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Abstract. We briefly review numerical methods for calculations beyond one loop and then
describe new developments within the method of sector decomposition in more detail. We also
discuss applications to two-loop integrals involving several mass scales.

1. Introduction

Precision calculations are of primary importance to scrutinise the Standard Model (SM) of
particle physics and in particular the Higgs sector, where experiments moved from the discovery
phase to the phase of precision measurements of the Higgs properties. Small deviations from the
expected values may be our only hints to physics beyond the SM for some time, and therefore
precise theoretical predictions are mandatory.

In the last decade, predictions at next-to-leading order (NLO) in perturbation theory in the
strong coupling constant o, got a large boost due to advances in calculational methods, and,
together with NLO matching to parton shower Monte Carlo programs, became the state of the
art to describe the data. However, for the phases II and III of the LHC, and even more so
at future colliders, the situation is drastically different: the experimental precision for many
important SM processes already has reached a level where NLO QCD predictions fall short.
Therefore, a lot of effort has been spent in the past years to come up with corrections going
beyond NLO QCD, ideally not only for total cross sections, but also for differential distributions.

A measure of complexity for the calculation of higher order corrections in perturbation
theory involves the number of loops in the virtual amplitude, the number of scales (Mandelstam
invariants, masses) and the number of external legs. While the problem of infrared subtractions is
more severe the more massless particles are involved, the difficulty to obtain analytic expressions
for master integrals at two loops and beyond increases rapidly as the number of mass scales
grows. Therefore numerical methods to calculate loop integrals seem particularly well suited for
integrals with several mass scales.

For processes involving only massless particles, virtual two-loop 4-point amplitudes have been
calculated about 15 years ago [1-5]. After that, the main bottleneck to be overcome to achieve
NNLO predictions for processes involving massless two-loop 4-point amplitudes was the lack of
an efficient subtraction scheme for the infrared singularities occurring in the real radiation part,
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where up to two particles can become unresolved. Filling this gap has been a very active field
of research in the past years. Various methods have been devised and are still under active
development; they will be listed briefly below.

The next big step in the field of NNLO QCD corrections for 2 — 2 scattering processes
was the availability of results for processes involving massive particles. Here the main problem
currently resides in the virtual two-loop part of the calculation. Two problems are hampering
progress here: (a) the reduction of the two-loop amplitudes to a minimal set of “master integrals”
times coefficients gets increasingly complicated as the number of mass scales grows, and (b) the
analytic calculation of the master integrals is extremely difficult, entering unexplored territory
in terms of mathematical functions to express the occurring parameter integrals. Only very
recently, analytic representations of two-loop integrals and amplitudes for 2 — 2 scattering
processes involving massive particles became available, see e.g. [6-14].

2. Methods and tools for two-loop calculations and beyond

The steps to perform for the calculation of a (multi-)loop amplitude can be roughly divided
into four stages: (1) generation of algebraic expressions for the amplitude, (2) reduction of the
amplitude to a set of “master integrals” times coefficients, (3) isolation of the ultraviolet and
infrared poles and (4) evaluation of the master integrals and combination with the coefficients
to obtain the amplitude. To calculate a full cross section, loop amplitudes and real radiation
contributions need to be combined, which requires a suitable scheme for the isolation of infrared-
divergent real radiation, which is highly non-trivial beyond one loop. It also requires the
construction of a stable and fast Monte Carlo program to perform the phase space integration.

It should be mentioned that stage (2) above is not mandatory. Reducing the set of integrals
to a minimal “basis set” is usually beneficial, to reduce the number of integrals to calculate and
to avoid large cancellations between linearly dependent integrals. However, it is also possible
to evaluate the occurring integrals without reduction in a numerical approach, see e.g. [15-17].
Further, there are methods which aim to avoid the problems with IR singularities related to the
split into real and virtual contributions by not performing such a partition at all [18-21].

