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Abstract: We explore the anomaly-cancellation constraints on simplified dark matter

(DM) models with an extra U(1)′ gauge boson Z ′. We show that, if the Standard Model

(SM) fermions are supplemented by a single DM fermion χ that is a singlet of the SM

gauge group, and the SM quarks have non-zero U(1)′ charges, the SM leptons must also

have non-zero U(1)′ charges, in which case LHC searches impose strong constraints on

the Z ′ mass. Moreover, the DM fermion χ must have a vector-like U(1)′ coupling. If one

requires the DM particle to have a purely axial U(1)′ coupling, which would be the case if χ

were a Majorana fermion and would reduce the impact of direct DM searches, the simplest

possibility is that it is accompanied by one other new singlet fermion, but in this case the

U(1)′ charges of the SM leptons still do not vanish. This is also true in a range of models

with multiple new singlet fermions with identical charges. Searching for a leptophobic

model, we then introduce extra fermions that transform non-trivially under the SM gauge

group. We find several such models if the DM fermion is accompanied by two or more

other new fermions with non-identical charges, which may have interesting experimental

signatures. We present benchmark representatives of the various model classes we discuss.
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1 Introduction

The astrophysical and cosmological necessity for dark matter (DM) (see, for exam-

ple, [1–10]) is one of the strongest motivations for particle physics beyond the Standard

Model (SM). However, as yet there is no experimental evidence for any of the proposals

for extensions of the SM, such as supersymmetry, that provide well-motivated models for

DM particles [11–13]. Under these circumstances, a favoured approach is to model dark

matter from the bottom up, in other words to avoid a priori theoretical assumptions and

proceed phenomenologically.

Initially this programme began by considering higher-dimensional contact interac-

tions [14, 15] where it is straightforward to compare constraints from collider production of

dark matter with those from direct detection experiments [16]. Such toy models are very

useful, but have obvious limitations, since unitarity inevitably breaks down at some scale.

This may, on its own, not be viewed as being problematic in this entirely phenomenological

approach, however often the features required to protect unitarity (for example new media-

tors) themselves lead to interesting phenomenology which is lost in the contact interaction

setting [17–21]. The introduction of simplified dark matter models (SDMMs) with the

minimal combination of features that a model of DM should have represents an attempt

to address this in the simplest way possible [22–28]. Typically, these SDMMs contain, in

addition to the DM particle itself that is often taken to be a fermion, χ, and a bosonic

intermediary, Z ′ (or φ), that generates the interactions between χ and SM particles and

prevents the inherent problems associated with the contact interaction.

There are then, in general, a number of free parameters associated with the model, for

example the masses of the DM and intermediary particles and the seperate couplings of

the intermediary to both the DM and SM particles. One then considers and combines the

constraints on these parameters from laboratory experiments at accelerators such as the

LHC, direct and indirect astrophysical searches for DM particles, and the allowed range

of the cosmological DM density [29, 30]. These constraints depend, in particular, whether
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the DM particle χ is assumed to be Majorana or Dirac, whether the intermediary has spin

zero or spin one,1 in which case it would be associated with an additional U(1)′ gauge

symmetry, and whether the mediator couplings are scalar, pseudoscalar, vector or axial

vector, all of which have different phenomenologies and constraints [23–25].

While these simple extensions of the SM are extremely useful for setting up a parameter

space which can subsequently be explored, it is well known that many of the simplest models

in the SDMM programme are not entirely self-consistent physically. For example, models

with a massive gauge boson mediator do not respect unitarity to arbitrarily high scales

unless set within a larger theory where the mass of that boson is explained through an

additonal Brout-Englert-Higgs mechanism [31]. Introducing a dark Higgs sector can make

such theories more palatable, but the presence of that sector can change the phenomenology

of the model.

In this paper we focus on another issue, namely the fact that proposed SDMM exten-

sions to the SM with spin-one mediators generally contain anomalies whose cancellation

requires additional fermions. As pointed out in [31], the masses of the new fermions should

be of the same order as the U(1)′ boson mass, offering additional LHC signatures that may

already be constrained by the data and should be taken into account in constraining such

not-so-SDMMs.

In the case of such a spin-one intermediary particle Z ′, renormalizability of the SDMM

requires that it be free of anomalous triangle diagrams involving any combination of the

SM gauge fields, the U(1)′ gauge field and the graviton [32].2 The requirement of anomaly

freedom is understood by constructors of SDMMs [31, 33], but in many cases its implica-

tions have not been pursued fully. One could, of course, take the point of view that any

anomalies in the SDMM could be cancelled by some unspecified ultraviolet completion.

However, in this paper we take the point of view that the SDMM should be self-consistent

at the U(1)′ scale, so that one should try to construct anomaly-free SDMMs, and that it

is interesting and important to understand what are the minimal such theories.3

There is a large literature on anomaly-free U(1)′ extensions of the SM with various

motivations, see for example [33–52]. Among these, the closest in spirit to our paper

are [42–46], and we comment later on the relations between their papers and ours. Typical

extensions of the SM with a neutral Z ′ particle come from GUT theories and couple to

leptons as well as quarks [53]. When such a particle acts as the mediator between the SM

and a DM fermion, the two strongest constraints come from dilepton events at the LHC

and direct detection experiments.

