

Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

Petr Gallus on behalf of the ATLAS Collaboration 25th International Workshop on Deep Inelastic Scattering and Related Topics University of Birmingham

30/03/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

Why measure the Quarkonia and Vector bosons in A+A collisions

Vector bosons

- don't interact with quark gluon plasma
- provide information on nuclear collision geometry and cold nuclear matter effects

Quarkonia

- bound states of c or b quarks and antiquarks
- interacts strongly with environment
- two types of interactions cold and hot matter effects

courtesy of A. Mocsy

Nuclear modification factor
$$T_{AA}$$
 = nuclear thickness function
 $R_{AA} = \frac{N^{AA}}{\langle T_{AA} \rangle \times \sigma^{pp}}$

ATLAS detector

Z boson measurements

Presented new measurements

- February 2017 Z boson production- ATLAS-CONF-2017-010
 - 2015 Pb+Pb $\sqrt{s_{NN}} = 5.02 \ TeV$
- September 2016 Z boson production ATLAS-CONF-2016-107
 - 2015 p+p $\sqrt{s} = 5.02 \, TeV$ and 2013 p+Pb $\sqrt{s_{NN}} = 5.02 \, TeV$

p+p

Trigger p+p

Method

Pb+Pb

Event selection

- $|z_0| < 150 \, mm$
- no pile-up

one muon MU8 at HLT

Analysis range

- 2 muons, |y| < 2.5(2.4), $p_T > 20 \ GeV$
- $m_{\mu\mu} \in \langle 66; 116 \rangle \, GeV$
- centrality 0-80%

Yields are calculated by

- subtracting the background
- applying the corrections ٠

one muon MU14 at HLT Analysis range Trigger

- 2 muons, $p_T > 20 \, GeV$, |v| < 2.4
- $m_{\mu\mu} \in \langle 66; 116 \rangle \, GeV$

pp

Data compared to prediction Pb+Pb

Detector performance of the measurement is well described by simulations

30/03/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

Yields per event scaled by T_{AA} and R_{AA}

Pb+Pb measurements are compatible with pp measurement after scaling.

ATLAS-CONF-2016-107

ATLAS-CONF-2017-010

3/30/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

Yields in centrality scaled by T_{AA}

Yield scales well with T_{AA} in all centrality bins, in some bins yield has smaller uncertainty than T_{AA} .

ATLAS-CONF-2017-010

3/30/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

We observe suppression in forward rapidity in events corresponding to low x on nucleus, measurement is sensitive to nuclear shadowing which is not simulated in our MC

ATLAS-CONF-2016-107

3/30/2017 Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

J/ψ and $\psi(2S)$ measurements

- May 2015 J/ψ paper arXiv: 1505.08141 [hep-ex]
 - 2013 p+Pb $\sqrt{s_{NN}} = 5.02 \, TeV$
- June 2015 J/ψ and $\psi(2S)$ ATLAS-CONF-2015-023
 - 2013 p+Pb $\sqrt{s_{NN}} = 5.02 \ TeV$ and p+p $\sqrt{s} = 2.76 \ TeV$
- September 2016 J/ψ and $\psi(2S)$ ATLAS-CONF-2016-109
 - 2015 Pb+Pb $\sqrt{s_{NN}} = 5.02 \, TeV$ and p+p $\sqrt{s} = 5.02 \, TeV$

Method

Trigger : different for p+Pb and Pb+Pb

- p+Pb: at least one muon at L1 (MU0),
 - 2 muons with $p_T > 2 GeV$ at HLT
- Pb+Pb: at least one muon at L1 (MU4),

2 muons with $p_T > 4 \text{ GeV}$ at HLT

Analysis range

- p+Pb: $p_T \in \langle 8.5; 30 \rangle \, GeV, |y^*| < 1.94 \, (1.5)$
- Pb+Pb: $p_T \in \langle 9; 40 \rangle \text{ GeV}, |y| < 2$, centrality 0-80%

Perform weighted 2D unbinned maximum likelihood fit

- dimuon invariant mass and lifetime
- extract fraction of prompt and non-prompt
 - Prompt direct production, feed-down contribution
 - Non-prompt decay from B hadrons
- per-Dimuon weight: trigger, reconstruction, acceptance

Non-Prompt fraction of J/ψ as a function of p_T

No visible |y| dependence, but significant p_T dependence, both distributions are comparable.

