXiv:1705.07908, 2017) we introduced the
global-fitting framework GAMBIT. In this addendum, we
describe a new minor version increment of this package.
GAMBIT 1.1 includes full support for Mathematica back-
ends, which we describe in some detail here. As an example,
we backend SUSYHD (Vega and Villadoro, JHEP 07:159,

a e-mail: benjamin.farmer@fysik.su.se
b e-mail: anders.kvellestad@nordita.org
c e-mail: p.scott@imperial.ac.uk
d e-mail: c.weniger@uva.nl

2015), which calculates the mass of the Higgs boson in the
MSSM from effective field theory. We also describe updated
likelihoods in PrecisionBit and DarkBit, and updated decay
data included in DecayBit.

1 Using Mathematica backends in GAMBIT

For decades, Wolfram Mathematica1 has been the symbolic
computing framework of choice for many physicists. GAM-

1 http://www.wolfram.com/mathematica/.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5513-2&domain=pdf
http://orcid.org/0000-0002-3151-3701
http://www.coepp.org.au/
http://arxiv.org/abs/1705.07908
mailto:benjamin.farmer@fysik.su.se
mailto:anders.kvellestad@nordita.org
mailto:p.scott@imperial.ac.uk
mailto:c.weniger@uva.nl
http://www.wolfram.com/mathematica/

 98 Page 2 of 9 Eur. Phys. J. C (2018) 78:98

BIT2 users can now access both public and private Mathe-
matica packages from within GAMBIT modules. This new
feature provides a seamless interface toMathematica, indis-
tinguishable from the existing GAMBIT backend interfaces
to codes written in C, C++ and Fortran.

Mathematica is proprietary software. It is the respon-
sibility of the user to acquire a license in order to use the
Mathematica framework. The number of Mathematica
Kernel instances and subprocesses that can be launched
per Mathematica license is limited, and can be found
by evaluating the variables $MaxLicenseProcesses and
$MaxLicenseSubprocesses (typically 8 and 16 respec-
tively for a standard Mathematica license).

This addendum describes our implementation of the
Mathematica interface. Section 1.1 describes the mecha-
nism used to communicate with the Mathematica Kernel
from GAMBIT. In Sects. 1.2–1.4 we explain the different
aspects of the implementation, consisting of configuration
(1.2), registration of backend functions and variables (1.3),
and updates to the GAMBIT diagnostics to accommodate
Mathematica backends (1.4). In Sect. 1.5, we give a realis-
tic example of a Mathematica backend interfaced to GAM-
BIT, namely SUSYHD [2], which calculates the mass of
the Higgs boson using methods from effective field theory
(EFT).

1.1 The Wolfram symbolic transfer protocol

The Wolfram Symbolic Transfer Protocol (WSTP3), is the
communication standard used by Mathematica to commu-
nicate with external programs. WSTP provides a two-way
communication system, allowing the user to both call exter-
nal codes from within Mathematica, and to call Mathe-
matica routines from external programs written in many
languages (C, C++, Java, etc). GAMBIT 1.1 uses the com-
munication pathway between Mathematica and C++. This
allows GAMBIT users to directly call Mathematica func-
tions and variables from GAMBIT modules, in the same way
as functions and variables are accessed from C, C++ and
Fortran backends in GAMBIT 1.0.

The GAMBIT-Mathematica interface uses the WSTP
messaging functions to launch and establish a link to a Math-
ematicaKernel session, and to send and receive information
from that Kernel. Almost all the messaging functions that we
employ use a WSTP link object, of type WSLINK, as a han-
dle for communicating with the Kernel. One retrieves such
a handle by opening a link to the Kernel with the messag-
ing functions WSOpenArgcArgv or WSOpenString. The most
important messaging functions for our purposes are

2 http://gambit.hepforge.org.
3 More information on WSTP can be found at http://reference.
wolfram.com/language/.

WSPutFunction(WSlink, function_name, n_args);
WSPutString(WSlink, string_name);
WSPutSymbol(WSlink, symbol_name);
WSPutInteger(WSlink, integer_number);
WSPutReal32(WSlink, float_number);
WSPutReal64(WSlink, double_precision_number);

WSGetString(WSlink, &string_variable);
WSGetInteger(WSlink, &integer_variable);
WSGetReal32(WSlink, &float_variable);
WSGetReal64(WSlink, &double_precision_variable);

where WSlink is an object of type WSLINK. The first argument
in each of these must be a C++ object with the appropriate
type, e.g. for symbols and functions this is a C++ string, and
the argument n_args corresponds to the number of arguments
of the Mathematica function function_name.

To interpret data received from the WSGet functions,
one must also receive the packets sent by the Kernel. We
use WSNextPacket(WSlink) to find the next packet head,
WSNewPacket(WSlink) to skip the rest of the current packet,
and WSError(WSlink) to check for errors during packet
reception.

