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Abstract: A Standard Model extension with two Majorana neutrinos can explain the

measured neutrino masses and mixings, and also account for the matter-antimatter asym-

metry in a region of parameter space that could be testable in future experiments. The

testability of the model relies to some extent on its minimality. In this paper we address

the possibility that the model might be extended by extra generic new physics which we

parametrize in terms of a low-energy effective theory. We consider the effects of the opera-

tors of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients

so that the predictions of the minimal model are robust. One of the operators gives a

new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs

can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two

displaced vertices. We estimate the LHC reach to this process.
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1 Introduction

The measured neutrino masses and mixings provide a strong hint of physics beyond the

Standard Model, and this new physics might involve new weakly coupled fields at the elec-

troweak scale. The simplest of these possibilities is an extension of the Standard Model

with just two singlet Majorana fermions. This model has been shown to provide a natural

explanation of the matter-antimatter asymmetry of the Universe [1–15] via neutrino oscil-

lations [16] if the two heavy singlets have masses in the range [1, 102] GeV, a range that

implies that these states could be produced and searched for in beam dump experiments

(for a recent review see [17]) and colliders (for a sample set of references see [18–29]).

This opens the possibility of making this baryogenesis scenario testable: the combination

of measurements of the mixings and masses of the heavy neutrino states, together with

the determination of the CP phase δ in future oscillation experiments and the amplitude

of neutrinoless double beta decay might lead to a quantitative prediction of the baryon

asymmetry in the universe [13].

The constraint of the measured neutrino masses and mixings fixes to a large extent

the flavour mixings of the heavy neutrino states [13]. In particular, it has been shown

that the ratios of mixings to different lepton flavours are strongly correlated with the

CP violating phases of the PMNS matrix [30]. One of the most drastic implications of

this minimal model is the vanishing of the lightest neutrino mass. If evidence of a non-

vanishing lightest neutrino mass would come from future beta-decay experiments or from

cosmological measurements, the minimal model with two neutrinos would not be able to

explain it and an extension would be required.

The question we would like to address in this paper is the following. If there is some

extra new physics at a higher scale (for example more singlet states), how does this new

physics would modify the predictions of the low-energy theory represented by the minimal

model with the two singlet states. In particular, we would like to understand if the strong
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correlations between the light and heavy neutrino masses and mixings [30] that underlie

the predictivity and testability of this model could be preserved or under what conditions

they might be.

A model independent way of answering this question is by building the effective theory

and analysing what modifications on the correlations higher dimensional operators can

induce. The list of higher dimensional operators in the SM up to dimension d = 6 is well-

known [31–33] and has been studied extensively. Interestingly however in the extended

theory with fermion singlets [34–36], there are more d = 5 operators than in the SM. The

relatively light singlet states provide a new portal into BSM physics. In this paper we will

restrict ourselves to the lowest dimensional operators of d = 5, which are expected to be

dominant.

The paper is organized as follows. In the section 2 we describe the minimal model and

the extension by d = 5 operators. In section 3 we consider the different constraints on the

d = 5 operators from neutrino masses and LHC and in section 4 we conclude.

2 The seesaw effective theory

At energies much smaller than the new physics scale, Λ, the theory is just a type I seesaw

model [37–40] with two Majorana neutrinos in the GeV range, with the Lagrangian

LSS = LSM −
∑
α,i

L̄αY
αiΦ̃Ni −

2∑
i,j=1

1

2
N c
iM

ij
NNj + h.c.

The leading effects of the new physics should be well described by higher dimensional

operators of d = 5 that can be constructed in a gauge invariant way with the Standard

Model fields and the heavy Majorana neutrinos. These have been classified in Refs. [34–

36]. There are three independent operators:

OW =
∑
α,β

(αW )αβ
Λ

LαΦ̃Φ†Lcβ + h.c., (2.1)

ONΦ =
∑
i,j

(αNΦ)ij
Λ

N iN
c
jΦ†Φ + h.c., (2.2)

ONB =
∑
i 6=j

(αNB)ij
Λ

N iσµνN
c
jBµν + h.c. (2.3)

The first is the well known Weinberg operator OW [31] that induces a new contribution to

the light neutrino masses, independent of the contribution of theN fields. The new operator

ONΦ contributes to the N Majorana masses, and interestingly gives additional couplings

of these heavy neutrinos to the Higgs [19, 34], which are not necessarily suppressed with

the Yukawa couplings. Constrains on this operator have been extensively studied in the

context of Higgs portal dark matter [41]. In that case however, it is assumed that the

Majorana fermion constitutes the dark matter and therefore does not decay, for which it is

necessary to forbid the yukawa coupling to the lepton doublet. In our case the states can
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decay visibly in the detector. The last operator induces magnetic moments of the heavy

neutrinos and the constraints have been studied in [36].