Models in which the Z ′ boson couples to leptons are very easy to constrain experimen-

tally, since they yield dilepton events that give clear signals in hadron colliders without

the backgrounds that dijets would experience, see for example [26]. Depending on the

1In principle, one could also consider models in which the mediator spin is ≥ 2, but these have not yet

found much favour.
2Studies of possible anomaly-free U(1)′ extensions of the SM started at least 40 years ago, though with

different motivations. See, e.g., [32].
3The information gathered in this study may also help to guide intuition towards an ultraviolet-complete

theory, if one adopts the alternative philosophy.
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model, lower bounds mZ′ & 3TeV may be imposed by the LHC experiments [54, 55]. It

therefore becomes important to try to suppress the coupling of the mediator particle to the

SM leptons for couplings and masses that give rise to good relic abundance from thermal

freeze-out. This is why one seeks SDMMs containing leptophobic vector mediators that

couple only to quarks.

The second very tight constraint comes from the long reach of the latest direct detection

experiments - at the time of writing the PandaX and LUX experiments have the leading

sensitivity to spin-independent dark matter-nucleon scattering, and have reached cross

sections as low as 10−46 cm2 for a DM particle mass of 30GeV [56, 57]. This makes

it increasingly difficult to arrange couplings and mediator masses that give good relic

abundance and are not ruled out, in the case of a vector mediator interaction that would

generate coherent scattering on all the nucleons in the Xenon nucleus. This coherent

scattering is suppressed by the relative particle velocity if the mediator has an axial coupling

to dark matter, and additionally by momentum exchange if it has only axial couplings to

quarks [58].4

The following are the anomaly cancellation conditions involving the U(1)′ gauge field

that are to be satisfied,5 where the trace is over all fermion species with non-trivial couplings

to the corresponding gauge group factors:

(a) [SU(3)2C ]×[U(1)′], which implies Tr[{T i, T j}Y ′] = 0.

(b) [SU(2)2W ]×[U(1)′], which implies Tr[{T i, T j}Y ′] = 0.

(c) [U(1)2Y ]×[U(1)′], which implies Tr[Y2Y ′] = 0.

(d) [U(1)Y ]×[U(1)′
2

], which implies Tr[Y Y ′2] =0.

(e) [U(1)′3], which implies Tr[Y ′3] =0.

(f) Gauge-gravity, which implies Tr[Y ] = Tr[Y ′] =0.

As we shall see, satisfying these conditions with the DM fermion χ being the only

fermion beyond the SM requires that the U(1)′ boson couples to both leptons and quarks,

exposing it to sensitive LHC searches, and that the DM fermion has vector-like Z ′ couplings,

placing it within reach of direct searches for DM scattering. A purely axial χ−Z ′ coupling is

possible only if there are additional new fermions. The intermediary boson would still have

U(1)′ couplings to leptons as well as quarks if there is just one extra singlet fermion, and

in a range of models with multiple new singlet fermions with identical charges. Continuing

the search for a model with vanishing lepton couplings, we then consider models with extra

fermions transforming non-trivially as doublets or triplets of SU(2)W as well as singlets.

We find several classes of such models if the DM fermion is accompanied by two or more

other new fermions with non-identical charges, generalizing a model presented in [42–45].

4However, we caution that renormalization effects below the U(1)′ mass scale may enhance significantly

the scattering of an axially-coupled DM fermion [59].
5We follow the notation in [33]: T i is a generator of SU(3)C , T

i is a generator of SU(2)W and Y , Y ′

are hypercharge and U(1)′ charge matrices respectively. The U(1) charge matrices are proportional to the

identity, but taking the trace will give a factor of two for a doublet relative to a singlet, for example.
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2 New SM singlet fermions and vanishing U(1)′ couplings to leptons?

We consider first the possibility that the SDMM contains extra fermions that are singlets

under the SM gauge group. We assume also that the different quark and lepton generations

have identical U(1)′ charges, so as to minimize flavour-changing neutral currents. In this

case, the anomaly-cancellation conditions above take the forms [37]:

(a) 3(2Y ′

q − Y ′

u − Y ′

d) = 0 , (2.1)

(b) 9Y ′

q + 3Y ′

l = 0 , (2.2)

(c) 2Y ′

q − 16Y ′

u − 4Y ′

d + 6
(

Y ′

l − 2Y ′

e

)

= 0 , (2.3)

(d) 6
(

Y ′2
q − 2Y ′2

u + Y ′2
d

)

− 6
(

Y ′2
l − Y ′2

e

)

= 0 , (2.4)

(e) 9
(

2Y ′3
q − Y ′3

u − Y ′3
d

)

+ 3
(

2Y ′3
l − Y ′3

e

)

+TrBSM(Y ′3) = 0 , (2.5)

(f) 9
(

2Y ′

q − Y ′

u − Y ′

d

)

+ 3
(

2Y ′

l − Y ′

e

)

+TrBSM(Y ′) = 0 . (2.6)

where the fermionic U(1)′ charges are denoted by Y ′

i , q and l label the left-handed quark

and lepton doublets, the right-handed fields are labelled u, d, e, and TrBSM denotes a trace

over the additional fermions beyond the SM.6

In the absence of BSM particles, the anomaly cancellation conditions depend only on

the Y ′ charges of the SM fields. The Y-sequential model [33, 36] is a well known example of

an anomaly-free U(1)′ theory where the Y ′ charge of each fermion is proportional to the SM

Y hypercharge. This solution is trivially guaranteed to exist since the SM is anomaly-free,

and so we expect to recover this model in our analysis when TrBSM(Y ′) = TrBSM(Y ′3) = 0.

