

GeantV: from CPU to accelerators

G Amadio1, A Ananya2, J Apostolakis3, A Arora2, M Bandieramonte3, A
Bhattacharyya4, C Bianchini1, 5, R Brun3, P Canal6, F Carminati3, L Duhem7, D
Elvira6, A Gheata3, M Gheata3, 8, I Goulas3, R Iope1, S Jun6, G Lima6, A
Mohanty4, T Nikitina3, M Novak3, W Pokorski3, A Ribon3, R Sehgal4, O Shadura3,
S Vallecorsa3, S Wenzel3, Y Zhang3

1 UNESP, Universidade Estadual Paulista (BR)
2 IIT- Indian Institute of Technology (IN)
3 CERN - European Organization for Nuclear Research - Geneva, Switzerland
4 Bhabha Atomic Research Center (IN)
5Mackenzie Presbyterian University (BR)
6 Fermi National Accelerator Laboratory (US)
7 Intel Corporation
8 Institute of Space Sciences (RO)

Andrei.Gheata@cern.ch

Abstract. The GeantV project aims to research and develop the next-generation simulation
software describing the passage of particles through matter. While the modern CPU
architectures are being targeted first, resources such as GPGPU, Intel© Xeon Phi, Atom or
ARM cannot be ignored anymore by HEP CPU-bound applications. The proof of concept
GeantV prototype has been mainly engineered for CPU’s having vector units but we have
foreseen from early stages a bridge to arbitrary accelerators. A software layer consisting of
architecture/technology specific backends supports currently this concept. This approach
allows to abstract out the basic types such as scalar/vector but also to formalize generic
computation kernels using transparently library or device specific constructs based on Vc,
CUDA, Cilk+ or Intel intrinsics. While the main goal of this approach is portable performance,
as a bonus, it comes with the insulation of the core application and algorithms from the
technology layer. This allows our application to be long term maintainable and versatile to
changes at the backend side. The paper presents the first results of basket-based GeantV
geometry navigation on the Intel© Xeon Phi KNC architecture. We present the scalability and
vectorization study, conducted using Intel performance tools, as well as our preliminary
conclusions on the use of accelerators for GeantV transport. We also describe the current work
and preliminary results for using the GeantV transport kernel on GPUs.

1. Vertical scaling for particle transport simulation
LHC has intensively used horizontal scaling for the most important HEP computing tasks, namely
simulation, reconstruction and analysis. The LHC computing GRID [1] allowed running hundreds of
thousands of concurrent jobs taking advantage of distributed computing resources and relying on the
fact that events are uncorrelated. Measurements [2] have revealed however a rather poor usage of the
silicon per socket, interpreted to be due to instruction fetch and data locality issues. Correlating this

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

with the lack of awareness of HEP software to features common to modern processors such as
instruction level parallelism and SIMD, we concluded that there was a very large potential for
improvement.

The GeantV simulation prototype introduced the concept of vectorized processing in particle
transport [3], enabled by a so-called basketizing procedure that feeds vectors of particles to floating-
point intensive geometry and physics algorithms. The goal is to make use of the SIMD vector units
available on modern processors and to optimize the use of caches by profiting from the geometry and
physics locality as much as possible. The design of the GeantV vector prototype has been described in
detail in other papers [4,5]. The idea is to leverage the vertical dimension of scalability by making
maximum use of the silicon available on a single socket, and to study the feasibility of using
coprocessors and accelerators such as Xeon Phi and GPU’s. The project aims to eventually provide the
path to a long-term solution for particle transport simulation working in both general purpose and HPC
environments.

The different pieces composing GeantV - such as concurrent scheduling, geometry and physics -
are currently being built and in different stages of development. This is an iterative process, as we
learn that some approaches are better than others. In terms of porting the vectorized CPU prototype on
accelerators, running full GeantV in native mode is the preferred but not always possible solution. For
the GPU we are offloading modules of GeantV as kernels, coming with an additional overhead of
having to handle data transfers between the host and device, as shown in the next section.

2. GeantV in native and offload mode
The design of GeantV has foreseen creating baskets (vectors of tracks located in the same geometry
volume of having similar physics properties) of filtered tracks and dispatching them to processing
units. These can be threads of the same process, different processes or arbitrary co-processors acting
as accelerators. The track data is passed to a broker that can collect as many tracks as deemed efficient
for the co-processor, taking care of shipping the data to and from the device. This run mode can only
be efficient if the data transfer back and forth is asynchronous and concurrent in order to mitigate the
data transfer latency. The GPU broker, for example, collects baskets until the number of contained
tracks is equal to the number of GPU cores, and then serializes them to GPU. Each track is given to a
different thread, which propagates it until the next geometry boundary or physics process. The broker
receives the tracks back and gets them “basketized” again by the CPU scheduler, as shown in Figure 1.