We will see in the following that the direct constraints on the coefficients of these

operators are very different. It is therefore an important question whether large hierarchies

could exist between the coefficients. On naturality grounds we would expect they should

of the same order

αW
Λ
∼ αNΦ

Λ
∼ αNB

Λ
. (2.4)

However this might not be the case if there exists an approximate global U(1)L symmetry

[42, 43]. If the two Majorana neutrinos carry opposite lepton number charges, the Majorana

mass term can be chosen to be of the form

MN =

(
0 M

M 0

)
, (2.5)

to ensure an exact symmetry, implying degenerate heavy neutrinos and massless light

neutrinos. We note that this approximate U(1)L symmetry is also usually invoked in the

minimal model to justify yukawa couplings larger than the naive seesaw relation Y ∼√
Mmν
v2 , that are required to be within the sensitivity reach of future experiments.

The operator ONB is invariant, while the operator ONΦ is invariant provided the

flavour structure of the coefficient is of the same form as the Majorana mass,

αNΦ =

(
0 α

α 0

)
. (2.6)

Only the Weinberg operator violates lepton number in this case. If we assume the symmetry

is approximately conserved, since we need to accommodate neutrino masses, it is technically

natural in this context to assume the following hierarchy

αW
Λ
� αNΦ

Λ
∼ αNB

Λ
. (2.7)

A hierarchy also arises in the context of minimal flavour violation [44–46]. As discussed

in [34], in this case the coefficients αW ∼ αNB ∼ O(Y 2), while there is no suppression of

αNΦ.

On the other hand, if we drop completely the naturalness argument, we have to confront

a hierarchy problem. All the d = 5 operators generically mix under renormalization. For

example the diagram of Fig. 1 induces a contribution to the Weinberg operator at one loop

of the form

δ
(αW

Λ

)
∝ 1

(4π)2

Y αNΦY
T

4Λ
log

µ2

M2
. (2.8)

Requiring this contribution to be of the same order or smaller than the tree level contri-

bution implies the following bound

αNφ
Λ

.
2 · 1013

log µ2

M2

(
10−6

θ2

)(
GeV

M

)2 αW
Λ
, (2.9)
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Figure 1. One loop contribution of ONΦ to the neutrino masses

where θ is the mixing of the heavy states with the leptons. This constraint is rather mild

and leaves significant freedom to have a large hierarchy, even if no symmetry principle is

assumed.

3 Constraints on the d = 5 operators

3.1 Neutrino masses

The operator ONΦ gives a correction to the Majorana neutrino mass matrix:

M ′ = M + v2αNΦ

Λ
. (3.1)

The light neutrino masses get a contribution from the two light states, and from new

physics at the scale Λ. We call this latter contribution δmW
ν :

mν =

(
−Y 1

M ′
Y T + 2

αW
Λ

)
v2

2
≡ −Y 1

M ′
Y T v

2

2
+ δmW

ν . (3.2)

The diagonalization of the complete light neutrino mass matrix gives:

mν = −v
2

2
Y

1

M ′
Y T + δmW

ν = UmlU
T . (3.3)

where U is the standard PMNS matrix, ml = diag (m1,m2,m3) are the light neutrino

masses. We know that in the limit δmW
ν → 0 , m1(m3) → 0 for the normal (inverted)

hierarchy (NH/IH) or equivalently the condition

det
[
UmlU

T − δmW
ν

]
= 0 (3.4)

must hold. Perturbing in (δmW
ν )ij = δij and the small light neutrino parameters θ13 ∼

θ23 − π/4 ∼ r ≡ ∆m2
sol/∆m

2
atm, all of which are taken of the same order, O(ε) ∼ O(δ), we
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obtain at leading order:

NH: (3.5)

m1 = −
[
U †mlU

∗
]

11

=
−e2iφ1

2

[
2δ11c

2
12 + (δ22 − 2δ23 + δ33)s2

12 +
√

2(δ13 − δ12) sin 2θ12

]
+O (ε δ) ,

IH: (3.6)

m3 = −
[
U †mlU

∗
]

33
=
−e2iφ1

2
(δ22 + 2δ23 + δ33) +O (ε δ) . (3.7)

Barring fine-tuned cancellations among the δij coefficients, we have therefore

δij =
(αW )ijv

2

Λ
∼ O(1)m1,3. (3.8)

The lightest neutrino mass is thus the measure of the non-standard contributions from

OW .

