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1 Introduction

The magnetic dipole moment (MDM) of a particle is its fundamental characteristic that

determines the torque which particle experiences in an external magnetic field. The MDMs

of many particles are presently known [1]. For electron the QED prediction agrees with

experimentally measured value up to very high precision. For muon the measurement of the

BNL E821 experiment [2] disagrees with the Standard Model prediction by 3–4 standard

deviations, which may suggest physics beyond the Standard Model. The disagreement for

the muon g − 2 is the subject of many studies (see, e.g., review [3]). The MDM of the

τ -lepton has not been measured so far and is of great interest for testing calculations in

the Standard Model [4].

For hadrons, the MDMs are measured for the baryon octet with JP = 1
2

+
. Historically,

reasonable agreement between the measured MDM and predictions of the quark model was

important to substantiate the constituent quark models of the hadrons.
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In general, the MDM of the spin- 1
2 particle is expressed as

~µ =
2µ

~
~S, µ =

q~
2mc

g

2
, (1.1)

where ~S = ~
2~σ, m is the particle mass, q is the particle electric charge, g is the gyromag-

netic factor. The value g = 2 corresponds to a Dirac particle without magnetic moment

anomaly. Usually, the MDM of baryons is measured in units of the nuclear magneton

µN ≡ e~/(2mpc) [1], where mp is the proton mass and e is the elementary charge.

It would be very important to measure the MDM of the charm baryons Λ+
c (udc) and

Ξ+
c (usc), which have not been measured so far because of their very short lifetime of the

order of 10−13 s.

There has been many calculations of the MDM of the charm baryons in various models

of their structure [5–21]. As for the Λ+
c baryon, majority of the calculations predict the

MDM and g-factor in the ranges

µ(Λ+
c )

µN
= 0.37–0.42, g(Λ+

c ) = 1.80–2.05. (1.2)

Thus, an experimental study of the MDM of heavy baryons can be useful to distinguish

between different theoretical approaches.

One of the motivations for measurement of the MDM of the heavy baryons is also

studying the MDM of the charm quark. If this quark behaves as a point-like Dirac particle,

then the corresponding gyromagnetic factor gc is equal or close to 2, while if the charm

quark has a composite structure we can expect a sizable deviation from this value.

In the quark model the MDM of the heavy baryon is expressed in terms of the MDMs

of the heavy and light quarks. In particular, for the charm baryons, the spin and flavor

structure of the ground-state baryons Λ+
c and Ξ+

c implies that (see, e.g., ref. [5])

µ(Λ+
c ) = µc, µ(Ξ+

c ) =
1

3
(2µu + 2µs − µc) . (1.3)

MDMs in eqs. (1.3) depend on the MDM of the charm quark. Let us consider Λ+
c

and take “effective” mass of the c-quark mc = 1.6 GeV as suggested from the charmonia

spectroscopy [5]. Keeping explicitly the g-factor of the charm quark we can write

µ(Λ+
c )

µN
= 0.39

gc
2
, g(Λ+

c ) = 1.91
gc
2
. (1.4)

For gc = 2 these values are consistent with eqs. (1.2).

For Ξ+
c one needs to specify also the masses of the light constituent quarks. Choosing

mu = 336 MeV and ms = 509 MeV, which reproduce MDMs of the baryon octet [22], one

obtains from (1.3)

µ(Ξ+
c )

µN
= 0.83− 0.13

gc
2
, g(Ξ+

c ) = 4.37− 0.69
gc
2
, (1.5)

where the first numbers in each quantity in (1.5) come from the u and s quarks, and the

second — from the c quark.
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The combined measurements of MDMs of Λ+
c and Ξ+

c may help to obtain information

on the g-factor of the charm quark.

In the present paper we discuss the feasibility of the MDM measurement for the pos-

itively charged charm baryons Λ+
c and Ξ+

c at the LHC. This extends the proposal of the

UA9 collaboration [23].

2 Principle of measurement

The experimental results on MDM are all obtained by a well-assessed method that consists

of measuring the polarization vector of the incoming particles and the precession angle when

the particle is traveling through an intense magnetic field. The polarization is evaluated

by analyzing the angular distribution of the decay products. No measurement of magnetic

moments of charm or beauty baryons (and τ lepton) has been performed so far. The main

reason is that the lifetimes of charm/beauty baryons are too short to measure the magnetic

moment by standard techniques.

One proposal to meet the challenge of measuring the magnetic moments of baryons

with heavy flavored quarks is to use the strong effective magnetic field inside the channels

of a bent crystal instead of the conventional magnetic field to induce the precession of the

polarization vector and measure the magnetic moment. Some theoretical aspects of this

phenomenon with possible applications to the LHC have recently been discussed in [24],

where the author carried out the preliminary estimations of the possibilities to measure

MDMs of the short-lived particles, in particular, charmed baryons at the LHC energies. In

ref. [25] the authors suggested to use this method for studying the electric dipole moments

(EDM) of the strange Λ baryon and the charm baryons.

The theoretical formalism of the precession of the polarization vector of spin- 1
2 particle

in external electric, ~E, and magnetic, ~H, fields has been known for a long time [26–31]. In

refs. [32–38] this formalism was applied to the case of the bent crystals.

In the planned fixed-target experiment at the LHC, the high-energy proton beam

produces the polarized charm baryons by interacting with nuclei of a target-converter

p+A→ Λ+
c (Ξ+

c ) +X, (2.1)

which are directed into the bent crystal. The initial polarization vector ~ξi of the charm

baryon is perpendicular to the reaction plane spanned by the proton and baryon momenta,

~q and ~p, respectively, because of the space-inversion symmetry of the strong interaction.

