Higgs decays to pairs of Z boson or γ at the LHC

Tülay Çuhadar Dönszelmann University of Sheffield (On behalf of the ATLAS and CMS collaborations)

Standard Model at the LHC 2017, NIKHEF, 2-5 May 2017

Higgs Production at LHC

Look for a narrow peak on a smooth background

Run 1 Legacy (Higgs mass and couplings)

- Combination of $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ from ATLAS+CMS results in Run 1
 - $(\sqrt{s} = 7 \& 8 \text{ TeV}, L_{int} = 25 \text{ fb}^{-1})$
 - Higgs mass with ~0.2% uncertainty
 - Higgs boson production and decay rates, constraints on its couplings to vector bosons and fermions

coupling modifiers

PRL 114 (2015) 191803

Run 1 Legacy (Higgs width and spin)

@95% CL

22.7 (33)

13 (26)

4

- **Higgs Width:** SM expectation on $\Gamma_{\rm H}$ is ~ 4 MeV (not directly measurable due to detector resolution)
- From the combined Run 1 H \rightarrow 4 ℓ and H $\rightarrow \gamma\gamma$ result, direct
 - $\Gamma_{\rm H}$ measurement is based on the observed lineshape.

ATLAS: PRD 90 052004 (2014); CMS: EPJC 75 (2015) 212

	@95 CL Higgs	s width obs (exp) [GeV]
	$H \rightarrow \gamma \gamma$	$H \rightarrow 4\ell$
ATLAS	5.0 (6.2)	2.6 (6.2)
CMS	2.4 (3.1)	3.4 (2.8)

- Indirect measurement of $\Gamma_{\rm H}$ from $\rm H \rightarrow ZZ^* \rightarrow 4\ell$ or $2\ell 2\nu$ and H \rightarrow WW :
 - Compare on-shell and off-shell rates, and assuming the couplings of on-shell and off-shell are the same:

- **Spin/Parity:** Compare $J^P = 0^+$ with different spin hypotheses:
 - 0+ is favoured and the other hypotheses are excluded > 99.9%
 - Potential CP admixture in spin-zero to be checked with more data

 $H \rightarrow ZZ^* \rightarrow 4\ell$

- Signal selection
 - 4 isolated leptons (e,μ) : two pairs of same flavour, opposite

sign leptons (4e, 4μ , $2e2\mu$ or $2\mu 2e$)

- p_T > 7 (5) GeV , |η| < 2.5 (2.7) for e (μ) at ATLAS
- $p_T > 7$ (5) GeV , $|\eta| < 2.5$ (2.4) for e (μ) at CMS
- Backgrounds
 - SM ZZ* (main background, irreducible); estimated from MC
 - Z+jets, ttbar (reducible); estimated from data-driven methods
- Analyses rely on high lepton reconstruction/identification efficiency & excellent resolution

$H \rightarrow ZZ^* \rightarrow 4\ell$

ATLAS-CONF-2016-079

$H \rightarrow ZZ^* \rightarrow 4\ell$: Event Categories

- Events are categorised in order to increase sensitivity and assess the cross section of five production processes
- CMS : Events are exclusively divided into seven categories using:
 - Objects information number of leptons, number of jets and b-tagged jets, missing energy
 - Discriminants (D_{1jet}, D_{2jet} and D_{VH} = max (D_{WH}, D_{ZH})) are calculated from VBF, gluon fusion and VH probabilities

$H \rightarrow ZZ^* \rightarrow 4\ell$: Event Categories

ATLAS event categorisation:

$H \rightarrow ZZ^* \rightarrow 4\ell$: Signal Strength (CMS)

To extract the signal strength 2D simultaneous fit in seven categories: $\mathbf{m}_{4\ell} \text{ and } \mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\bar{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}\right]$ (discriminant sensitive to the signal and background kinematics)

At m_H = 125.09 GeV, combined result: μ

$$= \frac{\sigma}{\sigma_{SM}} = 1.05^{+0.15}_{-0.14} (stat.)^{+0.11}_{-0.09} (sys.)$$

Signal strength associated with fermions and bosons: $\mu_{ggH,ttH} = 1.20^{+0.35}_{-0.31}$ $\mu_{VBF,VH} = 0.00^{+1.37}_{-0.00}$

$H \rightarrow ZZ^* \rightarrow 4\ell$: Cross section per production mode (ATLAS)

<u>Compatibility measurement with the SM:</u> $\sigma_{ggF+bbH+ttH}$. B(H \rightarrow ZZ*) is 1.1 σ and σ_{VBF} . B(H \rightarrow ZZ*) is 1.4 σ