All these messaging functions live in the header wstp.h,
native to the Mathematica installation, and will be used by
GAMBIT for different purposes, as described below.

1.2 Preparing and configuring Mathematica backends

1.2.1 Configuration

At cmake time, GAMBIT searches for an installation of
Mathematica on the user’s system, locating the installa-
tion directory and defining severalcmake variables, including
the paths to the Mathematica header files and executables.
The GAMBIT cmake system also searches for the libuuid

library, required by WSTP. It writes a new header file con-
taining a series of variables relating to the system’s Math-
ematica configuration, including the preprocessor macro
HAVE_MATHEMATICA, which is later used to enable or disable
all code associated with Mathematica backends, according
to whether or not the user has Mathematica installed. In
order to manually switch off Mathematica support (from
GAMBIT 1.1.2 onwards), one may run the cmake command
as

cmake -Ditch=Mathematica ..

Mathematica backends are obtained and configured in
a similar manner to other backends, by adding relevant
entries to cmake/backends.cmake and config/backend_

locations.yaml.default, and then running make back-

end_name. Mathematica backends require neither a configu-
ration nor a build step, only a download link and an installa-
tion directory.

123

http://gambit.hepforge.org
http://reference.wolfram.com/language/
http://reference.wolfram.com/language/

Eur. Phys. J. C (2018) 78:98 Page 3 of 9 98

1.2.2 Frontend header

As described in Sect. 4 of Ref. [1], GAMBIT loads backends
at runtime as dynamic libraries, regardless of whether they
are written in C, C++ or Fortran, using the POSIX-standard
dl library. The macro LOAD_LIBRARY, used in the corre-
sponding frontend header in GAMBIT, activates the backend
library and loads its symbols.

GAMBIT communicates with Mathematica backends in
a fundamentally different way to backends written in com-
piled languages. To redirect compilation flow in the GAM-
BIT backend system to use the preprocessor directives rele-
vant for Mathematica backends, we define the new macro
BACKENDLANG. This specifies the language of the backend
in question, and can take the values CC, CXX, FORTRAN or
MATHEMATICA. For example, in GAMBIT 1.1, the frontend
header for version 1.2 of a C++ backend called backend_name

would begin with

#define BACKENDNAME backend_name
#define BACKENDLANG CXX
#define VERSION 1.2
#define SAFE_VERSION 1_2
LOAD_LIBRARY

1.2.3 Backend types

In analogy with the definition of new types and typedefs given
for Fortran backends in Sect. 4.4 of Ref. [1], here we pro-
vide a list of new types defined in GAMBIT 1.1 for use with
Mathematica backends. These have clear correspondences
with equivalent types in C and C++ types, and should be
adopted whenever one is working with Mathematica back-
ends. These are:

MVoid
MInteger
MReal
MBool
MChar
MString
MList<TYPE>

where TYPE can take any of the other defined types as its
template argument. All these types are just convenient type
redefinitions of native C++ types and thus can be used in
exactly the same manner.

1.2.4 Link to the Kernel

Prior to loading the backend library, the connection with
the Mathematica Kernel must be established. For this, the
macro LOAD_LIBRARY initializes a WSTP environment with
a call to WSInitialize, which returns a handle to theWSTP
environment of type WSENV. After retrieving this handle,
GAMBIT opens a new WSTP connection using the function

WSOpenString, which launches the Mathematica Kernel
and finishes the intialization phase of the connection. These
functions are employed in the following way:

WSenv = WSInitialize();
WSlink = WSOpenString(WSenv, WSTPflags,
&WSerrno);

The variable WSerrno captures any error that might have
ocurred during the establishment of the link and WSTPflags

is a string containing flags that point to theKernel executable
and give the order to initiate the link, e.g. WSTPflags =

"-linkname math -mathlink" for Linux systems.
If the link is successfully established, the pointer WSlink

is set to point to the new link between the main program and
the Kernel. This handle is used in every subsequent commu-
nication with the Kernel.

1.2.5 Importing the package

After defining the relevant macros and backend types, load-
ing the Mathematica environment and Kernel, the final task
of the LOAD_LIBRARY macro is to import the backend pack-
age into the Mathematica Kernel. This is achieved by using
the pointer to the WSTP link WSlink via the following load
sequence:

WSPutFunction(WSlink, "Once", 1);
WSPutFunction(WSlink, "Get", 1);
WSPutString(WSlink, path);

which is equivalent to the call Get[path] within a notebook
session.

Note that before we load the package, we call the Math-
ematica function Once, which makes sure that the fol-
lowing function will be executed only once in a Ker-
nel session. Here path is a string containing the path to
the .m file of the backend package; the actual value used
is taken from the default GAMBIT backend location file
config/backend_locations.yaml.default or a user-
supplied override.

