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Abstract

Numerical stochastic perturbation theory is a powerful tool for estimating high-order

perturbative expansions in lattice field theory. The standard algorithms based on the

Langevin equation, however, suffer from several limitations which in practice restrict the

potential of this technique. In this work we investigate some alternative methods which

could in principle improve on the standard approach. In particular, we present a study of

the recently proposed Instantaneous Stochastic Perturbation Theory, as well as a formu-

lation of numerical stochastic perturbation theory based on Generalized Hybrid Molec-

ular Dynamics algorithms. The viability of these methods is investigated in ϕ4 theory.ar
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1 Introduction

Lattice perturbation theory (LPT) is an important tool in lattice field theory, and in par-

ticular in related renormalization problems (see, e.g., [1, 2, 3] for an introduction). LPT

may be used to compute the matching of physical renormalization schemes employed on

the lattice and schemes commonly used in continuum perturbative calculations, such as

the MS-scheme of dimensional regularization.1 In addition LPT gives insight into lattice

artefacts of the theory, allowing for both the perturbative determination of Symanzik

improvement coefficients and, more generally, of the lattice artefacts in observables of

interest.

LPT is technically much more involved than its continuum counterpart because

of the complicated form of its vertices and propagators, and usually requires numer-

ical evaluation for even simple diagrams. This is especially true when sophisticated

lattice discretizations are considered. Additionally, in the case of gauge theories, the

appearance of new vertices at every order of perturbation theory makes the number of

diagrams grow very rapidly with the perturbative order, leaving only low-order results

accessible to standard techniques.

Numerical stochastic perturbation theory (NSPT) was proposed long ago [4, 5]

(see [6] for a detailed review, and [7, 8, 9] for recent developments) in order to circumvent

these general difficulties, and thus enable high-order perturbative computations in LPT.

The basic idea of NSPT is the numerical integration of a discrete version of the equations

of stochastic perturbation theory [10] (see [11] for a review). More precisely, starting

from the Langevin equation the stochastic field is expanded as a power series in the

couplings of the theory and the resulting equations are solved order by order in these

couplings. No Feynman diagrams need to be identified or computed, but rather a

system of stochastic differential equations is integrated numerically using Monte Carlo

techniques. In this framework perturbative calculations may be highly automated.

Complicated observables can be considered with no additional difficulty, and the cost of

these methods scales mildly with the perturbative order. In principle, NSPT allows high-

order perturbative determinations even in cases where the corresponding continuum

calculations are not feasible.

Of course this requires that the continuum limit can be evaluated reliably. This

is a limitation that may restrict the applicability of NSPT. Firstly, the results at finite

lattice resolution unavoidably come with statistical uncertainties due to their Monte

Carlo estimation. In particular, the numerical simulations suffer from critical slowing

down as the continuum limit of the theory is approached; this significantly increases

the computational effort necessary to extract continuum results from NSPT. Secondly,

this class of algorithms is not exact: therefore a sequence of simulations with finer and

finer discretization of the relevant equations must be performed in order to extrapolate

away systematic errors in the results. It is thus difficult to obtain precise results close

1Physical renormalization schemes are those that do not explicitly depend on the regulator.

1



to the continuum limit for which both systematic and statistical errors are under con-

trol. Without continuum extrapolation these methods only provide lattice estimates for

perturbative quantities, which in practice may be of limited use.

Experience with conventional algorithms for non-perturbative lattice field theory

simulations suggests that a different choice of stochastic process might significantly alle-

viate these limitations. In particular, the class of methods known as Generalized Hybrid

Molecular Dynamics (GHMD) algorithms have proven to be superior to Langevin algo-

rithms in this respect; in fact the latter are a special case of the former.

From a different perspective Martin Lüscher recently introduced a new form of

NSPT, namely Instantaneous Stochastic Perturbation Theory (ISPT) [12]. In this work,

he discussed how the above limitations can in principle be eliminated completely by

formulating NSPT in terms of a certain class of trivializing fields. This method lies

somewhere between Langevin NSPT and more conventional diagrammatic perturbation

theory.

The aim of this work is to compare the standard NSPT formulation, ISPT, and

NSPT based upon GHMD algorithms. Specifically, we will focus on two GHMD algo-

rithms, namely the Hybrid Molecular Dynamics (HMD) algorithm and Kramers algo-

rithm.

The structure of the paper is as follows. In §2 we give some general definition

including the lattice action and observables used in this study. In §3 we review ISPT,

paying attention to its numerical implementation. §4 is dedicated to a review of the

standard NSPT approach based on the Langevin equation (LSPT). In §5 we introduce

NSPT based on the HMD algorithm (HSPT) and Kramers algorithm (KSPT). Finally,

in §6 we present results of the numerical investigation of the different methods, followed

by our conclusions. Preliminary results of our study appeared in [13].

2 Definitions

2.1 Lattice theory

We consider the simple ϕ4 theory, with ϕ a single component real field, defined on a

four-dimensional Euclidean lattice of extent L in all directions. The theory is specified

by the lattice action,

S(ϕ) = a4
∑
x∈Ω

(
1

2
∂µϕ(x)∂µϕ(x) +

1

2
m2

0ϕ(x)2 +
g0

4!
ϕ(x)4

)
, (2.1)

where ϕ is the bare field, ∂µϕ(x) =
(
ϕ(x + aµ̂) − ϕ(x)

)
/a is the usual forward lattice

derivative with µ̂ being a unit vector in the direction µ = 0, . . . , 3, and a is the lattice

spacing. The sum in (2.1) runs over the set Ω of all lattice points x = (x0, x1, x2, x3)

with xi/a ∈ ZL/a, while the field ϕ satisfies the periodicity conditions ϕ(x+µ̂L) = ϕ(x),

∀µ. The parameters m0 and g0 are the bare mass and coupling constant; they are related
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to the renormalized quantities m and g by

m2 = m2
0 − δm2 = m2

0 −
∞∑
k=1

m2
k g

k
0 , (2.2)

g = g0 − δg = g0 +
∞∑
k=2

ck g
k
0 , (2.3)

where the coefficients m2
k and ck of the mass and coupling counterterms δm2 and δg are

determined order by order in the coupling from the renormalization conditions; these

are discussed below.

Given these definitions the expectation value of a generic observable O(ϕ) of the

field is defined as usual through the Euclidean functional integral

〈O〉 =
1

Z

∫
Dϕe−S(ϕ)O(ϕ), Dϕ ≡

∏
x∈Ω

dϕ(x), (2.4)

where the constant Z is fixed by the condition 〈1〉 = 1. Of interest for the following

discussion is the bare two-point function,

χ2(p) = a4
∑
x∈Ω

e−ipx
〈
ϕ(x)ϕ(0)

〉
, (2.5)

where p = (p0, p1, p2, p3) with pi = 2πni/L and ni ∈ ZL/a are the allowed momenta

in a periodic box; the set of such momenta will be denoted in the following by Ω̃. In

particular, we will consider

χ2 ≡ χ2(0) and χ∗2 ≡ χ2(p∗), (2.6)

where p∗ is the minimal non-zero momentum given by p∗ = (2π/L, 0, 0, 0).2

2.2 Renormalization conditions and observables

In order to study the continuum limit of the theory some renormalization conditions

must be chosen to define the renormalized parameters and fields; we use the finite

size renormalization scheme described in [14]. For simplicity we study the symmetric

phase of the theory, although the methods we shall present can be adapted to the

spontaneously broken phase too.

Our definition of a renormalized mass m is obtained from

χ2

χ∗2
= 1 +

p̂2
∗

m2
, (2.7)

2In general we shall consider lattice units where a = 1 from now on. Nevertheless, the lattice spacing

may be included in some formulas for clarity.

3



where p̂2 =
∑

µ p̂
2
µ, with p̂µ = 2 sin(pµ/2) being the usual lattice momenta. The finite

size continuum limit may then be defined by keeping the combination

z = mL (2.8)

fixed.

More precisely, for a given choice of z the continuum limit is approached by taking

the lattice size L = L/a → ∞ while tuning the lattice mass m = am → 0, such that z

has the desired value. The possible values of z thus identify a family of renormalization

schemes.

The wavefunction renormalization Z = Z(g0, L/a, am) which defines the renormal-

ized elementary field ϕR(x) = Z−1/2ϕ(x) is fixed by

Z−1 =
χ∗−1

2 − χ−1
2

p̂2∗
=⇒ Z = m2χ2. (2.9)

Given these definitions, we introduce the renormalized coupling

g = −χ4

χ2
2

m4, (2.10)

where χ4 is the bare connected four-point function at zero external momenta,

χ4 =
∑

x,y,z∈Ω

〈
ϕ(x)ϕ(y)ϕ(z)ϕ(0)

〉
− 3L4χ2

2. (2.11)

The above renormalization conditions are a natural extension of textbook renormaliza-

tion conditions for ϕ4 theory in a finite lattice volume. What is relevant for the present

study is the fact that the coupling (2.10) is known to two-loop order in lattice pertur-

bation theory [14]: this provides us with a non-trivial result to compare with. On the

other hand, a precise determination of (2.11) using the Monte Carlo methods presented

in the next sections is difficult on large lattices (required to be close to the continuum

limit) due to the stochastic subtraction of the disconnected contribution.

In order to obtain precise and simple quantities with well-defined continuum limits

we consider observables defined through the gradient flow (see [15, 16] for an intro-

duction). In the case of the ϕ4 theory the gradient flow equations take the simple

form [17, 18]

∂tϕ̃(t, x) = ∂2ϕ̃(t, x) with ϕ̃(0, x) = ϕR(x), (2.12)

where t ≥ 0 is the flow time and ∂2 =
∑

µ ∂
∗
µ∂µ, with ∂∗µϕ(x) = ϕ(x) − ϕ(x − µ̂),

is the usual lattice Laplacian. In particular, products of fields at positive flow time

are automatically renormalized if the parameters of the theory are renormalized. The

dimensionless quantity

E(t) = t2〈E(t, x)〉 with E(t, x) = ϕ̃(t, x)4, (2.13)

4



for example, is finite without any additional renormalization, provided that the physical

flow time t is held fixed as the continuum limit of the theory is approached. Hence,

we define the finite size continuum limit of flow quantities like (2.13) by holding the

ratio [19]

c =
√

8t/L (2.14)

fixed. The continuum limit is thus taken by increasing the lattice size L = L/a and the

flow time in lattice units t = t/a2 such that c is fixed to some chosen value; different

values of c define different renormalization schemes.