When falling on a bent crystal, a small fraction of baryons gets in the regime of planar

channeling (see, e.g., [35, 36, 39, 40]). Note that only positively charged particles can be

efficiently deflected by a bent crystal using planar channeling phenomenon. The planar

channeling of negatively charged particles is very unstable due to the enhancement of

their multiple scattering on lattice atoms (see, e.g., [41]). However, the negatively charged

particle can be also deflected using the so-called stochastic mechanism of multiple scattering

by atomic strings of a bent crystal. This mechanism was proposed in [37]. The possibility

to use it for the MDM measurement was considered in [38].

– 3 –
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The motion of channeled relativistic baryons in the inter-plane electric field of a bent

crystal imitates the particle motion in a strong magnetic field directed along the crystal

bending axis (axis Oy in figure 1). The MDM vector of baryon rotates around this axis.

The gradient of the inter-plane electric field of a silicon crystal reaches the maximum

value about 5 GeV/cm that corresponds to the value of the induction of effective magnetic

field of thousands of tesla in the rest frame of a TeV baryon. The initial value of the

3D polarization vector can be determined using the non-channeled baryons. The absolute

value of the polarization can be also measured as a by-product of this experiment. Various

aspects of this analysis will be discussed later.

The first experimental realization of such method was carried out in Fermilab [42] at the

800 GeV proton beam. The strange Σ+(uus) baryons (with lifetime 0.8×10−10 s) produced

on the Cu target had average momentum 375 GeV/c and the absolute value of polarization

(12 ± 1) %. After passing 4.5 cm of the bent silicon single crystal the polarization vector

precessed by about 60◦. This new technique allowed to obtain the MDM of the Σ+ hyperon

µ = (2.40± 0.46stat ± 0.40syst)µN which was consistent with the world-average value.

The proposed experiment at the LHC is much more difficult because the lifetimes of

the charm baryons Λ+
c and Ξ+

c are three orders of magnitude less than the lifetime of Σ+. In

order to measure the angle of MDM precession with sufficient accuracy and correspondingly

extract the MDM at the LHC energies, it is necessary to carry out the optimization of

target-converter and bent crystal parameters by means of detailed computer simulation as

well as to study the properties of charm baryons as it is discussed in detail later.

2.1 Spin precession in a bent crystal. Master formulas

Because of the extremely short lifetime of charmed baryons in comparison with the Σ+

hyperon, in our case it is not possible to prepare a beam of polarized baryons in advance

and to measure the degree of their initial polarization, as was done in the Fermilab experi-

ment [42]. In our case, as explained below, the crystal could be used as a beam collimator.

To be captured into the channeling regime, the incoming particle must have a very

small angle θx between its momentum and the crystal plane of the chosen channel, namely,

|θx| < θL, where θL is the Lindhard angle [43]:

θL =

√
4π n d aTF Z e2

ε
, (2.2)

where n is the crystal atomic density, d is the distance between neighboring planes, aTF is

the Thomas-Fermi screening radius, Z|e| is the charge of atomic nucleus, ε is the energy

of incoming particle. The Lindhard angle is the critical angle of planar channeling for an

ideal crystal case. The axis Ox is perpendicular to the channel plane (see figure 1).

The Λ+
c baryons emitted from the amorphous target-converter are polarized and

isotropically distributed over the azimuthal angle around the direction of the initial proton

beam. The polar angle θ that determines the characteristic cone of the relativistic Λ+
c

baryon emission in the laboratory frame has a value of the order of γ−1, where γ = ε/m

is the Lorentz factor of the Λ+
c , ε and m are its energy and mass, respectively. In the

conditions of the LHC experiment θ ≈ 10−3 rad.

– 4 –
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The critical angle of planar channeling (2.2) for particles with the energy of several TeV

in a silicon crystal is about several microradians, that is at least two orders of magnitude

smaller than a characteristic angular width of the Λ+
c beam θ after the target-converter.

Therefore, only a small part of this beam can be captured in the channeling regime when

entering the crystal. For all channeled particles the angle θx is limited in the interval

(−θL, +θL). At the same time, there are no limitations on the value of θy of the Λ+
c to be

channeled.

Thus, the conditions for the particle capture into the planar channeling regime pick out

by themselves the region in the phase space of the Λ+
c momentum with a certain direction

of the polarization vector, namely, across the channeling plane (up or down in figure 1).

After passing the bent crystal the polarization vector rotates by the angle [33, 34]

Θµ = γ

(
g

2
− 1− g

2γ2
+

1

γ

)
Θ ≈ γ

(g
2
− 1
)

Θ, (2.3)

with respect to the direction of the initial polarization vector. Here Θ = L/R is the

deflection angle of the channeled baryon momentum after passing the bent crystal, L and

R are the length and bending radius of the crystal. A simple derivation of eq. (2.3) is

presented in appendix A.

In the conditions of the LHC the Lorentz factor γ can be quite big, of the order of 103.

In this case the approximate equality in (2.3) holds (unless incidentally the relation g = 2

happens).

The schematic layout of the experiment is shown in figure 1. To simplify the following

formulae and for better understanding the experiment layout, here we consider Λ+
c baryons

to be parallel to the z axis. In our further calculations we take into account the proper

angular distribution of baryons at the entrance into the crystal.

In this frame the components of the proton momentum ~q, baryon initial ~pi and final

~pf momenta, effective electric field ~Ei and ~Ef in the crystal, rotation axis along ~E×~p, and

the initial ~ξi and final ~ξf polarization vectors are:

~q = (0, qy, qz),

~pi = p (0, 0, 1), ~pf = p (− sin Θ, 0, cos Θ),

~Ei = E (−1, 0, 0), ~Ef = E (− cos Θ, 0, − sin Θ),

~E × ~p = E p (0, 1, 0),

~ξi = ξ (1, 0, 0), ~ξf = ξ (cos Θµ, 0, sin Θµ). (2.4)

The absolute value of polarization ξ = |~ξ| stays constant and is determined by the pro-

cess (2.1).