$H \rightarrow ZZ^* \rightarrow 4\ell$: Differential and fiducial cross section

<u>ATLAS: 115 < m₄ < 130 GeV</u>

	Measured	SM exp.
σ_{fid} [fb]	$4.48^{+1.01}_{-0.89}$	$3.07\substack{+0.21 \\ -0.25}$
$\sigma_{ m tot}$ [pb]	81^{+18}_{-16}	$55.5^{+3.8}_{-4.4}$

 $1.10 \substack{+0.49 \\ -0.40}$

 $2e2\mu$

 $0.76 \ ^{+0.05}_{-0.06}$

$H \rightarrow ZZ^* \rightarrow 4\ell$: Mass and Width (CMS)

- Mass measurement is based on 3D fit : invariant mass of four lepton, expected uncertainty on the mass, and the discriminant
 - The on-shell Z is mass constrained
 - Systematic uncertainty dominated by uncertainty in the lepton momentum scale

 $m_H = 125.26 \pm 0.20(stat) \pm 0.08(sys) \ GeV$

35.9 fb⁻¹ (13 TeV)

$H \rightarrow ZZ^* \rightarrow 4\ell$: Anomalous couplings (CMS)

The scattering amplitude to test the spin-0 Higgs boson with two spin-1 bosons (VV)

$$\left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} + \frac{\kappa_{3}^{\text{VV}}(q_{1} + q_{2})^{2}}{\left(\Lambda_{Q}^{\text{VV}}\right)^{2}}\right]m_{\text{V1}}^{2}\epsilon_{\text{V1}}^{*}\epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}}f_{\mu\nu}^{*(1)}f^{*(2),\mu\nu} + a_{3}^{\text{VV}}f_{\mu\nu}^{*(1)}\tilde{f}^{*(2),\mu\nu}$$

a_i = anomalous coupling

Same selection as for the mass measurement

- Only three categories because of small statistics:
 VBF, VH and untagged
- Discriminants to suppress background, to separate BSM and SM, and to isolate interference of BSM and SM (Ω up to 13 observables)
 D_{bkg} = ^P_{SM}(Ω)/<sub>P_{SM}(Ω) + P_{bkg}(Ω). D_{BSM} = ^P_{SM}(Ω)/<sub>P_{SM}(Ω) + P_{BSM}(Ω). D_{int} = <sup>P^{int}_{SM-BSM}(Ω)/_{P_{SM}(Ω) + P_{BSM}(Ω)}
 Effective cross sections ratio, f_{ai}, phases φ_{ai}: f_{ai} = 0 (1) indicates pure SM (BSM)
 </sub></sub></sup>

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.30^{+0.19}_{-0.21} \left[-0.45, 0.66 ight]$	$0.000^{+0.017}_{-0.017} \left[-0.32, 0.32 ight]$
$f_{a2}\cos(\phi_{a2})$	$0.04^{+0.19}_{-0.04} \ [-0.69, -0.64] \cup [-0.04, 0.64]$	$0.000^{+0.015}_{-0.014} \ [-0.08, 0.29]$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00^{+0.06}_{-0.33} \left[-0.92, 0.15 ight]$	$0.000^{+0.014}_{-0.014} \ [-0.79, 0.15]$
$\underline{\qquad} f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.16^{+0.36}_{-0.25} \left[-0.43, 0.80 ight]$	$0.000^{+0.020}_{-0.024} \ [-0.49, 0.80]$

$H \rightarrow \gamma \gamma$

Signal selection

- Two isolated and highest E_T photons
 - Leading photon : $E_T/m_{\gamma\gamma} > 0.33$ (CMS); 0.35 (ATLAS)
 - Subleading photon : $E_T/m_{\gamma\gamma} > 0.25 \text{ GeV}$
 - |η| < 2.5 (CMS), 2.37 (ATLAS) and exclude transition region
- Photons originating from the diphoton primary vertex
- Backgrounds
 - Continuum γγ (irreducible); estimated from data
 - γ+jet/jet+jet (reducible)

Events are divided in categories based on mass resolution σ_m/m (CMS) /production modes (ATLAS) to maximise the sensitivity CMS: 3 categories ATLAS: 13 categories