ATLAS-CONF-2016-109

arXiv: 1505.08141 [hep-ex]

Non-Prompt fraction of J/ψ as a function of p_T

Nuclear modification factor of J/ψ (R_{PbPb})

For prompt $J/\psi R_{PbPb}$ is a function of p_T , for non-prompt J/ψ no significant dependence of R_{PbPb} on p_T

ATLAS-CONF-2016-109

Nuclear modification factor of J/ψ (R_{PbPb})

Suppression is strongly centrality dependent, regardless of on production mechanism

ATLAS-CONF-2016-109

Comparison of Z boson and J/ψ yields in p+Pb collisions

Ratio of the yields is independent on event activity, number of Z and J/ψ particles scale with the number of interactions

ATLAS-CONF-2015-023

Summary

- Charmonia and Z boson production in p+Pb and Pb+Pb collisions are presented.
- Z boson
 - After scaling by T_{AA} , yields are described by pQCD
 - Nuclear modification factor R_{PbPb} is consistent with unity in centrality and rapidity
- Charmonia $(J/\psi \text{ and } \psi(2S))$:
 - Charmonium R_{pPb} shows no obvious p_T and rapidity dependence.
 - Charmonium R_{PbPb} shows different behavior for prompt and nonprompt J/ψ in p_T dependence.
 - Charmonium R_{PbPb} shows strong centrality dependence.
- Ratio N_{ψ} / N_{Z} in p+Pb is independent on event activity and could be used as a benchmark for T_{AA} and N_{coll} .
- ATLAS HI Public Results

Additional slides

Pseudo-proper decay time

$$\tau = \frac{L_{xy}m_{\mu\mu}}{p_T^{\mu\mu}}$$

 L_{xy} = projection of decay length on the transverse plane

1 9

Definition of y*

$$y^* = y_{lab} - 0.465$$

$$y^* = -(y_{lab} + 0.465)$$

due to shift of center of mass

y* is defined as positive in proton beam direction

2

0

Nuclear modification factor R_{AA} and R_{pA}

$$R_{AA} = \frac{N^{AA}}{\langle T_{AA} \rangle \times \sigma^{pp}}$$

- N^{AA} per-event yield of quarkonia states in A+A collisions
- $\langle T_{AA}
 angle$ mean nuclear function ψ
- σ^{pp} cross section in pp collisions

$$R_{pA} = \frac{1}{A^{Pb}} \frac{d^2 \sigma_{\psi}^{p+Pb}/dy * dp_T}{d^2 \sigma_{\psi}^{p+p}/dy * dp_T}$$

$$R_{pA}^{cent} = \frac{\langle 1/N_{evt}^{cent} \rangle \ d^2 N^{p+Pb} / dy dp_T|_{cent}}{\langle T_{pPb} \rangle_{cent} \ d^2 \sigma^{pp} / dy dp_T}$$

2

1

Simultaneous Fit Method

$$PDF(m, \tau) = \sum_{i=1}^{7} k_i f_i(m) \cdot h_i(\tau) * g(\tau)$$

$$CB: Crystal ball function$$

$$G: Gaussian$$

$$E: Exponential$$

$$g: Double Gaussian$$

$$\int_{12.5 < p_{\tau} < 16.0 \text{ GeV}} ATLAS Preliminary pp \sqrt{s} = 5.02 \text{ TeV}, \int Ldt = 25 \text{ pb}^{-1}$$

$$\int_{10^3} 10^4 \int_{10^3} 10^4$$

30/03/Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb2017collisions with ATLAS at the LHC

Pb+Pb per-event yields

Yields are centrality and p_T dependent

ATLAS-CONF-2016-109

30/03/Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb2017collisions with ATLAS at the LHC

Nuclear modification factor of J/ψ (R_{pPb})

No significant p_T dependence, R_{pPb} is above unity, but within systematics uncertainties

pp reference is interpolated from 2.76 TeV, 7 TeV and 8 TeVATLAS-CONF-2015-023pp reference @5.02 TeV is in preparation
30/03/ Petr Gallus - Vector boson and quarkonia production in p+Pb and Pb+Pb
2017 collisions with ATLAS at the LHC24