2.2 Basic principles of the angular analysis

The orientation of the baryon polarization vector after the crystal can be determined from

the angular distribution of its decay products. For the weak decays of the spin- 1
2 baryon

– 5 –
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~pi
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z
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rotation axis
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Θµ

Θ

~ξi

~ξf

Figure 1. Schematic layout of experiment. Effective electric field ~E is orthogonal to the momentum

~p. The figure shows the case g > 2.

into the two-particle final states of baryon and meson ( 1
2 →

1
2 + 0, 1

2 →
1
2 + 1, 1

2 →
3
2 + 0)

the following relation holds

1

N

dN

d cosϑ
=

1

2
(1 + α ξ cosϑ), (2.5)

in the rest frame of the baryon (see appendix B). Here N is the number of events, ϑ is the

angle between the direction of final baryon (analyzer) and the polarization vector ~ξf . The

weak-decay parameter α characterizes parity violation in the decay.

From the angular analysis one can obtain the expression for the absolute statistical

error of the measured g-factor:

∆g =
1

α |ξ| γΘ

√
12

NΛ+
c

, (2.6)

where NΛc is the number of reconstructed Λ+
c deflected by a bent crystal. Note that

eq. (2.6) is obtained for a fixed value of boost γ.

The values of absolute polarization |ξ| and weak-decay parameter α are crucial, since

the g-factor error ∆g is inversely proportional to these values.

The polarization of the Λ+
c baryons has been measured in the reaction of 230 GeV/c

protons with a Copper target and gives P(Λ+
c ) = −0.65 +0.22

−0.18 at transverse momentum

pt > 1.2 GeV/c [44] (the sign of the polarization is defined with respect to the normal to

the production plane, ~q× ~pi). The E791 experiment [45] finds evidence for an increasingly

negative polarization of Λ+
c as a function of p2

t , in agreement with the model [46–48]. These

data are shown in figure 2 together with fitted curves.

In the same plot we show the theoretical prediction in the so-called hybrid model [48]

(for the process π−p → Λ+
c X) describing the Λ+

c polarization as a function of transverse

momentum.

Using simulation code Pythia version 8.1 (Pythia8) [49] we show the transverse mo-

mentum distribution of channeled Λ+
c baryons (see blue histogram in figure 2).

By convolving the transverse momentum distribution and polarization curve as a func-

tion of transverse momentum we obtain the mean square value of Λ+
c polarization around

-0.37 and −0.40± 0.05 for the theoretical prediction and experimental data, respectively.

– 6 –
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V
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Figure 2. Polarization of Λ+
c as a function of its transverse momentum. Experimental data: red

crosses [45], orange rectangular area [44]; dashed red curves — experimental data fit by the normal

distribution; solid red curve — theoretical prediction by the so-called hybrid model [48] for the

process π−p→ Λ+
c X. Channeled baryons distribution over transverse momentum: blue histogram

(simulation results obtained using Pythia8).

No such measurements exist for the Ξ+
c baryons. It is also important to mention that

the absolute polarizations of Λ+
c and of Ξ+

c as a function of transverse momentum could

be measured by the proposed experiment.

In addition, they could also be measured by using the available data on beam gas

interaction at the LHCb (SMOG data [50]).

The weak-decay parameter α is the decay-channel-dependent quantity and it is com-

piled for various decay channels in case of the Λ+
c baryon in table 1.

For the decay channels containing Λ or Σ+ in the final states, the parameter α has

been measured. The decay channel Λ+
c → pK− π+ has a large branching fraction and

it would be interesting to use this decay mode for the MDM measurement. The E791

experiment [45] reports measurements of the amplitudes for Λ+
c decay into nonresonant

pK− π+ and to pK
∗
(890)0, ∆++(1232)K−, and Λ(1520) π+ modes. Using the measured

amplitudes the values of the weak parameter α can be extracted with large errors as in [25].

It would be extremely important to perform this analysis using the LHCb data. On the

other hand, no measurement of the α parameters exists in case of Ξ+
c , and it would be

important to measure these parameters in the LHCb experiments.

3 The sensitivity studies

In this paper we have performed a sensitivity study for measuring the MDM of Λ+
c produced

by the strong interaction of high-energy proton beam impinging into a target-converter of a

dense material. For this analysis we decide to consider only the Λ+
c baryons which decayed

after having passed the full length of the crystal.

– 7 –
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Channel Fraction (Γj/Γ) α Source

Λ+
c → Λπ+; Λ→ pπ− (1.07± 0.28) % × (63.9± 0.5) % −0.91± 0.15 [1]

Λ+
c → Λe+(µ+)νe(µ); Λ→ pπ− (2.0± 0.6) % × (63.9± 0.5) % −0.86± 0.04 [1]

Λ+
c → pK−π+ (5.0± 1.3) % — [1]

Λ+
c → ∆(1232)++K−; ∆(1232)++ → pπ+ (0.86± 0.3) % × 99.4 % −0.67± 0.30 [25]

Λ+
c → pK

∗
(892)0; K

∗
(892)0 → K−π+ (1.6 ± 0.5) % × 100 % -0.545 ± 0.345 [25]

Λ+
c → Λ(1520)π+; Λ(1520)→ pK− (1.8 ± 0.6) % × (45 ± 1) % -0.105 ± 0.604 [25]

Table 1. Branching fractions and weak-decay parameters α for different decay modes of Λ+
c .

The number of reconstructed Λ+
c that were deflected by a bent crystal can be expressed

as follows:

NΛc = Φ t ηdet
Γj
Γ
Ntar+crys, (3.1)

where Ntar+crys is the number of deflected Λ+
c per proton:

Ntar+crys =

∫
∂Ntar

∂ε
ηdef e

−Lcrys
cτγ dε. (3.2)

Here ∂Ntar
∂ε is the Λ+

c energy distribution after the target:

∂Ntar

∂ε
= ρNA σΛc

Atar

Mtar

∂N

∂ε

Ltar∫
0

e
− L
cτγ dL. (3.3)

Then, taking into account the energy distribution of Λ+
c , we obtain the expression for the

absolute statistical error of measured g-factor:

∆g =
1

α |ξ|Θ

√
12

Φ t ηdet
Γj
Γ

∫ ∂Ntar+crys

∂ε γ2 dε
. (3.4)

The definitions of different terms in eqs. (3.1)–(3.4) and their values are given in table 2

and discussed in the following sections.