3.2 Heavy neutrino Mixing

The heavy states mix with the charged leptons inducing charged and neutral currents as

well as higgs interactions. All these get modified by the d = 5 operators. In the mass basis

the heavy neutrinos interact with the Z and W via the interactions:

− g√
8
Uα3+i l̄αγµ(1− γ5)NiW

−
µ −

g

4 cos θW
Uα3+iν̄

αγµ(1− γ5)NiZµ + h.c. (3.9)

where Ni are now the mass eigenstates, i = 1, 2 and Uα3+i are their mixings to the flavours

α = e, µ, τ . These mixings are related to the Yukawa couplings as

Uα3+i '
v√
2

(YM ′−1)αi. (3.10)

We can use the Casas-Ibarra trick [47] to parametrize Y in terms of m̃ and Ũ where

mν − δmW
ν = −v

2

2
YM−1Y T ≡ Ũm̃ŨT , (3.11)

and a generic 2×2 complex orthogonal matrix R. In this parametrization the mixings are

Uα3+i = i(Ũm̃1/2R†M ′−1/2)αi. (3.12)

In the limit δmW
ν → 0, m̃ and Ũ coincide with the light neutrino masses and mixing matrix.

It has been shown that in this case the flavour structure of the mixings is approximately

fixed those neutrino oscillation observables [13, 46, 48]. Simple analytical approximations

were worked out in [13] that should be accurate in the sensitivity region of future experi-

ments. These are shown in Fig. 2, where we show the allowed range for normalized flavour

mixings: |Uα3+i|2/Ū2, with Ū2 ≡ ∑
α |Uα3+i|2, fixing the known oscillation parameters

to their best fit values [49], and varying the CP violating phases δ and φ1 in the whole

physical range (the second Majorana phase is unphysical for two heavy neutrinos). It has
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Figure 2. Ternary diagram for the normalized flavour mixings |Uαi|2/Ū2 (in the large mixing

regime) fixing the known oscillation parameters to their best fit values and varying the CP phases

from [0, 2π] for NH (red) and IH (blue).

been shown that the determination of these ratios in future experiments would give very

valuable information on the CP phases [30].

In general however the parameters Ũ and m̃ are sensitive to new physics. We can

relate them to the physical mixings and masses using perturbation theory in δmW
ν = O(δ).

For NH we have

Ũm̃2Ũ † = Udiag
(
0,m2

2,m
2
3

)
UT +

{
Udiag (0,m2,m3)UT , δmW

ν
†}

+O
(
δ2
)
, (3.13)

where {, } is the anticommutator. For IH the result is the same with m3 → m1 and moved

to the first position. Here we have used that m1/m3 = O(δ). The first order corrections

O (δ) to m̃ and Ũ are presented in appendix A.

Including these in eq. (3.12) we find that the approximate expressions for the mixings

in the absence of extra dynamics derived in ref. [13] get modified by corrections δ|Uαi|2.

For NH we get

δ|Ue4|2M1 = Ace
m1√

∆m2
atm

, δ|Uµ4|2M1 = Acµ
m1√

r∆m2
atm

, (3.14)

where A = e2γ
√

∆m2
atm/4. Similarly for IH:

δ|Ue4|2M1 = Ac′e
m3√

∆m2
atm

, δ|Uµ4|2M1 = Ac′µ
m3√

∆m2
atm

, (3.15)

and δ|Uα4|2M1 = δ|Uα5|2M2 at this order for both hierarchies. Barring fine tuning among

the different entries in δmW
ν and taking into account Eq. (3.8), the coefficients cα and c′α

– 6 –



0.05

0.05

0.5

0 1 2 3 4 5 6

0

1

2

3

4

5

6

δ

ϕ
1

100

100

10

10

1

1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

δ

ϕ
1

Figure 3. Contours of constant ratio |Uei|2/|Uµi|2 as a function of the two CP phases δ, φ1 for

