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Abstract: The Hori-Tong and Hori dualities are infrared dualities between two-

dimensional gauge theories with N = (2, 2) supersymmetry, which are reminiscent

of four-dimensional Seiberg dualities. We provide additional evidence for those duali-

ties with U(Nc), USp(2Nc), SO(N) and O(N) gauge groups, by matching correlation

functions of Coulomb branch operators on a Riemann surface Σg, in the presence of the

topological A-twist. The O(N) theories studied, denoted by O+(N) and O−(N), can

be understood as Z2 orbifolds of an SO(N) theory. The correlators of these theories

on Σg with g > 0 are obtained by computing correlators with Z2-twisted boundary

conditions and summing them up with weights determined by the orbifold projection.
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1 Introduction

Two-dimensional supersymmetric gauge theories have a rich dynamics, similar to the

one of their higher-dimensional cousins. In particular, two-dimensional gauge theories

with N = (2, 2) supersymmetry admit infrared-dual descriptions [1–3] reminiscent of

four-dimensional N = 1 Seiberg duality [4]. Thanks to the renewal of supersymmetric

localization techniques in two dimensions [3, 5–7]—see [8, 9] for recent reviews—one

can provide highly non-trivial tests of infrared dualities by matching supersymmetric

partition functions of dual theories. In addition, new exact expressions were also ob-

tained for correlation functions of certain half-BPS local operators in two-dimensional

non-abelian gauge theories [10–12], generalizing the seminal results of [13–15]. See also

[16–28] for related works.

In this note, we study the matching of twisted chiral ring correlation functions

across Seiberg-like dualities. Consider a gauge group G of rank Nc, with Lie algebra

g. We consider the ultraviolet-free, SQCD-like theory consisting of a g-valued vector

multiplet coupled to Nf fundamental flavors—chiral multiplets in the fundamental

representation of g. Schematically, the “electric” and “magnetic” dual gauge groups

are [1–3]:

U(Nc) ↔ U(Nf −Nc) ,

USp(2Nc) ↔ USp(Nf − 2Nc − 1) ,

SO(N) ↔ O+(Nf −N + 1)

O−(N) ↔ O−(Nf −N + 1) .

(1.1)

Note that Nf should be odd in USp(2Nc) case. In the case of SO(N), we can have

N = 2Nc or N = 2Nc + 1 while Nf can be even or odd. In addition, there are distinct

ways to define the action of the discrete Z2 in the O(N) gauge group (the “Z2 orbifold”),

denoted O±(N). This leads to a rich pattern of dualities, which were carefully studied

by Hori in [2]. All the “magnetic” theories also contain “mesons”—gauge singlet chiral

multiplets M , which are coupled to the dual flavors through the superpotential. All

the dualities are between so-called “regular” theories, which are theories without a

quantum Coulomb branch [2].

These two-dimensional theories have interesting ‘Coulomb branch’ operators O(σ),
which are gauge-invariant polynomials in the g-valued complex scalar field σ that sits

in the N = (2, 2) vector multiplet. For a U(Nc) gauge group, for instance, we have:

On = Tr(σn) , n = 0, 1, · · · , Nc . (1.2)

In simple-enough cases, like the ones we will consider, these operators generate the full

twisted chiral ring of the theory. We can compute their correlation functions exactly
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(including all instanton corrections) on a curved-space background preserving the two

supercharges Q− and Q̃+ that commute with σ, thanks to the topological A-twist

[13, 15, 29]. Let us consider Σg a closed Riemann surface of genus g. The coupling

of the field theory to the metric (and its superpartners) on Σg depends on a choice of

R-charges for the vector-like U(1)R symmetry. To preserve supersymmetry, we must

have a flux
1

2π

∫

Σg

dA(R) = g − 1 (1.3)

for the U(1)R background gauge field A
(R)
µ . This leads to the Dirac quantization con-

dition

r(g − 1) ∈ Z , (1.4)

with r the R-charge [29, 30]. In the presence of flavor symmetries (that is, any non-R

global symmetry), we may also turn on fluxes

1

2π

∫

Σg

dA(F ) = nF ∈ Z (1.5)

for background gauge fields coupling to the conserved currents. (Naturally, A
(F )
µ sits

in a background vector multiplet V(F ).) The correlation functions of Coulomb branch

operators on Σg, with background fluxes (1.5) turned on, are given by [10, 11, 17, 31–

33]:

〈O(σ)〉g; nF =
∑

σ̂∈SBE

O(σ̂)H(σ̂)g−1
∏

F

ΠF (σ̂)
nF , (1.6)

with F an index running over the flavor group. The operator H is the handle-gluing

operator [31] and ΠF are flavor flux operators [34], as we will review. Those operators

are functions of σ, and the sum in (1.6) is over the distinct solutions σ = σ̂ of the

associated Bethe equations [35]—the saddle points of the Coulomb-branch effective

twisted superpotential.

In this note, we study these correlation functions in two-dimensional SQCD-like

theories and we prove the equality:

〈O(σ)〉Tg;n = 〈OD(σD)〉TDg;n (1.7)

for any two theories T and TD related by Hori duality as in (1.1). This provides

additional evidence for the dualities. It is also an interesting application of the formula

(1.6) and of related localization formulas given in terms of Jeffrey-Kirwan (JK) residues

on the Coulomb branch [10, 11, 32, 33], which we will briefly review. In the O(N) case,

we will also have to amend those results to account for the non-trivial Z2 twisted sectors

when g > 0. For instance, the matching of correlation functions for the SO(N)/O+(N
′)
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duality in (1.1) is particularly non-trivial, because of those twisted-sector contributions

on the O+(N
′) side.

The duality relation (1.7) includes some subtle contact terms, which are easily

studied by our methods. In particular, the U(Nc) duality involves non-trivial transfor-

mations of the Fayet-Iliopoulos (FI) parameters for the global symmetries, which were

studied in [20].

Finally, let us address the fact that there are two distinct theories with an “orthog-

onal gauge group.” We must note that, since the group O(N) is in fact disconnected,

merely specifying the group does not entirely determine the theory. A convenient way

to understand the O±(N) theories is to view them as orbifolds [36, 37] of an SO(N)

gauge theory with Nf chiral multiplets in the vector representation, which has a global

Z2 symmetry. Depending on N and Nf , there may be two distinct orbifolds of a single

SO(N) gauge theory [2]. The states of distinct orbifold theories are obtained by distinct

choices of projection in the twisted and untwisted sectors of the theories. These choices,

in the genus one partition function, are realized by assigning different weights when

summing over Z2-twisted partition functions, i.e., partition functions with non-trivial

Z2 holonomies turned on along the cycles of the torus. Given the choice of weights for

the genus-one correlator, the prescription for weighing any Z2-twisted partition func-

tion is determined, and thus the correlator on any genus-g Riemann surface may be

obtained, once the partition functions with non-trivial Z2 holonomies are computed.

These partition functions, as well as their weighted sums, are computed in sections 5

and 6.

This note is organized as follows. In section 2, we summarize some facts about the

Coulomb branch of N = (2, 2) theories, we discuss the formula (1.6) and its relation to

the JK residue formula, and we explain how to prove (1.7). In the following sections,

we study the dualities (1.1) and we prove (1.7) in all cases. The U(Nc) theories are

discussed in section 3; the USp(2Nc) theories are discussed in section 4; the SO(N)

and O−(N) theories are discussed in sections 5 and 6, respectively.

2 Coulomb branch correlators on Σg

Consider a two-dimensional N = (2, 2) supersymmetric gauge theory, also known as

gauged linear sigma model (GLSM), with gauge group G. Let us denote g = Lie(G).

The theory consists of a g-valued vector multiplet

V = (aµ , σ , σ̃ , λ , λ̃ , D) , (2.1)

and of chiral multiplets Φi in representations Ri of g, with standard kinetic terms. The

theory may also have a superpotential W (Φ) of R-charge 2, which must preserve the
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vector-like R-symmetry U(1)R. We also have a linear twisted superpotential:

W0 =
∑

I

τ IσI +
∑

F

τFmF . (2.2)

We require that the GLSM preserve the axial-like R-symmetry U(1)ax, under which

σ and mF have charge 2, at the classical level. This fixes the form of the twisted

superpotential (2.2). Here we denote by
∏

I

U(1)I ⊂ G (2.3)

the free part of the center of G. We define σI to be the projection of σ onto a particular

U(1)I factor, and

τ I =
θI

2π
+ iξI (2.4)

the complexified Fayet-Iliopoulos term for that U(1)I factor. We also define:

qI ≡ e2πiτI . (2.5)

We couple the background vector multiplets to the flavor currents in the most general

way possible, including the “flavor” FI terms τF in (2.2) (for the abelian part of the

flavor group), which lead to contact terms in one-point functions of the conserved

current multiplet. 1 The constant value for σF in the background vector multiplet VF ,
denoted mF , is a familiar “twisted mass”.

The axial R-symmetry can be anomalous in the presence of abelian gauge groups.

The U(1)ax−U(1)I anomaly coefficients are:

bI0 =
∑

i

TrRi
(tI) , (2.6)

with tI ∈ ig the U(1)I generator. If bI0 = 0 for all U(1)I , the axial R-symmetry is

preserved quantum-mechanically and the GLSM is expected to flow to a superconformal

theory (SCFT) in the infrared. The coefficient (2.6) is also the one-loop β-function

coefficient for the classically-marginal FI parameter τ I , with µ∂µτ
I = − bI

0

2πi
.

For any U(1)F abelian flavor symmetry, we also have the U(1)ax−U(1)F ‘t Hooft

anomaly coefficients:

bF0 =
∑

i

QF
i dim(Ri) , (2.7)

with QF
i the U(1)F charge of the chiral multiplet Φi.

1It is important to keep track of these contact terms if one is interested in gauging the flavor

symmetries. They will also appear in our study of dualities.
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2.1 Coulomb branch, twisted superpotential and Bethe vacua

Consider the classical Coulomb branch of the GLSM, which consists of the constant

values:

σ = diag(σa) , a = 1, · · · , Nc = rk(G) , (2.8)

for the complex adjoint scalar σ, breaking the gauge group to its Cartan subgroup

H =
∏

a U(1)a modulo the Weyl group WG. Let us denote by M̃ ∼= Crk(G) the covering

space of the Coulomb branch M = M̃/WG. At a generic point on M̃ (and for generic

values of the twisted masses), the only light fields are the abelian vector multiplets for

H. Integrating out all the massive fields, one obtains the effective twisted superpotential

[13, 14, 35]:

W =W0 −
1

2πi

∑

i

∑

ρi∈Ri

(ρi(σ) +mi)
(
log(ρi(σ) +mi)− 1

)
− 1

2

∑

α∈g+
α(σ) , (2.9)

where the sums are over the weights of the representations Ri and the positive roots of

g, respectively. Here we defined mi = QF
i mF , where the index F runs over the whole

flavor group. Under an axial R-symmetry rotation, σ → e2iασ and mF → e2iαmF , the

twisted superpotential (2.9) reproduces the anomalous shifts

θI → θI − 2αbI0 , θF → θF − 2αbF0 , (2.10)

of the θ-angles, with the anomaly coefficients given in (2.6)-(2.7).

The so-called Bethe vacua are the solutions to the Bethe equations:

exp

(
2πi

∂W
∂σa

)
= 1 , w · σ 6= σ , ∀w ∈ WG , (2.11)

for a = 1 , · · · , Nc running over the Cartan subgroup, modulo the Weyl group action.

Here w · σ, for w ∈ WG, denotes the action of the Weyl group on σ. The terminology

comes from the Bethe/gauge correspondence [35]. The second condition in (2.11) states

that an acceptable solution cannot lie on a ‘Weyl chamber wall’ (a locus fixed by

the action of WG) in M̃, where part of the non-abelian gauge symmetry is restored

classically. It is clear that the approximation that leads to (2.9) is not valid if w ·σ = σ,

but it is less clear that there cannot exist additional strongly-coupled “non-abelian”

vacua at such locations. Following earlier works—in particular the analysis of [1]—we

will assume this to be true in general: the Bethe vacua give the full set of Coulomb

branch vacua. 2

2We have some good circumstantial evidence from localization results for genus zero correlators

[11]. At higher genus, this assumption was made in [33], while [32] argued for it by using a non-gauge-

invariant regulator. See also [38].
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Note that the Bethe equations are always rational equations in the Coulomb branch

coordinates σa:

∏

i

∏

ρi∈Ri

(ρ(σ) +mF
i )

ρai = (−1)
∑

α>0
αa

qa , w · σ 6= σ . (2.12)

Here qa denotes the projection of the FI parameters onto U(1)a. In theories with

only (anti)fundamental flavors, the Bethe equations can be written in terms of a single

“Bethe polynomial”. This is the case for the theories considered in this note. For future

reference, let us also define the Hessian determinant of W:

H(σ) = det
ab

(
−2πi ∂σa

∂σb
Ŵ
)
= det

ab

(
∑

i

∑

ρi∈Ri

ρai ρ
b
i

ρ(σ) +mF
i

)
, (2.13)

which is also a rational function of σ.

2.2 Coupling to background fields

The coupling to geometric backgrounds of any N = (2, 2) field theory with a vector R-

symmetry U(1)R was studied systematically in [23, 30], by considering the coupling of

the supercurrent to background supegravity [39]. We can preserve two supercharges on

any closed oriented Riemann surface Σg (with g the genus) by the so-called topological

A-twist [29]. In addition to the metric, the curved background includes an R-symmetry

gauge field A
(R)
µ with field strength:

2iF11̄ =
1

4
R , (2.14)

where R is the Ricci curvature. 3 We therefore have the flux (1.3) and the R-charge

quantization condition (1.4). In the following, we will consider theories with integer

R-charges (denoted by r ∈ Z), which can be coupled to any Σg.