3 An implementation of ISPT in ϕ4 theory

The first new technique we present is ISPT. Here we limit ourselves to describing the

essential features of this approach in order to emphasize the most prominent differences

with standard NSPT techniques. This short review will also help introduce our notation

and some concepts useful for later discussions. We recommend the reader to the original

reference [12] where a detailed presentation is to be found.3

3.1 Definitions

ISPT is based on the concept of trivializing maps. In the most general case these

transform a set of Gaussian-distributed random fields ηi(x), for i = 0, 1, 2, . . ., into a

stochastic field φ(x) such that〈
φ(x1) · · ·φ(xn)

〉
η

=
〈
ϕ(x1) · · ·ϕ(xn)

〉
(3.1)

order by order in the couplings of the theory. Here the expectation value on the right

hand side is defined by (2.4), whereas that on the left hand side it is given in terms of

averages over the Gaussian random fields:〈
ηi(x)

〉
η

= 0,
〈
ηi(x)ηj(y)

〉
η

= δijδxy. (3.2)

In perturbation theory the stochastic field φ can be represented as a power series in

the couplings of the theory. In particular, in the regularized theory we can consider an

expansion in terms of the bare coupling g0,

φ(x) =

N∑
k=0

φk(x)gk0 +O(gN+1
0 ). (3.3)

If this is given the corresponding expansion in terms of a renormalized coupling is

easily obtained using relation (2.3) (q.v., Appendix A.1). On the other hand, the

determination of the coefficients φk in terms of the renormalized mass, instead of the

3Additional useful material is provided by the author of [12] in the documentation for the publicly

available package [20].
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bare mass, requires explicit computation of the mass counterterm contributions. For

the numerical implementation of the method it is thus convenient to store the field as a

two-dimensional array φk,` with the indices corresponding to the powers of g0 and δm2:

φ(x) =

N∑
k,`=0

φk,`(x)gk0 (δm2)` +O(gN+1
0 ). (3.4)

Once the expansion (2.2) is known it is trivial to pass from the representation (3.4)

to (3.3). Using the representation (3.4) the expansion (2.2) can be determined and thus

the results obtained in terms of the renormalized mass. This is discussed in detail in

Appendix A.2; we recommend that the reader consults this appendix only after reading

the remainder of this section in which all the relevant definitions are introduced.

We find at the lowest-order in the coupling

φ0,0(x) =
∑
y∈Ω

H(x, y)η0(y), (3.5)

where H is the Green function for the operator
√
−∂2 +m2,

H(x, y) =
1

L4

∑
p∈Ω̃

eip(x−y)
√
G̃(p), where G̃(p) =

1

p̂2 +m2
. (3.6)

It is easy to show that this field satisfies (3.1) at lowest order in the coupling.

Beyond the leading order there is more freedom to define the trivializing field.

Following [12] we write this as a linear combination of the values v(x,Ri) of the rooted

tree diagrams Ri with coefficients c(Ri),

φk,l(x) =
∑
i∈Sk,l

c(Ri)v(x,Ri), (3.7)

where Sk,l is the set of all diagrams of order gk0 and (δm2)l. Graphical representations

of the rooted tree-diagrams contributing to O(g0) (k + ` = 1) and O(g2
0) (k + ` = 2)

are given in Figures 1 and 2 respectively; the corresponding coefficients c(Ri) are also

shown. In this representation the leaves of the trees are given by

= χi(x) =
∑
y∈Ω

H(x, y)ηi(y), (3.8)

where the index i is the number adjacent to the open circle in the graph; if no such

number is displayed it is implicit that i = 0. The leaves are thus given by the lowest

order solution (3.5) with the appropriate choice of random field ηi.

Black circles and crosses represent the vertices of the theory: they are the usual ϕ4

vertex and mass counterterm insertions,

= −1, = 1. (3.9)
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Figure 1: Rooted tree-diagrams contributing at O(g0); note that δm2 = O(g0).
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Figure 2: Rooted tree-diagrams contributing at O(g2
0); note that δm2 = O(g0).
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These are associated with implicit factors of −g and δm2 respectively. Black lines

connecting two vertices correspond to the scalar propagator,

= G(x, y) =
1

L4

∑
p∈Ω̃

eip(x−y)G̃(p), (3.10)

where x and y are the positions of the two vertices connected by the given propagator. In

particular, at each vertex the fields attached are multiplied together and the propagator

is applied to the resulting product of fields.

The root of the diagram is given by

= G(x, y), (3.11)

where x is the space-time index of the corresponding rooted tree Ri.
To give some examples, given some η0(x) and η1(x) fields, the diagram labeled ·

in Figure 1 evaluates to

v(x,R2) = (−1)
∑
y∈Ω

G(x, y)χ0(y)χ1(y)2. (3.12)

This contributes to φ1,0(x) with a coefficient c(R2) = 1/8. Diagram ¹ in Figure 2,

stands for

v(x,R4) = (−1)
∑
y∈Ω

G(x, y)χ0(y)2
∑
z∈Ω

G(y, z)χ0(z), (3.13)

and contributes to φ1,1(x) with c(R4) = 5/48.

gk0 n c(R) 6= 0

1 3 3

2 10 10

3 44 43

4 241 231

5 1,506 1,420

6 10,778 10,015

Total 12,582 11,722

Table 1: Number of rooted-tree diagrams appearing at a given order in the coupling g0.

The column labeled by c(R) 6= 0 gives the number of such diagrams whose coefficient

c(Ri) is non-vanishing.

Given these examples it is clear that the evaluation of the trivializing map for a

given set of random fields ηi is in principle straightforward. Beyond the lowest pertur-

bative orders though the number of diagrams (as well as their complexity) increases

rapidly as indicated in Table 1, so the computation must be automated.
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For this work we wrote a program that evaluates the trivializing field φ(x) up to

an arbitrary order N in the couplings for a given set of ηi fields. For the structure of

the relevant diagrams and the determination of their coefficients we used the software

package provided by Martin Lüscher [20]. The diagrams are given as C structs of

abstract elements, so our program visits each vertex in a diagram using depth-first

recursion starting from the root, and evaluates the corresponding numerical expressions.

The diagrams are collected according to their order in the couplings and the φk,l(x) fields

are thus constructed. This allows the series (3.4) to be obtained for some set of ηi fields.

Once this is done, correlation functions of the trivializing field can be expanded order by

order in the couplings and evaluated stochastically by averaging over different samples

of the Gaussian random fields ηi. In particular, the perturbative expansion of generic

observables of the trivializing field O(φ) can be computed by iterating order by order

convolution operations of the form,

(φ · φ)(x, y) = φ(x)φ(y) =⇒ (φ · φ)k,`(x, y) =
∑

0≤i≤k

∑
0≤j≤`

φk−i,`−j(x)φi,j(y), (3.14)

and similarly for other elementary operations. In this way one obtains the generic

stochastic perturbative field,

O(φ) =
N∑

k,`=0

Ok,`(φ0,0, . . . , φk,`) g
k
0 (δm2)` +O(gN+1

0 ), (3.15)

from which the perturbative expansion of the expectation value of the field O(ϕ) in

ϕ4 theory,

〈O〉 =
N∑

k,`=0

ak,` g
k
0 (δm2)` +O(gN+1

0 ), (3.16)

is obtained up to O(gN+1
0 ) corrections as

〈O〉η = 〈O〉 ⇐⇒ 〈Ok,`〉η = ak,`. (3.17)

Once the expansion (3.15) is known the corresponding expansion in terms of a given

renormalized mass and coupling (as well as any renormalization of the field O) is easily

found (q.v., Appendix A).

We should mention some additional technical details. First, in the diagrammatic

computation the scalar propagators are applied in momentum space, while the products

of fields at vertices are performed in position space. This is implemented using the

efficient numerical evaluation of the discrete Fourier transformation provided by the

FFTW package [21]. As a result the cost of the computation of the diagrams scales

proportionally to the system size V = L4 up to logarithms. Second, as already noted

in [12], the computation of the rooted tree diagrams could be organized in such a way

that identical sub-trees in different graphs are cached. How to do this efficiently is a

non-trivial issue even for ϕ4 theory, and we did not investigate it further. Moreover,

9



whether this is really worth investigating is not clear since, as we shall see below, ISPT

suffers from some severe limitations once high-order computations are considered. Its

utility might thus be limited to relatively low-order computations where recomputation

of subgraphs is not a significant issue.

The advantages of ISPT are that its results are exact up to statistical uncertainties

and that there are no autocorrelations as the coefficients φk,` are generated “instanta-

neously” from independent Gaussian random fields ηi.

3.2 A test of the method

We tested our ISPT implementation by comparing some results with those obtained

using conventional perturbative lattice calculations (LPT). We computed the renormal-

ized coupling (2.10) and compared it with its two-loop determination from [14], which

we evaluated for the parameters of interest (see below). We considered both the case

where the perturbative expansion is given in terms of the renormalized mass (2.7), and

the case where it is given in terms of the bare mass m0.4 The comparison was done on

a tiny lattice with L = 4, where high statistics could be gathered, and the value of the

mass was chosen such that z = 4. The results of the tests are reported in Table 2; for

completeness we also give the results for δm2 in the table.