However, this model has couplings to leptons and hence is subject to the strong LHC

dilepton constraints, so first we will see if it is possible to obtain an anomaly-free theory

with vanishing couplings to leptons.

In addition to these anomaly cancellation conditions, gauge invariance of the SM

Yukawa interactions require, if there is a single Higgs doublet,

Y ′

H = Y ′

q − Y ′

u = Y ′

d − Y ′

q = Y ′

e − Y ′

l , (2.7)

where Y ′

H is the U(1)′ charge of the SM Higgs.7 These relations always ensure that the

first anomaly condition is satisfied, motivating the consideration of new fermions that are

SU(3) singlets as the simplest possibility. If one does not want to assume a particular mass

generation mechanism for the SM fields, we note that equation (2.7) is redundant when

equations (2.1)–(2.3) are solved with exotic fermions transforming trivially with respect

to the SM gauge group. As such, our conclusions in this section and in section 3 are

independent of the Yukawa sector, but we impose (2.7) as independent constraints in

section 4.

6The anomaly-cancellation conditions for the model studied in [42–45] are more complicated, as it has 2

extra U(1) gauge factors, corresponding to baryon and lepton number B and L. However, in the limit where

one discards the U(1)L boson it becomes a leptophobic model with a single U(1)′ equivalent to U(1)B , as

we discuss later.
7The conditions (2.7) were not imposed in the models studied in [46], which would require multiple Higgs

representations in order to accommodate SM fermion masses and quark mixing.
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We focus first on the second anomaly condition (2.2) that involves SU(2)W gauge fields,

which we rewrite as:

Y ′

l = −3Y ′

q . (2.8)

This equation implies directly that if Y ′

l = 0, so as to avoid the strong constraints from

dilepton searches at the LHC, then also Y ′

q = 0. We then consider the second Yukawa

condition in (2.7), namely Y ′

d − Y ′

q = Y ′

e − Y ′

l . If we now require that Y ′

e = 0, again so

as to avoid the LHC dilepton constraints, we see that also Y ′

d = 0 and hence, via the

first anomaly condition (2.1), also Y ′

u = 0. We conclude that the boson of a U(1)′ model

designed to avoid the LHC dilepton constraints would not even be produced via tree-level

quark-antiquark annihilations at the LHC.

Moreover, we note that, if the DM particle χ is the only new fermion, the fifth and

sixth anomaly conditions (2.5), (2.6) require

3(Y ′

u − 4Y ′

q )
3 + Y ′3

χ,L − Y ′3
χ,R = 0 , (2.9)

3(Y ′

u − 4Y ′

q ) + Y ′

χ,L − Y ′

χ,R = 0 , (2.10)

to which the only rational solution is Y ′

χ,L = Y ′

χ,R implying that such a ‘singleton’ DM

particle must have a vector-like U(1)′ coupling, but not constraining its magnitude. This

solution also implies from (2.10) that Y ′

u = 4Y ′

q .

To summarize this section, assuming that the U(1)′ charges of the SM fermions are

generation-independent, and that any new fermions that are chirally charged under U(1)′

are singlets under the SM gauge group, we found that the intermediary U(1)′ boson must

have leptonic couplings and hence be subject to LHC searches for dilepton signatures.

Moreover, if the DM particle is the only such new singlet fermion, it must have a vector-like

U(1)′ coupling. This would also be the case if there were other new SM-singlet fermions

that are vectorial under U(1)′, since they would not contribute to any of the anomaly

equations (2.1) to (2.6). This benchmark model has two8 free coupling parameters, Y ′

χ,L =

Y ′

χ,R and Y ′

q , in terms of which the Z ′ couplings of the other SM fermions and the SM

Higgs boson are specified as follows:

Y ′

l = −3Y ′

q , Y ′

e = −6Y ′

q , Y ′

d = −2Y ′

q , Y ′

u = 4Y ′

q , Y ′

H = −3Y ′

q . (2.11)

It is possible to scale the overall couplings of the SM and dark sector to the Z ′ indepen-

dently, although creating a large hierarchy would require accepting the same hierarchy

between U(1)′ charges.

3 A DM particle with axial Z′ couplings?

We now study whether the DM fermion could have an axial Z ′ coupling if we allow more

new SM-singlet fermions that possess only U(1)′ charges, in which case the constraints from

experiments searching directly for DM scattering would be weaker [59]. We also recall that

an axial U(1)′ is the only possibility if the DM particle is a Majorana fermion.

8However, choosing to normalise one of the Y’ charges with the freedom to rescale the dark gauge

coupling would leave only one free parameter.
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The constraints (2.7) and (2.8) remain valid in this case, so the anomaly conditions (2.1)

to (2.4) are all satisfied automatically, and we need only consider the remaining condi-

tions (2.5), (2.6), which we write in the forms

3(Y ′

u − 4Y ′

q )
3 +

∑

j

(Y ′3
j,L − Y ′3

j,R) = 0 , (3.1)

3(Y ′

u − 4Y ′

q ) +
∑

j

(Y ′

j,L − Y ′

j,R) = 0 , (3.2)

where Y ′

j,L/R is the U(1)′ charge of the left/right-handed component of a new fermion

species j.