When loading a package in Mathematica the Get func-
tion will return information regarding its success. The exact
return value will always be package dependent, so is difficult
to interpret in general from theGAMBIT interface. Therefore
we use the standard library functions of C++ to check if the
package and all required functions and variables exist. This
is done via the GAMBIT diagnostic system (see Sect. 1.4).

1.3 Backend functions and variables

The backend system in GAMBIT, as described in Sect. 4 of
Ref. [1], provides a set of macros for registering functions and
variables from backends. In a nutshell, GAMBIT extracts a
pointer to the function/variable living in the shared library of

123

 98 Page 4 of 9 Eur. Phys. J. C (2018) 78:98

Fig. 1 Diagrammatic representation of the communication link between GAMBIT and the Mathematica Kernel, showing the wrappers for
backend functions and the variable classes for backend variables

the backend, and wraps it into a functor object to be handled
by the dependency resolver.

When dealing with backends written in Mathematica,
the above procedure must be modified, as there is no shared
library from which to extract the pointer to the function or
variable. Instead, we must interface with the functions and
variables via the Mathematica Kernel. The general strategy
for doing this is shown in Fig. 1.

1.3.1 Backend functions

Backend functions in GAMBIT are defined with the macro
BE_FUNCTION. This macro creates a pointer to the function
in the namespace of the backend, and assigns it a name and
capability withinGAMBIT of the frontend author’s choosing.
In order to communicate with the Mathematica Kernel and
provide the same sort of handle to the dependency resolver for
Mathematica backends, we must define a wrapper function
around message calls to the Kernel, in such a way as to have
the wrapper function operate like a regular C/C++ backend
function.

We achieve this by redirecting the macroBE_FUNCTION for
backends written in Mathematica, according to the value of
BACKENDLANG. The version of BE_FUNCTION that gets used
for Mathematica backends therefore constructs a wrapper
function around each Mathematica function that the user
wishes to access from within GAMBIT. The wrapper func-
tion handles the submission and receipt of all messages to
and from the Kernel relating to the function. This includes
all function arguments, and the eventual return value of the
function. The sequence of messages is:

WSPutFunction(WSlink, symbol_name, n);
WSPutVariable(WSlink, arg_1);
WSPutVariable(WSlink, arg_2);
...
WSPutVariable(WSlink, arg_n);
WSGetVariable(WSlink, &val);

where symbol_name is the name of the function within the
Mathematica package, n is the number of arguments it
accepts, arg_1, arg_2, etc are the arguments themselves,
and val is the return value. Here WSPutVariable and
WSGetVariable are overloaded functions, which expand to
different type-specific setter and getter functions intrinsic to
WSTP (mentioned in Sect. 1.1).

There is an important subtlety regarding the names of
functions in Mathematica backends. Mathematica permits
non-alphanumeric characters in function names. Many of the
backends that are interesting for GAMBIT include functions
with such names. However, function names in GAMBIT are
treated as regular strings, so there is no easy way to communi-
cate the actual name of the function to theKernel. To circum-
vent this issue, names of Mathematica backend functions
should be declared to GAMBIT with all special characters
written in terms of their “full names”, e.g. α = \[Alpha], but
making sure to escape the slash “\” so that C++ can parse it.
To illustrate this, we show the signature used for the function
�MHiggs from the backend SUSYHD [2], which calculates
uncertainties on the Higgs mass:

BE_FUNCTION(DeltaMHiggs, MReal,
(const MList<MReal>&),
"\\[CapitalDelta]MHiggs",
"SUSYHD_DeltaMHiggs")

123

Eur. Phys. J. C (2018) 78:98 Page 5 of 9 98

where the first argument is the name of the function within
GAMBIT with its return type and signature as the second and
third arguments. The last two arguments of the BE_FUNCTION

macro are the symbol associated to the backend function, the
Mathematica function in our case, and the capability that
the function provides.

The generic function call is modified in the case that
the symbol name contains non-alphanumeric characters. The
symbol name (for example "\\[CapitalDelta]MHiggs")
must be sent as a string to the Kernel, preceded by a mes-
sage that transforms it into a valid Mathematica expression.
This expression matches the string version of the name to the
name of the actual backend function, including the correct
non-alphanumeric characters. The sequence of messages is

WSPutFunction(WSlink, "Apply", 2);
WSPutFunction(WSlink, "ToExpression",1);
WSPutString(WSlink, symbol_name);
WSPutFunction(WSlink, "List", n_args);
WSPutVariable(WSlink, arg_1);
WSPutVariable(WSlink, arg_2);
...
WSPutVariable(WSlink, arg_n);
WSGetVariable(WSlink, &val);

which is equivalent to WSPutFunction(WSlink, symbol_

name, n_args), in the case that the symbol_name contains only
alpha-numeric characters.