In addition, flavor symmetry currents are naturally coupled to background vector

multiplets VF , which include background gauge fields A
(F )
µ and background scalars σF .

We consider the simplest supersymmetric backgrounds with:

1

2π

∫

Σg

dA(F ) = nF , σF = mF , (2.15)

with nF a GNO-quantized flux (in particular, nF ∈ Z for a U(1)F flavor symmetry)

and mF ∈ C a constant, the “twisted mass”.

3We follow the conventions of [30] except that our definition of R differs by an overall sign.

– 7 –



Note that, on Σg, a mixing of the R-symmetry current with a U(1)F symmetry,

j(R)
µ → j(R)

µ + tj(t)µ (2.16)

is only allowed for t(g− 1) ∈ Z, in order to preserve the Dirac quantization of charges.

This shift is equivalent to a shift of the supersymmetric background flux (2.15) by:

nF → nF + t(g − 1) , (2.17)

with everything else kept constant. The shift (2.17) can be understood as a shift of the

background vector multiplet:

VF → VF + tVR , (2.18)

where VR is an “R-symmetry vector multiplet” constructed out of the full supergravity

multiplet. 4

The coupling of the GLSM to curved space is conveniently encoded in the “effective

dilaton” Ω = Ω(σ), which is the bottom component of a twisted chiral multiplet. The

supersymmetric couplings are encoded in the “improvement Lagrangian” of [30] for Ω,

which gives:

LΩ =
i

2
Ω R , (2.19)

when evaluated on the A-twist background. Classically, we may introduce a constant

term:

Ω0 = τR , τR ≡
θR
2π

+ iξR , (2.20)

which acts as a “complexified FI parameter” for U(1)R. In particular, we have:

e−
∫
d2x

√
gLΩ = e2πi(g−1)τR ≡ (qR)

g−1 . (2.21)

At one-loop on the Coulomb branch, the effective dilaton takes the form [14, 31]:

Ω = τR −
1

2πi

∑

i

∑

ρi∈Ri

(ri − 1) log(ρi(σ) +mi)−
1

2πi

∑

α∈g
logα(σ) (2.22)

with ri the R-charge of the chiral multiplet Φi. The last term is the contribution from

the W -bosons. We therefore have:

e2πiΩ = qR

(
∏

i

∏

ρi∈Ri

(ρ(σ) +mi)
ri−1

∏

α∈g
α(σ)

)−1

. (2.23)

4See [40] for a related discussion in higher dimensions.
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2.3 Handle-gluing operator and flux operator

The A-twisted theory is a topological field theory [29], whose local observables are fully

determined by the topological action:

STFT =

∫

Σg

d2x
√
g

(
−2f11̄a

∂W
∂σa

+ Λ̃a
1̄Λ

b
1

∂2W
∂σa∂σb

− 2F11̄
(F ) ∂W

∂mF
+

i

2
ΩR

)
, (2.24)

which is given in terms of W and Ω. Here fa = daa and F (F ) = dA(F ). We refer to [34]

for a more thorough discussion.

As in any topological field theory, there exists a local operatorH, the handle-gluing
operator, whose insertion corresponds to “adding a handle” to the Riemann surface:

〈OH〉g = 〈O〉g+1 . (2.25)

For A-twisted N = (2, 2) gauge theories, H was first computed explicitly in [31]—see

also [17, 32, 33]. It is given by:

H(σ) = exp (2πiΩ(σ)) H(σ) , (2.26)

where Ω is the effective dilaton (2.22) and H is the Hessian determinant (2.13). This

latter contribution comes from the gaugino zero-modes in the twisted theory, which

couple to W as indicated in the second term in (2.24). It is clear from (2.24) that H
corresponds to a local operator insertion one obtains by concentrating the curvature of

a single handle at a point, with a δ-function singularity.

Similarly, there exists local operators whose insertion changes the background fluxes

for the flavor symmetries. These so-called “flux operators” [34] are simply given by:

ΠF = exp

(
2πi

∂W
∂mF

)
, (2.27)

in term of the effective twisted superpotential W =W(σ,mF ).

We should also note that the coupling of the GLSM to curved space introduces a

“gravitational” anomaly for the axial R-symmetry U(1)ax [14, 15], with coefficient:

ĉgrav = −dim(g)−
∑

i

(ri − 1)dim(Ri) . (2.28)

This corresponds to the U(1)ax−U(1)R ‘t Hooft anomaly:

bR0 = −ĉgrav . (2.29)

This anomaly is reproduced by the handle-gluing operator, since

H → e−2iαbR
0H (2.30)

under a U(1)ax rotation, corresponding to an anomalous shift of θR. When bI0 = 0 and

if the theory flows to a conformal fixed point, c = 3 ĉgrav is the central charge of the

infrared SCFT [1].
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2.4 Correlation functions as sums over Bethe vacua

Let O = O(σ) be a gauge-invariant polynomial in σ. On the Coulomb branch, this

corresponds to a Weyl-invariant polynomial,

O(σ) ∈ C[σa]
WG . (2.31)

The correlation functions of these Coulomb branch operators on Σg (with background

flux nF ) are given explicitly by the formula [17, 31–33]:

〈O(σ)〉g; nF =
∑

σ̂∈SBE

O(σ̂)H(σ̂)g−1
∏

F

ΠF (σ̂)
nF . (2.32)

The sum is over all the distinct solutions (σa) = (σ̂a) to the Bethe equations (2.12).

Let us note a few simple properties of (2.32):

• It makes the quantum ring relations manifest. The twisted chiral ring relations

are the relations f(σ̂) = 0 satisfied by any solution to the Bethe equations, and

therefore the insertion of any such relation in the correlation function gives a

vanishing result:

〈f(σ)O(σ)〉g; nF = 0 . (2.33)

• We easily check that the mixing (2.16) of the U(1)R symmetry with a flavor

symmetry corresponds to (2.17), as expected. This amounts to a shift of the

dilaton effective action by:

Ω→ Ω+ t
∂W
∂mF

. (2.34)

• Similarly, the mixing of the R-symmetry with a gauge symmetry U(1)I does not

change the answer, as expected from gauge invariance. A mixing with the gauge

symmetry corresponds to:

Ω→ Ω + t
∂W
∂σI

, (2.35)

but this does not affect H(σ̂), the handle-gluing operator evaluated on any Bethe

vaccum.

2.5 Correlation functions as sums over instantons

It is often interesting to write down the correlation functions in terms of an infinite

sum over instanton contributions [15]—two-dimensional vortices—in the GLSM:

〈O(σ)〉g; nF =
1

|WG|
∑

m∈Γ
G∨

qmZg,nF ,m(O) . (2.36)
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Here the weight factor qm are the FI parameters (2.5), the sum is over all GNO-

quantized fluxes for G, and |WG| is the order of the Weyl group. If the free center of G

(2.3) is non-trivial, the sum (2.36) typically converges for some values of qI , and can be

defined more generally by analytic continuation. However, even if G does not contain

any U(1) factor, we can still make sense of (2.36) as a formal sum, which reproduces

the prescription (2.32) after summing over gauge fluxes. Part of the original motivation

for this note was to check this claim explicitly, for USp(2Nc) and SO(k) gauge groups.

Recent advances in localization techniques have allowed us to perform that “micro-

scopic” computation in general GLSMs [10, 11, 32, 33]—see also [41]. The “instanton

factors” are given explicitly in terms of Jeffrey-Kirwan (JK) residues on the Coulomb

branch covering space M̃:

Zg,nF ,m(O) =
∮

JK(η)

∏

a

[
dσa

2πi
qma

a

]
Z1-loop

g,nF ,m(σ)H(σ)gO(σ) , (2.37)

with H(σ) given in (2.13), and the one-loop determinant:

Z1-loop
g,nF ,m(σ) =

(−1)
∑

α>0
α(m)

∏

α∈g
α(σ)1−g

∏

i

∏

ρi∈Ri

(
1

ρ(σ) +mi

)ρi(m)+ni+(g−1)(ri−1)

.
(2.38)

Heremi and ni are the twisted mass and the background flux seen by the chiral multiplet

Φi, and ri is its R-charge. The integration contour in (2.37) is determined by the Jeffrey-

Kirwan prescription with η = ξUV
eff for all projective singularities σ∗ such that α(σ∗) 6= 0.

Here ξUV
eff ∈ ih∗ is the effective FI term at infinity on M̃ ∼= CNc . We refer to [11] for

more details on the JK residue prescription.

Summing over the fluxes, one can show that (2.36) reproduces the Bethe-vacua

formula (2.32). We will see this in some explicit examples below. We will also see

that the result of [10, 11] have to be amended in the case of the O(N) gauge group to

account for Z2 twisted sectors, with Z2
∼= O(N)/SO(N).

2.6 Matching correlation functions across dualities

Consider two theories T and TD related by a duality,

T ←→ TD . (2.39)

There must be a one-to-one correspondence between Bethe vacua in the dual theories,

which means a one-to-one correspondence between solutions σ̂ of the Bethe equations in

– 11 –



T and solutions σ̂D of the Bethe equations in TD. By definition, two Coulomb-branch

operators O and OD are dual,

O(σ) ∈ T ←→ OD(σ
D) ∈ TD (2.40)

if and only if:

O(σ̂) = OD(σ̂
D) , (2.41)

for any pair of dual Bethe vacua σ̂ and σ̂D. To prove the equality (1.7) for dual

correlators, on any Σg and with any background flux nF , we simply need to prove the

duality relations:

H(σ̂) = HD(σ̂
D) , ΠF (σ̂) = ΠF,D(σ̂

D) , (2.42)

for the handle-gluing and flux operators across the duality. For the two-dimensional

Seiberg-like dualities that we study in this note, we will see that the equalities (2.42)

reduce to simple algebraic identities. Three-dimensional dualities have recently been

studied with the same methods in [33, 34].

3 U(Nc) dualities

Let us consider the G = U(Nc) GLSM with Nf chiral multiplets Φi (i = 1, · · · , Nf)

and Na chiral multiplets Φ̃j (j = 1, · · · , Na) in the fundamental and antifundamental

representations of U(Nc), respectively. We choose the vector-like R symmetry U(1)R
such that:

R[Φi] = r , R[Φ̃j ] = r̃ , r, r̃ ∈ Z . (3.1)

Note that we could set r = r̃ in flat space by mixing the R-symmetry with the gauge

symmetry. However, this is not always possible in curved space due to the Dirac

quantization condition on the R-charge. We choose the R-charges to be integers so

that we can consider the theory on a Riemann surface of any genus. 5

This GLSM enjoys a SU(Nf ) × SU(Na) × U(1)A flavor symmetry—see Table 1.

We may turn on generic twisted masses mi, m̃j for the flavor symmetry, with

Nf∑

i=1

mi = −NfmA ,
Na∑

j=1

m̃j = NamA . (3.2)

We also consider background flavor fluxes ni, ñj on Σg, with
∑

i ni = −NfnA and∑
j nj = NanA.

5Note that we could choose more general R-charge ri, r̃j ∈ Z, breaking the flavor group explicitly

to its Cartan subgroup. We fix (3.1) for simplicity, and to avoid clutter. The general case can be

obtained by mixing the R-symmetry with the abelianized flavor symmetry through (2.17).
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U(Nc) SU(Nf ) SU(Na) U(1)A U(1)R
Qi Nc Nf 1 1 r

Q̃j Nc 1 Na 1 r̃

Table 1. The U(Nc) GLSM gauge, flavor and R-charges.

Global anomalies. The theory admits a single complexified FI parameter τ = τ
2π
+iξ

for U(1) ⊂ U(Nc). It has β-function coefficient (2.6) given by:

b0 = Nf −Na , (3.3)

which is also the U(1)ax gauge anomaly. When Nf = Na, the axial R-symmetry survives

quantum mechanically and the gauge theory is expected to have a non-trivial infrared

fixed point. Let us also note the value of the ‘t Hooft anomaly (2.7) for U(1)A:

bA0 = Nc(Nf +Na) . (3.4)

The U(1)ax “gravitational” anomaly (2.28) is given by:

ĉgrav = (Nf (1− r) +Na(1− r̃)−Nc)Nc . (3.5)

Dual theory. This U(Nc) GLSM has an infrared dual description in terms of an

U(Nf − Nc) GLSM consisting of Na fundamental chiral multiplets q̃j and Nf antifun-

damental chiral multiplets qi. The dual theory also contains NfNa gauge singlets M j
i

coupled through a superpotential W = q̃j M
j
i q

i. The singlets M i
j are identified with

the gauge-invariant mesons QiQ̃j in the original theory. The flavor and U(1)R charges

are summarized in Table 2. The superpotential implies the relation:

r + r̃ + rD + r̃D = 2 (3.6)

between the R-charges of the dual theories. The dual theory has a U(1)ax gauge

anomaly bD0 = −b0. We also have the ‘t Hooft anomalies:

bA,D
0 =− (Nf −Nc)(Nf +Na) + 2NfNa ,

ĉDgrav =(Nf (1− rD) +Na(1− r̃D)−Nf +Nc) (Nf −Nc)

+NfNa(1− r − r̃) .

(3.7)

For Nf = Na, the axial R-symmetry is an actual symmetry and these anomaly coeffi-

cient match:

bA0 = bA,D
0 , ĉgrav = ĉDgrav , if Nf = Na , (3.8)
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U(Nf −Nc) SU(Nf ) SU(Na) U(1)A U(1)R
q̃j Nf − Nc 1 Na −1 r̃D
qi Nf − Nc Nf 1 −1 rD
M j

i 1 Nf Na 2 r + r̃

Table 2. Charges in the U(Nf −Nc) dual GLSM.

as needed for consistency. For Nf > Na, we find:

bA,D
0 = bA0 −Nfb0 , ĉDgrav = ĉgrav − (rDNf − (r + rD)Nc) b0 . (3.9)

As we will see below, these relations correspond to a non-trivial map of certain contact

terms under the duality.