One obvious solution has Y ′

u = 4Y ′

q and any number of new fermions with Y ′

j,L = Y ′

j,R.

In the case of a single new fermion (presumably the DM particle) this is in fact the only

solution, as discussed in the previous section. It is clear from equations (3.1), (3.2) that if

we require a purely axial Z ′ coupling of the new DM fermion χ, we will need at least one

other fermion that is charged under U(1)′ in order to cancel the DM anomaly contributions.

Therefore, we consider now models that, in addition to a candidate DM particle χ

with charge Y ′

χ,L = −Y ′

χ,R, contain a single other species A with left- and right-handed

charges Y ′

A,L and Y ′

A,R under U(1)′ that is also a singlet under the SM group. Solving

equations (3.1) and (3.2) above, we find that that this last equation can be written as

Y ′

u = 4Y ′

q −
1

3
(Y ′

A,L − Y ′

A,R)−
2

3
Y ′

χ,L . (3.3)

Substituting this condition into equation (3.1) gives a relatively complicated polynomial

equation. Using the arbitrary normalization Y ′

χ,L = 1, the solutions we find with U(1)′

charges that are the smallest rational numbers are

Y ′

A,L = −1, Y ′

A,R = 1 , (3.4)

Y ′

A,L = 0, Y ′

A,R = −1 or Y ′

A,R = 5/4 , (3.5)

Y ′

A,R = 0, Y ′

A,L = −5/4 or Y ′

A,L = 1 , (3.6)

where the last pairs of solutions are equivalent, being mirror images.

In general, there will be mixing between the new neutral fermions (χ,A) induced by

a combination of ‘Majorana’ mass terms that do not require U(1)′ breaking and ‘Dirac’

terms that involve the intervention of a Higgs vacuum expectation value (vev). As a result,

the mass eigenstates will be orthogonal mixtures of the interaction eigenstates, and the

lightest one should be identified as the DM particle. The pattern of mixing is quite model-

dependent, being determined by the assumed pattern of Majorana-type masses that do not

require a Higgs vev as well as the assumed set of Higgs representations, their vev’s and

the magnitudes of their couplings. For example, in model (3.4) above, there could be a

2× 2 Majorana-type mass matrix for the χL and χ̄R, and Dirac terms due to a Higgs with

Y ′

H = 2 could extend this to a full rank-4 mass matrix for χL, χ̄R, AL and ĀR. On the other

hand, generating a full rank-4 mass matrix in the first model in (3.5) or the second model

in (3.6) would also require a Higgs with Y ′

H = 1, and obtaining a rank-4 matrix matrix in

the other models in (3.5) and (3.6) would require also Higgs fields with fractional Y ′.

– 6 –
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Since the fermion species in the dark sector have different U(1)′ charges, they do not

respect the Glashow-Weinberg-Paschos conditions for natural flavour conservation [60, 61],

and the Z ′ will in general have off-diagonal interactions with the dark mass eigenstates.

The heavier mass eigenstates could therefore decay into the DM particle by radiating SM

f̄f pairs through a virtual Z ′.9 We have identified this DM particle with the χ interaction

eigenstate introduced above, which would indeed be the lightest mass eigenstate in a suit-

able degenerate limit of the mass matrix. In this limit it would have a purely axial U(1)′

coupling, and this would also be the case for arbitrary mixing in model (3.4), where both

χ and A have axial couplings. However, in the cases (3.6) the coupling of the lightest mass

eigenstate would not be purely axial if the mixing were non-trivial.

We have searched for all other solutions with rational U(1)′ charges of the form p/q :

|p, q| ∈ Z and ≤ 100, with the following results

Y ′

A,L = 2, Y ′

A,R = −1

2
,

Y ′

A,L = −8

5
, Y ′

A,R = −7

5
,

Y ′

A,L =
25

9
, Y ′

A,R = −29

9
(3.7)

and equivalent mirror solutions. However, in all these cases the SM leptons have non-zero

U(1)′ charges.

We have also explored the possibilities for two or three ‘generations’ of new fermions

X,A with ‘generation’-independent charges. In both cases the first solution in (3.6) is

again valid, and in the three-‘generation’ case there is in addition a solution with Y ′

A,L =

0, Y ′

A,R = 1 and its mirror. We have not studied the two- and three-‘generation’ case

thoroughly but there are, in general, fewer solutions within any fixed range of p and q than

in the single-‘generation’ case (3.6), (3.7), and the SM leptons again have non-zero U(1)′

charges.