1.3.2 Backend variables

Backend variables in GAMBIT are registered with the pre-
processor macro BE_VARIABLE. For backends written in C,
C++ or Fortran, this macro retrieves a pointer to the vari-
able from the shared library. Through this pointer, module
functions can extract and modify values of global variables
in backends as needed. However, such an interface cannot be
constructed if the backend is written in Mathematica. The
WSTP messaging system can only access variables from the
Kernel by value, so it is not possible to obtain a pointer via
which GAMBIT can modify the value inside the Kernel.

To work around this limitation, the GAMBIT 1.1 backend
system creates a templated class mathematica_variable

<TYPE>, with a private member variable of type TYPE.
The templated class acts as a wrapper for the required
calls to the Mathematica Kernel. As with backend func-
tions, the macro BE_VARIABLE is redefined for Mathemat-
ica backends. This macro creates an instance of the class
mathematica_variable<TYPE>, with TYPE equal to the
type of the variable in theKernel (see Sect. 1.2.3). Like back-
end functions, backend variable names are sent to the Kernel
as a string preceded by the ToExpression function, instead
of simply sending the symbol name via WSPutSymbol. This
allows access to variables with special characters in their
names.

As we show schematically in Fig. 1, the mathematica_

variable<TYPE> class allows variables in the Kernel to be
seamlessly read, modified and implicitly cast to variables of
type TYPE, allowing them to be used directly in C++ expres-
sions. These functionalities are achieved by overloading two
operators that act on the mathematica_variable<TYPE>

class. The first of these is the assignment operator
mathematica_variable& operator=(const TYPE &),
enabling modification of the variables in the Kernel by regu-
lar assignment expressions in module functions. The other is
the cast operator operator TYPE const(), which converts
an object of type mathematica_variable<TYPE> into its
member variable of type TYPE, allowing the variable to be
used in all C++ expressions where TYPE would be permitted.

1.4 Diagnostics

GAMBIT already ships with extensive diagnostic tools, pro-
viding the user with information about the status of backends,
modules, capabilities, scanners and more. We have added a
few additional diagnostic checks for Mathematica backends
in GAMBIT 1.1.

The first of these simply assesses the status of a Math-
ematica backend, as typically viewed when using the
gambit backends diagnostic. GAMBIT 1.1 adds an addi-
tional possible status in this readout, triggered in the case
that a specific backend requiresMathematica but no accept-
able version of it has been found in the system. When
backends are loaded at runtime, they each register in the
Backends::backendInfo() object (described in Sec. 4.6
of Ref. [1]) whether or not they require Mathematica, in the
new BackendInfo member variable

std::map<str, bool> needsMathematica;

At runtime, this information is checked against the actual
presence (or absence) of Mathematica, and the statusMath-
ematica absent is displayed if it is needed but not found.

GAMBIT will also inform the user of the status of each
individual function and global variable in a backend. For
Mathematica backends, we achieve this by calling the
Mathematica function NameQ. This function takes the sym-
bol name (whether a function or a variable) as a string argu-
ment, and returns a boolean result indicating if the symbol
is currently present in the Kernel. The diagnostic system
then assigns a numerical flag to the status of the function or
variable:

1: This function is available, but the
backend

version does not match your request.
0: This function is not compatible with
any

model you are scanning.
-1: The backend that provides this
function is

123

 98 Page 6 of 9 Eur. Phys. J. C (2018) 78:98

missing.
-2: The backend is present, but the
function is

absent or broken.
-5: The backend requires Mathematica, but

Mathematica is absent.

1.5 Higgs mass calculations with SUSYHD

GAMBIT 1.0 offers three options for calculating the mass
of the Higgs boson: FlexibleSUSY (1.51) [3], SPheno
(3.3.8) [4,5] and FeynHiggs (2.11.2, 2.11.3, 2.12.0) [6–
11]. The first two are fixed order DR calculations of the
Higgs pole mass. The third is an on-shell calculation that can
be performed at fixed order, or can include some resummed
logarithmic corrections to give a hybrid EFT/fixed order cal-
culation [10–12].4 Here we provide a different approach to
computing the Higgs mass, for any MSSM model,5 via the
Mathematica package SUSYHD [2].

SUSYHD uses the pure EFT calculation, which resums
logarithms through the matching and running procedure,
using three-loop Standard Model (SM) renormalisation
group equations and two-loop matching, providing a more
precise result than fixed-order calculations when MSUSY �
mt . SUSYHD is the first pure EFT Higgs calculation in
GAMBIT, and the calculation remains state-of-the-art. This
therefore represents an important new option for calculating
the Higgs mass. This calculation is most appropriate when
MSUSY � mt because the pure EFT approach neglects terms
of order O(v2

0/M2
SUSY) (where v0 is the SM Higgs vacuum

expectation value), which can be important at the TeV scale
and below.

SUSYHD includes three main functions: MHiggs,
�MHiggs and SetSMparameters with the following signa-
tures

MHiggs[shortList_]
�MHiggs[shortList_]
SetSMparameters[QMTorgt_,Qα3MZ_]

The first two calculate the mass of the lightest Higgs boson
and its theoretical uncertainty in the minimal supersymmet-
ric SM (MSSM), starting from a list of DR masses at scale
MSUSY. The third function sets the values of the SM param-
eters to be used in the calculation.