3.1 Twisted chiral ring and duality map

We are interested in the ring of twisted chiral operators generated by the gauge-invariant

polynomials Tr(σp), p = 0, · · · , Nc, with σ the complex scalar in the U(Nc) vector

multiplet. The structure of the twisted chiral ring can be understood by going onto the

Coulomb branch:

σ = diag (σ1 , · · · , σNc
) = (σa) , (3.10)

with a = 1, · · · , Nc. A convenient basis of twisted chiral operators is given by the

elementary symmetric polynomials in σa:

s
(Nc)
l (σ) =

∑

1≤a1<···<al≤Nc

σa1σa2 · · ·σal , l = 0, · · · , Nc , (3.11)

Let us define the generating function:

Q(z) =
Nc∏

a=1

(z − σa) =
Nc∑

l=0

(−1)lzNc−l s
(Nc)
l (σ)

= zNc − zNc−1 + zNc−2 − · · ·+ (−1)Ncσ1 · · ·σNc
,

(3.12)

where we identified the symmetric polynomials in σa with the corresponding Young

tableaux. The twisted chiral ring relations satisfied by the generators (3.11) are encoded

in the effective twisted superpotential W(σ) of the theory [1]. We have:

∂σa
W = τa − 1

2
(Nc − 1)− 1

2πi




Nf∑

i=1

log(σa −mi)−
Na∑

j=1

log(−σa −+m̃j)


 , (3.13)
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modulo an integer. The Bethe equations are given by:

P (σa) = 0 , a = 1, · · ·Nc , σa 6= σb if a 6= b , (3.14)

in terms of the polynomial:

P (z) =

Nf∏

i

(z −mi) + (−1)Ncq

Na∏

j

(−z + m̃i) . (3.15)

The twisted chiral ring relations can be conveniently written as [14, 20, 42]:

P (z) = C(q)QD(z)Q(z) , C(q) ≡
{
1 if Nf > Na ,

1 + (−1)Nf−Ncq if Nf = Na ,
(3.16)

where QD(z) is an auxiliary monic polynomial of degree Nf −Nc. The Bethe equations

of the dual theory are given by:

P (σD
ā ) = 0 , ā = 1, · · ·Nf −Nc , σD

ā 6= σD
b̄ if ā 6= b̄ , (3.17)

in terms of the same polynomial (3.15), where the dual FI parameters are related by:

qD = (−1)Naq−1 . (3.18)

Here we denote by σD = (σD
ā ) the complex scalar of the U(Nf − Nc) vector multi-

plet on its Coulomb branch. Consequently, the polynomial QD(z) in (3.16) should be

interpreted as the generating function of the dual twisted chiral ring operators:

QD(z) =

Nf−Nc∏

ā=1

(z − σD
ā ) =

Nf−Nc∑

p=0

(−1)pzNf−Nc−p s
(Nf−Nc)
p (σD) . (3.19)

The solutions to the Bethe equations (3.14) corresponds to subset of Nc distinct

roots of the degree-Nf polynomial P (z). Similarly, the solutions to the dual Bethe

equations corresponds to subsets of Nc − Nf distinct roots. Therefore, for any vacua

in the original theory, corresponding to a solution {σ̂a}, there exists a dual vacua

corresponding to the complement {σ̂D
ā } in the set of Nf roots of P . Dual operators

O(σ) and OD(σ
D) are such that O(σ̂) = OD(σ̂

D) on any pair of dual vacua.

The relations (3.16) encode the duality relations between the elementary twisted

chiral operators s
(Nc)
p and s

(Nf−Nc)

p′ in the dual theories. Expanding out (3.16), we have

Nf equations:

s
(Nf )
l (m) + (−1)(Nc+Na)q s

(Na)
l−Nf+Na

(m̃) = C(q)
l∑

n=0

s
(Nc)
l−n (σ) s

(Nf−Nc)
n (σD) , (3.20)
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for l = 1, · · · , Nf , where the symmetric polynomials in the twisted masses m, m̃ are

defined like in (3.11), with the understanding that s
(Na)
l = 0 for l < 0. Upon solving

for the operators s
(Nf−Nc)

p′ (σD) in terms of the operators s
(Nc)
p (σ), we are left with the

twisted chiral ring relations of the U(Nc) theory, and vice versa.

Useful identities. For future reference, let us define:

F (z) ≡
Nf∏

i=1

(z −mi) =

Nf∑

l=0

(−1)lzNf−ls
(Nf )
l (m) ,

F̃ (z) ≡
Na∏

j=1

(z − m̃j) =

Na∑

l=0

(−1)lzNa−ls
(Na)
l (m̃) .

(3.21)

The polynomial (3.15) reads:

P (z) = F (z) + (−1)Na+Ncq F̃ (z) = C(q)

Nf∏

α=1

(z − ẑα) , (3.22)

where we denote by ẑα (α = 1, · · · , Nf) its Nf roots. We have the useful identities:

Nf∏

α=1

(ẑα −mi) =
(−1)Nf−Ncq

C(q)

Na∏

j=1

(m̃j −mi) ,

Nf∏

α=1

(ẑα − m̃j) =
(−1)Nf

C(q)

Nf∏

i=1

(m̃j −mi) .

(3.23)

Another useful lemma is that, for any partition of the roots {ẑα} = {σ̂a} ∪ {σ̂D
ā }, we

have:

∏Nc

a=1 P
′(σ̂a)∏Nc

a,b=1
a6=b

(σ̂a − σ̂b)
= (−1)Nc(Nf−Nc)C(q)2Nc−Nf

∏Nf−Nc

ā=1 P ′(σ̂D
ā )∏Nf−Nc

ā,b̄=1
ā 6=b̄

(σ̂D
ā − σ̂D

b̄
)

(3.24)

where P ′(z) = ∂zP (z).

3.2 Equality of correlation functions

Let us prove the equality of twisted chiral ring correlation functions across the duality,

following the strategy of section 2.6. This proof closely follows similar discussions in

[6, 20, 33].
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Matching the flux operators. Consider first the flux operators defined by (2.27),

for the SU(Nf ) × SU(Na) × U(1)A flavor symmetry. It is sometimes convenient to

consider the decomposition:

mi = µi −mA , m̃j = µj +mA , (3.25)

for the twisted masses, with mA the U(1)A twisted mass and
∑

i µi = 0,
∑

j = µ̃j = 0

for SU(Nf )× SU(Na). We similarly decompose the background fluxes as ni = pi − nA

and ñj = p̃j + nA. In the electric theory, the contribution from the flux operators,

Πflux(σ) = ΠA(σ)
nA

Nf∏

i=1

Πi(σ)
pi

Na∏

j=1

Πj(σ)
p̃j . (3.26)

take the simple form:

Πflux(σ) = qnAA (−1)NcNanA

Nc∏

a=1




Nf∏

i=1

(σa −mi)
ni

Na∏

j=1

(σa − m̃j)
−ñj


 . (3.27)

In the dual theory, we find instead:

Πflux,D(σ) = qnAA,D(−1)(Nf−Nc)NfnA

Nf−Nc∏

ā=1




Nf∏

i=1

(σD
ā −mi)

−ni

Na∏

j=1

(σD
ā − m̃j)

ñj




×
Nf∏

i=1

Na∏

j=1

(m̃j −mi)
ni−ñj ,

(3.28)

where the last factor is the contribution from the mesons M i
j . For any pair of dual

vacua {σ̂a} and {σ̂D
ā }, it is easy to see that:

Πflux(σ̂) = Πflux,D(σ̂
D) (3.29)

follows from the identities (3.23), with the non-trivial relation:

qA,D = (−1)(Nf−Nc)Naq−Nf C(q)Nf+Na qA (3.30)

between the U(1)A flavor contact terms τA and τA,D in the dual theories. Such non-

trivial mapping of “flavor” FI parameters are related to cluster algebra transformations

for two-dimensional supersymmetric quivers [20]. For Nf > Na, equation (3.30) implies

the relation:

ξA,D = ξA −Nfξ (3.31)

between flavor FI parameters. This is consistent with the relation (3.9) between their

one-loop β-function coefficients, with bA0 and bA,D
0 given in (3.4) and (3.7), respectively.
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Matching H. Let us consider the handle gluing operator (2.26) in the electric theory.

The Hessian determinant of W is given by:

H(σ) =

Na∏

a=1

Ĥ(σa) , Ĥ(z) ≡
Nf∑

i=1

1

z −mi
−

Na∑

j=1

1

z − m̃j
, (3.32)

and the handle-gluing operator reads:

H(σ) = qR

Na∏

a=1

[
(−1)(r̃−1)NaĤ(σa)

F (σa)r−1F̃ (σa)r̃−1

]
Nc∏

a,b=1
a6=b

1

σa − σb
, (3.33)

in terms if the functions defined in (3.21). In the dual theory, we have:

HD = hMHgauge
D , hM =

Nf∏

i=1

Na∏

j=1

(
1

m̃j −mi

)r+r̃−1

, (3.34)

where hM is the contribution from the dual mesons, and:

Hgauge
D (σD) = qR,D

Nf−Nc∏

ā=1

[
(−1)(rD−1)Nf+1Ĥ(σD

ā )

F (σD
ā )rD−1F̃ (σD

ā )r̃D−1

] Nf−Nc∏

ā,b̄=1
ā 6=b̄

1

σD
ā − σD

b̄

. (3.35)

is the contribution from all the fields charged under the U(Nf−Nc) gauge group. Using

the fact that

∂zP (ẑα) = Ĥ(ẑα)F (ẑα) , F (ẑα) = (−1)Nc+Na−1qF̃ (ẑα) , (3.36)

for any root ẑα, together with the identities (3.23) and (3.24), one can prove that:

H(σ̂) = HD(σ̂
D) , (3.37)

for any dual vacua, with the relation

qR,D = (−1)(r+r̃+rD−1)NaqrDNf−(r+rD)Nc C(q)2(Nc−Nf )+(r+r̃)Nf qR (3.38)

between the gravitational contact terms. This is in perfect agreement with the relation

(3.9) between the gravitational anomalies. This complete the proof of the equality of

dual correlation functions for all the U(Nc) dualities.

3.3 Instanton sums and duality relations

As reviewed in section 2.5, the correlation functions can also be written in terms of

a sum over instanton contributions. The duality relations imply interesting identities

between different JK residues.

– 18 –



Electric theory. The correlation functions of the U(Nc) gauge theory twisted chiral

ring operators O(σ) on Σg in the are given by:

〈O〉 = qnAA qg−1
R

∑

m∈ZNc

q
∑

ma Z [Nc,Nf ,Na]
g,m (O) , (3.39)

The instanton factor is given by the residue integral:

Z [Nc,Nf ,Na]
g,m (O) = (−1)(Nc−1)

∑
a ma

Nc!

∮ Nc∏

a=1

dσa

2πi
Z1-loop

g,m (σ)H(σ)gO(σ) , (3.40)

with

Z1-loop
g,m =

Nc∏

a=1

[∏Na

j=1(−σa + m̃j)
ma−ñj−(g−1)(r̃−1)

∏Nf

i=1(σa −mi)ma−ni+(g−1)(r−1)

]
Nc∏

a,b=1
a6=b

(σa − σb)
1−g , (3.41)

and H(σ) given by (3.32). The sum in (3.39) is over the U(Nc) fluxes (ma) ∈ ZNc .

The contour integral is an iterated residue at all the codimension-Nc singularities of

the form: 6

σa = m
(a)
i , (3.42)

with {m(a)
i }Nc

a=1 a choice of Nc distinct twisted masses among {mi}Nf

i=1, and we are

assuming that the twisted masses are generic. The formula (3.39) follows from (2.36)-

(2.37) with η = (1, · · · , 1). 7 The singularities (3.42) contribute for ma ≥ M with M

some small-enough integer that depends on the background fluxes ni, ñj and on the

R-charges, and the sum (3.39) converges for |q| < 1.

Magnetic theory. Similarly, the correlation functions of the U(Nf−Nc) dual theory

read:

〈OD〉dual = qnAA,D qg−1
R,D ZM

∑

m∈ZNf−Nc

q
∑

ā mā

D Z̃ [Nc,Nf ,Na]
g,m (OD) , (3.43)

where qD is related to q by (3.18), the R-charges are related by (3.6), and the contact

terms are related by (3.30) and (3.38). The factor ZM in (3.43) is the contribution of

the mesons:

ZM =

Nf∏

i=1

Na∏

j=1

(
1

−mi + m̃j

)−ni+ñj+(g−1)(r+r̃−1)

, (3.44)

6Note that the sum over fluxes can be taken as ma ≥M , with M some integer that depend on the

background fluxes ni and the R-charge r.
7Here we assumed that Nf ≥ Na. If Nf > Na, this choice of η is necessary in order to cancel the

contribution from infinity on the Coulomb branch [11].
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and the instanton contribution reads:

Z̃ [Nc,Nf ,Na]
g,m (OD) =

(−1)(Nf−Nc−1)
∑

ā mā

(Nf −Nc)!