Mass c2 × 102 c3 × 103 m2
1 × 102 m2

2 × 104

LPT m −3.330 1.583 −6.4221 3.6702

ISPT m −3.332(6) 1.582(4) −6.4220(1) 3.6704(6)

LPT m0 −3.33 2.965

ISPT m0 −3.33(1) 2.964(5)

Table 2: Results for the series (2.3) and (2.2) as obtained from ISPT and conventional

LPT for L = 4 and z = Mass × L using 108 field configurations. The perturbative

expansion for the coupling (2.3) is obtained both in terms of the renormalized mass m

of (2.7) and the bare mass m0.

As can be seen from the table there is good agreement between the ISPT and the

LPT determinations, thus confirming the correctness of our implementation. In the case

where the mass renormalization is considered one needs to take into account the effect

of statistical errors in the mass renormalization procedure discussed in Appendix A.2:

we did this using the jackknife method.

4 NSPT based on the Langevin equation

Having introduced ISPT, in this and the following section we discuss the other NSPT

methods that we studied. In these methods the stochastic field φ is generated through

4In ISPT the latter is simply obtained by setting δm2 = 0 in the corresponding expansion (3.15).
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a Markov process based on some stochastic differential equation expanded up to some

fixed order in the couplings of the theory. We start from the standard NSPT based on

the Langevin equation; for later convenience we shall refer to this algorithm as LSPT.

This algorithm has a long history and has been studied in great detail over the years:

we thus limit ourselves to recalling the most relevant features for what follows, while

referring the reader to the literature for a more detailed account (see, e.g., [6] and

references therein).

4.1 Definition

The standard LSPT approach is based on stochastic quantization [10, 22, 23, 24, 11],

where the field representing the theory is obtained as the solution of the Langevin

equation,

∂tsφ(ts, x) = −F
(
φ(ts, x)

)
+ η(ts, x), (4.1)

where F (
(
φ(ts, x)

)
denotes the functional derivative of the action (2.1) evaluated on the

field configuration φ(ts, x),

F
(
φ(ts, x)

)
=

δS[φ]

δφ(ts, x)
= −∂2φ(ts, x) + (m2 + δm2)φ(ts, x) +

g0

3!
φ(ts, x)3. (4.2)

We have written the bare mass m0 in terms of the renormalized mass and its counterterm

(q.v., (2.2)). In the above equations ts is the so called stochastic (or simulation) time in

which the stochastic field φ evolves. The field η is a field of Gaussian random numbers

satisfying5 〈
η(ts, x)

〉
η

= 0,
〈
η(ts, x)η(t′s, y)

〉
η

= 2δ(ts − t′s)δxy. (4.3)

Through the Langevin equation (4.1) the field φ depends upon the random field η. The

main assertion of stochastic quantization is that the following identity holds order by

order in perturbation theory:

lim
ts→∞

〈
φ(ts, x1) · · ·φ(ts, xn)

〉
η

=
〈
ϕ(x1) · · ·ϕ(xn)

〉
. (4.4)

Hence, in the long stochastic time limit the equal time correlation functions of the

stochastic field φ converge to the expectation values (2.4) of the Euclidean field theory

with action S; in particular the equilibrium probability distribution of the stochastic

field φ is proportional to e−S(φ). Equivalently, one can say that in this limit the Langevin

equation effectively trivializes the original theory (q.v., (3.1)).

Stochastic perturbation theory amounts to solving the Langevin equation (4.1)

order by order in the couplings of the theory; in our case these are g0 and δm2. Substi-

tuting the expansion of the stochastic field φ analogous to (3.4) into (4.1) gives a system

5We use the same notation for the random field correlation functions as in ISPT. We believe that no

confusion is possible as it should be clear from the context, as well as from the different indices, which

field we are referring to.
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of equations for the fixed order fields,

∂tsφ0,0(ts, x) = (∂2 −m2)φ0,0(ts, x) + η(ts, x),

∂tsφ1,0(ts, x) = (∂2 −m2)φ1,0(ts, x)− 1

3!
φ0,0(ts, x)3,

∂tsφ0,1(ts, x) = (∂2 −m2)φ0,1(ts, x)− φ0,0(ts, x),

(4.5)

and so on. These equations can readily be solved for the φk,` fields. Once a solution

is obtained up to a given order in the coupling, (4.4) can be used to compute the

perturbative expansion of any correlation function in the corresponding Euclidean field

theory (see [11] for explicit examples of such calculations).

LSPT is the numerical implementation of this idea. Stochastic time is discretized

as ts = nε, with n ∈ N and ε being the step-size; a solution of the (discrete) Langevin

equation is then obtained according to some given integration scheme. The simplest

such solution is provided by the Euler scheme, which is defined by the update step

φ
(
(n+ 1)ε, x

)
= φ(nε, x)− εF

(
φ(nε, x)

)
+
√
ε η(nε, x), (4.6)

where here the random field η is normalized such that
〈
η(nε, x)η(n′ε, y)

〉
η

= 2δnn′δxy,

and φ(0, x) is some given initial condition. The perturbative expansion of this solution

is performed in an automated fashion by employing order by order operations analogous

to (3.14); once this is given the expansion of a generic observable O
(
φ(ts)

)
is obtained

in the same way as in (3.15). Assuming ergodicity the average over the random field

distribution in (4.4) is replaced by an average over stochastic time, and one obtains

lim
ts→∞

〈
O(ts)

〉
η

= 〈O〉 ts=nε−−−−→ lim
T→∞

1

T

T∑
n=0

O
(
φ(nε)

)
= 〈O〉+O(εp). (4.7)

In the above relation the equivalence between correlation functions is valid order by

order in perturbation theory (q.v., (3.17)), whereas the power p depends on the order

of the chosen integration scheme (see below).6

As asserted earlier, stochastic estimates of perturbative expansions of the corre-

lation functions of the target theory are obtained by use of Monte Carlo sampling

based on the Langevin equation. We note that within the statistical uncertainties the

perturbative expansions so obtained are correct only up to systematic errors due to

the discretization of the stochastic time. As anticipated in (4.7) these corrections are

expected to vanish as some power of the step-size as ε → 0 [25, 26]. The rate of con-

vergence depends on the choice of the numerical integrator employed for the solution

of the Langevin equation. Such integrators are normally devised in such a way that

the discrete stochastic process associated with the given integration scheme of order p

converges, for small enough ε, to an equilibrium probability distribution P̄ (φ) ∝ e−S̄(φ)

6In practical simulations the value of T is necessarily finite, and one averages the fields only once

the discrete stochastic process has equilibrated.
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where S̄ = S+∆S with ∆S = O(εp). Such deviation from the desired equilibrium distri-

bution is the cause of the corrections in the expectation value in (4.7) (see, e.g., [26, 27]

for more details). In this work we used a second order Runge–Kutta integrator (RK2):

its exact definition is given by eqs. (A.4) and (A.15) of [28].7 Using this integrator one

expects corrections of O(ε2) in the perturbative computation of any correlation function.

It is clear that compared to ISPT the cost of LSPT with the perturbative order in

the couplings is rather mild. This is dictated by the order-by-order operations necessary

to integrate the discrete Langevin equation. Consequently, the computational cost of

LSPT increases (roughly) with the square of the order in each coupling (q.v., (3.14)).

However, as just mentioned, the results need to be extrapolated to zero in the step-size

to eliminate systematic errors in the results. In addition, as the fields entering in the

average in (4.7) are generated by a Markov process, the successive field configurations

are correlated; this increases the statistical error for a fixed number of field configura-

tions. These correlations need to be properly taken into account in order to obtain valid

error estimates for the results. Their magnitude is expected to grow proportionally to

L2 as the continuum limit of the theory is approached (see, e.g., [26, 29, 30]). This

result is valid for any perturbative order Ok,`
(
φ0,0(ts), . . . , φk,`(ts)

)
of the generic (mul-

tiplicatively renormalizable) stochastic field O
(
φ(ts)

)
, and follows from the remarkable

property that the Langevin equation is renormalizable [23, 24] (see [30] for a discus-

sion). This feature allows one to infer the scaling behavior of Langevin-based algo-

rithms not only in the free case where g0 = 0 but also in the full interacting theory.

In particular, as recently shown by Martin Lüscher [31], the renormalizability of the

Langevin equation also allows one to conclude that the variances of these coefficients,

Var(Ok,l) = limts→∞
(〈
O2
k,`(ts)

〉
η
−
〈
Ok,`(ts)

〉2

η

)
, are at most logarithmically divergent

when taking the continuum limit. This property is quite remarkable and is not guaran-

teed for other NSPT implementations.

5 NSPT based on GHMD algorithms

The idea of stochastic perturbation theory is not limited to the Langevin equation.

Any stochastic differential equation (SDE) which satisfies an analogous property to

(4.4) can provide a way of performing stochastic perturbation theory. One interesting

example is given by the stochastic molecular dynamics (SMD) equations (5.3). In

this context these were first considered in [32], and were recently studied in detail

in [30]. Similarly, one can set-up perturbation theory in terms of the Hybrid Molecular

Dynamics (HMD) equations [30]. This observation suggests the possibility of defining

NSPT based on the discretization of these SDEs or of ergodic variances of the molecular

dynamics (MD) equations; such as the Kramers [33, 34, 35, 36] and HMD algorithm

respectively [37]. Experience with conventional non-perturbative lattice field theory

simulations would suggest the advantages of reformulating NSPT in terms of these

7We note that the RK2 integrator considered here requires three force computations per step.
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algorithms rather than Langevin-based ones. However determining their efficiency in

this context, in particular their continuum scaling, is not a trivial issue. The results for

the free field theory [38] provide a complete understanding of the lowest perturbative

order dynamics. On the other hand the lack of renormalizability of the SMD and HMD

equations [30] in general precludes analytic control over the continuum scaling of these

algorithms in the interacting theory. In the case of NSPT this means a lack of control of

the behaviour of the higher-order fields. Consequently, the efficiency of these algorithms

in the context of NSPT must be addressed numerically; in particular the situation could

be substantially different from both the free case and the case where the full theory is

simulated.