In Table 1 we give a list of some publicly available multi-purpose tools which have been
developed to perform the specific tasks described above, focusing on the numerical evaluation
of the loop integrals. Certainly this list is incomplete and omits a multitude of codes which may
be more efficient, but are tailored to more specific classes of integrals or amplitudes. Efforts
towards the development of a package that can provide all the steps listed in Table 1 by combining
QGRAF [22], FORM [23,24], REDUZE [25,26] and pySECDEC [27] are described in [28].

Table 2 shows some of the subtraction schemes for infrared divergent real radiation at NNLO.

Table 1. Public tools for various steps of loop amplitude calculations beyond one loop.

Step to be performed available public tools

Diagram generation QGRAF [22], FEYNARTS/FORMCALC [29, 30]

Amplitude manipulations DIANA [31], FEYNCALC [32,33]

Reduction REDUZE [25,26], FIRE [34,35], LITERED [36,37], AIR [38]
Numerical evaluation sector_decomposition [39], SECDEC [27,40], F1ESTA4 [41],
of the loop integrals NICODEMOS [42], AMBRE/MBNUMERICS [43,44]
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Concerning the reduction, we only listed the publicly available tools which, based on the
integration-by-parts (IBP) method [45], can be used within a completely automated setup.
Ideas how to reduce the computational complexity of IBP algorithms can be found in [46]. A
fully automated system for amplitude generation and evaluation is also given by the GRACE
system [47-49].

Novel reduction methods (see e.g. [50-61]), based on ideas such as integrand reduction and
maximal cuts, are very promising, but have not reached the level of automation yet which is
provided by the tools listed in Table 1.

Numerous methods for the numerical calculation of multi-loop integrals have been developed
in addition to the ones mentioned above, we list only a few more recent ones here: direct
numerical integration in momentum space [16], dispersion relations [62], use of the loop-tree
duality [63], a toolbox of various dedicated numerical techniques [64,65], numerical solution of
differential equations [66,67], numerical extrapolation method [68,69], numerical evaluation of
Mellin-Barnes integrals [70-72], private implementations of sector decomposition [64,73-77].

Table 2. Methods for the isolation of IR divergent real radiation at NNLO.

method analytic integration  type/restrictions
of subtraction terms

antenna subtraction [78] yes subtraction

qr subtraction [79] yes slicing; colourless final states
N-jettiness [80,81] yes slicing

sector-improved residue no subtraction

subtraction [82-88]

colourful subtraction [89,90] partly subtraction; colourless initial states

3. Sector decomposition

Now we will describe the program SECDEC [27, 40, 91, 92] in more detail. The sector
decomposition algorithm is described in [93,94], which was inspired by earlier ideas as contained
in [73,95].

Higher order calculations in perturbation theory have in common that they involve multi-
dimensional integrations over some parameters: Feynman (or Schwinger) parameters in the case
of (multi-)loop integrals, or parameters related to the integration of subtraction terms over a
factorised phase space in the case of infrared-divergent real radiation. Usually, these calculations
are performed within the framework of dimensional regularisation, and one of the challenges is
to factorise the poles in the regulator e.

The program SECDEC [27,40,91,92] is designed to perform this task in an automated way,
and to integrate the coefficients of the resulting Laurent series in € numerically.

The original sector decomposition algorithm described in Ref. [93] is based on an iterative
procedure, which may run into an infinite recursion. It was pointed out however [39] that
the structure of Feynman integrals is such that a decomposition algorithm must exist which is
guaranteed to stop, as the procedure can be mapped to a known problem in convex geometry.
In Ref. [96], an algorithm was presented which cannot lead to infinite recursion and is more
efficient than previously employed algorithms with this property. SECDEC-3 and pySECDEC
contain the implementation of a decomposition strategy (called Gy in SECDEC-3 and geometric
in pySECDEC ), based on a modification of the method of Ref. [96], which usually outperforms
the original iterative strategy (called X, or iterative).
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3.1. Feynman parameter integrals
Multi-loop Feynman integrals can be written in a generic form. For ease of notation, we limit
ourselves to scalar integrals here. Integrals with loop momenta in the numerator, or inverse
propagators, only lead to an additional function in the numerator, and can be treated in the
same way. We refer to [40,94,97] for further details.