We use these functions by declaring them to GAMBIT as
usual in a frontend header. This SUSYHD frontend header
contains the declarations

4 Although bothFlexibleSUSY [13] andSPheno [14] also include the
option of employing a hybrid DR calculation, implementing the algo-
rithm in Ref. [13], these options are not yet included in GAMBIT. They
will be added in further updates, as will the pure EFT FlexibleSUSY
calculation, HSSUSY.
5 See Sect. 5.4 of [1] for a list of MSSM models in GAMBIT.

BE_FUNCTION(MHiggs, MReal,
(const MList<MReal>&), "MHiggs",
"SUSYHD_MHiggs")

BE_FUNCTION(DeltaMHiggs, MReal,
(const MList<MReal>&),
"\\[CapitalDelta]MHiggs",
"SUSYHD_DeltaMHiggs")

BE_FUNCTION(SetSMparameters, MVoid,
(const MReal&, const MReal&),
"SetSMparameters",
"SUSYHD_SetSMparameters")

GAMBIT does not support alternative interface options for
the input parameters of these functions, as it is already guar-
anteed that the correct input will be provided by the spectrum
object. Additional performance options will be supported in
future releases.

To use SUSYHD from SpecBit to compute the Higgs
mass and uncertainty, we define a new module function
SHD_HiggsMass, which provides the capability prec_mh.
The declaration of this function in the rollcall header for
SpecBit is:

#define FUNCTION SHD_HiggsMass
START_FUNCTION(triplet<double>)
DEPENDENCY(unimproved_MSSM_spectrum,
Spectrum)

BACKEND_REQ(SUSYHD_MHiggs, (), MReal,
(const MList<MReal>&))

BACKEND_REQ(SUSYHD_DeltaMHiggs, (), MReal,
(const MList<MReal>&))

ALLOW_MODELS(MSSM63atQ, MSSM63atMGUT)
#undef FUNCTION

2 SpecBit, DecayBit and PrecisionBit updates

GAMBIT 1.1 also includes a simultaneous version update
to SpecBit, DecayBit and PrecisionBit [15]. In this section
we briefly discuss the changes made to the module functions
and structure of the code.

PrecisionBit 1.1 features updated likelihood functions
for the first and second generation quark masses, the strong
and electromagnetic couplings, the anomalous magnetic
moment of the muon, and Δρ (the departure from unity of
the ratio of the Fermi couplings associated with W and Z
bosons). DecayBit 1.1 contains updates to all SM particle
widths, branching fractions and uncertainties. These updates
bring the data contained in PrecisionBit and DecayBit up
to date with the central values and uncertainties of the 2017
Particle Data Book [16,17].

The module functions of SpecBit and PrecisionBit have
undergone some rearrangement and expansion in order to
better accommodate alternative spectrum generators and pre-
cision calculators. The updated functions are detailed in
Tables 1 and 2.

123

Eur. Phys. J. C (2018) 78:98 Page 7 of 9 98

Ta
bl
e
1

N
ew

or
m

od
ifi

ed
m

od
ul

e
fu

nc
tio

ns
of

no
te

in
S
pe

cB
it
1.
1.