In this section we define NSPT in terms of the HMD and Kramers algorithms

(see [38] and references therein for their definition). These are all inexact algorithms,

as we do not know how to add a Metropolis step that would be valid for arbitrary

values of the coupling beyond leading (free field) order. We could consider the more

general Generalized Hybrid Molecular Dynamics algorithm [38], but based on both

the expectations from free field theory and from non-perturbative lattice field theory

simulations the HMD and Kramers algorithms appear to be natural sub-classes of the

GHMD algorithm to consider. We shall assume the reader to be familiar with these

algorithms, and we limit ourselves to describing the required modifications for their

NSPT formulations. These algorithms will be called HSPT and KSPT, respectively.

5.1 HSPT

In the case of the HMD algorithm, the basic field evolution is described by the MD

equations,

∂tsφ(ts, x) = π(ts, x), ∂tsπ(ts, x) = −F
(
φ(ts, x)

)
, (5.1)

where F
(
φ(ts, x)

)
is given by (4.2), and π is the momentum field conjugate to φ. Sim-

ilarly to the Langevin case (cf. §4), in the context of NSPT both fields φ and π are

assumed to have an expansion of the form (3.4). All operations in the following are thus

intended to be performed in an order by order fashion (q.v., (3.14)).

As is well known an algorithm based on the MD equations alone conserves “energy”

and so is not ergodic: the latter needs to be supplemented by an occasional refreshment

of the momentum field. Therefore the momentum field π is sampled from a Gaussian

distribution with zero mean and unit variance at the beginning of each trajectory (ts =

t0); the refreshed momentum initially only has a non-zero lowest order component. In

formulas 〈
π0,0(t0, x)

〉
π

= 0,
〈
π0,0(t0, x)π0,0(t0, y)

〉
π

= δxy, (5.2)

and πk,`(t0, x) = 0 if either k > 0 or ` > 0, where 〈· · · 〉π denotes the average over

the momentum field distribution at the beginning of a trajectory. The momentum

field will acquire higher-order components during the MD evolution (5.1) from the time

t0 at which it was refreshed to time ts = t0 + τ , where τ is the trajectory length.
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Numerically the MD evolution is determined by discretizing the simulation time as

ts = nδt, with n ∈ N and δt the step-size, and employing a suitable integration scheme

(see below). Expectation values of generic observables are then obtained similarly to

(4.7) by averaging over sequences of trajectories.

For the numerical integration of the MD equations it is convenient to rely on some

reversible symplectic integration scheme, even though this is not necessary in principle.8

Symplectic integrators can systematically be improved, and sophisticated symplectic in-

tegrators are readily available (q.v., [39] for a discussion). Moreover, once an efficient

symplectic integrator is found for a scalar theory, it can be extended to non-Abelian

theories in a straightforward manner. For this work we used the fourth order integrator

defined by equations (63) and (71) of [40], which we refer to as the OMF4 integrator.9

Given this choice of integrator we expect O(δt4) errors in the results. More precisely,

we expect in general that the equilibrium probability distribution of fields generated

through the HMD algorithm with some symplectic integrator of order p is, for small

enough step-size δt, of the form P̄ (φ) ∝ e−S̄(φ), where S̄ = S + ∆S with ∆S = O(δtp)

(see [41] for more details). Consequently, since ∆S ∝ V , one may argue that in order

to keep the step-size errors in the equilibrium distribution (approximately) constant as

the system size V is increased, one needs to keep the quantity y ≡ V δtp fixed. It is clear

that this is feasible only if efficient high-order integrators are employed.10 We note that

although keeping y fixed would keep systematic errors in generic correlators approxi-

mately constant as the system size is increased, this is probably an over-conservative

condition if one is interested in (connected) correlation functions of local fields [25, 26].

The HSPT algorithm described so far is not yet ergodic, the problem being that

the evolution of the lowest-order (free) field φ0,0 is not ergodic [42, 38]; this in turn

affects the evolution of the higher-orders. The solution to this problem is simple and is

to randomize the trajectory length τ [42]. The choice of distribution for the trajectories

lengths may affect the efficiency of the algorithm. In our implementation we fixed the

step-size δt, while choosing the number of steps n composing the trajectory according

to a binomial distribution with mean 〈n〉. This defines the average trajectory length to

be 〈τ〉 = 〈n〉δt.
We conclude by pointing out that if one chooses τ = δt, i.e., the trajectory consists

of a single step, then the HMD algorithm effectively integrates the Langevin equation

(4.1) (q.v., [41] and below). In other words, in this case the algorithm just described

can be interpreted as a particular integration scheme for the Langevin equation.

8From here on we will refer to reversible symplectic integrators simply as symplectic integrators.
9We note that the OMF4 integrator requires six force computations per step.

10As mentioned before, we could include an accept/reject step in the HMD evolution of the lowest

order field φ0,0. In this case the equilibrium probability distribution would be correct at this order.

Keeping the acceptance probability fixed in this case would then require x = V δt2p to be fixed, which is

a less stringent condition than keeping y fixed. However, it is not clear what the step-size errors would

be for the higher-order components of the field in this case.
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5.2 KSPT

Having defined HSPT in terms of the HMD algorithm, a second interesting possibility

to consider is NSPT based on the Kramers algorithm. This algorithm was proposed

long ago in the context of field theory simulations by Horowitz [33, 34], and recently

reconsidered in [36]. In this case, the stochastic equations governing the fields dynamics

are given by the SMD equations,

∂tsφ(ts, x) = π(ts, x), ∂tsπ(ts, x) = −γπ(ts, x)− F
(
φ(ts, x)

)
+ η(ts, x). (5.3)

Here F
(
φ(ts, x)

)
is still defined by (4.2), while η(ts, x) is a Gaussian random field sat-

isfying 〈
η(ts, x)

〉
η

= 0,
〈
η(ts, x)η(t′s, y)

〉
η

= 2γδ(ts − t′s)δxy, (5.4)

where γ > 0 is a free parameter (see below). We observe that the (non-ergodic) MD

equations (5.1) are obtained when γ = 0 while, up to a rescaling of stochastic time, the

Langevin equation (4.1) is obtained for γ →∞ (q.v., [30]).

The implementation of Kramers algorithm is as follows. Starting from some arbi-

trary initial values for the fields φ(0, x) and π(0, x), the MD equations corresponding

to (5.3) with γ = 0 are integrated from ts = 0 to t′s = δt through a single step of a

given numerical integration scheme. The value of δt thus defines the step-size of the

integrator. After this MD step, the effect of the γ term and the coupling to the random

field η is taken into account by partially refreshing the momentum field: the momentum

field π(t′s, x) is replaced by

π′(t′s, x) = e−γδtπ(t′s, x) +
√

1− e−2γδt η(t′s, x), (5.5)

where the noise field is here normalized such that
〈
η(nδt, x)η(n′δt, y)

〉
η

= δnn′δxy. These

elementary steps are then alternated, and expectation values of generic observables of

the field are obtained as in (4.7) by averaging over a long Monte Carlo history, after they

have reached equilibrium. In a KSPT implementation, the fields φ and π are assumed

to have an expansion of the form (3.4), and just as in the Langevin case the random

field η only has a lowest-order component. Hence, during the partial refreshment (5.5)

only the lowest-order component of the momentum field π0,0 is affected by the random

field η, while the higher-order components are just rescaled by the factor e−γδt. In the

case where γ → ∞ (the Langevin limit) the algorithm described is just the single step

HSPT algorithm.

Having defined the algorithm, some comments are in order. First of all, as shown

by Horowitz’s analysis [33], the partial momentum refreshment (5.5) integrates exactly

the corresponding terms in (5.3). Similarly to the case of HSPT, the systematic errors

that one expects in expectation values of the fields (4.7) are given by the integration of

the MD equations in discrete steps; in particular analogous conclusions apply for the

order of the step-size errors in the equilibrium probability distribution (q.v., §5.1). For

the present work, we employed the very same OMF4 integrator that we used for HSPT:

we therefore expect O(δt4) step-size errors.
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Secondly, one might näıvely conclude from the free field theory analysis of [38]

that the KSPT algorithm just defined is not of much interest as it is not expected to

perform better than HSPT, at least close to the continuum limit. However, one has to

note that the conclusions in [38] refer to the exact implementation of these algorithms,

i.e., when a Metropolis accept/reject step is included. This is what leads to the critical

exponent for the cost of the algorithms being z = 1 for HMC but z = 3/2 for the exact

Kramers algorithm (KMC). However, in the case of NSPT one is limited to inexact

algorithms, so the computations have to be performed in a parameter regime where the

effect of step-size errors on expectation values are smaller than some specified statistical

accuracy, as otherwise some extrapolation in the step-size would be necessary. In this

regime, corresponding to the case where the Metropolis acceptance probability would

be close to one, the two algorithms have in fact comparable performances [38].11

KSPT is also interesting due to the following property. As mentioned before, the

SMD equations (5.3) approach the Langevin equation (4.1) in the limit γ → ∞. In

lattice field theory, this limit can be taken simultaneously with the continuum limit if γ

is kept fixed in lattice units while a→ 0 [30]. In this limit the algorithm described above

integrates the Langevin equation as the continuum limit of the theory is approached.

Consequently, the considerations on the continuum scaling of the LSPT algorithms dis-

cussed in §4 directly apply to KSPT at fixed γ. Although the scaling of these algorithms

is expected to be the same, in the case of KSPT the parameter γ may be fixed to some

finite value for which the algorithm may be more efficient. This will be addressed in

detail in the next section.

6 Numerical results

In this section we present the results of our numerical investigation of the methods

described in §3—§5. Our aim is to provide a comparison of the techniques in order to

identify their principal advantages and disadvantages. In §6.1 we compare the perturba-

tive results for some specific quantities obtained with the different algorithms, in order

to confirm their correctness and viability. Once these are established, in §6.2—§6.5 we

study the continuum scaling of the errors of these perturbative coefficients as computed

by the various methods.