Figure 1 GeantV scheduling in native and offload modes. The coprocessor brokers can work fine grain processing a
set of baskets and sending transported tracks back to host, or MPI mode fetching data from an event of file server.

CPU	stepper
(multithreading)

Geometry Physics

Basketizer

GPU	
broker

KNC	
broker
(offload)

MPI	broker

Generator

Device	stepper
(multithreading)

Geometry Physics

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

2

The workflow described above has been tested for the GPU Kepler cards using CUDA7, and
currently is being optimized. The same approach was initially foreseen also for the Intel® KNC device
broker but it was eventually dropped due to difficulties in managing asynchronous data transfers from
the host, using the KNC offload mechanism. We decided to rather use the Xeon Phi co-processor in
native/offload modes to test the behavior of specific GeantV geometry and physics workloads, without
asynchronous communication. This helped us understanding performance features on this architecture
for some of our main software components, targeting a full GeantV deployment on the future
Intel®KNL. For the offload mode the device library was cross-compiled on the host and the
deployment of the work was done using OpenMP’s #pragma offload directive within a dedicated
MicVec backend.

Another use case foreseen for GeantV is running in native mode on some of the accelerators. This
will be the preferred run mode on KNL considering the overhead introduced by offloading. The pre-
requisites are the native compilation of the full GeantV library on the device and a custom tuning of
the scheduling parameters to optimize the workflow depending on the device architecture.

An important feature of the GeantV library allowing compiling the same code on both host and
device modes is the concept of backend interfaces [6, 7]. The idea behind this is that the main
differences across platforms related to data types, library-dependent implementations, or scalar versus
vector handlers, can be wrapped into backend-dependent structures. Template specializing on the
backend type makes then a common source code available across libraries and different technologies
in both scalar and SIMD vector mode when available. A backend approach insulates the code base
from the heterogeneous technology layer and makes maintenance of the code much easier. It is clear
that a considerable effort shifts into the development and maintenance of the backend interfaces –
currently the supported ones being the scalar, CUDA, Vc, MicVec and UME::SIMD (using Intel native
intrinsics).

We are currently re-shaping the GeantV scheduler to allow running in native mode on the KNL
Xeon Phi, implying a deep redesign to provide better scalability and NUMA awareness. On the GPU
side, the CUDA backend allows already running a full transport step (propagation of a vector of
particles to the current geometry volume limits or the simulation of the next physics process) but
currently the rescheduling has to be done still on the host. We do not exclude the possibility to
eliminate this limitation in future. Dispatching work to accelerators running in native mode can be
done either by MPI or their native communication interface, considering that the input data required
by particle transport is lightweight compared to the amount of processing performed per track.

3. Physics and geometry benchmarks on accelerators
We have investigated in a first step the performance of GeantV geometry and physics benchmarks on
Kepler K20 and Intel®Xeon Phi C0PRQ-7120 (KNC) cards. We have tried to understand the
performance limits on such devices for elementary algorithms such as geometry intersection for
different solids or simple physics models. The two architectures are complementary as many-core
topologies, exposing different parallelism use cases. While the Kepler provides 2496 lightweight cores
which are suitable for track-level parallelism, the Intel®KNC provides 60 cores running up to 4
threads per core with access to 512 bits vector registers, allowing to profit from the GeantV basket
model, enabling multi-track vectorization.

For the geometry case, we have tested the speedup compared to Geant4 [8] and ROOT [9]
implementations across different platforms and for different vector lengths. Table 1 presents such a
comparison, combining both scalar optimizations (with respect to the equivalent ROOT algorithms)
and vector gains for a simplified detector setup using a simple navigation, which examines all
daughter volumes (i.e. without geometry voxel optimizations). Standard intersection benchmarks for
solids such as boxes, trapezoids or tubes are showing very good acceleration of often more than a
factor of 4 on KNC. We note that for the most complex algorithms such as the polycone or polyhedron
intersection, the vector gains are reduced (sometimes less than x2) due to their multiple branches,
which gets penalized when mapped to mask operations. In such complex cases we are seeking

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

3

alternatives, e.g to profit from vectorizing inner loops on surfaces or to provide better algorithms.
Figure 2 presents the performance for the different box shape algorithms on the K20, showing how the
die can be saturated with large track containers running in a single kernel.

Figure 2 Performance of box navigation algorithms on K20 GPU compared to scalar/vector modes on CPU and

compared to equivalent ROOT algorithms. The speedup is computed as Tscalar/Tvector/GPU

The latest versions of CUDA allow running multiple kernels on the same die, for workloads
processing smaller data units such as the GeantV baskets. Note that, due to its lower performance per
core the GPU needs at minimum about 103 tracks to match the scalar CPU performance.