Fu
nc

tio
ns

th
at

us
e
F
le
xi
bl
eS

U
S
Y

to
ge

ne
ra

te
an

u
n
i
m
p
r
o
v
e
d
_
M
S
S
M
_
s
p
e
c
t
r
u
m

ha
ve

be
en

ap
pr

op
ri

at
el

y
re

na
m

ed
,a

ne
w

pr
ec

is
io

n
SM

-l
ik

e
H

ig
gs

m
as

s
ca

lc
ul

at
or

us
in

g
S
U
S
Y
H
D

ha
s

be
en

ad
de

d,
an

d
th

e
pr

ec
is

io
n

H
ig

gs
m

as
s

ca
lc

ul
at

io
n

w
ith

F
ey

nH
ig
gs

ha
s

be
en

sp
lit

in
to

se
pa

ra
te

fu
nc

tio
ns

fo
r

th
e

SM
-l

ik
e

H
ig

gs
an

d
th

e
ot

he
r

th
re

e
M

SS
M

H
ig

gs
bo

so
ns

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

B
ac

ke
nd

re
qu

ir
em

en
ts

u
n
i
m
p
r
o
v
e
d
_
M
S
S
M

_
s
p
e
c
t
r
u
m

g
e
t
_
C
M
S
S
M
_
s
p
e
c
t
r
u
m
_
F
S

(S
p
e
c
t
r
u
m

):
R

en
am

ed
fr

om
g
e
t
_
C
M
S
S
M
_
s
p
e
c
t
r
u
m

.M
ak

e
an

M
SS

M
sp

ec
tr

um
ob

je
ct

w
ith

F
le
xi
bl
eS

U
S
Y

us
in

g
C

M
SS

M
bo

un
da

ry
co

nd
iti

on
s

S
M
I
N
P
U
T
S

F
le
xi
bl
eS

U
S
Y

g
e
t
_
M
S
S
M
a
t
M
G
U
T
_
s
p
e
c
t
r
u
m
_
F
S

(S
p
e
c
t
r
u
m

):
R

en
am

ed
fr

om
g
e
t
_
M
S
S
M
a
t
M
G
U
T
_
s
p
e
c
t
r
u
m

.
M

ak
e

an
M

SS
M

sp
ec

tr
um

ob
je

ct
w

ith
F
le
xi
bl
eS

U
S
Y

us
in

g
so

ft
br

ea
ki

ng
m

as
se

s
in

pu
t

at
th

e
G

U
T

sc
al

e

S
M
I
N
P
U
T
S

F
le
xi
bl
eS

U
S
Y

g
e
t
_
M
S
S
M
a
t
Q
_
s
p
e
c
t
r
u
m
_
F
S

(S
p
e
c
t
r
u
m

):
R

en
am

ed
fr

om
g
e
t
_
M
S
S
M
a
t
Q
_
s
p
e
c
t
r
u
m

.
M

ak
e

an
M

SS
M

sp
ec

-
tr

um
ob

je
ct

w
ith

F
le
xi
bl
eS

U
S
Y

fr
om

so
ft

br
ea

ki
ng

m
as

se
s

in
pu

t
at

(u
se

r-
de

fin
ed

)
sc

al
e
Q

S
M
I
N
P
U
T
S

F
le
xi
bl
eS

U
S
Y

F
H
_
H
i
g
g
s
M
a
s
s
e
s

F
H
_
A
l
l
H
i
g
g
s
M
a
s
s
e
s

(f
h
_
H
i
g
g
s
M
a
s
s
O
b
s

):
R

en
am

ed
fr

om
F
H
_
H
i
g
g
s
M
a
s
s
e
s

;
ca

pa
bi

lii
ty

re
as

si
gn

ed
fr

om
p
r
e
c
_
H
i
g
g
s
M
a
s
s
e
s

.
H

ig
gs

m
as

se
s

an
d

m
ix

in
gs

w
ith

th
eo

re
tic

al
un

ce
rt

ai
nt

ie
s,

as
co

m
pu

te
d

by
F
ey

nH
ig
gs

–
F
ey

nH
ig
gs

p
r
e
c
_
m
h

F
H
_
H
i
g
g
s
M
a
s
s

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
M

as
s

of
th

e
m

os
t

SM
-l

ik
e

ne
ut

ra
l

H
ig

gs
bo

so
n

an
d

as
so

ci
at

ed
un

ce
r-

ta
in

ty
,a

s
co

m
pu

te
d

by
F
ey

nH
ig
gs

F
H
_
H
i
g
g
s
M
a
s
s
e
s

u
n
i
m
p
r
o
v
e
d
_
M
S
S
M
_
s
p
e
c
t
r
u
m

–

S
H
D
_
H
i
g
g
s
M
a
s
s

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
M

as
s

of
th

e
m

os
t

SM
-l

ik
e

ne
ut

ra
l

H
ig

gs
bo

so
n

an
d

as
so

ci
at

ed
un

ce
r-

ta
in

ty
,a

s
co

m
pu

te
d

by
S
U
S
Y
H
D

u
n
i
m
p
r
o
v
e
d
_
M
S
S
M
_
s
p
e
c
t
r
u
m

S
U
S
Y
H
D

p
r
e
c
_
H
e
a
v
y
H
i
g
g
s
M
a
s
s
e
s

F
H
_
H
e
a
v
y
H
i
g
g
s
M
a
s
s
e
s

(s
t
d
:
:
m
a
p
<
i
n
t
,
t
r
i
p
l
e
t
<
d
o
u
b
l
e
>
>

):
M

as
se

s
of

th
e

th
re

e
no

n-
SM

H
ig

gs
bo

so
ns

an
d

as
so

ci
at

ed
un

ce
rt

ai
nt

ie
s

in
a

m
od

el
w

ith
tw

o
H

ig
gs

do
ub

le
ts

,a
s

co
m

pu
te

d
by

F
ey

nH
ig
gs

F
H
_
H
i
g
g
s
M
a
s
s
e
s

u
n
i
m
p
r
o
v
e
d
_
M
S
S
M
_
s
p
e
c
t
r
u
m

–

123

 98 Page 8 of 9 Eur. Phys. J. C (2018) 78:98

Table 2 New or modified module functions of note in PrecisionBit
1.1. Precision spectra can now be computed using precision values for
1) the W mass only (as in PrecisionBit 1.0; not shown), 2) the SM-like
Higgs mass only, 3) the W mass and the SM-like Higgs, or 4) the W

mass and the masses of all four MSSM Higgs bosons. In the latter case,
the precision value for the SM-like Higgs mass can be taken from a
different source to the precision masses of the other three Higgs bosons