We conclude that, if the DM particle is required to have an axial U(1)′ charge so as

to minimize the impacts of DM search experiments, not only will the U(1)′ gauge boson

again have leptonic couplings, but also there must be additional fermions with U(1)′ charges

that could be produced and detected at the LHC. The simplest solutions have the following

U(1)’ charges (using the normalization Y ′

χ,L = −Y ′

χ,R = 1):

Y ′

A,L = −1, Y ′

A,R = 1 . (3.8)

Y ′

A,L = 0, Y ′

A,R = −1 (or Y ′

A,R = 0 , Y ′

A,L = 1) . (3.9)

These two models also have Y ′

q as a free parameter, and the remaining SM U(1)′ charges

9This suggests the possibility of an LHC signature that complements the familiar mono-

jet/photon/Higgs. . . searches, namely one in which an on-shell Z′ is produced and decays into the DM

particle and a heavier dark particle whose decay yields a missing energy + dijet final state. In this case

there may be no need to require any initial-state boson radiation.
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are then related (for both models) by the following equation

Y ′

l = −3Y ′

q , Y ′

u = 4Y ′

q −
1

3
(Y ′

A,L − Y ′

A,R)−
2

3
Y ′

χ,L, Y ′

d = 2Y ′

q − Y ′

u ,

Y ′

e = −2Y ′

q − Y ′

u, Y ′

H = Y ′

q − Y ′

u. (3.10)

DM searches at the LHC are often presented in a way that shows the complementarity

between the production of DM and resonant searches for the mediator, for example when

comparing missing energy and dijet searches. This presentation is only possible if one is

able to treat the dark and visible couplings as independent parameters, which would be

possible for (3.8) but not (3.9). This is because the anomaly cancellation in model (3.8)

occurs independently in the dark and visible sectors. This allows the dark and SM couplings

of the fermions to the Z ′ to be scaled independently, with the caveat that one would

have to be prepared to accept very large or very small charges in order to create a large

hierarchy between the dark and visible couplings. On the other hand, anomaly cancellation

in model (3.9) relates directly the charges of the dark and visible sectors.

Finally, we recall that only in case (3.8) is the DM particle coupling guaranteed to be

purely axial, whatever the amount of dark fermion mixing.

4 New fermions transforming non-trivially under the SM gauge group

In this section we introduce exotic fermions to cancel the anomalies present in a leptophobic

theory. We first build up the minimal field content needed to obtain an anomaly-free

solution, before commenting on whether there is still a viable DM candidate χ present in

the theory.

We consider the possibility that there are new fermions transforming under non-trivial

representations of the SM gauge group,10 in which case the question of whether the lep-

tonic U(1)′ charges vanish is reopened. In such a case one would also need to ensure the

cancellation of the anomalies involving only SM gauge bosons, which are not listed above.

These SM anomalies would vanish if the fermions are vector-like with respect to the SM

gauge group, and then the new fermions would contribute only to the anomalies listed

above if they are chiral with respect to the U(1)′. This option would open up possibilities

for other electroweak signatures, if they are not too heavy.

In order to analyse this possibility, we first repeat the anomaly conditions (2.1) to (2.6)

above, using the Yukawa conditions (2.7) to substitute Y ′

u and Y ′

d, and assuming that any

new fermions transform in either the trivial or fundamental representations:

∑

f∈SU(3)

(Y ′

f,L − Y ′

f,R) = 0 , (4.1)

3Y ′

l + 9Y ′

q +
∑

f∈SU(2)

(Y ′

f,L − Y ′

f,R) = 0 , (4.2)

−6(Y ′

l + 3Y ′

q ) +
∑

f

(Y ′

f,LY
2
f,L − Y ′

f,RY
2
f,R) = 0 , (4.3)

10The models studied in [42–46] all incorporate fermions that are charged under the SM SU(3)×SU(2).
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12(Y ′

e − Y ′

l )(Y
′

l + 3Y ′

q ) +
∑

f

(Y ′2
f,LYf,L − Y ′2

f,RYf,R) = 0 , (4.4)

−3
(

Y ′3
e − 2Y ′2

l (Y ′

l − 9Y ′

q ) + 18Y ′2
e Y ′

q − 36Y ′

eY
′

l Y
′

q

)

+
∑

f

(Y ′3
f,L − Y ′3

f,R) = 0 , (4.5)

−3Y ′

e + 6Y ′

l +
∑

f

(Y ′

f,L − Y ′

f,R) = 0 . (4.6)

The simplest possibility we study is a single new fermion species A that transforms in the

fundamental of SU(2) and has both U(1)Y and U(1)′ charges. In order not to mess up

the purely SM anomaly conditions, we assume it is vector-like under both SU(2)W and

U(1)Y , so that YA,L = YA,R = YA. In this case the second and third anomaly cancellation

conditions (4.2), (4.3) take the form

3Y ′

l + 9Y ′

q + Y ′

A,L − Y ′

A,R = 0 , (4.7)

−6(Y ′

l + 3Y ′

q ) + 2Y 2
A(Y

′

A,L − Y ′

A,R) = 0 . (4.8)

Eliminating Y ′

q by substituting (4.7) into (4.8), we find

(1 + Y 2
A)(Y

′

A,L − Y ′

A,R) = 0 , (4.9)

which has has only the vector-like solution Y ′

A,L = Y ′

A,R. Moreover, in this case Y ′

l +3Y ′

q = 0,

so that Y ′

l = 0 would require Y ′

q = 0. Implementing full leptophobia by requiring Y ′

e = 0

would then require the SM Higgs to have Y ′

H = 0 and hence also Y ′

u = Y ′

d = 0, again

entailing vanishing couplings to quarks. The same conclusions hold for models with several

new fermion ‘generations’ if their charges are ‘generation’-independent, or if we had put A

in the adjoint representation.