6.1 Testing the methods

Before other comparisons are considered it is important to confirm that the various

algorithms agree for the perturbative computation of some quantities. In Figure 3 the

results for E(t) at tree-level, O(g0), andO(g2
0) are shown from top to bottom respectively.

The computations were performed on a tiny L = 4 lattice for which very high statistics

could be obtained: similar results were obtained on larger lattices albeit with lower

11It is worth pointing out that even in the exact case, the critical exponent for Kramers in the free

case can be improved by using higher-order integrators for the MD equations.
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precision. We collected ≈ 107 independent measurements for ISPT, HSPT, and KSPT,

and ≈ 106 measurements for each of 9 values of ε ∈ [0.01, 0.05] for LSPT. The values for

the mass of the field and the flow time were chosen to correspond to z = 4 and c = 0.2,

respectively. For HSPT and KSPT we then chose 〈τ〉 = 1 and γ = 2. The perturbative

expansion is expressed in terms of the renormalized mass m whereas the perturbative

coefficients correspond to the expansion in the bare coupling g0, i.e.,

E(L, z, c) = E0 + E1g0 + E2g
2
0 + E3g

3
0 +O(g4

0), where Ei ≡ Ei(L, z, c). (6.1)

As can be seen from the figure, all the methods agree with each other and with the

analytic determination. In the case of LSPT deviations from the expected results are

sizable at the largest step-sizes, and agreement is found only after extrapolation to

ε → 0. In particular, the asymptotic O(ε2) behaviour expected for the integrator used

is clearly visible.

For the case of HSPT and KSPT we do not see any indication of step-size errors as

the results show no statistically significant deviation from the analytic determination;

the points are precise at the 0.1–0.5% level depending on the order. Even though the

lattice is quite small, the step-size we chose for both HSPT and KSPT is rather large,

namely δt = 0.5. This step-size satisfies δt4 ≥ 25 ε2, for all values of ε considered for

LSPT: this inequality would give the näıve size of the expected relative step-size errors.

This needs to be compared with the fact that the application of the OMF4 integrator

only costs twice as much computer time as the RK2 integrator. Of course this result

depends on many factors: the lattice size considered, the observable, the parameters of

the theory, the values of the step-sizes, and most importantly the integrators used.12

Nonetheless, as already emphasized, symplectic MD integrators are at a more mature

stage of development than Runge Kutta integrators; they can be optimized to reduce

the magnitude of the step-size errors (q.v., [40]). As illustrated by our example, this

results in a significant reduction of systematic errors relative to the cost of a single

integration step. Consequently, it is feasible to run the algorithm with a small enough

step-size such that extrapolations are not required. Moreover, as we can afford to

run with larger step-sizes for a fixed systematic error and with a fixed number of force

computations the cost of obtaining independent configurations is reduced because of the

smaller autocorrelations. Later in the section we shall give more quantitative evidence

on the benefits of using efficient symplectic integrators in minimizing both systematic

and statistical errors at fixed cost.

6.2 Continuum error scaling: a first look

Having addressed the issue of systematic errors, we now study the continuum scaling of

the various NSPT algorithms. We do this by investigating how the (relative) errors of

the perturbative coefficients of some given observables scale as the continuum limit of

12It is clear that considering larger lattices favours HSPT and KSPT, because higher-order integrators

have a better cost scaling with increasing volume.
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Figure 3: Comparison of different methods in the determination of E0, E1 and E2 for

z = 4, c = 0.2, and L = 4. The analytic result (LPT) and the result of the extrapolation

ε → 0 for LSPT, as well as the ISPT, KSPT, and HSPT results (for which there are

no step-size errors or the step-size errors are negligible compared with the statistical

errors) are plotted near ε2 = 0. 19



the theory is approached. The precise details of the scaling depend on the observable,

but some general features may be inferred.
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Figure 4: Continuum scaling of the relative errors ∆E0/E0 and ∆E1/E1 as computed

with ISPT, LSPT, HSPT, and KSPT. The parameters are z = 4 and c = 0.2. The data

is normalized at L = 8.

In Figures 4 and 5 we show the continuum scaling of the relative errors ∆Ei/Ei for

i = 0, . . . , 3 and L in the range 4 ≤ L ≤ 16, as computed using ISPT, LSPT, HSPT,

and KSPT. Recall that the error ∆Ei may be expressed as

∆Ei =

√
2AI(Ei)×Var(Ei)

Nconfig

, (6.2)
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where Nconfig is the total number of field configurations considered, and Var(Ei) and

AI(Ei) are the variance and integrated autocorrelation of Ei where

t2

L4

∑
x∈Ω

E(t, x) = E0 + E1g0 + E2g
2
0 + E3g

3
0 +O(g4

0). (6.3)

We show our results for z = 4 and c = 0.2, but the same qualitative behaviour is

observed in other cases. The number of configurations for each method is specified at

L = 4 and kept constant as 1/L → 0. Specifically, at L = 4 we collected between 105

and 106 independent measurements for each of the different methods. At this small

lattice size and for the algorithmic parameters considered the different methods have

comparable statistical precision for the same number of independent measurements. In

the case of LSPT we measured after each step of the Markov chain. For KSPT we set

the parameter γ = 2, and we adjusted the measurement frequency so as to measure

at fixed intervals ∆ts = 0.5 of simulation time independent of the step-size.13 For

HSPT we measured after each trajectory of average length 〈τ〉 = 1. The results in the

figures are normalized to the values of the relative errors at L = 8, and hence to a

first approximation are independent of Nconfig. Since the figures are only intended to be

qualitative no estimates for the error on the relative error are provided.

The error computation for the perturbative coefficients was obtained using jackknife

in the case of ISPT, whereas for LSPT, HSPT, and KSPT we employed the Γ-method

described in [43] in order to take into account autocorrelations of the measured quan-

tities. The coefficients Ei and corresponding errors refer to the expansion in terms of

the renormalized mass m and bare coupling g0 (6.1). Power divergences in the inverse

lattice spacing are thus excluded in the coefficients Ei, while logarithmic divergences as-

sociated with renormalization of the coupling constant are not expected to be relevant

for the following discussion. In the case of HSPT and KSPT the step-size was scaled as

δt ∝ 1/L starting from a value of δt = 0.5 so as to keep the O(δt4) errors in the equi-

librium distribution approximately fixed using the OMF4 integrator as the continuum

limit is approached. As mentioned in §5.1 this is probably a very conservative choice,

but it was done to avoid potentially large systematic errors that might modify the over-

all picture.14 Keeping the systematic errors in the equilibrium distribution fixed for

LSPT is significantly more challenging as it requires ε ∝ 1/L2 with the RK2 integrator

(q.v., §4). In this case we thus simply considered two well-separated step-sizes in order

to assess the dependence of the results on ε.

Starting from the results at tree-level (top panel in Figure 4) we see how the relative

error of ISPT is constant for a fixed number of field configurations. The results for

LSPT, HSPT, and KSPT are rather different: excluding perhaps the smaller lattices

there is a linear growth of the relative errors with the lattice size. These results confirm

13Since autocorrelations are linear in the step-size δt for γ fixed, from the point of view of autocorre-

lations this is equivalent to measuring after each step for a fixed step-size of δt = 0.5.
14In fact with this choice the step-size errors vanish faster than the leading O(1/L2) lattice artifacts

as the continuum limit is approached.
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Figure 5: Continuum scaling of the relative errors ∆E2/E2 and ∆E3/E3 as computed

with ISPT, LSPT, HSPT, and KSPT. The parameters are z = 4 and c = 0.2. The data

is normalized at L = 8. Note that for ISPT ∆E3/E3 ≈ 65 for L = 16.

22



1

10

100

1000

10000

4 6 8 10 12 14 16 18 20 22 24

∆
E i
/∆

E 0

L

E1
E2
E3

Figure 6: Continuum scaling of the ratios ∆Ei/∆E0 for i = 1, 2, 3 as computed with

ISPT. The case with z = 4 and c = 0.2 is shown. The results are normalized to their

values at L = 4.

free field theory expectations. The variance Var(E0) is finite and constant with L up

to discretization effects. In particular it is the same for all NSPT methods up to step-

size errors, and independent of the algorithmic parameters. Consequently, since ISPT

results are uncorrelated, this implies that the error ∆E0 is essentially constant with L

for a given number of field configurations Nconfig. The linear rise of the errors in the case

of LSPT, HSPT, and KSPT is due to the fact that autocorrelations grow ∝ L2 as the

continuum limit is approached. For a fixed number of configurations this translates into

a linear rise of the relative errors with L as the number of independent configurations

decreases ∝ 1/L2.

At higher perturbative orders the situation for ISPT changes significantly. At O(g0)

the relative error grows linearly with L, indicating a growth of the variance proportional

to L2 as the continuum limit is approached. For higher perturbative orders the increase

of the variance is even more rapid. This may be better appreciated from Figure 6

where results for ISPT alone are given up to L = 24 and O(g3
0). In this plot we show

the ratios of ∆Ei and ∆E0 for i = 1, 2 and 3. These ratios are independent on the

number of configurations considered, and were estimated using 105–107 measurements,

depending on the lattice size. It is clear that the error, and hence the variance, increases

as an increasing power of L as the perturbative order is increased.15 This is to be

compared with the relative errors for LSPT, HSPT, and KSPT, which have the same

qualitative behaviour as at tree level, namely the errors increase only linearly with L

(Figures 4 and 5). For these algorithms the behaviour is similar to what happens at

15A similar behaviour was also observed by Martin Lüscher in pure SU(3) Yang-Mills theory [44].
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tree level: the errors of the higher order coefficients appear to increase due to increasing

autocorrelations. The increase of the variance of the perturbative coefficients in LSPT,

HSPT, and KSPT, if any, is very mild here.16 These conclusions will be confirmed by

the detailed investigations of the following subsections.