$H \rightarrow \gamma \gamma$: Diphoton mass distribution

CMS-PAS-HIG-17-015

ATLAS-CONF-2016-067

With 12.9 fb⁻¹ signal significance: 5.6σ (obs) ; 6.2σ (exp) at m_H = 125.09 GeV

Signal significance : 4.7σ (obs) ; 5.4σ (exp) at m_H = 125.09 GeV

$H \rightarrow \gamma \gamma$: Signal strength

 $\mu_{\text{Run-2}}$ uses an updated ggF theory prediction which is 10% larger than that used for $\mu_{\text{Run-1}}$ ATLAS: $m_H = 125.09$ GeV, cross sectionper production mode $\sigma_{ggH} \times \mathcal{B}(H \to \gamma \gamma) = 65^{+32}_{-31}$ fb $\sigma_{VBF} \times \mathcal{B}(H \to \gamma \gamma) = 19.2^{+6.8}_{-6.1}$ fb $\sigma_{VH} \times \mathcal{B}(H \to \gamma \gamma) = 1.2^{+6.5}_{-5.4}$ fb $\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) = -0.3^{+1.4}_{-1.1}$ fb

$H \rightarrow \gamma \gamma$: Differential fiducial cross section (CMS)

$H \rightarrow \gamma \gamma$: Differential fiducial cross section (ATLAS)

$$\sigma_{fid} = 43.2 \pm 14.9(stat) \pm 4.9(sys) \ fb$$

$$\sigma_{fid}^{SM} = 62.8^{+3.4}_{-4.4} \ fb$$

Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ (ATLAS)

• Combination for $|y_H| < 2.5$ for the ggH, VBF, VH (hadronic),

VH (leptonic) and top production processes

Decay mode ggF VBF VHhad VHlep top $(\sigma \cdot \mathbf{B})^{\gamma\gamma}_{\mathrm{VHlep}}$ $(\sigma \cdot \mathbf{B})^{\gamma\gamma}_{ggF}$ $(\sigma \cdot \mathbf{B})^{\gamma\gamma}_{VBF}$ $(\sigma \cdot \mathbf{B})^{\gamma\gamma}_{\text{VHhad}}$ $(\sigma \cdot B)_{top}^{\gamma\gamma}$ $H \to \gamma \gamma$ $(\sigma \cdot \mathbf{B})_{ggF}^{ZZ}$ $(\sigma \cdot \mathbf{B})_{\mathtt{VBF}}^{ZZ}$ fixed to SM $H \to ZZ^*$ fixed to SM fixed to SM

- The signal strength of $\mu = 1.13^{+0.18}_{-0.17}$
- Observed (expected) significance 10σ (8.6 σ)

 $\sigma(pp \rightarrow H+X)$ in the full phase space is from fiducial cross section σ_{VHee}

ATLAS-CONF-2016-081

 σ_{ggF}

 σ_{VBF}

 σ_{VHhad}

ATLAS Preliminary $m_{H}=125.09 \text{ GeV}$ $\sqrt{s}=13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma\gamma), 14.8 \text{ fb}^{-1}(ZZ)$

Observed 68% CL SM Prediction

Summary

- A lot was learned on the Higgs boson and its properties with the Run 1 data at 7 & 8 TeV
 - Its mass is known with a precision of 0.2%
 - Its properties are within the SM expectation
- Latest results from ATLAS (~14 fb⁻¹) and CMS (~36 fb⁻¹) from the Run 2 data at 13 TeV are presented
 - The results are consistent with the Run 1
 - The precision of mass and its properties are about same with the combined ATLAS+CMS result or better
 - The updated results are still statistically limited and consistent with the SM expectations
- ATLAS results to be updated soon for the full Run 2 dataset

BACKUP

Run 2 Data

- Very good data taking during 2015 and 2016 (Run 2)
 - Data taking efficiency (> 95%)
- Collected ~ 3 fb⁻¹ (2015) and ~33 fb⁻¹ (2016)
 - Presented results are from ~36 fb⁻¹ (CMS), and ~14 fb⁻¹ (ATLAS) (for comparison the CMS results with ~14 fb⁻¹ will be shown)

CMS Integrated Luminosity, pp

Pileup (average number of pp interactions per bunch crossing) challenge with 2016 data taking
 <µ> ~ 25 (14) in 2016 (2015)

$H \to ZZ^* \to 4\ell$

ATLAS: 118 <m4_ℓ <129 GeV

Final State	Signal	Signal	ZZ^*	Z + jets, $t\bar{t}$	S/B	Expected	Observed
	full mass range			ttV, VVV, WZ			
4μ	8.8 ± 0.6	8.2 ± 0.6	3.11 ± 0.30	0.31 ± 0.04	2.4	11.6 ± 0.7	16
$2e2\mu$	6.1 ± 0.4	5.5 ± 0.4	2.19 ± 0.21	0.30 ± 0.04	2.2	8.0 ± 0.4	12
$2\mu 2e$	4.8 ± 0.4	4.4 ± 0.4	1.39 ± 0.16	0.47 ± 0.05	2.3	6.2 ± 0.4	10
4 <i>e</i>	4.8 ± 0.5	4.2 ± 0.4	1.46 ± 0.18	0.46 ± 0.05	2.2	6.1 ± 0.4	6
Total	24.5 ± 1.8	22.3 ± 1.6	8.2 ± 0.8	1.54 ± 0.18	2.3	32.0 ± 1.8	44