3.1 Λ+
c production cross section: σΛc

The center-of-mass energy for the fixed target experiment at the 7 TeV LHC proton beam

is
√
s = 115 GeV and no measurements of the σ(Λc) cross section exist at this center-of-

mass energy. For this study the Λc cross section has been estimated from the total charm

production cross section or explicitly from the Λc cross section measured at different center-

of-mass energies.

The PHENIX experiment in proton-proton collisions at
√
s = 200 GeV measured the

total charm cross section to be 567 ± 57 (stat) ± 224 (syst) µb [51] which is compatible

with their previous measurement σcc̄ = 920 ± 150 ± 540 µb in ref. [52] and the one derived

from the analysis of Au-Au collisions [53] (σcc̄ = 622 ± 57 ± 160 µb). If we rescale the

cross sections at
√
s = 115 GeV assuming a linear energy dependence, we obtain σcc̄ = 326

± 33 ± 129 µb, σcc̄ = 529 ± 86 ± 311 µb and σcc̄ = 358 ± 33 ± 92 µb, respectively. In

– 8 –
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Terms in eqs. (3.1)–(3.4) Values Units

Proton flux, Φ 5× 108 s−1

Time of data taking, t ∼ 106 s

Detection efficiency, ηdet 0.002–0.03 —

Deflection efficiency, ηdef (see section 3.3) —

Crystal length, Lcrys 4–12 cm

Λ+
c decay length, cτ 60.0 µm

Lorentz factor of Λ+
c , γ 500–2000 —

Normalized production spectra, ∂N
∂E (see figure 3) TeV−1

Cross section (p+N→Λ+
c +. . . ), σΛc 13.6± 2.9 µb

Target density, ρ 19.25 gr/cm3

Avogadro number, NA 6.022× 1023 mol−1

Nucleon number of target, Atar 183.84 —

Molar mass of target, Mtar 183.84 gr/mol

Target thickness, Ltar 0.5–2 cm

Table 2. List of notations in eqs. (3.1)–(3.4).

the following, we considered the weighted average of the three experimental results: σcc̄ =

357 ± 77 µb. The results from the linear interpolation are in agreement within 1.7 σ with

the cc̄ cross section obtained with the Helaconia MC generator [55] in ref. [54].

The Λc fragmentation function (7.6 ± 0.7 (± 2 %)) has been taken from ref. [56], as

the average of the results from the CLEO (fc→Λc = 8.1 ± 1.2 ± 1.4 %), ARGUS (fc→Λc =

7.3 ± 1.0 ± 1.0 %), ALEPH (fc→Λc = 7.8 ± 0.8 ± 0.4 %), DELPHI (fc→Λc = 8.6 ± 1.8

± 1.0 %) and OPAL (fc→Λc = 4.8 ± 2.2 ± 0.8 %) experiments. Predictions from Pythia8

(fc→Λc = 7.21 ± 0.04 %) and models in ref. [57] (fc→Λc = 5.88 % (L0) and 5.74 % (NLO))

are in agreement within the large uncertainties. Finally, we get σ(Λc) = 27.1 ± 9.5 µb.

On the other hand, we can use the LHCb Λc cross section measurement in pp collisions

at
√
s = 7 TeV [58]. In this case the cross section is reported in specific rapidity y and

transverse momentum pt ranges. It is equal to σΛc (2.0< y < 4.5, 0< pt < 8 GeV/c) =

233 ± 77 µb. We used Pythia8 to interpolate the cross section to the full pt and rapidity

range. The correction factor is found to be 19.2 ± 0.3 %. We then extrapolate linearly the

total Λc cross section to the energy of
√
s = 115 GeV. We obtain σ(Λc) = 19.9 ± 6.6 µb.

Finally, we can use the measurements of the D mesons cross section performed in pA

collisions at HeraB at a center-of-mass energy of
√
s = 42 GeV [59]. The measurement of

the D0, D+ and D+
s were used to calculate the total charm cross section which is found to

be σcc̄ = 49.1 ± 4.6 ± 7.4 µb. After energy extrapolation, the total charm cross section at√
s = 115 GeV is σcc̄ = 134.4 ± 12.6 ± 20.3 µb. Assuming the fragmentation function for

the Λc given previously, one gets σ(Λc) = 10.2 ± 3.4 µb.
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Figure 3. Energy distribution of Λ+
c baryons produced by 7 TeV protons in p -N collision in a

fixed target normalized to one produced Λ+
c baryon. Solid blue curve is for the initial distribution

(L= 0), dashed curves are for different distances from the production point (listed on the right).

These three evaluations are compatible within less than 1.7 standard deviations. The

spread of the values is explained by the poorly known total charm cross section, the poorly

known Λc fragmentation function and the lack of experimental open charm data close to√
s = 115 GeV. For the sensitivity study we took the weighted mean of the three values,

σ(Λc) = 13.6 ± 2.9 µb.

3.2 Λ+
c energy distribution: ∂Ntar

∂ε

The Λ+
c produced in the target-converter will have a wide energy spectrum from zero to

the energy of the incident proton. Low-energy Λ+
c , constituting a majority of the produced

particles, can not be deflected by a bent crystal at a sufficiently large angle to be used for

measuring MDM, due to their rapid decay. The normalized energy distributions of baryons

produced by a 7 TeV proton in a tungsten target of zero thickness are shown in figure 3.

These results are obtained using Pythia8.

The simulation gives also the angular distribution of produced Λ+
c , which is important

for the determination of the Λ+
c beam fraction that could be captured in the channeling

regime in a bent crystal. For the energies higher than 0.5 GeV the distribution is very

close to the normal one with a standard deviation ≈ 1
2 γ
−1, that in the case of Λ+

c baryon

energies of several TeV is of the order of milliradians.