Architecture 16
particles

1024
particles

SIMD
max

Intel © Ivy-Bridge (AVX) 2.8 4.0 4.0
Intel © Haswell (AVX2) 3.0 5.0 4.0

Intel © Xeon Phi (Intel®IMCI) 4.1 4.8 8.0
Table 1 Overall performance for particles traversing a simplified detector, compared to ROOT v5.34.17. We compare

the speedup of the vector version compared to the scalar version of ROOT running on the same architecture.

Figure 3 Relative time normalized to the vectorized case for different trapezoid shape intersection algorithms
(Xeon®Phi C0PRQ-7120 P

0	

2	

4	

6	

8	

10	

Inside Contains DistanceToIn SafetyToIn DistanceToOut SafetyToOut

Trapezoid benchmark - Vc backend - Intel (R) Xeon Phi
C0PRQ-7120 Vectorized

Specialized
Unspecialized

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

4

The development of vector-aware physics algorithms has recently started in the GeantV project.
We are trying to optimize at first common algorithms for distribution sampling, random number
generators and an initial set of physics model implementations for gamma processes.

Figure 4 Vectorized Compton process on KNC (left). Performance of the alias sampling method for different process

cross-sections (right).

Figure 4 (left) presents the performance of the vectorized Compton physics model algorithm on
KNC card, which uses the vector unit of the accelerator close to its ideal performance, while the scalar
version has basically the same performance as the corresponding Geant4 one. We have tested alias
sampling on different electromagnetic models’ distributions (having quite different profiles) on the
Kepler card [10]. The performance profile keeps the same shape but can vary with as much as 50% for
different distributions.

4. Performance of combined algorithms on accelerators: the X-ray benchmark.
An important question is the relevance of vector optimizations of elementary algorithms for the
complete simulation workflow: is it possible to maintain the performance improvements shown above
in the combined algorithm case? It is clear that some of the processing steps connecting different
vectorized algorithms may represent scalar bottlenecks that will have direct impact on performance. It
is very important to first identify these scalar bottlenecks, then try to minimize them.

We have tried to understand the vector optimization procedure by running a composite benchmark
on the Intel® Xeon Phi C0PRQ-7120 card. The standard Xeon-based benchmark uses a part of the full
detector geometry and runs multi-particle propagation traversing through it as shown in Figure 5. This
operation is performed during the GeantV stepping but there it competes with the active physics
models. This benchmark performs just the geometry navigation part of the task and creates an “X-ray”
virtual image on the other side. A pixel’s gray level depends on the number of different volumes
traversed by each track. We looked at some basic quantities such as scalability and throughput, and
moved on to in-depth VTune profiling to understand the bottlenecks.

The detailed results of this procedure are not reproduced in this paper but we have clearly identified
the particle relocation algorithm as one of the important scalar bottlenecks. A possibility to optimize
relocation is to understand geometry navigation from a heuristic perspective. As a simple example, a
calorimeter detector is composed of possibly millions of elements, out of which often just a few
logically different volumes. In addition, these volumes are disposed symmetrically and in a lattice
manner, so that each cell has a very limited number of neighbors. We are currently investigating and
prototyping methods to optimize navigation for this kind of topologies, giving very promising results
so far and very likely be used in future by the framework.

0

1

2

3

4

5

6

7

8

10
 500
 5000

Sp
ee

du
p

Number of tracks

Speed-up on Xeon Phi(R)
C0PRQ-7120

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

5

Figure 5 The X-Ray benchmark
tests geometry navigation in
real detector geometry, which is
one of the main components of
GeantV. The name comes the
fact that one takes a detector
geometry module and shoots
virtual rays (with starting
points disposed in a grid) along
a given direction and with a
given resolution (input
parameters). Each ray is
propagated from boundary to
boundary using the VecGeom
navigator, and the number of
crossings is counted until the
volume is exited on the other
side. The model for parallelism
uses OpenMP to dispatch
different scans to different
threads.

For our optimization purpose, we have used a simplified geometry setup emulating concentric

cylindrical tracking detectors, where crossing volume boundaries are predictive. We attached a
basketizer to each of these detectors, aiming to form vectors of tracks of fixed size before invoking
geometry navigation algorithms. This reproduces to some extent the actual re-basketizing schema used
in GeantV, including the rundown phase when the partially filled baskets have to be processed at the
end of the simulation.

The setup is presented in Figure 5. The exercise’s objective was to saturate the processing pipelines
of a Xeon Phi card. To achieve this goal we steered multithreading using OpenMP, parallelizing on the
loop of X-ray scans to be performed: each thread had to complete full scans over a fixed-size grid of
1024x1024 pixels. We have tested both the compact and balanced OpenMP thread scheduling, using
an increasing number of threads, up to 4 threads per physical core of the Xeon Phi card. We have
measured both scalability and the image throughput, comparing them with the same benchmark done
on the IvyBridge dual processor machine hosting the KNC card.