NH(left) and IH(right). The three curves correspond to no Λ−1 corrections (solid black) and minimal

or maximal (red dashed) deviations within the range cα, c
′
α ∈ [−1, 1].

are expected to be O (1). In Fig. 3 we show the impact of these corrections to the ratio

|Ue4|2/|Uµ4|2 dependence on the CP phases for m1,3 = 0.1
√

∆m2
sol and varying cα and c′α

between −1 and 1 to maximize the difference. The corrections to the flavour ratios are

therefore of O(mlightest/
√

∆m2
atm) for IH and of O(mlightest/

√
∆m2

solar) for NH. It will be

hard experimentally to ensure that these corrections are sufficiently small, in other words to

prove that mlightest is significantly smaller than
√

∆m2
atm for IH and

√
∆m2

solar for NH. On

the other hand, measuring a lightest neutrino mass above this value will surely imply that

corrections to the predictions of the minimal model are likely to be significant. Alternatively

finding the flavour ratios in the regions given by Fig. 2 would be a strong indication that

only two Majorana states give the dominant contribution to the light neutrino masses and

therefore the lightest neutrino mass is significantly smaller than the mass splittings.

3.3 Higgs-Neutrino Interactions

Interestingly the operator ONΦ induces new higgs interactions with the right handed neu-

trinos. In particular for Mi ≤ MH
2 , the Higgs can decay to two heavy neutrinos via this

coupling

L ⊃ − v√
2Λ

HN
c
αNΦN + h.c. (3.16)

This decay leads to a spectacular signal at LHC, which is that of a pair of displaced vertices

(DVs) since the N decay only via mixing and they have a long decay length. The process

is depicted in Fig. 4 Note that compared to the minimal model, where the sterile neutrinos

are singly produced via mixing, in this case the production is controlled by the coefficient

αNΦ and therefore one should have access to much smaller mixings, as long as they lead

to lifetimes are within reach of DV searches within the detectors.
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Figure 4. Higgs decay to two heavy neutrinos leading to displaced vertices

Our aim in this section is to do a simple estimate of the bounds on the coupling αNΦ/Λ

from searches of higgs decays to two displaced vertices at LHC. A closely related calculation

has been done in the context of U(1)′ models in [50], where the signal selection has been

performed following recent searches by the CMS collaboration [51, 52]. We have considered

two different analyses: 1) a search of displaced tracks in the inner tracker where at least one

displaced lepton, e or µ, is reconstructed from each vertex; 2) a search for displaced tracks

in the muon chambers and outside the inner tracker where at least one µ is reconstructed

from each vertex. The charges are not restricted and therefore events with same-sign or

opposite sign leptons are possible.

For simplicity we will consider only semileptonic decays of the Ni which give rise to

two lepton final states through the decay

Ni → l±W∓ → l±qq̄′. (3.17)

We consider a parton-level Monte Carlo analysis using Madgraph5 [53] at LHC with

a center-of-mass energy of 13TeV and 300 fb−1 luminosity. We include only the dominant

gluon fusion higgs production and we consider the production of just one neutrino species,

N1. The production cross section pp→ h→ N1N1 is shown in Fig. 5 as a function of the

heavy neutrino mass for various values of the coupling gNΦ ≡ v(αNΦ)11√
2Λ

. In Fig. 6 we show

the Br(H → N1N1) as a function of gNΦ for various values of the mass (here we assume

the higgs decays just to one neutrino).

The pT of the two leading leptons is shown in Fig. (7). Following [50], the signal

selection is done by requiring two lepton tracks, e or µ that satisfy the following kinematical

cuts on transverse momentum, pseudorapidity and isolation of the two tracks:

pT (l) > 26 GeV, |η| < 2, ∆R > 0.2, cos θµµ > −0.75. (3.18)

In the case of muons a constraint in the opening angle θµµ is imposed in order to reduce

the cosmic muon background. The efficiencies resulting from these consecutive cuts for
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Figure 5. Cross section pp→ H → N1N1 in pb as a function of the heavy neutrino mass, M1 for

a few values of gNΦ ≡ v(αNΦ)11√
2Λ
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Figure 6. Br(H → N1N1) as a function of the gNΦ for various masses M1.

ee M1 = 10GeV M1 = 20GeV M1 = 30GeV M1 = 40GeV

pT 6.4% 7.0% 5.6% 4.5%

η 4.2% 4.8% 4% 2.9%

∆R 4.2% 4.8% 4% 2.9%

Table 1. Signal efficiciencies after consecutive cuts on pT , η and ∆R for the ee channel in the inner

tracker, for various heavy neutrino masses.

various neutrino masses are shown in Tables 1 and 2. Note that they do not depend on

the mixings |Uαi|2.