Figure 4 shows the Λ+
c differential energy distribution after the target (see eq. (3.3))

for different target thicknesses with the parameters listed in table 2 and the normalized

spectra given in figure 3 for L = 0.

At high energies the number of Λ+
c is proportional to the target thickness. Furthermore,

the specific ionization losses of TeV baryons in a tungsten target are about 40 MeV/cm and

therefore can be neglected as well as the multiple scattering of the Λ+
c in the target, that

gives a correction of the order of percent of the value of the characteristic angular width of

Λ+
c production γ−1. The main limitation would come from secondary particle production
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Figure 4. Spectra of Λ+
c baryons right after the tungsten targets of different thicknesses Ltar (listed

on the right).

in the target. This should be carefully evaluated. For the present study we decide to use

Ltar = 1 cm.

3.3 Deflection efficiency: ηdef

The efficiency of particle deflection ηdef is the ratio of the number of particles which are

captured in the channeling regime and deflected by the full angle Θ to the total number of

particles impinging into the crystal. It can be expressed as:

ηdef = ηacc (1− ηdech) (3.5)

where ηacc is the acceptance factor which describes the capture of impinging particle into

the channeling regime at the crystal entrance, ηdech is the dechanneling probability inside

the crystal.

The acceptance factor ηacc is defined first of all by the angular acceptance factor ηang

which is the fraction of particles produced in the target-converter in the narrow interval

of angles with respect to the crystal plane (zy). The detailed description on how we have

obtained these parameters is presented in appendix C.

The results of calculations of the angular acceptance factor ηang and acceptance factor

ηacc as functions of Λ+
c energy are presented by the dotted blue and dashed red curves in

figure 5, respectively. Note that these factors have a quite different dependence on particle

energy.

Solid black curves represent the deflection efficiency ηdef of the crystal of length Lcrys =

8 cm. The difference between the solid black and dashed red curves in figure 5 is caused

by the dechanneling effect.

Figure 5 shows that a germanium crystal has better efficiency with respect to a silicon

one and allows one to keep more energetic Λ+
c which, in addition, are more efficient for the

precession of the MDM measurement, see eq. (3.4).
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particle energy in germanium (on the left) and silicon (on the right) crystals. Curvature radius is

7.5 m for all crystals.

3.4 Crystal parameters optimization

To obtain the optimal crystal parameters and to compare the efficiencies of silicon and

germanium crystals we introduce the relative efficiency ηrel of the MDM precession mea-

surement with respect to the efficiency of silicon crystal with Lcrys = 8 cm and R = 22 m

(further, the default crystal). This parameter corresponds to the ratio of data taking times

needed to measure the g-factor with the same absolute error ∆g (see eq. (3.4)) for two

different crystals:

ηrel =
t0
t

=
Θ2

∫
∂Ntar
∂ε ηdef γ

2 e
−Lcrys

cτγ dε

Θ2
0

∫
∂Ntar
∂ε ηdef,0 γ2 e

−
Lcrys,0
cτγ dε

. (3.6)

Here quantities with index “0” correspond to the default crystal.

In figure 6 the upper plot represents ηrel for silicon and germanium crystals at room

temperature and for germanium cooled down to 80◦K as a function of crystal length Lcrys

calculated for the optimal curvature radius R (shown in the bottom plot).

The positions of maxima of curves in figure 6 (upper plot) correspond to the optimal

crystal lengths. The bottom plot shows the optimal curvature radius R as a function of

crystal length Lcrys.

Note that ηrel depends only on target and crystal properties as well as the baryon

energy distribution and decay time. Thus, the optimal crystal parameters can be found

by maximizing this term for all decay channels at once. The applicability limit for this

approach is that the detector efficiency ηdet should not have a strong dependence on the

Λ+
c baryon energy. In the opposite case decay parameters α and Γj and the detection

efficiency ηdet should be integrated together with the terms in eq. (3.6) over the energy.

In table 3 we give the results for the relative efficiency of the MDM precession mea-

surement ηrel for three values of Lcrys, both for silicon and germanium crystals.
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Lcrys R Ntar+crys ηrel

Si @ 293◦K

4 cm 18 m 3.2× 10−8 0.5

8 cm 22 m 1.6× 10−8 1.0

12 cm 25 m 0.9× 10−8 1.2

Ge @ 293◦K

4 cm 12 m 4.0× 10−8 1.5

8 cm 15 m 1.9× 10−8 2.5

12 cm 18 m 1.1× 10−8 2.8

Ge @ 80◦K

4 cm 10 m 4.8× 10−8 2.5

8 cm 13 m 2.5× 10−8 4.4

12 cm 16 m 1.5× 10−8 4.8

Table 3. Optimal crystal parameters.
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In the table we also give the value for the number of deflected Λ+
c per incident pro-

ton Ntar+crys, which can be obtained by plugging ηdef , ∂Ntar/∂ε and the decay factor in

eq. (3.2). Note that there is no direct relation between Ntar+crys and ηrel as ηrel is also

proportional to square of the deflection angle Θ2 and square of Lorentz factor γ2 of Λ+
c . It

is important to notice that the value Ntar+crys is typically of the order of 10−8.

For the sensitivity analysis we choose a silicon crystal at room temperature with Lcrys =

8 cm and R = 22 m.

As follows from table 3, the use of germanium crystal at room temperature increases the

efficiency by a factor 2.5 (for a germanium crystal cooled down to 80◦K this factor is 4.4).

3.5 Detector efficiency: ηdet

Many decay channels of the Λ+
c could be used: Λ(pπ−)π+, Λ`+ν`, pK

∗0
(890), or

∆++(1232)K−. For the first two decay modes the weak-decay parameters α have been

measured with a reasonable accuracy, while only preliminary measurement of the branch-

ing fractions and evaluations of the weak-decay parameter values are available for the other

decay modes. A specific analysis should be performed for evaluating the detector efficiency

for each of these channels. For the sensitivity studies we have decided to select two of these

decay modes: Λ(pπ−)π+ and ∆++(1232)K−.