5. Results and conclusions
The benchmark was run with both compact and balanced OMP modes. In balanced mode it showed an
excellent scalability approaching the ideal case up to the physical core count. We observed expected
limited performance increase as more threads are allocated. The balanced model converges towards
the compact model as all thread slots are filled. The conclusion was that running Xeon Phi fully
saturated brought the maximum benefit for this application. The throughput performance for a

OMP	threads

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

6

saturated KNC is equivalent (for this setup) to the dual Xeon E5-2650L@1.8GHz server which hosts
the card.

Figure 6 X-ray benchmark scalability on Xeon Phi and IvyBridge for compact and
balanced thread allocation. The Xeon server shows unexpected benefits even running
beyond its hyper-threading regime, hinting to vectorization as main responsible.

To understand the vectorization features of the model, we have run the benchmark and studied

three different cases:
- Scalar case: Simple loop over pixels, generating a ray for each pixel and transporting it in

scalar mode to the exit of the detector.
- Ideal vectorization case: Filling each vector with N times the same X-ray, and then providing

this as input to our geometry propagator vector API. This is of course not realistic as the work
for each track is redone the vector size times but this was useful to be used as a reference for
the maximum achievable vectorization.

- Filtering/regrouping case: Filling vectors of tracks grouped per geometry volume and
regrouping tracks to the appropriate baskets as particles are entering the next volume (similar
to GeantV approach). Transport is triggered when vectors reach a given size.

In Figure 7 we plotted the speedup of the ideal and realistic cases with respect to the scalar
approach with the same number of threads. We also plotted the vector performance on the IvyBridge
host for comparison. While some of the vector efficiency is lost compared to the ideal case, we
observed gains up to 4.5 from vectorization in basketized mode, with vector starvation showing up
beyond the core count. A more detailed analysis using Intel VTune is ongoing in order to understand
better the source of contention.

An important conclusion to our benchmark was that navigation specialization could bring benefits
to the vectorization performance of GeantV. While studying a non-trivial yet idealized case, we have
confirmed that a new level of optimization for geometry navigation is possible and is needed for
obtaining additional performance on both standard Xeon processors and Xeon Phi cards. In addition,
the results on KNC are promising for future migration of GeantV code to many core architectures such
as the Intel®Knights Landing.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

7

Figure 7 Vectorization performance on Xeon Phi (KNC) for the basketized X-ray
benchmark, compared to idealized performance of the same setup and with IvyBridge.
The speedup is defined as Tscalar/Tvector for the same number of threads. The decreasing
slope at large number of threads is not an absolute loss in performance but a relative
one (i.e. the scalar version scales better than the vector)

In parallel with the GeantV steering framework, the development of vectorized algorithms based on
our approach using backends is well advanced in case of geometry and in an initial phase in case of
physics. Both geometry and physics benchmarks demonstrate good performance so far on co-
processors. Development plans for the next phase aim to provide full built-in accelerator awareness for
GeantV-based simulation on both GPGPU and KNL processors.

Acknowledgements
The authors wish to acknowledge the contribution of Intel to the GeantV project through the Intel
Performance Computing Centre (IPCC) program. We also want to acknowledge the very useful
technical contributions of the CERN openlab, which allowed performing these benchmarks.

References
[1] M Lamanna 2004 N.I.M. in Phys. Res. A 534(1):1-6.
[2] S Jarp, A Lazzaro, J Leduc and A Nowak 2012 Comp. High Energy and Nucl. Phys. (CHEP)

https://indico.cern.ch/event/149557/session/6/contribution/486
[3] Apostolakis J, Brun R, Carminati F and Gheata A 2012 J.Phys: Conf. Ser. 396 022014

http://iopscience.iop.org/1742-6596/396/2/022014
[4] Apostolakis J, Brun R, Carminati F, Gheata A and Wenzel S 2014 J. Physics: Conf. Ser. 513

052006
[5] J Apostolakis et al 2015 J. Phys.: Conf. Ser. 608 012003
[6] Wenzel S 2014 Towards a high performance geometry library for particle-detector simulation

16th Intl. workshop on Adv. Comp. and Analysis Techniques in phys. Res. (ACAT)
[7] de Fine Licht J 2014 First experience with portable high-performance geometry code on GPU

GPU Computing in High Energy Physics
[8] S Agostinelli et al 2003 Nuclear Instruments and Methods A �506 (53pp)
[9] http://root.cern.ch
[10] G Amadio et al 2016 Electromagnetic Physics Models for Parallel Computing Architectures

17th Intl. workshop on Adv. Comp. and Analysis Techniques in phys. Res. (ACAT)

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012019 doi:10.1088/1742-6596/762/1/012019

8