We conclude by noticing that the above observations for the higher order results

are in agreement with general theoretical expectations. The peculiar behaviour in the

variance of perturbative coefficients computed with ISPT was recently elucidated by

Martin Lüscher [44]. He emphasized the generic presence of power divergences in the

variance of perturbative coefficients computed with ISPT. On the other hand, as we

noted in §4, he showed that the variances of perturbative coefficients computed using

LSPT are at most logarithmically divergent [31]. However, their autocorrelations grow

with the square of the correlation length of the system, i.e., ∝ 1/m2 ∝ L2. These results

also apply to KSPT at fixed γ (q.v., §5.2 and [30]). Strictly speaking they cannot

be extended to HSPT due to the non-renormalizability of the HMD equations [30],

although it is most plausible that they hold in the case where the trajectory length does

not scale with the correlation length of the system, i.e., 〈τ〉 is independent of L. This

follows from the observation that in the continuum limit L → ∞ the HSPT algorithm

effectively integrates the perturbatively expanded Langevin equation, as in this case

there is no fundamental difference from a single step HSPT algorithm (which is LSPT).

This conjecture seems to be confirmed by the numerical experiments discussed below.

6.3 Continuum scaling of autocorrelations

As a result of the investigation of the previous subsection we conclude that NSPT meth-

ods based on stochastic differential equations have a much better continuum cost scaling

than ISPT. It is clear that beyond the first few orders in perturbation theory the scaling

of ISPT is such that its performance is much worse than the other algorithms. In this

and the following subsection we therefore focus our attention on these other methods.

In particular the question we want to address is the following. As is well known, free

field analysis of the HMD and Kramers algorithms shows that their continuum cost

scaling depends on how their parameters are adjusted [38]. In the context of NSPT

these results directly apply to the lowest order determinations. However, it is not ob-

vious what the behaviour of the higher order results is if different parameter scalings

are considered; this is because we do not have analytic control on this behaviour except

in the Langevin limit of these algorithms. To answer this question we investigate the

continuum scaling of the autocorrelations of the perturbative orders Ei as a function

of the algorithmic parameters in this subsection. More precisely, we will compare the

optimal parameter scaling suggested by the free field theory analysis of [38] with the

Langevin scaling. We identify the latter as the case where 〈τ〉 for HSPT or γ for KSPT

is kept fixed as the continuum limit is approached. The case of LSPT is not considered

explicitly as it is effectively covered by KSPT for γ →∞ or equivalently by a single-step

16We note that for LSPT a similar observation was made in [8] in the pure SU(3) Yang-Mills theory.
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HSPT algorithm.

Starting with HSPT, at the lowest perturbative order we expect autocorrelations to

grow like L2 when approaching the continuum limit if the average trajectory length 〈τ〉
is kept fixed. On the other hand, the analysis of [38] shows how this scaling can be im-

proved by choosing the average trajectory length proportional to the correlation length

of the system: 〈τ〉 ∝ 1/m ∝ L. Heuristically, the idea is that by adjusting the trajectory

length with the correlation length one avoids the situation where configuration space is

explored by a random walk, namely in random steps that are short compared with the

natural scale of the system. What happens to the autocorrelations in HSPT beyond the

tree-level dynamics, however, remains to be seen.17

In Figure 7 we compare the results for the integrated autocorrelation AI(Ei) of the

perturbative orders Ei as the continuum limit is approached. We compared the case

where the average trajectory length was kept fixed at 〈τ〉 = 1 with the case where we

set 〈τ〉 = 1/m for the range of lattice sizes 4 ≤ L ≤ 32. The step-size was adjusted so as

to keep the errors in the equilibrium distribution roughly constant as L was increased,

namely δt = 2/L using the OMF4 integrator. We measured the observables after each

trajectory, and chose z = 4 and c = 0.2. As can be seen from the figure the free field

theory expectation also applies for the high-order fields: for the case where 〈τ〉 = 1 we

observed the asymptotic random walk behaviour AI(Ei) ∝ L2 whereas for 〈τ〉 = 1/m

the integrated autocorrelations were constant as the continuum limit was approached.

For KSPT the results from free field theory [38] indicate that at the lowest order in

perturbation theory the autocorrelations are expected to increase as L2 as the continuum

limit is approached if the parameter γ is kept fixed. However, they increase only as L if

γ ∝ m (see also [36]).18 Hence γ effectively plays the role of an inverse trajectory length

for the algorithm [33]. In Figure 8 we report the results for AI(Ei) for these two cases.

In the first case we fixed γ = 2 as L→∞, while in the second case we set γ = 2m. We

measured the observables after each step, and chose z = 4 and c = 0.2. Unlike the case

of HSPT we chose a fixed step-size δt = 0.25, and we kept this constant as L → ∞.19

As we can see from the figure the two cases agree with the free field theory expectations

for all the perturbative orders we investigated.

In conclusion, it seems that the free field theory expectations for autocorrelations

of the HMD and Kramers algorithms apply up to relatively high perturbative orders in

the corresponding NSPT implementations.20 Except for the case of KSPT at fixed γ

this is a non-trivial result in view of the non-renormalizability of the HMD and SMD

equations [30, 36].

17In the full theory this may not be the case [36].
18We assume that the observables are measured at fixed stochastic time intervals as L→∞.
19We checked up to L = 20 that compatible results for the integrated autocorrelations were obtained

if δt ∝ 1/L and the autocorrelations measured in units of this step-size were rescaled ∝ L.
20We also studied the dependence of the integrated autocorrelations AI(Ei) on the step-size δt and γ

for KSPT, and on 〈τ〉 for HSPT at fixed L and m. In this case the free field theory predictions of [38]

also hold for all the perturbative orders we investigated.
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Figure 7: Continuum scaling of the integrated autocorrelations AI(Ei) in HSPT for the

cases 〈τ〉 = 1 and 〈τ〉 = 1/m. For 〈τ〉 = 1 we show results only up to O(g3
0), while for

〈τ〉 = 1/m they go up to O(g6
0). The data is for z = 4 and c = 0.2. We measure the

observables after each trajectory. The errors on the integrated autocorrelations were

estimated using the Γ-method [43].
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Figure 8: Continuum scaling of the integrated autocorrelations AI(Ei) in KSPT for the

cases γ = 2 and γ = 2m. For γ = 2 we show results only up to O(g3
0), while for γ = 2m

they go up to O(g6
0). The data is for z = 4, c = 0.2. The step-size is δt = 0.25 and we

measure the observables after each step. The errors on the integrated autocorrelations

were estimated using the Γ-method [43].
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6.4 Continuum variance scaling

Having investigated the dependence of the continuum scaling of the integrated auto-

correlations for different algorithmic parameter scalings, we next studied the corre-

sponding scaling of the variances Var(Ei). In Figure 9 we present results for the ratios

Var(Ei)/Var(E0) with i = 1, 2, 3 for HSPT, comparing the cases 〈τ〉 = 1 and 〈τ〉 = 1/m

as L → ∞. For convenience the results are normalized by their values at L = 4. As

usual we chose z = 4, c = 0.2, and took 4 ≤ L ≤ 32 and δt = 2/L. Recall that the lowest

order variance Var(E0) is independent of the algorithmic parameters, namely 〈τ〉 (or γ

below), and up to O(1/L2) corrections is constant with L. Observe that upon setting

〈τ〉 = 1/m the variances Var(Ei) with i > 1 increase significantly as the continuum

limit is approached. This effect is more pronounced as the perturbative order increases;

on the other hand for 〈τ〉 = 1 the variances for all the perturbative orders considered

grow very slowly with L and do not change significantly over the whole range of lattice

sizes studied.
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Figure 9: Continuum scaling of the ratios Var(Ei)/Var(E0) with i = 1, 2, 3 for HSPT,

for the cases 〈τ〉 = 1/m and 〈τ〉 = 1. The case of z = 4 and c = 0.2 is shown, and the

data are normalized at L = 4.

In Figure 10 we plot the results for the ratios Var(Ei)/Var(E0) as obtained with

KSPT. The two cases γ = 2m and γ = 2 are shown. These results are very similar to

those for HSPT: γ = 2m leads to larger variances than keeping γ = 2 fixed, and these

variances grow rapidly with perturbative order as the continuum limit is approached.

These results show that beyond the lowest perturbative order not only do the

autocorrelations of observables computed using NSPT depend on the parameters of the

algorithms but their variances do too. This is quite a different situation to the familiar

case of non-perturbative computations.
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are normalized at L = 4.

6.5 Continuum cost scaling and parameter tuning: the case of KSPT

6.5.1 Continuum cost scaling

From the results of the previous subsections it is clear that the most cost-effective tuning

of parameters for a NSPT simulation is not trivial to determine. For all cases considered

decreasing autocorrelations occurs concomitantly with increasing variances; the optimal

compromise between the two effects must be found.

The situation is clear if we look directly at the total error (6.2) rather than at

autocorrelations and variances separately, and compare the two parameter scalings in-

vestigated above. For illustration we consider the case of KSPT; HSPT gives very

similar results. In Figure 11 we compare the relative error ∆Ei/Ei with i = 0, 1, 2 for

the cases γ = 2 and γ = 2m. The number of configurations for the two parameter

scalings is fixed to Nconfig = 106 for all the lattice sizes 4 ≤ L ≤ 20. As usual the data

is for z = 4, c = 0.2. We took δt = 2/L and adjusted the measurement frequency ∝ L.