Capability Function (return type):
brief description

Dependencies Backend
requirements

MSSM_spectrum make_MSSM_precision_spectrum_H(Spectrum):
Function to provide an updated MSSM spectrum with precision
mass for the most SM-like Higgs boson

unimproved_MSSM_spectrum
prec_mh

–

make_MSSM_precision_spectrum_H_W(Spectrum):
Function to provide an updated MSSM spectrum with precision
masses for the W boson and the most SM-like Higgs boson

unimproved_MSSM_spectrum
prec_mw prec_mh

–

make_MSSM_precision_spectrum_4H_W(Spectrum):
Function to provide an updated MSSM spectrum with precision
masses for the W boson and all four Higgs bosons

unimproved_MSSM_spectrum
prec_mw prec_mh
prec_HeavyHiggsMasses

–

Functions get_CMSSM_spectrum, get_MSSMatQ_

spectrum and get_MSSMatMGUT_spectrum of SpecBit
1.0 have been renamed to get_CMSSM_spectrum_FS, get_
MSSMatQ_ spectrum_FS and get_MSSMatMGUT_spectrum_

FS in SpecBit 1.1. This is to explicitly reflect the fact that
they make use of FlexibleSUSY for spectrum generation, in
contrast to other equivalent functions that use e.g. SPheno
(or, in the future, other spectrum generators).

As described in Sect. 4.2.3 of Ref. [15], the Spectrum

object computed by SpecBit using a spectrum generator
(FlexibleSUSY, SPheno, etc) can be supplemented with
more precise calculations of the masses of the W and Higgs
bosons. Initial spectrum generation and subsequent precision
mass calculations all take place inSpecBit, but PrecisionBit
is responsible for combining them to make the final ‘preci-
sion Spectrum’ object.

The computation of the precision mass of the most SM-
like Higgs boson in SpecBit is now separated from the
computation of the precision masses of the three other
MSSM Higgs bosons (Table 1). For the SM-like Higgs
(capability prec_mh), we now provide two module func-
tions: FH_HiggsMass and SHD_HiggsMass, which provide
the prediction from FeynHiggs and SUSYHD, respectively,
including uncertainties. The precision calculation of the
masses of the three other MSSM Higgs bosons and their
uncertainties (capability prec_HeavyHiggsMasses) is now
provided by the function FH_HeavyHiggsMasses, which
makes use of results from FeynHiggs.

The precision spectrum functions in PrecisionBit now
allow the mass of the SM-like Higgs boson to be improved
independently of the masses of the other three MSSM Higgs
bosons (Table 2). This makes it possible to use e.g.SUSYHD
for the mass of the SM-like Higgs boson, but Feyn-
Higgs, FlexibleSUSY or SPheno for the other Higgses.
Each of the precision spectrum functions in PrecisionBit
now also recognises a YAML option allow_fallback_to_

unimproved_masses, which specifies the preferred behavi-

our when one or more of the requested precision mass cal-
culations returns an invalid value (zero, a negative mass or
not-a-number). With this option set tofalse (the default), the
parameter combination will be flagged as invalid; if it is set
to true, failures will instead cause the original masses from
the spectrum generator to be retained for the parameter point
under investigation. This can be useful for e.g. defaulting to
the Higgs mass from FlexibleSUSY or SPheno for mod-
els with Lagrangian mass parameters below the top mass,
where the expansion used in SUSYHD breaks down and the
backend returns zero for the Higgs mass.

GAMBIT 1.1 also marks the removal of any explicit mod-
ule function for indicating the PDG code of the most SM-like
Higgs boson. This functionality is now provided instead by
the internal function SMlike_higgs_PDG_code, which takes
a high-scale SubSpectrum object as input, and can be called
from any module function by including the header gambit/
Elements/smlike_higgs.hpp.

3 Updated DarkBit likelihoods

DarkBit 1.1 includes an interface to DDCalc 1.1, along
with corresponding likelihood functions for the XENON1T
[18] and 2017 PICO-60 [19] experiments. GAMBIT 1.1 also
offers an additional option for turning on one-loop correc-
tions to direct detection cross-sections computed with Dark-
SUSY (loop; enabled by default), and switches the default
behaviour of the micrOMEGAs option internal_decays

to false, causing decay widths and branching fractions to be
passed from DecayBit by default. More details can be found
in the DarkBit paper [20].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2018) 78:98 Page 9 of 9 98

to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. GAMBIT Collaboration: P. Athron, C. Balazs, et. al., GAMBIT:
the global and modular beyond-the-standard-model inference tool.
Eur. Phys. J. C (2017). arXiv:1705.07908