For each event the decay length of each neutrino in the laboratory frame is obtained

from their simulated momenta and the distance travelled, L, is randomly sampled according
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Figure 7. pT distribution of the two leading electrons for M = 15GeV.

µµ M1 = 10GeV M1 = 20GeV M1 = 30GeV M1 = 40GeV

pT 7.0% 6.8% 6.0% 4.7 %

η 4.7% 4.9% 4% 3.2%

∆R 4.7% 4.9% 4% 3.2%

cos θµµ 3.2% 3.6% 3.0% 2.7%

Table 2. Signal efficiciencies after consecutive cuts on pT , η and ∆R for the µµ channel in the

muon chamber for various heavy neutrino masses.

to the expected exponential distribution. The impact parameter of the lepton in the

transverse direction d0 is defined as

d0 = |Lxpy − Lypx|/pT , (3.19)

where Lx,y,z are the X,Y, Z projections of the vector L~u, where ~u is the velocity of the

heavy neutrino, and (px, py) is the momentum of the lepton in the transverse direction.

The cuts associated to the displaced tracks are different for the two analyses [50]:

• Inner tracker (IT):

10cm < |Lxy| < 50cm, |Lz| ≤ 1.4m, d0/σ
t
d > 12, (3.20)

where σtd ' 20µm is the resolution in the tracker.

• Muon chambers (MC):

|Lxy| ≤ 5m, |Lz| ≤ 8m, d0/σ
µ
d > 4, (3.21)

where the impact parameter resolution in the chambers is σµd ∼ 2cm.
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Figure 8. Acceptance of the cuts in eqs. (3.20) in blue and (3.21) in red as a function of the

combination U2M6.

Since 〈L−1〉 ∝ U2M6, we expect that these cuts depend mostly on this combination of

mass and mixing with some dispersion. In Figs. 8 we show the acceptance given by cuts of

eqs. (3.20) and (3.21) as a function of U2M6. As expected the two analyses are sensitive

to different decay lengths. We have checked that the global efficiencies resulting for each

of these cuts agree reasonably well with the results quoted in [50].

Concerning the flavour structures, we have considered two scenarios:

• Scenario A: only the decay of the higgs to one neutrino species, N1, is considered.

Obviously if the other state has a mass below MH/2, it will also contribute via the decays

H → N2N2 and H → N1N2. These will be sensitive however to different entries of the

matrix αNΦ.

In Fig. 9 we show the BR(H → N1N1) corresponding to 4 signal events as a function

of MH
2M × cτ which is approximately the decay length in the laboratory frame. We present

the results that include the events producing two displaced electrons in the inner tracker,

and either two displaced µ in the inner tracker (IT analysis) or two displaced muons in the

muon chamber (MC analysis). We compare these limits with the those of the Mathusla

project of the HL-LHC with 3000fb−1 as obtained in ref. [54], where all the decays of the

N1 are assumed observed. The limit this implies on the coefficient of the operator, gNΦ

can then be read from Fig. 6.

As we have seen the flavour structure of the mixings depends strongly on the hierarchy

and the CP phases (see Fig. 2). We fix the CP phases to δ = 0, φ1 = π/2. For this choice

and NH, the muon channels dominates, while for IH it is the electron that dominates. In the

former case therefore the reach of the two analysis IT and MC are quite different, showing

the reach in complementary regions of cτ , while for the latter most of the sensitivity comes

from the electron search which contributes the same to both analyses as it can only be

done with the tracker. The dependence on the phases is illustrated in Fig. 10 where the

phase φ1 is chosen approximately to maximize/minimize the sensitivity.
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Figure 9. Expected limits at LHC (13 TeV, 300 fb−1) on the BR(H → N1N1) for scenario A

as a function of MH

2M cτ in meters. The solid lines correspond to the IT and MC analyses with

M1 = 20GeV (blue) and M1 = 35GeV (red) for NH and CP phases δ = 0, φ1 = π/2. The dashed

lines are for IH and the same CP phases for IT/MC . The dotted lines correspond to the estimated

reach of Mathusla in the HL-LHC (14TeV, 3000 fb−1) [54] for masses 5, 20, 40GeV, assuming that

all the decays of N1 are observable.