∮ Nf−Nc∏

ā=1

dσD
ā

2πi
Z̃1-loop

g,m (σD)HD(σ
D)gOD(σ

D) ,
(3.45)

with:

Z̃1-loop
g,m =

Nf−Nc∏

ā=1

[∏Nf

i=1(−σD
ā +mi)

mā−ni−(g−1)(rD−1)

∏Na

j=1(σ
D
ā − m̃j)mā−ñj+(g−1)(r̃D−1)

] Nf−Nc∏

ā,b̄=1
ā 6=b̄

(σD
ā − σD

b̄ )
1−g ,

HD(σ
D) = (−1)Nf−Nc

Nf−Nc∏

a=1

Ĥ(σD
ā ) ,

(3.46)

with the function Ĥ(z) defined in (3.32). The contour integral (3.45) picks the residues

at:

σD
ā = m

(ā)
i , (3.47)

corresponding to a JK residue with η = (−1, · · · ,−1) in (2.37).

3.3.1 Integral identities for Nf > Na

We proved the duality relations:

〈O〉 = 〈OD〉dual . (3.48)

For Nf > Na, a given correlation function receives contribution from a finite number

of topological sectors due to the U(1)ax selection rule. Expanding the duality relation

(3.48) in q, we find the relations:

∑

ma|
∑

a ma=m0

Z [Nc,Nf ,Na]
g,m (O)

= (−1)(Nf−Nc)NanA+(r+r̃+rD−1)Na(g−1) ZM

∑

mā|
∑

ā mā=m′

0

Z̃ [Nc,Nf ,Na]
g,m (OD) ,

(3.49)

with m0,m
′
0 ∈ Z and

m′
0 = m0 +NfnA + (g − 1) ((r + rD)Nc − rDNf ) . (3.50)

The sums in (3.49) are over fluxes that sum to m0 and m′
0, respectively. For small

values of the parameters, these relations are easily checked on a computer. We discuss

some explicit expressions in Appendix B.
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4 USp(2Nc) dualities

Consider an N = (2, 2) gauge theory with a gauge group USp(2Nc) and Nf = 2k + 1

flavors. The field content consists of an USp(2Nc) vector multiplet coupled to Nf chiral

multiplets Φi (i = 1, · · · , Nf ) in the fundamental representation, of R-charge ri ∈ Z.

Note that Nf must be odd for the theory to be regular [2]. We turn on the twisted

masses and fluxes, mi and ni, of the U(1)Nf maximal torus of the flavor symmetry

group U(Nf ). We take the conventions that the chiral multiplet Φi has charge −1 in

U(1)i ⊂ U(Nf ). The proposed dual theory [2] is a USp(2ND
c ) theory with rank:

ND
c = k −Nc . (4.1)

The dual theory has Nf fundamental chiral fields ΦD
i of R-charges:

rD,i = 1− ri , (4.2)

and inverted flavor charges. It also contains anti-symmetric mesons Mij and a super-

potential:

W = Mij [Φ
D
i Φ

D
j ] , (4.3)

where the bracket denotes the contraction of the gauge indices with the USp(2ND
c )

invariant two-form. It follows that the scalar Mij carries R-charge ri + rj . The fields

Mij are identified with the gauge-invariant operators Q̃iQj of the original theory.

The USp(2Nc) theory has a U(1)A − U(1)ax mixed anomaly, where U(1)A is the

diagonal U(1) in U(Nf ), with coefficient:

bA0 = −2NfNc . (4.4)

The “gravitational” anomaly reads:

ĉgrav = −2Nc

Nf∑

i=1

(ri − 1)−Nc(2Nc + 1) , (4.5)

with c = 3ĉgrav the central charge of the conjectured infrared CFT. One easily checks

that those ’t Hooft anomalies are reproduced by the Hori-dual description.

4.1 Twisted chiral ring and duality map

The twisted chiral ring of the USp(2Nc) theory can be summarized by a polynomial

identity. Just as with the U(N) duality, it is helpful to consider the two dual the-

ories at once. We introduce the Q- and QD-polynomials, whose coefficients are the
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gauge-invariant Coulomb branch operators of the USp(2Nc) and USp(2ND
c ) theories,

respectively:

Q(z) = det(z · 1− σ) , QD(z) = det(z · 1− σD) . (4.6)

The Weyl group of USp(2Nc) is SNc
×ZNc

2 , which acts on the Cartan coordinates σa as

permutations and sign inversions. Thus, the gauge-invariant twisted chiral operators

of USp(2Nc) are given by symmetric polynomials in σ2
a:

Q(z) = det(z · 1− σ) =
∏

a

(z2 − σ2
a) . (4.7)

The generators of the classical ring of gauge-invariant twisted chiral operators are

given by the coefficients of the Q-polynomial. The quantum ring, however, is given

by imposing the relations:

P (z) = 2zQD(z)Q(z) (4.8)

where

P (z) ≡
Nf∏

i=1

(z −mi)−
Nf∏

i=1

(−z −mi) = 2z

k∏

α=1

(z2 − ẑ2α) , (4.9)

for a set of complex numbers ẑ1, · · · , ẑk defined by the last equation in (4.9). The

quantum relations can be extracted from this equation in an equivalent manner to that

explained for the U(Nc) theory. In particular, the operator map can be obtained by

expanding the identity (4.8) and identifying the coefficients order-by-order in z.

By a standard argument, the Bethe vacua of the USp(2Nc) theory, represented by

the vacuum expectation value of the Cartan coordinates σ̂a, are given by Nc-tuples of

roots of P (z) that satisfy

σ̂a 6= ±mi for any a, i , σ̂a 6= 0 for any a , σ̂a 6= ±σ̂b for a 6= b , (4.10)

up to identifications made under the Weyl group. Note that the fact that the root

z = 0 of P (z) must be ignored, due to these constraints, is encoded in the extra factor

of z on the right-hand side of equation (4.8). Thus each vacuum can be represented by

a Nc-tuple

(ẑα1
, · · · , ẑαNc

) , α1 < · · · < αNc
, αa ∈ [k] , (4.11)

or, more conveniently, by an ascending length-Nc vector of integers:

α = (α1, · · · , αNc
) , α1 < · · · < αNc

, αa ∈ [k] . (4.12)

Meanwhile, each vacuum in the dual theory can also be represented by a length-ND
c

vector αD. The duality (4.8) then implies that the vacuum represented by the vector
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α in the USp(Nc) theory is mapped to that represented by αc in the USp(ND
c ) dual

theory, where αc denotes the complement of α within [k]:

αD = αc = [k] \ α . (4.13)

4.2 A-twisted correlation functions

In this section, we compute the expectation value of operators dual to each other in the

mutually dual theories on a genus-g Riemann surface. The expectation value of dual

operators match precisely, once we fix a subtle contact term (which corresponds to the

relative value of the U(1)R “FI parameter” τR in the dual theories).

To compute the correlator, let us denote the set of vectors α defined in equation

(4.12) as S(N, k), i.e.,

S(N, k) = {(α1, · · · , αN) : α1 < · · · < αN , αa ∈ [k]} . (4.14)

Then we can express the genus-g partition function of the USp(2Nc) theory as:

〈O(σ)〉g; nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) . (4.15)

We similarly have:

〈
OD(σ

D)
〉
g; nF

= ZM

∑

αc∈S(ND
c ,k)

OD(ẑαc)HD(ẑαc)g−1ΠD(ẑαc) , (4.16)

in the dual theory, where we factored out the contribution of the gauge-singlet multi-

plets Mij, which reads:

ZM =
∏

1≤i<j≤Nf

(−mi −mj)
ni+nj+(1−ri−rj)(g−1) . (4.17)

We can easily compute the ratio:

O(ẑα)H(ẑα)g−1Π(ẑα)

OD(ẑαc)HD(ẑαc)g−1ΠD(ẑαc) ,
(4.18)

for any α ∈ S. It is useful to note that the Hessian determinant

H(σ) =
∏

a

∑

i

(
1

σa −mi

− 1

σa +mi

)
(4.19)

can be simplified using the fact that, for a root ẑα of P (z), one has:

∑

i

(
1

ẑα −mi
− 1

ẑα +mi

)
=

P ′(ẑα)∏
i(ẑα −mi)

=
4ẑ2α

∏
β 6=α(ẑ

2
α − ẑ2β)∏

i(ẑα −mi)
. (4.20)
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We arrive at the expressions:

Π(ẑα) =
∏

i

[
qA
∏

a

(m2
i − ẑ2αa

)

]ni

H(ẑα) = qR

∏
a,ā(ẑ

2
αa
− ẑ2αc

ā
)

∏
i,a(m

2
i − ẑ2αa

)ri−1
∏

i,a(ẑαa
−mi)

.

(4.21)

It follows that:

Π(ẑα)

ΠD(ẑαc)
=
∏

i

[
qAq

−1
A,D

∏

α

(m2
i − ẑ2α)

]ni
= (qAq

−1
A,D)

∑
i ni
∏

i<j

(−mi −mj)
ni+nj (4.22)

and

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D

∏
a,ā(ẑ

2
αa
− ẑ2αc

ā
)
∏

i,ā(m
2
i − ẑ2αc

ā
)−ri

∏
i,ā(ẑαc

ā
+mi)∏

a,ā(ẑ
2
αc
ā
− ẑ2αa

)
∏

i,a(m
2
i − ẑ2αa

)ri−1
∏

i,a(ẑαa
−mi)

= qRq
−1
R,D eiπ(NcND

c +ND
c +ν)

∏

i<j

(−mi −mj)
1−ri−rj .

(4.23)

In appendix A, we show that:

∏

i,α

(mi − ẑα) =
∏

i,α

(mi + ẑα) = eiπν
∏

i<j

(mi +mj) , (4.24)

for an integer ν, uniquely determined by the choice of the masses (m1, · · · , mNf
).8

Finally, the chiral ring operators map as:

O(ẑα) = OD(ẑαc) , (4.25)

by definition. The identity of the correlation functions (4.15) and (4.16) directly follows,

with the identifications:

qA,D = qA , qR,D = qR eiπ(NcND
c +ND

c +ν) , (4.26)

between contact terms.

8It is worth noting that, while ν is independent of the choice of (ẑα), it shifts by 1 with respect

to taking mi → −mi for all i when k is odd. Note that the polynomial P (z) is invariant under this

action.
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5 SO(N)/O+(N) dualities

In this section, we consider theories with SO(N) gauge groups and Nf flavors in the

vector representation, and orbifolds thereof. There is a Z2 action that acts on the

SO(N) group that can be viewed as a global symmetry of the theory, which can be

“gauged,” or “orbifolded” [36, 37]. This being a discrete symmetry, there are multiple

theories that can be obtained by different ways of orbifolding this symmetry. In this

section, we consider a particular class of orbifold theories, denoted O+, that are dual

to SO(N) theories [2].

The matter content of the SO(N) theory is given by Nf chiral multiplets Φi (i =

1, · · · , Nf) in the vector representation of SO(N), of R-charge ri ∈ Z. We consider the

twisted masses mi and background fluxes ni for the U(Nf ) flavor symmetry. The chiral

multiplet Φi is taken to have charge −1 under U(1)i ⊂ U(Nf ). Finally, note that the

SO(N) gauge group admits a Z2-valued θ angle, θ ∈ {0, π}. In order for the theory to

be regular, we need to set θ = 0 if Nf −N is odd, and θ = π is Nf −N is even [2].

This SO(N) theory is dual to a O+(N
D) theory with:

ND = Nf −N + 1 , (5.1)

and Nf chiral fields ΦD
i in the vector representation, with R-charges

rD,i = 1− ri (5.2)

and inverted flavor charges. The O+(N
D) theory also contains the symmetric gauge-

singlet chiral multiplets Mij , which are coupled to the charged chiral multiplets by the

superpotential:

W = (ΦD
i )

tMijΦ
D
j . (5.3)

As a simple check, note that the SO(N) theory has ’t Hooft anomalies:

bA0 = −NNf , ĉgrav = −N
Nf∑

i=1

(ri − 1)− 1

2
N(N − 1) , (5.4)

which are precisely matched by the dual description.

The qualitative description of the duality between SO(N) and O+(N
D
c ) theories

differs depending on the parity of N and Nf . We shall describe the duality map and

the A-twisted correlation functions for each case separately. Before doing so, we first

describe the computation of twisted genus-g correlators.
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5.1 Twisted genus-g correlation functions

In order to compute correlators in an orbifold theory, we must be able to compute

correlators with twisted boundary conditions under the orbifold group. In this section,

we compute these twisted correlation functions for Z2 orbifold theories of SO gauge

theories. Since, in the context of this section, the orbifold theories are dual theories

of vanilla SO gauge theories, we use notation (superscripts and subscripts on variables

and parameters) convenient for this duality.

We first compute the one-loop determinant Zt(Φ) of a chiral field Φ coupled to the

A-twisted background and to a background vector multiplet giving rise to an effective

twisted mass m and a background flux n, with twisted boundary conditions around

certain non-trivial cycles on the Riemann surface, i.e.,

Φ→ −Φ around cycles C1, · · · , Ck (k > 0) of Σg. (5.5)

We find that:

Zt(Φ) = m−n−(r−1)(g−1) , (5.6)

exactly like for a chiral multiplet in the untwisted sector.