We are therefore led to consider adding another new fermion species B with differ-

ent SM quantum numbers, imposing Y ′

l = Y ′

e = 0 in the attempt to find a non-trivial

leptophobic solution. If A and B are both doublets (or both triplets) under SU(2), the

only solution is the one with all SM field charges vanishing. Therefore we consider the

possibility that A is a doublet under SU(2)W but B is an SU(2)W singlet. In this case

the second anomaly (4.2) gives Y ′

q = −1
9(Y

′

A,L − Y ′

A,R) and the sixth anomaly (4.6) gives

Y ′

B,R = Y ′

B,L + 2Y ′

A,L − 2Y ′

A,R. Substituting these into the third anomaly (4.3) yields

(1 + Y 2
A − Y 2

B)(Y
′

A,L − Y ′

A,R) = 0 (4.10)

We ignore the solution Y ′

A,L = Y ′

A,R since it would imply Y ′

q = 0, which would then make

all SM charges vanish. Therefore we must require

1 + Y 2
A − Y 2

B = 0; (4.11)

to which the only integer solution is {0, 1}. Since we are working in the convention where

Q = T 3 + Y/2, this solution has half-integer electric charges for both A and B, conflicting

with the integer charge quantization seen in Nature [62]. We conclude that this solution is

not acceptable.
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We have also looked for solutions where A is an SU(2)W triplet. Equation (4.2) is

modified, as we are no longer considering fermions solely in the fundamental or trivial

representation, becoming

9Y ′

q +
∑

f∈2

(Y ′

f,L − Y ′

f,R) + 4
∑

f∈3

(Y ′

f,L − Y ′

f,R) = 0 (4.12)

where 2 and 3 label the fundamental and adjoint representations respectively. If B is again

an SU(2)W singlet, repeating the same steps as before we find the condition

8 + 3Y 2
A − 3Y 2

B = 0 , (4.13)

which has no integer solutions. Finally, in the case where A is a triplet and B is a doublet

we obtain the condition

5 + 3Y 2
A − 3Y 2

B = 0 , (4.14)

which also has no integer solutions. Moreover, we have checked that there are still no

solutions in these triplet/singlet and triplet/doublet cases when there are several ‘genera-

tions’ of A and B (even with different numbers of each), as long as the U(1)′ charges are

‘generation’-independent.

We are therefore led to consider models with three or more species of new fermions.

The models studied in [42–46] all feature six new fermion species. However, as already

commented, when the U(1)L is discarded along with its three νR species, the model studied

in [42–45] becomes a leptophobic model with a single U(1)′ that is equivalent to U(1)B.

In this limit, the new fermions in the model comprise a doublet that is vector-like under

SU(2) and has Y = −1, and two singlets with Y = −2, 0, respectively.11

We have checked the anomaly-cancellation conditions for other models containing three

new fermion species with different U(1)Y charges, i.e., A,B, χ in the (SU(2)W , U(1)Y ,

U(1)Y ′) representations (2, YA, Y
′

A,L/R), (1, YB, Y
′

B,L/R), and (1, 0, Y′

χ,L/R) respectively.

In order to obtain a leptophobic solution with Y ′

l = Y ′

e = 0, the SM Yukawa condition (2.7)

imposes Y ′

u = Y ′

d = Y ′

q , so we choose Y ′

q as the only remaining free SM charge. Normal-

izing Y′

χ,L = 1, and noting that the SU(3) anomaly condition is satisfied automatically

when the Higgs coupling constraint (2.7) is imposed, the next four anomaly-cancellation

conditions yield

Y ′

q =
1

9

(

Y ′

A,R − Y ′

A,L

)

, (4.15)

Y ′

χ,R =
Y 2
B

(

2Y ′

A,L − 2Y ′

A,R + 1
)

+ 2
(

Y 2
A + 1

)

(

Y ′

A,R − Y ′

A,L

)

Y 2
B

, (4.16)

Y ′

B,L =

(

YAY
3
B − 2

(

Y 2
A + 1

)

2
)

Y ′

A,L +
(

YAY
3
B + 2

(

Y 2
A + 1

)

2
)

Y ′

A,R

2
(

Y 2
A + 1

)

Y 2
B

, (4.17)

Y ′

B,R =

(

YAY
3
B + 2

(

Y 2
A + 1

)

2
)

Y ′

A,L +
(

YAY
3
B − 2

(

Y 2
A + 1

)

2
)

Y ′

A,R

2
(

Y 2
A + 1

)

Y 2
B

. (4.18)

11In our convention of Q = T3 + Y/2, the SM hypercharges are twice those in [42–45].
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Using these expressions, the final U(1)3 anomaly condition gives rise to the slightly unwieldy

expression:

− 1

8
(

Y 2
A + 1

)

3Y 6
B

[

− 16
(

Y 2
A + 1

)

3Y 6
B

(

(

Y ′
)3

A,L
−
(

Y ′
)3

A,R

)

+
((

YAY
3
B + 2

(

Y 2
A + 1

)

2
)

Y ′

A,L +
(

YAY
3
B − 2

(

Y 2
A + 1

)

2
)

Y ′

A,R

)

3

+
((

2
(

Y 2
A + 1

)

2 − YAY
3
B

)

Y ′

A,L −
(

YAY
3
B + 2

(

Y 2
A + 1

)

2
)

Y ′

A,R

)

3 (4.19)

+8
(

Y 2
A + 1

)

3
(

Y 2
B

(

2Y ′

A,L − 2Y ′

A,R + 1
)

+ 2
(

Y 2
A + 1

) (

Y ′

A,R − Y ′

A,L

))

3

−8
(

Y 2
A + 1

)

3Y 6
B

]

= 0 .