As expected, setting γ = 2m is beneficial compared to having γ = 2 at the lowest per-

turbative order (top panel of Figure 11). On the other hand, when considering higher

perturbative orders the case γ = 2m seems to give comparable if not larger errors than

fixing γ = 2 as L → ∞. Hence, for the range of lattice sizes and perturbative orders

we investigated, the effect of having smaller autocorrelations for γ = 2m appears to be

compensated if not overcome by the corresponding increase of the variances.
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6.5.2 Parameter tuning

It appears clear that optimizing the performance of the algorithms requires finding

the optimal value of 〈τ〉 or γ for given lattice parameters, given observables, and the

perturbative orders of interest. Focusing on the case of KSPT again, in Figure 12 we

plot for example the relative errors ∆Ei/Ei for i = 0, 1, 2 as a function of γ for different

values of L. For each L and perturbative order, the total number of configurations

Nconfig was kept constant as γ was varied, and the results are normalized by their values

at γ = 2. As usual z = 4, c = 0.2, and δt = 2/L.

At tree-level (top panel) increasing γ leads to an increase of the relative error

except at very small γ values and small lattice size. This is expected because in this

case the variance is independent of γ, while the autocorrelations increase with γ until

they saturate at some large enough value. In this regime the algorithm is effectively

integrating the Langevin equation up to step-size errors. The situation for the higher

perturbative orders E1 and E2 is quite different. For small γ the errors fall rapidly as

γ is increased; as we expect the autocorrelations to be small in this case we interpret

this as a rapid fall of the variances. For larger γ values the errors increase only mildly

compared to the situation at tree level. As at tree-level autocorrelations tend to grow

with γ, but this effect is compensated by the variances decreasing as γ is increased. In

particular, we note that the Langevin limit γ →∞ is characterized by having the largest

autocorrelations but the smallest variances. There is a region of γ values for which the

errors are minimized; in the example considered this does not appear to strongly depend

on either the perturbative order or the lattice size. This is comforting as it allows us to

tune γ easily and to improve the efficiency of the algorithm relative to Langevin.

6.5.3 Cost comparison with LSPT

The results of the previous subsection show that a proper tuning of the parameter γ

increases the efficiency of KSPT over its Langevin limit, γ →∞. In the specific example

considered, choosing a value of γ ≈ 2 appears to be a good compromise for the different

perturbative orders investigated, and it leads to a reduction of the statistical errors at

fixed cost by a factor ≈ 2− 2.5 for L = 16 as compared to γ →∞; this corresponds to

a factor ≈ 4− 6 in the cost at fixed statistical precision.

It is interesting to consider a direct comparison between KSPT and LSPT. We note

that in practice LSPT differs from KSPT at γ = ∞ only by the different integration

scheme used to integrate the Langevin equation. Hence, this comparison permits us to

quantify the benefits of using efficient higher-order symplectic integrators in conjunction

with a proper tuning of γ.

To this end, we compared the computational cost for computing the coefficients Ei,
i = 0, . . . 3, to a specified statistical accuracy using KSPT with γ = 2 and LSPT. We

chose to carry out this comparison with L = 12, z = 4 and c = 0.2. For L = 12 the

reduction in the cost for a given statistical precision compared to γ → ∞ is a factor

2− 3 for Ek, k = 1, 2, 3, and a factor 6 for E0 (q.v., Figure 12).
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large value of γ the algorithm is effectively integrating the Langevin equation.
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In view of the results of §6.1, we chose δt = 0.5 for KSPT as we expect step-size

errors to be very small compared to the precision of this test (see below). Similarly,

for LSPT we took ε = 0.01, which corresponds to the smallest step-size considered in

§6.1. At this value we also expect step-size errors to be small, and this is the most

expensive of the simulations considered in the extrapolation ε → 0. At each step we

made measurements for both KSPT and LSPT, and considered a total of configurations

Nconfig = 4× 106 and 4× 107, respectively. The results are collected in Table 3.

E0 × 105 E1 × 108 E2 × 109 E3 × 1010

LSPT 2.2367(37) −4.86(13) 2.352(54) −1.599(40)

KSPT 2.2347(22) −4.74(12) 2.223(49) −1.517(35)

LPT 2.2347 −4.76 2.270 −

Table 3: Results for Ei, i = 0, . . . 3 for L = 12, z = 4, c = 0.2 as obtained using

KSPT with γ = 2 and LSPT. We chose δt = 0.5 for KSPT and ε = 0.01 for LSPT,

and measured at each step. The total number of configurations generated with the two

algorithms is Nconfig = 4 × 106 and 4 × 107 for KSPT and LSPT, respectively. The

analytic perturbative results (LPT) for E0, E1, and E2 are also given for comparison.

The KSPT and LSPT results are statistically consistent with each other and with

the closed-form perturbative results (LPT) where these are available. KSPT and LSPT

have approximately the same statistical errors with the numbers of configurations gen-

erated. The computer time used for updating a 124 lattice on a single core of an Intel

Xeon E5-2630 Processor (2.4 GHz) is 0.21s for LSPT and 0.42s for KSPT: this is just the

expected ratio of costs between the RK2 and OMF4 integrators, with the observation

that this cost is dominated by the force computation.21

Thus, after rescaling Nconfig to have equal statistical errors, it becomes apparent

that KSPT is ≈ 5 − 7 times more cost effective than LSPT is in reaching a given

statistical precision on the higher-order coefficients Ek, k = 1, 2, 3, and roughly 14 times

more cost effective for E0. As KSPT at fixed γ and LSPT have the same continuum

scaling behavior in terms of variances and autocorrelations, one may expect a similar

gain as L→∞. Indeed, as shown in Figure 12, the gain in the statistical errors appears

to become larger for the higher-order fields at larger L; if one scales the gain in cost

accordingly this increases to a factor ≈ 9 − 10 for E1 and E2. Furthermore, as the

continuum limit is approached, it is advisable to reduce the step-size so as to keep

systematic effects under control, and here again higher-order integrators are more cost

effective.

21We recall that the RK2 integrator requires three force computations per step whereas the OMF4

integrator requires six (q.v. §4.1 and §5.1, respectively).
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7 Conclusions

NSPT is a powerful technique that permits automation of high order perturbative com-

putations on the lattice. As well as providing perturbative lattice estimates of quantities

of interest these methods are interesting for extracting continuum perturbation theory

results in cases where these are difficult or unfeasible to obtain with continuum pertur-

bative methods. However, to this end one needs efficient NSPT algorithms in order to

be able to obtain precise results with both systematic and statistical errors under con-

trol. In particular, such results are desirable for a collection of lattice resolutions close

to the continuum limit so that reliable continuum extrapolations may be performed.

In this work we investigated some new formulations of NSPT beyond LSPT, with

the goal of finding more cost-effective algorithms. The first of these techniques is the

recently proposed ISPT [12]. The first manifest advantage of this method over stan-

dard LSPT is that the results obtained are exact within statistical errors. Secondly,

the stochastic field representing the theory to some given order in the couplings is

constructed directly from a set of Gaussian random fields, which are easy to generate.

Despite these attractive features this algorithm has severe limitations beyond the lowest

perturbative orders. First, similarly to conventional diagrammatic perturbation theory,

the number of diagrams to be computed grows very rapidly with the perturbative or-

der. While the cost of evaluating the diagrams is essentially proportional to the system

size, their number increases exponentially as the perturbative order is increased. Most

importantly, as shown by the present study, as the continuum limit is approached the

statistical variance of perturbative coefficients computed using ISPT grows with increas-

ing powers of L as the perturbative order is increased. Consequently it appears difficult

to extract precise high-order results close to the continuum limit using this technique.

While the exact details of our investigation certainly depend on the theory we consid-

ered, our conclusions are not specific to ϕ4-theory. This has been confirmed by a recent

study in the pure SU(3) Yang–Mills theory [44], where the nature of the divergences

of the variances was also elucidated. In summary, the utility of this technique may be

limited to a few low perturbative orders, which can nonetheless be of interest for some

particularly difficult problems.

Although they are not exact the other NSPT algorithms we considered, where the

stochastic fields representing the theory are generated by a Markov chain (or equiva-

lently a discrete stochastic process), in general have a significantly better continuum

cost scaling than ISPT. In particular, apart from the standard LSPT, we considered

NSPT based on GHMD algorithms; specifically the HMD and Kramers algorithms.

With respect to the Langevin implementation, these allow for a much more accurate

discretization of the relevant equations. This is so because very efficient high-order sym-

plectic integrators can be employed for the numerical integration of the MD equations.

With such integrators the magnitude of the systematic errors is drastically reduced for

a given number of force computations, and in practice one can run these algorithms

with a small enough step-size that step-size extrapolations can be avoided.
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As opposed to LSPT, HSPT and KSPT have tunable parameters, the average tra-

jectory length 〈τ〉 and the amount of partial momentum refreshment γ respectively,

which may be adjusted so as to optimize their efficiency. However, beyond the lowest

perturbative order finding the most cost-effective tuning of these parameters is not im-

mediately obvious, in particular because their optimal continuum scaling is not trivial.

The situation is complicated by the fact that, unlike the more familiar non-perturbative

simulations, not only do the autocorrelations of the perturbative coefficients computed

in NSPT depend on the parameters of the chosen algorithm, but so do their variances.

The general trend we observed is that when an algorithm is tuned to have small au-

tocorrelations, the corresponding variances tend to increase, and therefore a trade-off

between these two effects must be found. Moreover, except in the Langevin limit of these

algorithms, analytic understanding of the continuum scaling of both autocorrelations

and variances is missing.

Our analysis indicates that the behavior of the autocorrelations of the high order

fields with respect to the algorithmic parameters is the same as in the free field case.

The behaviour of the variances is not easily predicted, and it seems to be different

for different perturbative orders. A consequence of this is the fact that the optimal

parameter scaling suggested by free field theory is not optimal when higher perturbative

orders are considered. In our study we did not observe a significant difference in the cost

with respect to the Langevin scaling of the algorithms (§6.5.1). Finding the optimal

parameter scaling might thus be difficult, as it probably depends on the details of the

calculation considered, i.e., the observables, the perturbative orders, and range of lattice

sizes of interest.