For a preliminary evaluation of the detector efficiency we take the LHCb as a ref-

erence detector, by considering typical trigger, acceptance, tracking and vertex recon-

struction efficiency. In particular, due to the very energetic spectrum, the reconstruction

of Λ baryon is rather complicated. In fact, the Λ present in the final states, can be

very difficult to be detected since most of them could decay after passing the detector

tracking volume. The efficiency of the Λ(pπ−)π+ decay channel has been evaluated to

be in the range ηdet(Λ(pπ−)π+) = (1–3) × 10−3. On the other hand, the decay mode

∆++(1232)K− seems to be more promising and a preliminary evaluation of the efficiency

gives ηdet(∆
++(1232)K−) = (2–4) %. The other channels could be also used and a more

precise evaluation of the detector efficiency should be the object of dedicated studies.

3.6 Results of the sensitivity studies

The results of the sensitivity studies have been obtained by generating the Λ+
c baryons

using Pythia8 and ad hoc parametric Monte Carlo for taking into account the correlation

between the kinematic effects and the efficiency of the channeling processes. As an example,

the number of reconstructed Λ+
c as a function of their energy after 40 days of data taking

with a proton flux Φ = 5 × 108 s−1 is shown in figure 7. The red histogram shows the

deflected fraction of Λ+
c produced by the 7 TeV proton beam in the tungsten target of

thickness Ltar = 1 cm and channeled through the silicon crystal at room temperature of

length Lcrys = 8 cm and radius of curvature R = 22 m. The total number of reconstructed

Λ+
c in this case is expected to be about 6000.

The initial polarization of the Λ+
c is supposed to be known with high precision using

the large sample of the non-channeled Λ+
c ; the polarization in the three spatial coordinates

is evaluated by using the angular analysis as described by eq. (2.5). An example of the

spin rotation is given in figure 8.
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Figure 7. The spectrum of reconstructed Λ+
c after 40 days of data taking with proton flux Φ =

5 × 108 s−1. The dotted blue curve shows the spectra of Λ+
c right after the 1 cm thick tungsten

target-converter.The red histogram shows the spectrum of channeled Λ+
c after the same target and

silicon crystal at room temperature with Lcrys = 8 cm and R = 22 m.

The initial polarization is only on the transverse plane, specifically along the direction

of the Ox axis (see figure 1). After Λ+
c have passed through the crystal, the polarization

acquires also a longitudinal component (along the Oz axis). The value of the g-factor is

obtained from eq. (2.3) using variation of the polarization components and values of the

boost and bending angle.

The polarization angle for g = 1.9 and the parameters used for this simulation is of

the order Θµ ∼ 0.2 rad.

In figure 9 we show the result in the plane Φ × ηdet as a function of days of data

taking to reach a precision on g-factor of ± 0.1 for the two decay modes which we have

considered. The bands display different choice of absolute Λ+
c polarization, α parameters

and Λ+
c cross section according to values and accuracy given in tables 1 and 2. As it can

be noted, the bands are quite large and depending on the values of several parameters

entering this evaluation, the difference in terms of data taking time can be very significant.

It is important to emphasize that the width of these bands is mainly coming from the two

factors: the value and the uncertainty of the α parameters and the Λ+
c polarization. Thus,

it is extremely important to measure more accurately these parameters using, for instance,

the existing LHCb data. In figure 9 the results are shown for silicon crystal at room

temperature. The horizontal lines in the two plots correspond to a value for proton flux of

Φ = 5 × 108 s−1 and the detector efficiency in the range (1–3) × 10−3 for the Λ(pπ−)π+

decay mode and (2–4) % for the ∆++(1232)K− decay mode.

The most promising channel is Λ+
c → ∆++(1232)K−. Using this mode a precision on

g-factor of ± 0.1 can be obtained within the time from a few to 60 days.
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Figure 8. Angular distribution of the polarized Λ+
c decay products as a function of cos θx, cos

θy, cos θz (see eq. (9)). The distributions on the top are for an initial polarization ξy=ξz=0 and

ξx=−0.40. The same distributions obtained for the Λ+
c after having passed through the crystal are

shown at the bottom.
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Figure 9. Flux times detection efficiency Φ × ηdet as a function of data taking time for two Λ+
c

decay modes to obtain an absolute error on the gyromagnetic factor g of ± 0.1. Considering a flux of

proton of 5 × 108 s−1, the areas between horizontal lines: (0.5–2)× 106 and (1–2)× 107 correspond

to ηdet = (1–3) × 10−3 (typical for the Λ+
c → Λπ+ decay mode) and (2–4)× 10−2 (typical for the

Λ+
c → ∆++K− decay mode), respectively.

In figure 10 we show the evolution of the error on the g-factor using the ∆++(1232)K−

decay mode once the detector efficiency has been fixed to a value: ηdet = 2 × 10−3. The

data taking time needed to reach the certain precision ranges in a quite large interval due

to the uncertainty on the polarization, α parameters and the Λ+
c cross section.

As explained in section 3.4 and shown in table 3, the data taking time can be reduced

by about a factor (2.5–4.8), if germanium crystal could be used.
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4 Possible experimental setup for performing this experiment

In the last decade the UA9 Collaboration has developed the technology and more recently

used it to demonstrate that bent silicon crystals can efficiently steer the diffusive halo

surrounding the circulating beam in the LHC, up to 6.5 TeV energy [60].