• Scenario B: the flavour structure of the matrix αNΦ is such that the operator is

symmetric under a global U(1)L symmetry. The symmetry is very transparent in the basis

where the Majorana neutrino mass matrix and αNΦ are of the form

M =

(
0 M

M 0

)
, αNΦ =

(
0 α

α 0

)
. (3.22)

This pattern ensures that a lepton number is preserved under which N1 and N2 have

opposite charges. In the same basis only N1 has Yukawa couplings. As a result of the

approximate symmetry same sign lepton decays vanish, the massive state is a Dirac fermion.

The branching ratios are however unchanged. The bounds on this scenario also can be read

from Fig. 9, if we interpret the y-axis as the total branching ratio of the higgs to the heavy

Dirac state. On other hand the dependence of this branching ratio on the coupling gNΦ is

twice larger as that shown in Fig. 6.

4 Discussion

In order to explain the observed neutrino masses in the context of Type I seesaw models,

only two heavy Majorana singlets are required. This is the minimal extension of the

Standard Model that can accommodate neutrino masses. The flavour structure of the

mixings of the heavy neutrino mass eigenstates is strongly correlated with the light neutrino

masses and the PMNS matrix. If the mass of these heavy states is in the electroweak
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Figure 10. Expected limits at LHC (13 TeV, 300 fb−1) on the BR(H → N1N1) for scenario A

as a function of MH

2M cτ in meters. The mass is 20 GeV and the CP phase φ1 = −π/2 (blue) or

φ1 = π/2 (red) for NH (solid) and IH (dashed).

range, they can be searched for in future experiments within the high intensity frontier.

A putative measurement of their masses and mixings might demonstrate the origin of

neutrino masses. The predictivity of this minimal model relies on the assumption that

only these two states give the dominant contribution to neutrino masses. Any extension

of this minimal scenario can modify these predictions. We have considered the possible

modifications on the minimal scenario induced by generic new physics at some higher scale

Λ. Three operators can parametrize these modifications at leading order in Λ−1.

Assuming the coefficients of these operators are all of the same order, the strongest

bound comes from the bound on the lightest neutrino mass:∣∣∣∣αW v2

2Λ

∣∣∣∣ ≤ O(1)mlightest →
αW
Λ
≤ 6× 10−9TeV−1

(mlightest

0.2eV

)
(4.1)

A more stringent bound needs to be imposed generically to preserve the flavour predictions

of the minimal model in the presence of new physics. Corrections to these predictions from

the Weinberg operator are of O
(

mlight√
∆m2

atm

)
for IH or O

(
mlight√
∆m2

sol

)
for NH, and this is only

warrantied in the hierarchical scenario where mlight is smaller than 0.05eV.

A possible extension of the minimal scenario that gives rise to the Weinberg operator

is obviously the addition of extra Majorana singlets. In particular, in the case where one

more neutrino is added, it is necessary that the mass is larger and/or the mixings smaller.

This is for example the case in the νMSM [1], where the extra keV state is very weakly

coupled, so that the contribution to the lightest neutrino mass is below 10−5eV, well below

the above requirement.
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Figure 11. Regions on the plane (M,U2) where LHC displaced track selection efficiency (eq. (3.20)

and (3.21)) is above 10% in the IT (blue band) and MC (red band). The grey shaded region cannot

explain the light neutrino masses and the green lines correspond to the upper limits of the 90%CL

bayesian region for successful baryogenesis in the minimal model for NH (solid) and IH (dashed),

taken from [13].

On the other hand, large hierarchies αW � αNΦ ∼ αB could be present undisrupted

by radiative corrections. In this case, direct bounds on the other two d = 5 operators

might be competitive and offer a new window into neutrino physics at the LHC. We have

considered the bounds on αNΦ from searches of displaced leptons at LHC and we have

found that LHC with 300 fb−1 at 13TeV could set bounds∣∣∣∣αNΦv√
2Λ

∣∣∣∣ ≤ 10−3 − 10−2 → αNΦ

Λ
≤ 6× (10−3 − 10−2)TeV−1. (4.2)

It is important to note that if the coefficient of this operator is above this sensitivity limit,

LHC could detect the sterile neutrinos for significantly smaller mixings than it is possible

in the minimal model, in particular LHC could even reach the seesaw limit as shown in

Fig. 11.