A scalar Feynman integral G in D dimensions at L loops with N propagators, where
the propagators can have arbitrary, not necessarily integer powers v;, has the following
representation in momentum space:

G - /Hd% ! (1)
HPV’({k} {p},m3)

P, = 17 oy, k _
Kl = —F% vy Pi({k} {p},m3) = mi +id
2

1T

where the ¢; are linear combinations of external momenta p; and loop momenta ;.
Introducing Feynman parameters in Eq. (1) leads to

I'(N,) /oo o vy—1 al
G = ———— dzj z) " 0(1—) ;) (2)
§V:1 L'(v;) Jo 31;[1 T ;
I I —Nv
-/leﬂ...leﬁiL Zk?Mijkj—QZk;r-Qj+J+i5
ij=1 j=1
(—1)M TN o N yNo—(L+1)D/2
= ————I(N,—-LD/2) /Hd a (1—le)f,
H§Vzl F(l/j) ) i — FNv—LD/2
where
F(#) = det(M Z QM J—id| , (3)
7,l=1
N
UE) = det(M), N,=> vj. (4)

In the expressions above, M is an L x L matrix containing Feynman parameters, @) is an
L-dimensional vector, where each entry is a linear combination of external momenta and
Feynman parameters, and J is a scalar expression containing kinematic invariants and Feynman
parameters.

U is a positive semi-definite function, which vanishes at the UV subdivergences of the graph.
In the region where all invariants formed from external momenta are negative (“Fuclidean
region”), F is also a positive semi-definite function of the Feynman parameters z;. If some
of the invariants are zero, for example if some of the external momenta are light-like, an IR
divergence may appear and F vanishes for certain points in parameter space. In the Euclidean
region, the necessary condition F = 0 for an IR divergence can only be fulfilled if some of the
parameters x; are zero. The endpoint singularities of both UV and IR nature can be regulated by
dimensional regularisation and factored out of the functions ¢/ and F using sector decomposition.

The basic concept of sector decomposition is the following: We consider a two-dimensional
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parameter integral which contains a singular region where both = and y vanish:

1 1
I = /da:/ dyx 170y (2 4+ y) 7L (5)
0 0

Our aim is to factorise the singularities for z — 0 and y — 0. Therefore we divide the integration
range into two sectors where x and y are ordered:

1 1
I = / dx / dyx 'y (2 +y) Oz —y) +O(y — )] .
0 0 ———— N —
(1) 2

Now we substitute y = x ¢ in sector (1) and = = yt in sector (2) to remap the integration range
to the unit square and obtain

1 1 1 1
I = /dm*lf(““’)e/ dtt’b€(1+t)’1+/ dyy”*(““’)e/ dtt7 17 (1+6)71 . (6)
0 0 0 0

This way the singularities are factorised into monomials, while the remaining denominator goes
to a constant if the integration variables approach zero. For more complicated integrands, this
procedure can be iterated until a complete factorisation is achieved.

However, after the UV and IR singularities have been extracted as poles in 1/e, for non-
Euclidean kinematics integrable singularities related to kinematic thresholds remain. These
singularities imply that F is vanishing inside the integration region for some combinations of
Feynman parameter values and values of the kinematic invariants. However, the integrals can
be evaluated by deforming the integration contour into the complex plane [18], as explained in
detail in Refs. [92,98].

3.2. Program structure

The program consists of two main parts, an algebraic and a numerical part. The algebraic
part constructs the integrand from the list of propagators or from the graph labels, performs the
sector decomposition procedure to factorise the poles in the regulator €, the subtractions and the
expansion in €, and prepares the contour deformation in the case of non-Euclidean kinematics.
In SECDEC-3, all the algebraic steps are performed in Mathematica. In the new version [27],
the algebraic part has been completely restructured and implemented in python, therefore the
new version is called pySECDEC.