A scenario to deflect the halo particles in the vicinity of an interaction region of LHC is

currently under study. The deflected particles should be kept in the vacuum pipe and will

follow trajectories well distinct from those of the circulating beam core. Inserting a target

in the pipe, the deflected halo can be efficiently used for fixed-target physics. An additional

absorber should intercept halo particles not interacting with the target, thereby allowing

the possibility of fixed-target operation in parasitic mode. In particular, by directing

the deflected halo into another bent crystal tightly packed with a short and dense target,

located in the LHC pipe just before an existing detector, living baryons should be produced

and their polarization may be measured from the analysis of the decay products. As an

example, a preliminary optical layout compatible with the existing installations in IR8

is presented [61, 62] and it is suggested to use the interaction zone close to the LHCb

detector. The LHCb detector will be particularly well suited to perform this experiment

and preliminary discussions are undergoing.

In addition an Expression of Interest [23] has been presented in October 2016 at SPSC

proposing to perform preliminary studies of the double crystal setup in SPS. In March 2017

this proposal has been accepted by SPSC for the next two years and the experiment will

be performed in 2017 and 2018.

5 Conclusions

In this paper we have revisited the possibility of a measurement of the magnetic dipole mo-

ment of the charm baryons and in particular of Λ+
c . As shown, the experimental setup would

consist of using the primary protons in the halo of one of the LHC beams, deflecting them by
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a bent crystal into the target-crystal pack, just upstream of one of the existing detectors of

LHC. This experiment is extremely challenging but the recent success of crystal-collimation

tests of the UA9 Collaboration [60] may provide the necessary technical know-how for such

a complex task. The sensitivity studies presented in this paper show that a precision of

± 0.1 on the g-factor could be reached within data taking time from a few days to about

one month. The uncertainty on the needed data taking time could be significantly reduced

by measuring more precisely the α parameters and the absolute value of Λ+
c polarization.
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A Aspects of formalism of the polarization precession

The 4-vector of the polarization a = (0, ~ξ) of the spin-1
2 particle is defined in its rest frame

in which the particle 4-momentum is p = (m, 0). In this frame the axial vector ~ξ is an

average of the particle spin, ~ξ = 2
~〈 ~S 〉 [30].

After transforming to the frame, in which the particle 4-momentum is p = (ε, ~p), it

looks as

a = (a0, ~a) = (a0, ~a⊥, a‖) = (γvξ‖, ~ξ⊥, γξ‖), (A.1)

where ~v = ~p/ε is the particle velocity, γ = ε/m is the Lorentz factor, and perpendicular

and parallel components of the 3-vectors are defined with respect to the direction of motion.

Apparently, a · p = 0 in any frame.

The polarization vector has the clear physical meaning in the rest frame of the particle,

therefore the precession of vector ~ξ is usually considered. In the instantaneous rest frame

the polarization vector obeys the classical equation [30]

d~ξ

dτ
= − eg

2m
~H? × ~ξ, (A.2)

where ~H? is the magnetic field in this frame and τ is the proper time.1 In eq. (A.2) the

term with a possible electric dipole moment of the particle is not included (see, for example,

refs. [25, 28] in which such contribution is discussed).

One way to extend eq. (A.2) to the laboratory frame is to transform the magnetic field

and the time to the laboratory frame, and include the Thomas correction [26, 27]. Another

commonly used way is based on the explicitly covariant approach [28] which is analyzed in

1Velocity of light is set to unity.
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detail in refs. [30, 31]. The corresponding equations can be written as

d~ξ

dt
= ~ω × ~ξ, (A.3)

~ω = ~ω ~H + ~ω ~E ,

~ω ~H = − e

m

[(
g

2
− 1 +

1

γ

)
~H −

(g
2
− 1
) γ

1 + γ
~v ( ~H ~v)

]
,

~ω ~E = − e

m

(
g

2
− γ

1 + γ

)
~E × ~v,

where the electric, ~E, and magnetic, ~H, fields are defined in the laboratory frame and ~ω is

the angular velocity of the polarization precession.

For the purpose of the present paper it is sufficient to keep only the electric field and

choose ~E ~v = 0 at any moment of time, since the effective electric field in the bent crystal

is orthogonal to the particle momentum. In this case the equations of motion imply that

d~v

dt
=

e

mγ
~E,

dv

dt
= 0. (A.4)

Choosing vector ~E in the (xz) plane it is seen that the particle rotates around the axis

Oy with the constant velocity (neglecting movement along the Oy axis). From (A.4) one

obtains the corresponding angular velocity and the rotation radius

ω0 =
eE

mγv
, R =

v

ω0
=
mγv2

eE
. (A.5)

The polarization vector, as it is seen from eqs. (A.3), also rotates around the axis Oy

with the angular velocity

ω =
evE

m

(
g

2
− γ

1 + γ

)
= γ

(
g

2
− 1− g

2γ2
+

1

γ

)
ω0 (A.6)

We can integrate (A.6) and arrive at eq. (2.3) connecting the angles of polarization

precession and velocity rotation.

Note that eq. (A.6) was derived earlier [33] for the arbitrary electric field. It was also

re-derived in [34] using a more elaborate method.

B Asymmetry parameter for decay of polarized Λ+
c to ∆(1232)++K−

Formalism for the polarization effects in the decay Λ+
c → Λπ+ (1

2

+ → 1
2

+
+ 0−) is well-

known [63], section 6.5 (see also [1], p. 1515). If Λ+
c is polarized and polarization of Λ

baryon is not measured, then the angular distribution is given by eq. (2.5).

One of the important modes for measuring polarization of Λ+
c after passing the crystal

is the decay Λ+
c → ∆(1232)++K−. This decay involves the transition 1

2

+ → 3
2

+
+ 0−, and

we briefly discuss below the angular distribution and asymmetry parameter.

The amplitude for the decay Λ+
c → ∆(1232)++K− can be written as (assuming that

∆++ is produced on-mass-shell)

M = ūµ(p)Tµ u(Q)ϕ∗K , (B.1)
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where Q (p) is the 4-momentum of the initial (final) baryon, u(Q) is the Dirac spinor,

uµ(p) is the Rarita-Schwinger vector-spinor, such that pµu
µ(p) = 0 and γµu

µ(p) = 0 (see,

e.g. [30], section 31), and ϕK is wave function of the kaon.