This equation has a symmetry YA/B ↔ −YA/B, which facilitates a scan of possible solutions.

We have restricted our search to positive integer values≤ 10 for YA/B. The other unknowns,

Y ′

A,L/R, are both rational, and we have scanned irreducible rational numbers of the form

±p/q with p and q integers ≤ 10. In order to have integer charge quantisation, and recalling

that our convention is Q = T3 + Y/2, we further require YA to be odd (since its a doublet)

and YB to be even (since its a singlet).

In certain cases (4.19) takes a relatively manageable form. One example is for YA = ±1

and YB = ±2, which is equivalent to the solution discussed in [42–45]. In this case, one

can either require Y ′

A,L = −1 with Y ′

A,R arbitrary or Y ′

A,R = 1 with Y ′

A,L arbitrary. The

other case is YA = ±7 and YB = ±10, in which case one need only satisfy

2Y ′

A,L − 3Y ′

A,R + 5 = 0 or 3Y ′

A,L − 2Y ′

A,R + 5 = 0 (4.20)

to obtain acceptable solutions. In addition to these ‘regular’ solutions with a new SU(2)-

doublet fermion, we find 26 other ‘exceptional’ solutions that occur in 13 mirror pairs with

Y ′

A,L ↔ −Y ′

A,R that have YA/B ≤ 10 and Y ′

A,L/R = ±p/q with p, q ≤ 10. The simplest of

these is

(Y ′

A,L, Y
′

A,R, YA, YB) =

(

1,
2

3
, 3, 2

)

, (4.21)

which is accompanied by its mirror solution with Y ′

A,L ↔ −Y ′

A,R.

In addition to Y ′

χ,L = 1 by definition, the benchmark solution (4.21) has Y ′

l = Y ′

e = 0

by construction, and hence

Y ′

q = Y ′

u = Y ′

d, Y ′

H = 0 , (4.22)

where Y ′

q is fixed by (4.15) and the values of Y ′

χ,R, Y
′

B,L/R are fixed by (4.16), (4.17)

and (4.18)

Y ′

q = − 1

27
, Y ′

χ,R = 0, Y ′

B,L = −1

3
, Y ′

B,R =
4

3
. (4.23)

We note that this solution admits a small quark charge relative to the DM charge, implying

good complementarity between dijet and missing energy searches at the LHC.
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Finally, we consider the possibilities when A is in the adjoint (triplet) representation of

SU(2)W . In this case, the first four anomaly-cancellation conditions above are modified to

Y ′

q = −4

9

(

Y ′

A,L − Y ′

A,R

)

, (4.24)

Y ′

χ,R = 3Y ′

A,L − 3Y ′

A,R + Y ′

B,L − Y ′

B,R + Y ′

χ,L , (4.25)

Y ′

B,L =

(

3YAY
3
B +

(

3Y 2
A + 8

)

2
)

Y ′

A,R −
((

3Y 2
A + 8

)

2 − 3YAY
3
B

)

Y ′

A,L

2
(

3Y 2
A + 8

)

Y 2
B

, (4.26)

Y ′

B,R =

(

3YAY
3
B +

(

3Y 2
A + 8

)

2
)

Y ′

A,L −
((

3Y 2
A + 8

)

2 − 3YAY
3
B

)

Y ′

A,R

2
(

3Y 2
A + 8

)

Y 2
B

, (4.27)

and the U(1)3 anomaly equation becomes

− 1

8
(

3Y 2
A + 8

)

3Y 6
B

[

− 24
(

3Y 2
A + 8

)

3Y 6
B

(

(

Y ′
)3

A,L
−
(

Y ′
)3

A,R

)

+8
(

3Y 2
A + 8

)

3
(

Y 2
B

(

3Y ′

A,L − 3Y ′

A,R + 1
)

−
(

3Y 2
A + 8

) (

Y ′

A,L − Y ′

A,R

))

3 (4.28)

+
((

3YAY
3
B +

(

3Y 2
A + 8

)

2
)

Y ′

A,L −
((

3Y 2
A + 8

)

2 − 3YAY
3
B

)

Y ′

A,R

)

3

+
(((

3Y 2
A + 8

)

2 − 3YAY
3
B

)

Y ′

A,L −
(

3YAY
3
B +

(

3Y 2
A + 8

)

2
)

Y ′

A,R

)

3

−8
(

3Y 2
A + 8

)

3Y 6
B

]

= 0 . (4.29)

As before we have the symmetry YA/B → −YA/B. Requiring that YA and YB are even so

as to obtain integer electric charges. we identify a set of solutions defined by YA = 0 and

YB = ±2, which satisfy

Y ′

A,R =
1 + Y ′

A,L

1 + 3Y ′

A,L

. (4.30)