CMS: 35.9 fb⁻¹, $m_{4\ell}$ > 70 GeV

Channel	4e	4μ	2e2µ	4ℓ
$q\bar{q} \rightarrow ZZ$	$192.7^{+18.6}_{-20.1}$	$360.2^{+24.9}_{-27.3}$	$471.0^{+32.6}_{-35.7}$	$1023.9^{+68.9}_{-76.0}$
$gg \rightarrow ZZ$	$41.2^{+6.3}_{-6.1}$	$69.0^{+9.5}_{-9.0}$	$101.7^{+14.0}_{-13.3}$	$211.8^{+28.9}_{-27.5}$
Z+X	$21.1^{+8.5}_{-10.4}$	$34.4^{+14.5}_{-13.2}$	$59.9^{+27.1}_{-25.0}$	$115.4^{+31.9}_{-30.1}$
Sum of backgrounds	$255.0^{+23.9}_{-25.1}$	$463.5^{+31.9}_{-33.7}$	$632.6^{+44.2}_{-46.1}$	$1351.1^{+85.8}_{-91.2}$
Signal ($m_{\rm H} = 125$ GeV)	$12.0^{+1.3}_{-1.4}$	23.6 ± 2.1	30.0 ± 2.6	65.7 ± 5.6
Total expected	$267.0^{+24.9}_{-26.1}$	$487.1^{+33.1}_{-34.9}$	$662.6^{+45.7}_{-47.5}$	$1416.8^{+89.1}_{-94.3}$
Observed	293	505	681	1479

CMS: 12.9 fb⁻¹,118 <m_{4ℓ} <130 GeV CMS-PAS-HIG-16-033

Channel	4e	4μ	2e2µ	4ℓ
$q\bar{q} \to ZZ$	$1.37^{+0.16}_{-0.15}$	$3.09^{+0.27}_{-0.27}$	$3.90\substack{+0.46\\-0.43}$	$8.36\substack{+0.81\-0.79}$
$gg \to ZZ$	$0.16\substack{+0.03\\-0.03}$	$0.32\substack{+0.05\\-0.05}$	$0.30\substack{+0.05\\-0.05}$	$0.77^{+0.12}_{-0.12}$
Z + X	$0.90\substack{+0.38 \\ -0.37}$	$1.40\substack{+0.52\\-0.51}$	$2.34^{+0.91}_{-0.89}$	$4.64^{+1.11}_{-1.09}$
Sum of backgrounds	$2.42\substack{+0.42\-0.40}$	$4.81\substack{+0.59 \\ -0.59}$	$6.54\substack{+1.03 \\ -1.00}$	$13.77^{+1.41}_{-1.38}$
Signal ($m_{\rm H} = 125 {\rm GeV}$)	$3.90^{+0.53}_{-0.54}$	$7.92\substack{+0.88\\-0.93}$	$9.80^{+1.34}_{-1.36}$	$21.61^{+2.63}_{-2.71}$
Total expected	$6.32\substack{+0.78\\-0.76}$	$12.73^{+1.21}_{-1.24}$	$16.34^{+1.92}_{-1.90}$	$35.38^{+3.43}_{-3.45}$
Observed	5	12	16	33

$H \rightarrow ZZ^* \rightarrow 4\ell$: Mass improvements (CMS)

+8.1% 125.28±0.22	+11.2% 125.36±0.24	+21% 125.39±0.25
125.28±0.22	125.36±0.24	125.39±0.25
$D: \mathcal{L}(m'_{4l}, \mathcal{D}'_{\text{mass}}, \mathcal{D}^{\text{kin}}_{\text{bkg}})$	2D: $\mathcal{L}(m'_{4l}, \mathcal{D}'_{mass})$	1D: $\mathcal{L}(m'_{4l})$
	+3.2%	+10.7%
125.26 ± 0.21	$125.30 {\pm} 0.21$	$125.34{\pm}0.23$
	 125.26±0.21	$\begin{array}{ccc} - & +3.2\% \\ 125.26 \pm 0.21 & 125.30 \pm 0.21 \end{array}$