In eq. (B.1) Tµ is the transition operator which has general form [63] (section 4.7):

Tµ = (B − Aγ5)Qµ, where constants B and A generate parity-conserving and parity-

violating amplitudes, respectively.

The amplitude squared and summed over the final baryon polarizations is

|M|2 =
1

2
Tr
[
(/p+m∆)Sνµ(p)Tµ × (/Q+MΛc)(1 + γ5/a) γ0T †νγ

0
]
, (B.2)

where a is the 4-vector of Λ+
c polarization in eq. (A.1), /a = aσγσ, and tensor Sνµ(p) is

Sνµ(p) = −gνµ +
1

3
γνγµ +

2pνpµ

3m2
∆

+
pµγν − pνγµ

3m∆
. (B.3)

From (B.2) one obtains

|M|2 = |M0|2
(

1− α MΛca · p
[(p ·Q)2 −m2

∆M
2
Λc

]1/2

)
= |M0|2

(
1 + α |~ξ| cosϑ

)
(B.4)

in the rest frame of Λ+
c , where a = (0, ~ξ) and a·p = −|~p||~ξ| cosϑ. The asymmetry parameter

α reads

α =
2 Re(AB∗) |~p|

|A|2(E −m∆) + |B|2(E +m∆)
, (B.5)

and the amplitude squared for the unpolarized Λ+
c is

|M0|2 =
4M3

Λc
~p 2

3m2
∆

[
|A|2(E −m∆) + |B|2(E +m∆)

]
. (B.6)

Here E = (m2
∆ + ~p 2)1/2 is the energy of ∆++ in the rest frame of Λ+

c .

The analogous consideration applies to the decay Λ+
c → Λ(1520)π+ (1

2

+ → 3
2

−
+ 0−)

with interchange of A and B.

Actually, eqs. (B.4) are general and valid for other decay modes as well, in particular,

for Λ+
c → Λπ+ (1

2

+ → 1
2

+
+ 0−) and Λ+

c → pK
∗
(892)0 (1

2

+ → 1
2

+
+ 1−). Of course,

for these decays the baryon traces differ from (B.2), but they are linear in the polarization

vector and the amplitude squared |M|2 is always linear in a ·p. The asymmetry parameter

in (B.4) depends on a specific form of the transition operator Tµ.

C Details on deflection efficiency: ηang, ηacc, ηdef

Angular acceptance factor ηang is defined as the fraction of Λ+
c baryons that are produced

in the narrow interval of angles with respect to the crystal plane (zy):

θx ∈ (−θacc,+θacc). (C.1)

As the initial angular distribution of baryons is very close to the normal one with a

standard deviation 1/2 γ−1, the angular acceptance factor can be expressed as follows:

ηang = erf
(√

2 θacc γ
)

(C.2)

– 20 –



J
H
E
P
0
8
(
2
0
1
7
)
1
2
0

1 2 3 4 5 6 ε,TeV

2

4

6

θaccμrad Straight

R = 7.5m

R = 1.5m

Ge  80K

Ge 293K

Si 293K

Figure 11. Acceptance angle as a function of energy of channeled particle in germanium (thick

curves) and silicon crystals. Solid blue curves are for straight crystals, dashed red and dotted green

curves are for bent crystals with radii of curvature R = 7.5 m and 1.5 m, respectively.

where erf(x) is the error function.

The acceptance angle θacc is the maximal value of the angle between the Λ+
c momentum

and the crystal plane, at which the particle can be captured into the channeling regime.

This angle is analogous to the Lindhard angle (see eq. (2.2)) but with taking into

account thermal vibrations of lattice atoms and the crystal curvature. The value θacc is

defined by the effective potential well of plane channel of bent crystal. The form of this

potential well is defined by averaging the lattice atom potentials along the chosen crystal

plane (see, e.g., [35, 36, 43]). The dependence of acceptance angle on the particle energy

for silicon and germanium crystals is presented in figure 11.

As germanium has a rather small value of Debye temperature, cooling down the crystal

leads to a significant decrease of a thermal oscillation amplitude of atoms in crystal nodes.

Through this effect, reduction of the temperature to liquid nitrogen temperature noticeably

gains the deflection efficiency. For this reason, we also present the results for germanium

crystal cooled down to 80◦K (see upper limit of thick curves in figure 5 and figure 11)

Actually, the fulfillment of condition (C.1) is not sufficient for particles to be cap-

tured into the channeling regime. It is also necessary for the channeled particle to have

the negative energy of transverse motion with respect to interplanar potential U(x) (see,

e.g., [35, 36, 43]):

εt(θx, x) =
ε θ2

x

2
+ Ueff(x) < 0, (C.3)

where

Ueff = U(x) +
ε

R
x,

(
−d

2
< x <

d

2

)
, (C.4)

where x is the impact parameter with respect to the planar channel (see e.g., [35]). The sec-

ond summand in eq. (C.4) is centrifugal term which describes the distortion of interplanar

potential caused by the crystal curvature.
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As the characteristic width of baryon angular distribution γ−1 is at least two orders

of magnitude greater than channeling acceptance angle θacc, we can consider the angular

distribution of channeled baryons over θx as uniform. It is clear that the distribution over

impact parameter x is uniform as well. Thus, the acceptance factor can be written in the

following form:

ηacc =
ηang

2 dΘacc

θacc∫
−θacc

d/2∫
−d/2

ΘH (−εt(θx, x)) dθx dx, (C.5)

where ΘH is the Heaviside function.

The dechanneling probability ηdech was calculated by means of Monte-Carlo simulation

of particle passage through the crystal using binary collision model of incident particle

interaction with atoms of crystal lattice (see, e.g., [64–66]). The potential of a single atom

was taken as Moliere potential of screened Coulomb field. The multiple scattering on

electron subsystem of crystal lattice was taken into account using the aggregate collisions

model [67, 68]. The model was verified by comparing its results with the experimental

data [69].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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