In addition to Y ′

χ,L = 1 by definition, YA = 0 and YB = ±2, and Y ′

A,L as a free parameter

that determines Y ′

A,R via (4.30), this benchmark solution again has Y ′

l = Y ′

e = 0 by

construction and the conditions (4.22) are also obeyed, where Y ′

q is fixed by (4.24), and

the values of Y ′

χ,R, Y
′

B,L/R are fixed in this case by (4.25), (4.26) and (4.27). Choosing the

positive solution YB = 2, this relates the other charges:

Y ′

q =
4− 12Y ′2

A,L

9 + 27Y ′

A,L

(4.31)

Y ′

χ,R =
3Y ′

A,L(1 + Y ′

A,L)

1 + 3Y ′

A,L

(4.32)

Y ′

B,L =
1− 3Y ′2

A,L

1 + 3Y ′

A,L

(4.33)

Y ′

B,R = −Y ′

B,L (4.34)

Picking a specific benchmark with Y ′

A,L = 1, for example:

Y ′

A,R =
1

2
, Y ′

q = −2

9
, Y ′

χ,R =
3

2
, Y ′

B,L = −1

2
, Y ′

B,R =
1

2
(4.35)
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As in the fundamental case, there are also ‘exceptional’ solutions not falling into the class

described above. We find 28 such solutions with YA/B ≤ 10 and Y ′

A,L/R = ±p/q with

p, q ≤ 10, occurring in 14 mirror pairs with Y ′

A,L ↔ −Y ′

A,R. The simplest of these is

(Y ′

A,L, Y
′

A,R, YA, YB) =

(

−1,−3

2
, 2, 2

)

, (4.36)

which is accompanied by its mirror solution.

Examining the gauge eigenstates, we find no solutions with an axial DM particle Y ′

χ,L =

−Y ′

χ,R in this section. Therefore, ignoring the possible effects of mixing, we expect strong

direct detection bounds to be relevant. However, based on our results in section 3, we

expect that adding two SM-singlet dark fermions would allow an anomaly-free theory to

exist in which one of the dark sector particles has an axial coupling.

As in the two-dark-fermion case studied in section 3, the interaction eigenstates

(A,B, χ) in the models studied in this section will in general mix via a combination of

‘Majorana’ and ‘Dirac’ entries in the mass matrix, that are model-dependent. We do not

discuss any details here, but note that many of the remarks made in section 3 apply here

also: the mixing may give the lightest mass eigenstate (the DM particle) an admixture

of vector-like coupling, which would vanish in the degenerate limit in which it was much

lighter than the other mass eigenstates, and the heavier mass eigenstates would, in general,

decay via off-diagonal Z ′ couplings into lighter mass eigenstates by emitting SM f̄f pairs.

Finally we note that ,if the χ state mixes with a neutral component of A or B, then a cou-

pling to the SM Z boson would be generated. Such a coupling is very heavily constrained,

see, e.g., [63], putting pressure on the viability of χ as a DM candidate in such a case.

5 Summary

As we have seen in this paper, the cancellation of anomalies is a non-trivial constraint on

SDMMs with a spin-one mediator boson Z ′. Our analysis has led us to consider three

classes of models:

One exotic fermion. If the SM is supplemented by a single new fermion, a DM particle

that is a singlet of the SM gauge group, the Z ′ cannot be leptophobic unless it also decouples

from quarks. A benchmark model in this class is specified at the end of section 2, see (2.11).

This model contains a single vector-like fermionic DM candidate which does not contribute

to any anomalies — the assigned charges of the standard model fields alone cancel all

anomalies. As such, this model is the Y-sequential model [33, 36] with the addition of

a DM candidate. The relative coupling of the Z ′ to quarks and leptons is fixed and

comparable, meaning that LHC dilepton bounds would rule out much of the parameter

space. Moreover, to the extent that the DM particle has non-vanishing SM couplings, they

must be vectorial, meaning that the cross section for scattering off a nucleus would not be

velocity suppressed and would also be coherently enhanced. Therefore an SDMM with just

a DM fermion and a Z ′ is very strongly constrained by LHC searches [54, 55] and direct

DM scattering experiments [56, 57].
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Axial dark matter. If the DM particle is to have a purely axial U(1)′ coupling, which

would diminish the impact of the DM scattering experiments [56, 57], then it must be ac-

companied by at least one other new singlet fermion. However, the U(1)′ charges of the SM

leptons still do not vanish if there is a single such fermion, or several with identical charges.

Thus, the Z ′ in such a model would still be subject to strong LHC constraints [54, 55]. A

benchmark model in this class is specified at the end of section 3, see (3.8) and (3.10).

Leptophobic models. We find several anomaly free leptophobic models only if the DM

fermion is accompanied by at least two other new fermions with non-identical charges, at

least one of which is a non-singlet under the SM gauge group. One of these models is the

model with a baryonic DM particle presented in [42–45]. These models may be subject

to constraints from LHC searches for new fermions with non-trivial SM quantum numbers

that would need to be considered in assessing the parameter spaces of such models. A

benchmark model with a new SU(2)W doublet fermion is specified in (4.21) and (4.22),

and one with a new SU(2)W triplet fermion is specified in (4.30).

Beyond the specific models presented here, we re-emphasize the general point that

proponents of SDMMs should ensure that they implement the anomaly-cancellation con-

straints. The bad news is that the resulting models may not be so simple, but the good

news is that anomaly cancellation can relate the SM and DM couplings of the Z ′ and

furthermore the additional fermions may have novel experimental signatures.
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