This can be argued as follows. Let us introduce another chiral multiplet Φ′ with the

exact same charges, and coupled to the exact same background. We assume, however,

that Φ′ is single-valued on Σg. We know the one-loop determinant of Φ′:

Z(Φ′) = m−n−(r−1)(g−1) . (5.7)

Now we may make the following redefinition of superfields:

Φ1 =
1√
2
(Φ′ + Φ) , Φ2 =

1√
2
(Φ′ − Φ) . (5.8)

Notice that

Φ1 ↔ Φ2 around cycles C1, · · · , Ck of Σg . (5.9)

Thus the two chiral multiplets can be viewed as a single chiral multiplet living on a

double-cover Σ′
g′ of Σg. For this single chiral multiplet, the background flux is given by

2n, while the genus g′ is given by g′ = 2g−1—this is because the integral of the Riemann

curvature of Σ′
g′ is double that of Σg, thus 2−2g′ = 2(2−2g). Meanwhile, the effective

twisted mass and the R-charge remain the same. Thus, the one-loop determinant of

this single chiral multiplet living on Σ′
g′ is given by m−2n−2(r−1)(g−1) = Zt(Φ)Z(Φ

′). This

implies (5.6).
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5.1.1 Orbifold of SO(2ND
c + 1) theory

For the SO(2ND
c + 1) gauge theory, we can fix the gauge such that the orbifolding

action, i.e., the generator of the Z2 action, acts on the W-bosons Ti(2ND+1), whose

matrix elements are given by

(Tij)kl = δikδjl − δilδkj , (5.10)

by an inversion of sign. It also acts on the (2ND
c + 1)th component of the fundamen-

tal chiral. None of these fields, however, take on vacuum expectation values at the

localization locus. Also, as pointed out at the beginning of the section, the one-loop

determinants are not affected by twisted boundary conditions. Thus all the twisted

sector partition functions agree with the untwisted partition function:

〈OD〉twisted = 〈OD〉untwisted . (5.11)

5.1.2 Orbifold of SO(2ND) theory

In this case, we can fix the gauge such that the orbifolding action acts on the W-bosons

Ti,2Nc
by an inversion of sign. It thus acts on the Nc-th Cartan element by an inversion.

Recall the localization locus, is given by a constant flux and vacuum expectation value

for the sigma fields. Since Nth sigma field and background gauge field must undergo

monodromies around cycles of the Riemann surface, it must be that their value is fixed

to zero:

σD
ND

c
= 0 , mD

ND
c
= 0 . (5.12)

The generator of Z2 also acts on 2ND
c -th component of the fundamental chiral, but we

know that the one loop determinant of these elements are not modified. The same goes

for the W-boson multiplets.

The only remaining problem is to compute the contribution from the light gauginos

(or gaugino “zero modes”). Fortunately, the light gaugino “mass matrix” does not mix

for the SO theory, i.e., ∂a∂bŴ is diagonal. Thus we find that the one-loop determinant

for the Cartan elements with indices a = 1, · · · , Nc− 1 remain the same. We just need

to understand what happens for the Nc-th Cartan element. Let us denote the one-loop

contribution from this element by Ztw.

The light “vector” gauginos, in an untwisted partition function on a Riemann

surface, lie within a multiplet (aµ,Λz, Λ̄z̄), with aµdx
µ = λ + λ̄, Λz = λz, Λ̄z̄ = λ̄z̄,

for the holomorphic one-form λ—we follow the notation of [11, 33]. There are g such

one-forms on Σg.

To find the twisted-sector contribution, we again consider the double-cover Σ2g−1

of the Riemann surface Σg defined by the twist. Then there are 2g − 1 holomorphic
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one-forms, as the cover has genus 2g−1. Now consider the involution ι that takes a one-

form and maps it to a one-form by moving to the alternate cover. Then, by definition,

ι2 = id. Thus the vector space of holomorphic one-forms decompose into two subspaces,

under which ι acts with eigenvalues 1 and −1, respectively. The one-forms that are

invariant under ι are well-defined on the initial Riemann surface of genus g, and are

thus holomorphic one forms on Σg. There are g of them, which we call “+ modes.” The

number of locally-holomorphic one-forms that satisfy the twisted boundary conditions

is given by (2g − 1) − g = (g − 1). We call them the “− modes”. Note that, at a

generic value σD on the classical Coulomb branch, these modes do not mix, since the

mass matrix is invariant under ι. Thus, denoting the one-loop determinant of the ±
modes by Z±, we have:

Z+Z− = Zone-loop
Σ2g−1

(σD) . (5.13)

Then, by definition,

Ztw = Z−|σD

ND
c
=0 . (5.14)

Having turned on a generic vev for all of the sigma fields σD
ā , let us compute the

one-loop determinant contribution Zone-loop
Σ2g−1

(σD) of all the light modes on Σ2g−1. This

is given by

Zone-loop
Σ2g−1

(σ) = Z(σD
ND

c
)2g−1 := (−2πi∂ND

c
∂ND

c
Ŵ )2g−1 . (5.15)

This one-loop determinant happens to be a function of σD
ND only: 9

Z(σD
ND

c
) =

∑

i

(
1

σD
ND

c
+mi

− 1

σD
ND

c
−mi

)
. (5.16)

Meanwhile, we know the one-loop determinant of the + modes. It is given by

Z+ = Z(σD
ND

c
)g . (5.17)

We thus find:

Ztw = Z−|σD

ND
c
=0 = Z(0)g−1 =

(
∑

i

2

mi

)g−1

. (5.18)

9Here we take the convention that Φi has charge 1 under U(1)i ⊂ U(Nf ). In the conventions of

this section, these are the charges of the chiral fields in the dual orbifold theory of the SO theories.
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We then arrive at the twisted-sector partition function of the O(2ND
c ) gauge theory:

1

2ND−1(ND − 1)!

∑

nDā

∮ ∏

ā

dσD
ā

2πi

∏

ā6=b̄

((σD
ā )

2 − (σD
b̄ )

2)1−g
∏

a

eiθn
D
ā

·
∏

ā

[
∑

i

(
1

σD
ā +mi

− 1

σD
ā −mi

)]g−1

·
∏

i

(
(σā +mi)

−nDā −ni−(g−1)(rD,i−1)(−σD
ā +mi)

nDā −ni−(g−1)(rD,i−1)
)

·
(
∑

i

2

mi

)g−1∏

ā

(−(σD
ā )

4)1−g
∏

i

(−mi)
2(−ni−(g−1)(rD,i−1)) ,

(5.19)

where the indices ā ∈ [ND−1], not [ND]. Here θ ∈ {0, π} denotes the SO(N) Z2-valued

θ-angle [2]. Note that the factor in front of the integral is not equivalent to |W |−1, since

we have used some of the Weyl symmetry to fix the Cartan element acted on by the

Z2 action to be the ND
c -th element.

We can pick the residues of this integrand and arrive at:

〈OD〉twisted =
∑

αD∈S(ND−1,k)

ΠD,t(ẑαD)HD,t(ẑαD)g−1OD(ẑαD) , (5.20)

for any twisted sector, where we defined:

ΠD,t(ẑαD) =
∏

i

[m2
i

∏

ā

(m2
i − ẑ2αD

ā
)]−ni

HD,t(ẑαD) =
∏

ā

(−ẑ−2
αD
ā
) ·
(
∑

i

1

2mi

)

·
∏

i[m
2
i

∏
ā(m

2
i − ẑ2

αD
ā
)]1−rD,i

∏
ā,i(ẑαD

ā
+mi)

·
∏

ā P
′(ẑαD

ā
)∏

ā ẑ
2
αD
ā

∏
ā6=b̄(ẑ

2
αD
ā
− ẑ2

αD
b̄

)
.

(5.21)

The polynomial P (z) will be defined in section 5.3. Here, αD is a vector of length

ND
c − 1 with

αD = (αD
1 , · · · , αD

ND
c −1) , αD

1 < · · · < αD
ND

c −1 , αD
ā ∈ [k] , (5.22)

i.e., elements of S(ND
c − 1, k). k is defined so that the number of non-zero roots of

P (z) is 2k. ẑα are the non-zero roots of P (z):

P (z) =

{
2z
∏k

α=1(z
2 − ẑ2α) when Nf = 2k + 1

2
∏k

α=1(z
2 − ẑ2α) when Nf = 2k .

(5.23)
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When Nf = 2k+ 1, it is useful to note that a pole (σD
ā ) = (±ẑαD

1
, · · · ,±ẑαD

ND
c −1

) of the

integrand corresponds to a vacuum represented by the set of roots (ẑαD
1
, · · · , ẑαD

ND
c −1

, 0)

in the O(2ND
c ) theory, while there is no such interpretation when Nf is even.

5.2 Summing over the twisted sectors

In order to obtain an A-twisted correlator on Σg of an orbifold theory, we must sum

over the correlators computed in the twisted sectors. In order to label the twisted

sectors, let us denote the g A-cycles and g B-cycles of the Riemann surface by AI and

BI such that

AI · AJ = BI · BJ = 0 , AI · BJ = δIJ . (5.24)

Restricting the orbifold group to be Z2, a twisted sector is labeled by the cycles the Z2

twist is applied on:

{AI1, AI2 , · · · , BJ1, BJ2, · · · } . (5.25)

A consistent prescription of adding the partition functions to compute a vacuum ex-

pectation value is to weigh each twisted partition function by vg−N(T )wN(T ), where

N(T ) = (number of indices I such that either AI ∈ T or BI ∈ T ) , (5.26)

for some constant w. This prescription lead to invariance under BI → BI+AI , BI → AI

and (AI , BI)↔ (AJ , BJ) for I 6= J . The values of v and w depend on the choice of the

orbifold projection we take.

A simple way of understanding these weights is by considering the genus-one parti-

tion function. There, the choice of orbifold projection leads to a prescription of v and w

for each partition function with holonomies of the orbifold action Γ, as discussed in [2].

For example, in the case that the orbifold projection is such that the untwisted sector

is projected down to the Γ, v and w are taken to be 1 [36, 37]. 10 Once these weights

are determined, they can be used to sum over higher-genus partition functions. A

heuristic way of understanding this prescription is to recall that the genus-g correlators

can be viewed as correlators on the sphere with g insertions of handle operators. Each

handle operator is realized by introducing the handle, and summing over all possible

holonomies on each cycle of the handle with a prescribed weight. From this point of

view, it is trivial that these prescribed weights should be identified with the weights

with which the genus-one partition functions are summed.

Now in the previous subsection, we have shown that the vacuum expectation value

of an operator only depends on whether there exists a cycle with a non-trivial Z2 twist

10Such orbifolds, and their genus-one partition functions have been reviewed in [9].
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or not. That is, for any nonempty T ,

〈OD〉T = 〈OD〉twisted . (5.27)

Thus the A-twisted expectation value is given by

〈OD〉 =
1

|Z2|
∑

T

vg−N(T )wN(T )〈OD〉T

=
1

2
vg〈OD〉untwisted +

1

2




g∑

N(T )=1

(
g

N(T )

)
3N(T )vg−N(T )wN(T )


 〈OD〉twisted

=
1

2
vg〈OD〉untwisted +

1

2

(
(v + 3w)g − vg

)
〈OD〉twisted .

(5.28)

5.3 Twisted chiral ring and dualities

The elements of the twisted chiral ring of the SO(N) theory can be represented by

the Weyl-invariant polynomials of the sigma-fields σa. When N is odd, these are just

symmetric polynomials of σ2
a, the generators thus being the elementary symmetric

polynomials of σ2
a, whose generating function is given by

Q(z) = det(z · 1− σ) . (5.29)

Meanwhile, when N is even, there is an additional generator of the twisted chiral ring,

being the Pfaffian of σ:

Pf(σ) =
∏

a

σa . (5.30)

This is because, for SO(2N), the Weyl group consists of permutations of σa and sign

inversions ǫa on σa which satisfies
∏

a ǫa = 1. In the orbifold theory, whichever orbifold

one chooses to take, the gauge invariant local operators are given by symmetric poly-

nomials of (σD
ā )

2. The generating function for the elementary symmetric polynomials,

again, is given by

QD(z) = det(z · 1− σD) . (5.31)

Depending on the orbifold projection, however, there may be a twist field τ in the

twisted chiral ring.

The quantum twisted chiral ring of the SO(N) theory is then summarized by

zP (z) = 2QD(z)Q(z) , (5.32)
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where the polynomial P (z) is defined to be

P (z) =

Nf∏

i=1

(z −mi) +

Nf∏

i=1

(z +mi) . (5.33)

These twisted chiral ring relations directly follow from the twisted superpotential of

the SO(N) theory, with the Z2 θ-angle taken to be trivial if N − Nf is odd, and with

θ = π if N −Nf is even [2].

When N is even, there is an additional (trivial) relation one needs to take in to

account:

Pf(σ)2 =
∏

a

σ2
a . (5.34)

Thus, when N is even, in the dual O+(N
D) theory, there is a twist operator τ corre-

sponding to the Pfaffian operator in the twisted chiral ring. Note that the dual operator

of
∏

a σ
2
a is a symmetric polynomial of (σD

ā )
2 of degree Nc. We denote this symmetric

polynomial by (
∏

a σ
2
a)

D. Then the twist operator satisfies the relation:

τ 2 =

(
∏

a

σ2
a

)D

. (5.35)

The description of the twisted chiral vacua, and the evaluation of the correlation func-

tions, vary qualitatively depending on the parity of N and ND. We now proceed to

describe these features in each case.

5.3.1 SO(2Nc)↔ O+(2N
D
c + 1), Nf = 2k, ND

c = k −Nc

Map of vacua : The number of flavors being even, P (z) can be written as

P (z) = 2
k∏

α=1

(z2 − ẑ2α) (5.36)

The Coulomb branch vacua of the SO(2Nc) theory, represented by the vacuum expec-

tation value of the Cartan coordinates σ̂a, are given by Nc-tuples of roots of P (z) that

satisfy certain constraints.

σ̂a 6= ±mi for any a, i , σ̂a 6= ±σ̂b for a 6= b , (5.37)

up to identifications made under the Weyl group. There are then two sets of vacua:

(ẑα1
, · · · , ẑαNc

) , α1 < · · · < αNc
, αa ∈ [k] ,

(ẑα1
, · · · , ẑαNc−1

,−ẑαNc
) , α1 < · · · < αNc

, αa ∈ [k] .
(5.38)
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That is, for each α ∈ S(Nc, k), an ascending length-Nc vector:

α = (α1, · · · , αNc
) , α1 < · · · < αNc

, αa ∈ [k] , (5.39)

there are two associated vacua.