The numerical part consists of C++ functions which are integrated numerically with the
CuBA library [99]. The new program pySECDEC produces C++ code using Form [23,24], and
in addition produces C++ libraries such that the finite parametric functions representing an
integral after the algebraic procedure can be linked to other programs. The basic workflow is
shown in Figs. 1 and 2.

8.8. Recent program developments
In addition to the new possibilities of usage, there are various new features in pySECDEC
compared to SECDEC-3.0:

e the functions can have any number of different regulators, not only the dimensional regulator
¢, needed for example in analytic regularisation within Soft-Collinear Effective Theory [100];

e numerators of loop integrals can be defined in terms of contracted Lorentz vectors or inverse
propagators or a combination of both;

e the distinction between “general functions” and “loop integrands” is removed in the sense
that all features which are not loop-integral-specific are also available for general polynomial
functions;
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Figure 1. Flowchart showing the main
steps the program performs to produce the
numerical result as a Laurent series in €. L
denotes the number of loops.

numerical result

Figure 2. Basic workflow of pySECDEC.

e the inclusion of “user-defined” functions which do not enter the decomposition has been
facilitated and extended;

e the treatment of poles which are higher than logarithmic has been improved;

e a procedure has been implemented to detect and remap spurious singularities which cannot
be cured by contour deformation;

e a symmetry finder has been added which can detect possible isomorphisms between sectors.

Version 1 of pySECDEC [27] is available at http://secdec.hepforge.org/.

3.4. Phenomenological application

0.20 T
— Lo
— —  B-i. NLOHEFT
E 0.15 — NLO FTapprox
) _ II:Ig(gii:ffI}];{l Figure 3. Higgs boson pair invariant mass
5 010p — NLO ] distribution with full top quark mass depen-
i dence compared to various approximations.
g 0.051 ] B-i. NLO HEFT denotes the Born-improved
ﬁ% HEFT approximation, while “basic HEFT” is
- 0.00 = ‘ ‘ ‘ ‘ * ‘ without the rescaling by the full Born level
g 20 = result. “FTapprox” stands for an approxima-
& 15E —— E . .. .
<10 tion where the real radiation part is calculated
with full mass dependence, while the virtual

300 400 500 600 700 800 900 1000

i [GEV] part is given by the Born-improved HEFT ap-

proximation.

The numerical approach based on SECDEC has been applied to calculate massive two-loop
integrals entering gg — H H at NLO, retaining the full top quark mass dependence [17,101,102].
The calculation is based on the setup described in Refs. [28,101,103]. The amplitude generation
leads to about 10000 integrals before any symmetries are taken into account, which have been
reduced to O(300) integrals using REDUZE [25,26]. A complete reduction could not be obtained
for the non-planar 4-point integrals. The inverse propagators appearing in unreduced integrals
were rewritten in terms of scalar products and directly computed with SECDEC.
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For the total cross section at /s = 14 TeV, we found a reduction of about 14% when including
the full top quark mass dependence as compared to the Born-improved HEFT (“Higgs Effective
Field Theory”) approximation, where in the latter the NLO corrections are calculated in the
my — oo limit, and “Born-improved” means that the result obtained in the m; — oo limit
is rescaled with the full Born level result divided by the HEFT Born level result. Fig. 3
shows results for the Higgs boson pair invariant mass distribution. For further details we refer
to [17,101,102].

4. Conclusions

We have given a brief overview on numerical methods to calculate integrals (and cross sections)
beyond one-loop order, before focusing on the program SECDEC, in particular the new version
pySECDEC. We pointed to its application within a context that goes beyond the calculation of
individual master integrals, for example the possibility to use it as a library to evaluate two-loop
amplitudes where the analytic expressions for the master integrals are not known.
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