The bounds on αNB were considered in ref. [36] and found to be

αNB
Λ
≤ 10−2 − 10−1TeV−1. (4.3)

These operators could appear at tree level in extensions with scalar singlets, such as the

Majoron model, where the singlet can couple to the singlet Majorana contraction N̄N c and

the Higgs portal Φ†Φ. The exchange of the singlet scalar leads at tree level to the operator

ONΦ. On the other hand the operator ONB needs to be generated at one loop.

Finally flavour symmetries could also explain a large hierarchy of αW and αNΦ or αNB.

An approximate U(1)L could explain the hierarchy αW � αNΦ, αNB. Such symmetry is

also the most natural scenario within the minimal model to have mixings significantly

larger than the naive seesaw limit as required for their observability. Similarly, hierarchies
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of this type or αW , αNB � αNΦ are expected in the context of minimal flavour violation

[34].

The presence of large contributions from these operators are not expected to modify

the predictions concerning the flavour structure of the mixings of the heavy neutrinos, since

the higher order corrections to the neutrino masses are very small, but they could provide

a new portal at colliders to reveal the mechanism behind neutrino masses. On the other

hand the same interactions will surely affect the baryogenesis scenario with respect to the

minimal model, since the sterile neutrinos can reach thermal equilibrium if the interactions

induced by the higher dimensional operators are within LHC reach. The impact of ONΦ

in the context of baryogenesis has been recenlty considered in [55].

Appendix A

We list the relation between m̃ and Ũ and the physical neutrino masses, mi, and mixings,

at leading order in a perturbative expansion in δmW
ν :

NH

m̃1 = 0,

m̃2 = m2 + Re

(−e2iφ1

2

[
2δ11s

2
12 + (δ22 − 2δ23 + δ33)c2

12 +
√

2(δ12 − δ13) sin 2θ12

])
+O(δε),

m̃3 = m3 + Re

(−e2iφ1

2
[δ22 + 2δ23 + δ33]

)
+O(δε),

IH

m̃1 = m1 + Re

(
1

2

[
2δ11c

2
12 + (δ22 − 2δ23 + δ33)s2

12 +
√

2(δ12 − δ13) sin 2θ12

])
+O(δε),

m̃2 = m2 + Re

(−e2iφ1

2

[
2δ11s

2
12 + (δ22 − 2δ23 + δ33)c2

12 +
√

2(δ12 − δ13) sin 2θ12

])
+O(δε),

m̃3 = 0. (4.4)

the next to leading order contributions are O (ε δm).

Defining

Ũ = U(1 + δŨ), (4.5)

at leading order we find

δŨ =

 0 δŨ12 δŨ13

−δŨ∗12 0 δŨ23

−δŨ∗13 −δŨ∗23 0

+O(δ2), (4.6)
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with

NH

δŨ12 =
e−i(φ1+φ2)

2r
√

∆m2
atm

[
2
√

2(δ12 − δ13) cos 2θ12 + (2δ11 + 2δ23 − δ22 − δ33) sin 2θ12

]
,

+ O (δ)

δŨ13 =
e−iφ2

2
√

∆m2
atm

[√
2(δ12 + δ13)c12 + (δ33 − δ22)s12

]
+O (ε δ) ,

δŨ23 =
e−iφ1

2
√

∆m2
atm

[
−
√

2(δ12 + δ13)s12 + (δ33 − δ22)c12

]
+O (ε δ) ,

IH

δŨ12 = Re

(
e−iφ1

2r2
√

∆m2
atm

[
2
√

2(δ12 − δ13) cos 2θ12 − (2δ11 + 2δ23 − δ22 − δ33) sin 2θ12

])
,

+ O (δ)

δŨ13 =
eiφ2

2
√

∆m2
atm

{
(δ∗22 − δ∗33)s12 −

√
2(δ∗12 + δ∗13)c12

}
+O (ε δ) ,

δŨ23 =
ei(φ1+φ2)

2
√

∆m2
atm

{
(δ∗33 − δ∗22)c12 −

√
2(δ∗12 + δ∗13)s12

}
+O (ε δ) .

(4.7)
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