Likewise, in the dual theory, two vacua can be associated to an ascending length-

ND
c = (k − Nd) vector αD. In this case, there is only one representative ND

c -tuple of

roots:

(ẑαD
1
, · · · , ẑαD

ND
) , αD

1 < · · · < αD
ND , αD

ā ∈ [k] , (5.40)

corresponding to αD. However, viewed as the vacuum expectation value of σD, this is

a fixed point of the Z2 orbifold action. The O+(2N
D
c +1) theory is defined so that both

the twisted and untwisted states corresponding to this vacuum expectation value are

included in the twisted-chiral spectrum. The two vacua represented by the vector α in

the SO(2Nc) theory are mapped to those corresponding to αD = αc in the O+(2N
D
c +1)

dual theory, where αc denotes the complement of α within [k].

A-twisted correlation functions : The A-twisted correlation function of the SO(2Nc)

theory is given by:

〈O0 + Pf(σ) · O1〉g;nF = 2
∑

α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα) (5.41)

where we have decomposed an arbitrary operator O into

O = O0 + Pf(σ) · O1 , (5.42)

where O0 and O1 are polynomials of σ2
a. We have:

Π(σ̂a) = q
∑

i ni
A

∏

i,a

(m2
i − σ̂2

a)
ni

H(σ̂a) = qR

∏
i,a(m

2
i − σ̂2

a)
1−ri

∏
i,a(σ̂a −mi)

·
∏

a P
′(σ̂a)∏

a6=b(σ̂
2
a − σ̂2

b )
,

(5.43)

when σ̂a are roots of P (z).

The sum over S(Nc, k) and the projection of the operator to O0 should be com-

mented on. Recall that there are two vacua of the SO(2Nc) theory corresponding to

each element of S(Nc, k). By picking up the poles of the summed integrand as before,

we find that the vacuum expectation value of an arbitrary operator O can be written

as:

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα1
, · · · , ẑαN

)H(ẑα1
, · · · , ẑαN

)g−1Π(ẑα1
, · · · , ẑαN

)

+
∑

α∈S(Nc,k)

O0(ẑα1
, · · · ,−ẑαN

)H(ẑα1
, · · · ,−ẑαN

)g−1Π(ẑα1
, · · · ,−ẑαN

) .
(5.44)
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Now using the identities of appendix A, we find that

Π(ẑα1
, · · · , ẑαN

) = Π(ẑα1
, · · · ,−ẑαN

) , H(ẑα1
, · · · , ẑαN

) = H(ẑα1
, · · · ,−ẑαN

) , (5.45)

while, by definition,

O0 → O0 , O1 → O1 , Pf(σ̂a)→ −Pf(σ̂a) . (5.46)

under ẑαN
→ −ẑαN

. Thus the expectation value (5.44) is given by equation (5.41).

Meanwhile, in the dual theory, we find that

〈O0,D + τ · O1,D〉g:nF = 〈O0,D〉g:nF , (5.47)

since a single twist operator introduces a single branch cut, thus its expectation value

must vanish. Let us also note that, for an orbifold of the SO(2ND
c + 1) theory, the

twisted sector expectation value coincides with the untwisted expectation value, leading

to:

〈O0,D〉g:nF =
1

2
(v + 3w)g〈O0,D〉g:nF ,untwisted , (5.48)

for parameters v and w, which depend on the orbifold projection. We finally arrive at

〈O0,D + τ · O1,D〉g:nF =
(v + 3w)g

2
ZM

∑

αD∈S(ND
c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) ,

(5.49)

with

ΠD(σ̂
D
ā ) = q

∑
i ni

A,D

∏

i

(
mi

∏

ā

(m2
i − (σ̂D

ā )
2)

)−ni

HD(σ̂
D
ā ) = qR,D

∏
i

(
mi

∏
ā(m

2
i − (σ̂D

ā )
2)
)1−rD,i

∏
i,ā(σ̂

D
ā +mi)

·
∏

ā P
′(σ̂D

ā )∏
ā σ̂

2
ā

∏
ā6=b̄((σ̂

D
ā )2 − (σ̂D

b̄
)2)

(5.50)

the contribution from the dual gauge theory, where σ̂ā are roots of P (z), and

ZM =
∏

i≤j

(−mi −mj)
ni+nj+(1−ri−rj)(g−1) (5.51)

the contribution from the meson singlets. Using the identities listed in appendix A, we

then find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D 2−4ND

c +2
∑

i rieiπ(NcND
c +ν+

∑
i ri)
∏

i≤j

(−mi −mj)
1−ri−rj .

(5.52)
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Also, by the operator map (5.32),

O0(ẑα) = O0,D(ẑαc) , (5.53)

O0 being symmetric polynomials of the square σ2
a of the Cartan coordinates of σ. We

thus find that

〈O0 + Pf(σ)O1〉g;nF = 4(v + 3w)−g(qAq
−1
A,D)

∑
i ni(qRq

−1
R,D)

g−1

· e−(2 ln 2+iπ)
∑

i nie[−(4 ln 2)ND
c +iπ(NcND

c +ν)+(2 ln 2+iπ)
∑

i ri](g−1)〈O0,D + τO1,D〉g;nF .
(5.54)

With the prescription v = w = 1—that is, adding up all the twisted sectors with weight

1—we arrive at

〈O0 + Pf(σ)O1〉g;nF = 〈O0,D + τO1,D〉g;nF , (5.55)

with the identifications:

qA,D = e−(2 ln 2+iπ) qA , qR,D = e[−(2 ln 2)(2ND
c +1)+iπ(NcND

c +ν)+(2 ln 2+iπ)
∑

i ri] qR , (5.56)

amongst the contact terms.

5.3.2 SO(2Nc)↔ O+(2N
D
c ), Nf = 2k + 1, ND

c = k −Nc + 1

Map of vacua : P (z) is given by

P (z) = 2z
k∏

α=1

(z2 − ẑ2α) . (5.57)

There are three types of vacua in the SO(2Nc) theory. First, we have the two sets of

vacua that can be represented by Nc-tuples like in (5.38). That is:

(ẑα1
, · · · , ẑαNc

) , α1 < · · · < αNc
, αa ∈ [k] ,

(ẑα1
, · · · , ẑαNc−1

,−ẑαNc
) , α1 < · · · < αNc

, αa ∈ [k] .
(5.58)

This gives two vacua associated to each element of S(Nc, k). In addition, there are

vacua represented by a (Nc − 1)-tuples:

(ẑα1
, · · · , ẑαNc−1

, 0) , α1 < · · · < αNc−1 , αa ∈ [k] . (5.59)

These vacua are in one-to-one correspondence with elements α ∈ S(Nc − 1, k).

In the dual theory, two vacua can be associated to an ascending length-(ND
c −1) =

(k −Nc) vector α
D ∈ S(ND

c − 1, k). The representative tuples of roots are given by:

(ẑαD
1
, · · · , ẑαD

ND
c −1

, 0) , αD
1 < · · · < αD

ND
c −1 , αD

ā ∈ [k] , (5.60)
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corresponding to αD. This vacuum expectation value of σD, being a fixed point of the

orbifold action, has two vacua associated to it, according to the definition of O+(2N
D
c ).

Meanwhile, there is a single vacuum for each tuple of roots

(ẑαD
1
, · · · , ẑαD

ND
c −1

, 0) , αD
1 < · · · < αD

ND
c −1 , αD

ā ∈ [k] , (5.61)

such a tuple not being a fixed point of the orbifold action. There vacua are in one-to-one

correspondence with elements αD ∈ S(ND, k).

The duality map of the twisted ground states, as before, is given by taking com-

plement of a vector α representing vacua of the SO(2Nc) theory with respect to [k].

One finds that:
α ∈ S(Nc, k) ⇔ αc ∈ S(ND

c − 1, k) ,

α ∈ S(Nc − 1, k) ⇔ αc ∈ S(ND
c , k) .

(5.62)

There are two vacua per vector in the first line, while there is one vacuum per vector

in the second line.

A-twisted correlation functions : The A-twisted correlation function of the SO(2Nc)

theory is given by

〈O0 + Pf(σ) · O1〉g;nF =2
∑

α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα)

+
∑

α∈S(Nc−1,k)

O0(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0)
(5.63)

where, as before, an arbitrary operator O has been decomposed in to

O = O0 + Pf(σ) · O1 , (5.64)

with O0 and O1 being polynomials of σ2
a. The notation is such that

Π(ẑα) = π(ẑα1
, · · · , ẑαNc

) , Π(ẑα, 0) = π(ẑα1
, · · · , ẑαNc−1

, 0) , (5.65)

and similarly for H and O. The operators Π and H are given by equation (5.43).

The factor of 2 in the first term of equation (5.63) and the projection to O0 for the

vacua represented by α ∈ S(Nc, k) has been commented on previously. Note that for

α ∈ S(Nc − 1, k), we have Pf(ẑα, 0) = 0.

In the dual theory, as before,

〈O0,D + τ · O1,D〉g;nF = 〈O0,D〉g;nF . (5.66)
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The untwisted partition function is then given by

〈O0,D〉g;nF ,untwisted

ZM
=

∑

αD∈S(ND
c −1,k)

O0,D(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ 2
∑

αD∈S(ND
c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD)
(5.67)

for
ΠD(σ̂

D
ā ) = q

∑
i ni

A,D

∏

i,ā

(m2
i − (σ̂D

ā )
2)−ni

HD(σ̂
D
ā ) = qR,D

∏
i,ā(m

2
i − (σ̂D

ā )
2)1−rD,i

∏
i,ā(σ̂ā +mi)

·
∏

ā P
′(σ̂D

ā )∏
ā 6=b̄((̂σ

D
ā )2 − (σ̂D

b̄
)2)

.

(5.68)

Note that we have factored out the meson determinant ZM . We also find that the

vacuum expectation value in the twisted sectors:

〈O0,D〉g;nF ,twisted

ZM
=

∑

αD∈S(ND
c −1,k)

O0,D(ẑαD)HD,t(ẑαD)g−1ΠD,t(ẑαD) (5.69)

for ΠD,t and HD,t defined in equation (5.21). Quite non-trivially, we find that:

HD,t(ẑαD) = HD(ẑαD , 0) , ΠD,t(ẑαD) = ΠD(ẑαD , 0) . (5.70)

We can then sum all the twisted sectors to arrive at

〈O0,D + τ · O1,D〉g;nF
ZM

=
(v + 3w)g

2

∑

αD∈S(ND
c −1,k)

O0,D(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ vg
∑

αD∈S(ND
c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) .

(5.71)

Using the identities of appendix A, we find:

Π(ẑα)

ΠD(ẑαc , 0)
=

Π(ẑα, 0)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj ,

H(ẑα)
4HD(ẑαc , 0)

=
H(ẑα, 0)
HD(ẑαc)

= qRq
−1
R,D 2−4ND

c +2
∑

i rieiπ(NcND
c +ν)

∏

i≤j

(−mi −mj)
1−ri−rj .

(5.72)

The operator map (5.32) implies that

O0(ẑα) = O0,D(ẑαc , 0) , O0(ẑα, 0) = O0,D(ẑαc) , (5.73)
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O0 being symmetric polynomials of the square σ2
a of the Cartan coordinates of σ. We

then arrive at:

(qAq
−1
A,D)

∑
i ni(qRq

−1
R,D)

g−1e−2 ln 2
∑

i nie−((4 ln 2)ND
c −2 ln 2

∑
i ri+iπ(NcND

c +ν))(g−1)

· 〈O0,D + τ · O1,D〉g;nF =

(
v + 3w

4

)g

2
∑

α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα)

+ vg
∑

α∈S(Nc−1,k)

O0(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0) .

(5.74)

If we again take v = w = 1, we find that the right-hand-side of this equation agrees

with equation (5.63). Thus

〈O0 + Pf(σ) · O1〉g;nF = 〈O0,D + τ · O1,D〉g;nF , (5.75)

with

qA,D = e−2 log 2 qA , qR,D = e−((4 ln 2)ND
c −2 ln 2

∑
i ri+iπ(NcND

c +ν)) qR , (5.76)

the relations between contact terms.

5.3.3 SO(2Nc + 1)↔ O+(2N
D
c ), Nf = 2k, ND

c = k −Nc

Map of vacua : P (z) is given by

P (z) = 2
k∏

α=1

(z2 − ẑ2α) (5.77)

The Coulomb branch vacua of the SO(2Nc + 1) theory, represented by the vacuum

expectation value of the Cartan coordinates σ̂a, are given by Nc-tuples of roots of P (z)

that satisfy the following constraints:

σ̂a 6= ±mi for any a, i , σ̂a 6= 0 for any a , σ̂a 6= ±σ̂b for a 6= b , (5.78)

up to identifications made under the Weyl group. Then, each vacuum is represented

by a tuple of roots:

(ẑα1
, · · · , ẑαNc

) , α ∈ S(Nc, k) . (5.79)

In the dual theory, each vacuum is also represented by a tuple of roots:

(ẑαD
1
, · · · , ẑαD

ND
c

) , αD
ā ∈ S(ND

c , k) (5.80)
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corresponding to αD. Note that these vacuum expectation values of σD are not fixed

points of the orbifold action, thus having only a single vacuum associated to each expec-

tation value. The duality map is then extremely simple, given by taking complement

of a vector α representing vacua of the SO(2Nc + 1) theory with respect to [k].

A-twisted correlation functions : The expectation value of an operator in the

SO(2Nc + 1) theory is given by

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (5.81)

with

Π(σ̂a) =
∏

i

[
qA(−mi)

∏

a

(m2
i − σ̂2

a)

]ni

H(σ̂a) = qR

∏
i ((−mi)

∏
a(m

2
i − σ̂2

a))
1−ri

∏
i,a(σ̂a −mi)

·
∏

a P
′(σ̂a)∏

a σ̂
2
a

∏
a6=b(σ̂

2
a − σ̂2

b )
.