2. J.P. Vega, G. Villadoro, SusyHD: Higgs mass determination in
supersymmetry. JHEP 07, 159 (2015). arXiv:1504.05200

3. P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—
a spectrum generator for supersymmetric models. Comput. Phys.
Commun. 190, 139–172 (2015). arXiv:1406.2319

4. W. Porod, SPheno, a program for calculating supersymmetric
spectra, SUSY particle decays and SUSY particle production at
e+e− colliders. Comput. Phys. Commun. 153, 275–315 (2003).
arXiv:hep-ph/0301101

5. W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-
phases and models beyond the MSSM. Comput. Phys. Commun.
183, 2458–2469 (2012). arXiv:1104.1573

6. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program
for the calculation of the masses of the neutral CP even Higgs
bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000).
arXiv:hep-ph/9812320

7. S. Heinemeyer, W. Hollik, G. Weiglein, The Masses of the
neutral CP-even Higgs bosons in the MSSM: accurate analy-
sis at the two loop level. Eur. Phys. J. C 9, 343–366 (1999).
arXiv:hep-ph/9812472

8. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein,
Towards high precision predictions for the MSSM Higgs sector.
Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

9. M. Frank, T. Hahn et al., The Higgs boson masses and mixings
of the complex MSSM in the Feynman-diagrammatic approach.
JHEP 02, 047 (2007). arXiv:hep-ph/0611326

10. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-
precision predictions for the light CP-even Higgs boson mass of
the minimal supersymmetric standard model. Phys. Rev. Lett. 112,
141801 (2014). arXiv:1312.4937

11. H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs
boson mass combining effective field theory and fixed-order cal-
culations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880

12. H. Bahl, S. Heinemeyer, W. Hollik, G. Weiglein, Reconciling EFT
and hybrid calculations of the light MSSM Higgs-boson mass.
arXiv:1706.00346

13. P. Athron, J.-H. Park, T. Steudtner, D. Stöckinger, A. Voigt, Precise
Higgs mass calculations in (non-)minimal supersymmetry at both
high and low scales. JHEP 01, 079 (2017). arXiv:1609.00371

14. F. Staub, W. Porod, Improved predictions for intermedi-
ate and heavy supersymmetry in the MSSM and beyond.
arXiv:1703.03267

15. GAMBITModels Workgroup: P. Athron, C. Balázs, et. al., SpecBit,
DecayBit and PrecisionBit: GAMBIT modules for computing
mass spectra, particle decay rates and precision observables.
Eur. Phys. J. C (2017). arXiv:1705.07936

16. Particle Data Group: K.A. Olive et. al., Review of Particle Physics.
Update to Ref. [17] (2017)

17. Particle Data Group: C. Patrignani et. al., Review of Particle
Physics. Chin. Phys. C 40, 100001 (2016)

18. XENON: E. Aprile et. al., First dark matter search results from the
XENON1T experiment. arXiv:1705.06655

19. PICO: C. Amole et. al., Dark matter search results from the PICO-
60 C3F8 bubble chamber. Phys. Rev. Lett. 118, 251301 (2017).
arXiv:1702.07666

20. GAMBITDark Matter Workgroup: T. Bringmann, J. Conrad, et. al.,
DarkBit: a GAMBIT module for computing dark matter observ-
ables and likelihoods. Eur. Phys. J. C (2017). arXiv:1705.07920

123

http://arxiv.org/abs/1705.07908
http://arxiv.org/abs/1504.05200
http://arxiv.org/abs/1406.2319
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/hep-ph/9812320
http://arxiv.org/abs/hep-ph/9812472
http://arxiv.org/abs/hep-ph/0212020
http://arxiv.org/abs/hep-ph/0611326
http://arxiv.org/abs/1312.4937
http://arxiv.org/abs/1608.01880
http://arxiv.org/abs/1706.00346
http://arxiv.org/abs/1609.00371
http://arxiv.org/abs/1703.03267
http://arxiv.org/abs/1705.07936
http://arxiv.org/abs/1705.06655
http://arxiv.org/abs/1702.07666
http://arxiv.org/abs/1705.07920

	GAMBIT: the global and modular beyond-the-standard-model inference tool
	Addendum for GAMBIT 1.1: Mathematica backends, SUSYHD interface and updated likelihoods
	Abstract
	1 Using Mathematica backends in GAMBIT
	1.1 The Wolfram symbolic transfer protocol
	1.2 Preparing and configuring Mathematica backends
	1.2.1 Configuration
	1.2.2 Frontend header
	1.2.3 Backend types
	1.2.4 Link to the Kernel
	1.2.5 Importing the package

	1.3 Backend functions and variables
	1.3.1 Backend functions
	1.3.2 Backend variables

	1.4 Diagnostics
	1.5 Higgs mass calculations with SUSYHD

	2 SpecBit, DecayBit and PrecisionBit updates
	3 Updated DarkBit likelihoods
	References