(5.82)

Meanwhile, the O+(2N
D) correlator is obtained by restricting to the untwisted sector

only—that is, by setting v = 1, w = 0:

〈OD〉g;nF =
1

2
〈OD〉g;nF ,untwisted = ZM ·

∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)ΠD(ẑαD) . (5.83)

The reason for this particular orbifold prescription should be understood better; we

just note that it appears to be necessary to match the correlation functions. We find

that:

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D 2−4ND+2

∑
i rieiπ(NND+ν+k)

∏

i≤j

(−mi −mj)
1−ri−rj ,

(5.84)

for ΠD and HD given by equation (5.68). By the duality map of operators, we have

O(ẑα) = OD(ẑαc). We thus arrive at the duality relations:

〈O〉g;nF = 〈OD〉g;nF , (5.85)

with the identifications:

qA,D = e−2 ln 2 qA , qR,D = e−((4 ln 2)ND
c −2 ln 2

∑
i ri+iπ(NcND

c +ν+k)) qR , (5.86)

between contact terms.
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5.3.4 SO(2Nc + 1)↔ O+(2N
D
c + 1), Nf = 2k + 1, ND

c = k −Nc

Map of vacua : P (z) is given by

P (z) = 2z

k∏

α=1

(z2 − ẑ2α) (5.87)

Every vacuum of the SO(2Nc + 1) theory is represented by a tuple of roots:

(ẑα1
, · · · , ẑαNc

) , α ∈ S(Nc, k) . (5.88)

In the dual theory, each vacuum is also represented by a tuple of roots:

(ẑαD
1
, · · · , ẑαD

ND
c

) , αD
ā ∈ S(ND

c , k) . (5.89)

While these vacuum expectation values of σD are fixed points of the orbifold action,

the orbifold projection in the O+(2N
D + 1) theory is defined so that there is only a

single vacuum associated to each expectation value [2]. The duality map, as before,

is given by taking complement of a vector α representing vacua of the SO(2Nc + 1)

theory with respect to [k].

A-twisted correlation functions : The expectation value of an operator in the

SO(2Nc + 1) theory is

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (5.90)

for Π and H defined in (5.82). Meanwhile, the O+(2N
D
c + 1) correlator is given by

〈O0,D〉g:nF =
1

2
(v + 3w)g〈O0,D〉g:nF ,untwisted , (5.91)

for parameters v and w, which depend on the orbifold projection, since the correlation

functions in the twisted and untwisted sectors agree. We thus arrive at:

〈OD〉g;nF =
1

2
(v + 3w)g · ZM ·

∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)ΠD(ẑαD) , (5.92)

with ΠD and HD given by equation (5.50). We find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D 2−4ND−1+2

∑
i rieiπ(NND+ND+ν+

∑
i ri)
∏

i≤j

(−mi −mj)
1−ri−rj .

(5.93)
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As always, we have the duality map O(ẑα) = OD(ẑαc) for the operators. We thus arrive

at the equality:

〈O〉g;nF
〈OD〉g;nF

=

(
v + 3w

2

)g

(qAq
−1
A,D)

∑
i ni(qRq

−1
R,D)

g−1

· e−(2 ln 2+iπ)
∑

i nie−((4 ln 2)ND−(2 ln 2+iπ)
∑

i ri+iπ(NND+ND+ν))(g−1) .

(5.94)

Setting v = −1 and w = 1, we obtain:

〈O〉g;nF = 〈OD〉g;nF , (5.95)

with the relations

qA,D = e−(2 ln 2+iπ) qA , qR,D = e−((4 ln 2)ND−(2 ln 2+iπ)
∑

i ri+iπ(NND+ND+ν)) qR , (5.96)

between contact terms. As before, this particular orbifold prescription is chosen so that

the duality relations hold. It would be interesting to understand whether there is a

simpler way to fix v, w in each case.

6 O−(N) dualities

Let us now consider the O− orbifold of theories with SO(N) gauge groups andNf flavors

in the vector representation [2]. In this particular orbifold projection, the duality maps

an O−(N) theory to an O−(N
D) theory with

ND = Nf −N + 1 . (6.1)

As before, the matter content of the O−(N) theory is given by Nf chiral multiplets

Φi (i = 1, · · · , Nf ) in the vector representation, of R-charge ri ∈ Z, and we turn on

twisted masses and fluxes for the U(Nf ) flavor symmetry. The dual O−(N
D) theory

has Nf chiral fields ΦD
i in the vector representation with R-charges

rD,i = 1− ri (6.2)

and inverted flavor charges. There are also symmetric mesons Mij in the dual theory

and a superpotential

W = (ΦD
i )

tMijΦ
D
j . (6.3)

The ’t Hooft anomalies are again given by (5.4).

In the O− theories, we only concern ourselves with the twisted chiral operators

invariant under the Weyl group of the SO group, along with the Z2 orbifold group.
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These are generated by the elementary symmetric polynomials of the Cartan coordi-

nates σa and σD
ā . The twisted chiral ring of the dual theories are still summarized by

the equation

zP (z) = 2QD(z)Q(z) (6.4)

where, as before,

P (z) =

Nf∏

i

(z −mi) +

Nf∏

i

(z +mi) (6.5)

and

Q(z) = det(z · 1− σ) , QD(z) = det(z · 1− σD) . (6.6)

There may be twist operators in the twisted chiral spectrum, depending on the orbifold

projection. In such cases, the twist operators map into each other:

τ ↔ τD . (6.7)

Let us now examine the dualities and confirm the matching of correlation functions,

depending on the parity of N and Nf , as in the previous section. Having examined the

SO/O+ dualities in detail in the previous section, we will be more concise here.

6.1 O−(2Nc)↔ O−(2N
D
c + 1), Nf = 2k, ND

c = k −Nc

Map of vacua : P (z) is given by

P (z) = 2

k∏

α=1

(z2 − ẑ2α) . (6.8)

The vacua of the O−(2Nc) theory are represented by the tuples

(ẑα1
, · · · , ẑαNc

) , α ∈ S(Nc, k) . (6.9)

These are not fixed points of the orbifold action, and thus only a single vacuum exists

for each expectation value. The vacua of the O−(2N
D
c +1) theory are also represented

by the tuples

(ẑDαD
1

, · · · , ẑαD

ND
c

) , αD ∈ S(ND
c , k) . (6.10)

In this case, these vacuum expectation values represent fixed points of the orbifold

action. The O− theory is defined such that only a single vacuum survives the orbifold

projection for each of the vacuum expectation values. The map between vacua is

summarized by α↔ αc, as before.
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A-twisted correlation functions : The A-twisted correlation function of theO−(2Nc)

theory is given by the untwisted correlation function:

〈O〉g;nF =
1

2
〈O〉g;nF ,untwisted =

∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (6.11)

where Π and H are given by (5.43), and the meson contribution ZM given by (5.51).

In the dual theory, we have:

〈OD〉g;nF =
(v + 3w)g

2
〈O〉g;nF ,untwisted

= 2g−1 · ZM ·
∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) ,
(6.12)

with ΠD and HD given by (5.50). Here we have set v = −1 and w = 1. We find that:

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj ,

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D 2−4ND

c +2
∑

i rieiπ(NcND
c +ν+

∑
i ri)
∏

i≤j

(−mi −mj)
1−ri−rj ,

(6.13)

and therefore:

〈O〉g;nF = 〈OD〉g;nF . (6.14)

with

qA,D = e−(2 ln 2+iπ) qA , qR,D = e(−(ln 2)(4ND
c +1)+iπ(NcND

c +ν)+(2 ln 2+iπ)
∑

i ri) qR . (6.15)

6.2 O−(2Nc)↔ O−(2N
D
c ), Nf = 2k + 1, ND

c = k −Nc + 1

Map of vacua : P (z) is given by

P (z) = 2z

k∏

α=1

(z2 − ẑ2α) . (6.16)

There are two types of vacua in the O−(2Nc) theory. The vacua of the first type are

represented by the tuples:

(ẑα1
, · · · , ẑαNc

) , α ∈ S(Nc, k) . (6.17)

These are not fixed points of the orbifold action, and there is a single vacuum for each

expectation value. The vacua of the second type are represented by the tuples:

(ẑα1
, · · · , ẑαNc−1

, 0) , α ∈ S(Nc − 1, k) . (6.18)
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While these are fixed points of the orbifold action, the orbifold projection leaves a single

vacuum for each expectation value.

The vacua of the O−(2N
D
c ) dual theory also come in two varieties. The first are

represented by the tuples:

(ẑDαD
1

, · · · , ẑαD

ND
c −1

, 0) , αD ∈ S(ND
c − 1, k) . (6.19)

The orbifold projection only leaves a single vacuum for each tuple. The vacua of the

second type are represented by the tuples:

(ẑDαD
1

, · · · , ẑαD

ND
c

) , αD ∈ S(ND
c , k) . (6.20)

As always, the duality map is obtained by taking the complement of α, mapping

α ∈ S(Nc, k) ⇔ αc ∈ S(ND
c − 1, k) ,

α ∈ S(Nc − 1, k) ⇔ αc ∈ S(ND
c , k) .

(6.21)

In contrast to (5.62) for the SO/O+ duality, each vector in (6.21) corresponds to a

single vacuum for the O− duality.

A-twisted correlation functions : The correlation functions can be straightfor-

wardly computed in every twisted sector, with given v and w. For the O−(2Nc) theory,

we find:
〈O〉g;nF = vg

∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα)

+
(v + 3w)g

2

∑

α∈S(Nc−1,k)

O(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0) ,
(6.22)

with Π and H are given by (5.43). For the O−(2N
D
c ) theory, we obtain:

〈OD〉g;nF
ZM

=
(v + 3w)g

2

∑

αD∈S(ND
c −1,k)

OD(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ vg
∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) ,
(6.23)

where ΠD and HD are given by (5.68). We have:

Π(ẑα)

ΠD(ẑαc , 0)
=

Π(ẑα, 0)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj

H(ẑα)
4HD(ẑαc , 0)

=
H(ẑα, 0)
HD(ẑαc)

= qRq
−1
R,D 2−4ND

c +2
∑

i rieiπ(NcND
c +ν)

∏

i≤j

(−mi −mj)
1−ri−rj .

(6.24)
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Taking v = 1, w = −1 we find that 11

〈O〉g;nF = −〈OD〉g;nF , (6.25)

with

qA,D = e−2 ln 2 qA , qR,D = e(−(ln 2)(4ND
c −1)+2 ln 2

∑
i ri+iπ(NcND

c +ν+1)) qR . (6.26)

6.3 O−(2Nc + 1)↔ O−(2N
D
c + 1), Nf = 2k + 1, ND

c = k −Nc

Map of vacua : P (z) is given by

P (z) = 2

k∏

α=1

(z2 − ẑ2α) . (6.27)

The vacua of the O−(2Nc +1) theory come in pairs that are represented by the tuples:

(ẑα1
, · · · , ẑαNc

) , α ∈ S(Nc, k) . (6.28)

These are fixed points of the orbifold action, and the orbifold projection keeps two

vacua for each expectation value. The vacua of the O−(2N
D
c + 1) theory also come in

pairs represented by the tuples:

(ẑDαD
1
, · · · , ẑαD

ND
c

) , αD ∈ S(ND
c , k) . (6.29)

The two vacua of the O−(2Nc + 1) theory represented by α ∈ S(N, k) are mapped to

the two vacua in the dual O−(2N
D
c + 1) theory.

A-twisted correlation functions : The correlation function of the O−(2Nc + 1)

theory is given by

〈O〉g;nF =
1

2
(v + 3w)g

∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (6.30)

with Π and H are given by (5.82). The O+(2N
D
c + 1) correlator is given by:

〈OD〉g;nF =
1

2
(v + 3w)g · ZM ·

∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) , (6.31)

with ΠD and HD given by equation (5.50). We find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏

i≤j

(−mi −mj)
ni+nj

H(ẑα)
HD(ẑαc)

= qRq
−1
R,D 2−4ND

c −1+2
∑

i rieiπ(NcND
c +ND

c +ν+
∑

i ri)
∏

i≤j

(−mi −mj)
1−ri−rj .

(6.32)

11It would be interesting to understand better this minus sign in the duality relation.
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Setting v = w = 1, that is, summing over the twisted sectors with equal weight, we

find that:

〈O〉g;nF = 〈OD〉g;nF , (6.33)

with the relation:

qA,D = e−(2 ln 2+iπ) qA , qR,D = e(−(ln 2)(4ND+1)+(2 ln 2+iπ)
∑

i ri+iπ(NND+ND+ν)) qR . (6.34)

between contact terms. This completes the proof of the equality of partition functions

of Coulomb branch operators across Hori duality.
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A Some algebraic identities

Let us collect some useful identities, which are used extensively in the main text.

Consider:

P (z) =

Nf∏

i=1

(z −mi) +

Nf∏

i=1

(z +mi) . (A.1)

It is clear that, for any root ẑ of P (z),

∏

i

(ẑ −mi) = −
∏

i

(ẑ +mi) . (A.2)

Let us list some basic identities concerning the roots of P (z).

1. Nf = 2k, P (z) = 2
∏k

α=1(z
2 − ẑ2α).

• P ′(ẑβ) = 4ẑβ
∏

α6=β(ẑ
2
β − ẑ2α).
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• ∏α(m
2
i − ẑ2α) =

1
2

∏
j(mi +mj)

• ∏i,α(m
2
i − ẑ2α) = 2−2k

∏
i,j(mi +mj)

• ∏i,α(mi − ẑα) = (−1)k∏i,α(mi + ẑα) = ((−1)k2−2k
∏

i,j(m,i +mj))
1/2

• ∏α ẑα = ((−1)ℓ∏i mi)
1/2

• ∏i,α(mi − ẑα)/
∏

α ẑα = eiνπ
∏

i<j(mi +mj) for an integer ν.

• ∏α ẑα ·
∏

i,α(mi − ẑα) = ei(k+ν)π2−2k
∏

i≤j(mi +mj)

2. Nf = 2k + 1, P (z) = 2z
∏k

α=1(z
2 − ẑ2α).

• P ′(ẑβ) = 4ẑ2β
∏

α6=β(ẑ
2
β − ẑ2α).

• P ′(0) = 2(−1)k∏α ẑ
2
α

• ∏α(m
2
i − ẑ2α) =

∏
j 6=i(mi +mj)

• ∏i,α(m
2
i − ẑ2α) =

∏
i 6=j(mi +mj)

• ∏i,α(mi − ẑα) =
∏

i,α(mi + ẑα) = eiνπ
∏

i<j(mi +mj) for an integer ν.

Note that we have introduced an integer ν, defined modulo 2, that determines the

phase of certain products. This phase does not depend on the choice of ẑα—taking

ẑα0
→ −ẑα0

for a given index α0 does not alter ν—since

∏
i(mi − ẑα)

ẑα
=

∏
i(mi + ẑα)

−ẑα
(A.3)

for Nf = 2k while ∏

i

(mi − ẑα) =
∏

i

(mi + ẑα) (A.4)

for Nf = 2k + 1 for any α.

B U(Nc) gauge group and Grassmanian duality

In this appendix, we present some explicit expressions for the instanton factors of U(Nc)

theories. We consider powers of the twisted chiral ring operator:

uk(σ) := tr(σk) . (B.1)

These expressions have interesting relations to invariant quantities on the Grassmanian

manifold and some generalisations thereof. Indeed, for Na = 0, the U(Nc) theory with
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Nf fundamentals flows to the N = (2, 2) supersymmetric NLSM onto the Grassmanian

manifold G(Nc, Nf ), and the gauge duality reproduces the geometric equivalence:

G(Nc, Nf) ∼= G(Nf −Nc, Nf) , (B.2)

which exchanges an hyperplane and its complement. This geometric interpretation can

be generalized to Na > 0 [19]. More precisely, this interpretation holds only if we take

the R-charges r = 0 for the Nf chiral multiplets, r̃ = 1 for the Na chiral multiplets,

and set to zero the background fluxes, ni = 0. We will restrict to this setup in the

following. We also fix the genus g = 0.

In the limit of vanishing twisted masses, the instanton factors give us numbers

with an interesting geometric interpretation. For instance, the instanton factors for the

Na = 0 theory are the Gromov-Witten invariants of the Grassmanian.

B.1 Instanton level k = 0

We start by considering the instanton factor Z [Nc,Nf ,Na]
g=0,m=0 in (3.40), with only u1(σ)

inserted. It admits a simple expression:

Z [Nc,Nf ,Na]
g=0,m=0 (up

1(σ)) =
∑

λ

[
dimVλ+((Nf−Nc)Nc )

]
Sλ(m1, . . . , mNf

) . (B.3)

This is a polynomial function of m = (m1, . . . , mNf
) with

m1 + . . .+mNf
= 0 , (B.4)

and is independent of Na. The notations in the above formula are as follows.

• The summation in (B.3) runs over the partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λNc
≥ 0)

of p− (Nf −Nc)Nc into at most Nc parts:

λ1 + λ2 + . . .+ λNc
= p− (Nf −Nc)Nc . (B.5)

• The Schur polynomial associated with the partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0)

of an integer into at most k parts is defined as

Sλ(m1, . . . , mk) =
|mλi+k−i|
|mk−i

j |
=

|mλi+k−i|∏
i<j(mi −mj)

, (B.6)

• For a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µℓ ≥ 0) of n, Vµ denotes a representation

of the permutation group Sn of n objects. The dimension of this representation

is given by

dimVµ =
n!

d1! · · ·dℓ!
∏

i<j

(di − dj) , (B.7)
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where
n =

∑

i

µi, di = λi + ℓ− i . (B.8)

• The notation (km) denotes (k, k, . . . , k︸ ︷︷ ︸
m times

).

Upon setting m = 0, the Schur polynomial becomes

Sλ(m = 0) =

{
0 for λ 6= 0

1 for λ = 0 .
(B.9)

Hence it follows from (B.3) that

Z [Nc,Nf ,Na]
g=0,m=0 (up

1(σ))
∣∣∣
m=0

=
[
dimV((Nf−Nc)Nc )

]
δp,(Nf−Nc)Nc

=

[
(Nc(Nf −Nc))!

Nc−1∏

m=0

m!

(Nf −Nc +m)!

]
δp,(Nf−Nc)Nc

= [degG(Nf −Nc, Nf )] δp,(Nf−Nc)Nc
,

where the quantities in the square brackets are in fact equal to the degree of the

Grassmannian G(Nf −Nc, Nf) ∼= G(Nc, Nf).

Relation to Schubert calculus. The quantity degG(Nf −Nc, Nf) in (B.10) has a nice

geometric interpretation in the context of the Schubert calculus of the Grassmanian.

It is precisely the answer of the following question: given p = Nc(Nf − Nc) general

(Nf −Nc − 1)-planes L1, . . . , Lp in PNf−1, how many (Nc − 1)-planes meet all of these

Li? The answer to this question is also equal to the p-fold self-intersection number

of the Schubert cycle σ1 of codimension-one in G(Nc, Nf). See also [43] for a similar

exposition.

The operator un(σ)
p. The instanton factor for the operator un(σ)

p can also be com-

puted in a similar way. The explicit expression for this is as follows:

Z [Nc,Nf ,Na=0]
g=0,m=0 (un(σ)

p)
∣∣∣
m=0

=




0 if n ∤ Nc and n ∤ Nf −Nc

s(Nc, Nf , n)
[(

Nc(Nf−Nc)

n

)
!
∏Nc−1

m=0
⌊m/n⌋!

⌊(Nf−Nc+m)/n)⌋!

]
δp,(Nf−Nc)Nc/n if n|Nc or n|(Nf −Nc) ,

where ⌊x⌋ denotes the largest integer that is not greater than x and

s(Nc, Nf , n) =

{
1 if Nc is odd and (n|Nc or n|(Nf −Nc))

(−1)Nc(Nf−Nc)/n if Nc is even and (n|Nc or n|(Nf −Nc)) .
(B.10)

Note that for n = 1, s(Nc, Nf , 1) = 1 and we reduce to the previous case.
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B.2 Instanton level k

We now focus on the instanton factor Z [Nc,Nf ,Na]
g=0,m (up

1(σ))
∣∣∣
m=0

, with vanishing twisted

masses, such that: ∑

a

ma = k . (B.11)

The case of Na = 0

The operator u1(σ)
p. The formula for the partition function in question is

Z [Nc,Nf ,Na=0]

g=0,k (u1(σ)
p)
∣∣∣
m=0

=
[
deg Kk

Nf−Nc,Nc

]
δp,(Nf−Nc)Nc+kNf

(B.12)

where Kk

Nf−Nc,Nc
is the space of rational curves of degree k on the Grassmanian variety

G(Nc, Nf) ∼= G(Nf −Nc, Nf). There is an isomorphism

Kk

Nf−Nc,Nc

∼= Kk

Nc,Nf−Nc
(B.13)

Note that for k = 0, this space can be identified with the Grassmannian itself:

K0
Nf−Nc,Nc

∼= G(Nc, Nf) . (B.14)

The degree of this space was computed in [44]:

deg Kk

Nf−Nc,Nc

= (−1)k(Nf−Nc+1) [(Nf −Nc)Nc + kNf ]!×
∑

n1+...+nNf−Nc=k

∏
1≤k<j≤Nf−Nc

[(j − k) + (nj − nk)Nf ]
∏Nf−Nc

j=1 (Nc + j + njNf − 1)!

= (−1)k(Nc+1) [(Nf −Nc)Nc + kNf ]!×
∑

n1+...+nNc=k

∏
1≤k<j≤Nc

[(j − k) + (nj − nk)Nf ]∏Nc

j=1(Nf −Nc + j + njNf − 1)!

= (−1)k(Nc+1)(−1)Nc(Nc−1)/2(Nc(Nf −Nc) + kNf )!×
∑

n1+...+nNc=k

∑

σ∈SNc

Nc∏

j=1

1

(Nf − 2Nc − 1 + j + σ(j) + njNf)!
.

Due to the duality (B.13), it follows that

Z [Nc,Nf ,Na=0]
g=0,k (u1(σ)

p)
∣∣∣
m=0

= Z [Nc,Nf−Nc,Na=0]
g=0,k (u1(σ)

p)
∣∣∣
m=0

. (B.15)

This equality is in agreement with the GLSM duality.
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The special case of (Nc, Nf , Na) = (2, 5, 0). In the special case of Nc = 2 and Nf = 5,

it is interesting to point out that the degree of Kk

3,2 is a Fibonacci sequence

degKk

3,2 = F (5k+ 5) , (B.16)

where

F (m) =
1√
5

[(
1 +
√
5

2

)m

−
(
1−
√
5

2

)m]
. (B.17)

This model was also studied in detail in [45] (see also Eq. (26) of [43]). The instanton

factor is given by:

ZNc=2,Nf=5,Na=0
g=0,k (un(σ)

p)
∣∣∣
m=0

=

{
0 if n ∤ (6 + 5k)

s(n,k) F
(
6+5k
n

+ a(n)
)
δp,(6+5k)/n if n|(6 + 5k) ,

where F (m) denotes the Fibonacci number

F (m) =
1√
5

[(
1 +
√
5

2

)m

−
(
1−
√
5

2

)m]
, (B.18)

the function a(n) is given by

a(n) =





−1 if n ≡ ±1 (mod 5)

1 if n ≡ ±2 (mod 5)

0 if n ≡ 0 (mod 5)

, (B.19)

and the function s(n,k) is given by

s(n,k) =





1 if n is odd, n|(6 + 5k) and n ∤ 6

(−1)6/n if n is odd, n|(6 + 5k) and n|6
(−1)(6+5k)/n if n is even and n|(6 + 5k)

(B.20)

General value of Na

The function Z [Nc,Nf ,Na]

g=0,k (u1(σ)
p) can be written as

Z [Nc,Nf ,Na]
g=0,k (u1(σ)

p)
∣∣∣
m=0,m̃=0

=
[
degMk

Nc,Nf ,Na

]
δp,(Nf−Nc)Nc+k(Nf−Na) (B.21)

where

degMk

Nc,Nf ,Na

= (−1)k(Nc+Na+1)(−1)Nc(Nc−1)/2(Nc(Nf −Nc) + k(Nf −Na))!×
∑

n1+...+nNc=k

∑

σ∈SNc

Nc∏

j=1

1

[Nf − 2Nc − 1 + j + σ(j) + nj(Nf −Na)]!
.
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The special case of Nf = Na + 1. In this case, formula (B.21) reduces to

Z [Nc,Nf ,Nf−1]

k
(u1(σ)

p)
∣∣∣
m=0,m̃=0

= (−1)k(Nf−Nc)
[
dim V(k+(Nf−Nc), (Nf−Nc)Nc−1)

]
δp,Nc(Nf−Nc)+k ,

where
dim V(k+(Nf−Nc), (Nf−Nc)Nc−1)

=
(k +Nc(Nf −Nc))!

(k+Nf − 1)!

Nc−1∏

m=0

(m− 1)!(m+ k)

(Nf −Nc +m− 1)!
.

B.3 The case Nf = Na

We find that the resummed expectation value of up
1 can be written as follows:

〈up
1〉
∣∣∣
m=m̃=0

=
∞∑

k=0

Z [Nc,Nf=Na]
g=0,k (up

1)q
k

=





deg G(Nf−Nc,Nc)

[1+(−1)
Nf−Ncq]

Nc
if p = Nc(Nf −Nc)

0 otherwise ,

where deg G(Nf−Nc, Nc) is the degree of Grassmannian G(Nf−Nc, Nc), whose explicit

expression is given above. Similarly, the (resummed) expectation value of up
n is given

by

〈un(σ)
p〉
∣∣∣
m=m̃=0

=

∞∑

k=0

Z(Nc,Nf=Na)

g=0,k (up
1)q

k

=





0 if n ∤ Nc and n ∤ Nf −Nc

s(Nc, Nf , n)
[(

Nc(Nf−Nc)

n

)
!
∏Nc−1

m=0
⌊m/n⌋!

⌊(Nf−Nc+m)/n)⌋!

]
×

[
1 + (−1)Nf−Ncq

]−Nc
δp,Nc(Nf−Nc)−(n−1)N ′ if n|Nc or n|Nf −Nc .

where s(Nc, Nf , n) is given by (B.10) and

N ′ =

{
Nf −Nc if n|Nc

Nc if n|(Nf −Nc)
. (B.22)
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Duality

We find that
[ ∞∑

k=0

Z [Nc,Nf=Na]
g=0,k (un(σ)

p)qk

]
= f(q)

[ ∞∑

k=0

ZD,[Nf−Nc,Na=Nf ]
g=0,−k

(−un(σ)
p)qkD

]
, (B.23)

where

f(q) =
(
1 + (−1)Nf−Ncq

)Nf−2Nc
, qD = (−1)Nf q−1 . (B.24)

Note that both sides of the equality are non-zero if and only if

p = Nc(Nf −Nc)− (n− 1)N ′ . (B.25)
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