Nonetheless, when investigating the dependence of the errors in KSPT as a function

of γ (§6.5.2) we found that for γ ≈ 2 the algorithm is significantly better than in

its Langevin limit γ → ∞, particularly so for large L. For example, at L = 16 an

improvement by a factor ≈ 4−6 in the cost of obtaining a given statistical precision was

observed, depending on the order. This was possible since for the observables studied

the optimal value of γ did not seem to depend much on either L or the perturbative

order. When we compared KSPT at γ = 2 with LSPT (§6.5.3), the use of efficient high-

order integrators turned out to be beneficial in keeping systematic errors under control

in a more cost effective way than using lower-order Runge-Kutta integrators, keeping

this value of γ fixed as L → ∞ improves significantly the efficiency of the algorithm

over LSPT. Indeed, although the scaling behaviour of the statistical errors may be the

same one profits from a significantly smaller prefactor, as well as the better scaling (and

prefactor) of the high-order symplectic integrators in controlling step-size errors.

We also observe that HSPT and KSPT have similar performance: for 〈τ〉 = C/γ

with C = O(1) the two algorithms have comparable autocorrelations in molecular dy-

namics units, and comparable variances.

In conclusion, the novel NSPT methods presented here offer a simple and natu-

ral development from the standard Langevin-based algorithms. In particular, we have

provided evidence that they can significantly improve on previous methods hence al-
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lowing more precise results. Of course, a natural follow-up of our study is to consider

the application of these techniques to a realistic problem in order to determine whether

the improvement provided by HSPT or KSPT is significant in practice. These methods

have been used and are under further development for the more interesting case of gauge

theories [45, 46].
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M.D.B. especially thanks Martin Lüscher for the pleasant and fruitful collaboration in

further understanding and developing NSPT. He also thanks Chris Monahan and Ulli

Wolff for interesting discussions, and he is grateful to CERN for hospitality and support.

A.D.K. and M.G. are funded by STFC Consolidated Grant No. ST/J000329/1.

We thank the computer center at DESY–Zeuthen for computer resources and sup-

port, and the University of Edinburgh for use of the ECDF cluster (eddie).

35



A Renormalization procedure

A.1 Coupling renormalization

In regularized φ4 theory we may compute an observable O as a perturbative expansion

in the bare coupling g0. However, in order to take the continuum limit of its expectation

value, it is first of all necessary to express this perturbative series in terms of a renor-

malized coupling g. Of course, at finite lattice cutoff, the two are entirely equivalent as

formal expansions and may readily be transformed into each other.

Suppose we have computed the perturbative expansion of the renormalized coupling

g as a power series in the bare coupling g0,

g = g0 +
∑
k≥2

ckg
k
0 . (A.1)

We may then revert the expansion of g in terms of g0 by writing (A.1) as

g0 = g −
∑
k≥2

ckg
k
0 , (A.2)

and then recursively substituting (A.2) into itself to obtain

g0 = g −
∑
k≥2

ck

(
g −

∑
`≥2

c`g
`
0

)k
= g − c2g

2 + (2c2
2 − c3)g3 + (−5c3

2 + 5c2c3 − c4)g4

+ (14c4
2 − 21c2

2c3 + 6c2c4 + 3c2
3 − c5)g5

+ (−42c5
2 + 84c3

2c3 − 28c2
2c4 − 28c2c

2
3 + 7c2c5 + 7c3c4 − c6)g6 + · · · , (A.3)

noting that O(gN0 ) = O(gN ).

Suppose that we have also computed the expansion of some operator of interest O
in powers of g0

O =
∑
k≥0

Okgk0 , (A.4)

Then by substituting (A.3) into (A.4) we obtain an expression for the expansion of O
in powers of g:

O = O0 +O1g + (−c2O1 +O2)g2 +
(
(2c2

2 − c3)O1 − 2c2O2 +O3

)
g3

+
(
(−5c3

2 + 5c2c3 − c4)O1 + (5c2
2 − 2c3)O2 − 3c2O3 +O4

)
g4

+
(
(14c4

2 − 21c2
2c3 + 6c2c4 + 3c2

3 − c5)O1 + (−14c3
2 + 12c2c3 − 2c4)O2

+ (9c2
2 − 3c3)O3 − 4c2O4 +O5

)
g5

+
(
(−42c5

2 + 84c3
2c3 − 28c2

2c4 − 28c2c
2
3 + 7c2c5 + 7c3c4 − c6)O1

+ (42c4
2 − 56c2

2c3 + 14c2c4 + 7c2
3 − 2c5)O2

+ (−28c3
2 + 21c2c3 − 3c4)O3 + (14c2

2 − 4c3)O4 − 5c2O5 +O6

)
g6 + · · ·
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For the numerical computation of the perturbative expansion of O we are therefore free

to consider an expansion in powers of g0 as this is entirely equivalent — as formal power

series — to expansion in powers of g.

A.2 Mass renormalization

The stochastic field φ is considered to be of the form

φ(x) =
∑
k,l≥0

φk,`(x)gk0 (δm2)` (A.5)

where g0 is the bare coupling and δm2 is the mass counterterm.22 Once the table of

numbers φk,` has been computed, the expectation value 〈· · · 〉η of functions of these

quantities may be estimated, but they must be fitted to the renormalization conditions

in order to compute physical quantities. Here we shall present algebraic expressions for

the formal power series manipulation in order to explain the renormalization procedure;

in actual computations we automated these formal manipulations using the numerical

values of the coefficients.

The renormalization condition (2.7) that defines m2 can be rewritten as

m2 = p̂2
∗

χ∗2
χ2 − χ∗2

.

Therefore, since we can calculate χ2 and χ∗2 as power series in both g0 and δm2

χ2 =
〈
φ̃0,0(0)2

〉
+ 2
〈
φ̃0,0(0)φ̃0,1(0)

〉
δm2 +

〈
2φ̃0,0(0)φ̃0,2(0) + φ̃0,1(0)2

〉
δm4

+ 2
〈
φ̃0,0(0)φ̃0,3(0) + φ̃0,1(0)φ̃0,2(0)

〉
δm6

+ 2

(〈
φ̃0,0(0)φ̃1,0(0)

〉
+
〈
φ̃0,0(0)φ̃1,1(0) + φ̃1,0(0)φ̃0,1(0)

〉
δm2

+
〈
φ̃0,0(0)φ̃1,2(0) + φ̃1,0(0)φ̃0,2(0) + φ̃0,1(0)φ̃1,1(0)

〉
δm4

)
g0

+

(〈
2φ̃0,0(0)φ̃2,0(0) + φ̃1,0(0)2

〉
+ 2
〈
φ̃0,0(0)φ̃2,1(0) + φ̃1,0(0)φ̃1,1(0) + φ̃0,1(0)φ̃2,0(0)

〉
δm2

)
g2

0

+ 2
〈
φ̃0,0(0)φ̃3,0(0) + φ̃1,0(0)φ̃2,0(0)

〉
g3

0 +O(g4
0)

22Remember that δm2 has contributions of order gn0 for n ≥ 1 when it has been determined from the

renormalization conditions (see the following discussion).
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χ∗2 =
〈
φ̃0,0(p∗)φ̃0,0(−p∗)

〉
+
〈
φ̃0,0(p∗)φ̃0,1(−p∗) + φ̃0,0(−p∗)φ̃0,1(p∗)

〉
δm2

+
〈
φ̃0,0(p∗)φ̃0,2(−p∗) + φ̃0,1(p∗)φ̃0,1(−p∗) + φ̃0,0(−p∗)φ̃0,2(p∗)

〉
δm4

+
〈
φ̃0,0(p∗)φ̃0,3(−p∗) + φ̃0,1(p∗)φ̃0,2(−p∗)

+ φ̃0,2(p∗)φ̃0,1(−p∗) + φ̃0,0(−p∗)φ̃0,3(p∗)
〉
δm6

+

(〈
φ̃0,0(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃1,0(p∗)

〉
+
〈
φ̃0,0(p∗)φ̃1,1(−p∗) + φ̃1,0(p∗)φ̃0,1(−p∗)

+ φ̃0,1(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃1,1(p∗)
〉
δm2

+
〈
φ̃0,0(p∗)φ̃1,2(−p∗) + φ̃1,0(p∗)φ̃0,2(−p∗)

+ φ̃0,1(p∗)φ̃1,1(−p∗) + φ̃1,1(p∗)φ̃0,1(−p∗)

+ φ̃0,2(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃1,2(p∗)
〉
δm4

)
g0

+

(〈
φ̃0,0(p∗)φ̃2,0(−p∗) + φ̃1,0(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃2,0(p∗)

〉
+
〈
φ̃0,0(p∗)φ̃2,1(−p∗) + φ̃1,0(p∗)φ̃1,1(−p∗)

+ φ̃0,1(p∗)φ̃2,0(−p∗) + φ̃2,0(p∗)φ̃0,1(−p∗)

+ φ̃1,1(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃2,1(p∗)
〉
δm2

)
g2

0

+

(〈
φ̃0,0(p∗)φ̃3,0(−p∗) + φ̃1,0(p∗)φ̃2,0(−p∗)

+ φ̃2,0(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃3,0(p∗)
〉)

g3
0 +O(g4

0)

where we defined the Fourier transform of the coefficient fields as,

φ̃k,l(p) =
1

L2

∑
x∈Ω

e−ipxφk,l(x), p ∈ Ω̃,

we can multiply and invert23 χ and χ∗ to compute m2 as power series in g0 and δm2

m2 =
∑
k,`≥0

ak,` g
k
0 (δm2)` (A.6)

23The inverse of a power series S(g0, δm) is the power series for 1/S(g0, δm).
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where the coefficients ak,` are

a0,0 =

〈
φ̃0,0(p∗)φ̃0,0(−p∗)

〉
〈
φ̃0,0(0)2 − φ̃0,0(p∗)φ̃0,0(−p∗)

〉 p̂2
∗,

a1,0 = −

2
〈
φ̃0,0(0)φ̃1,0(0)

〉〈
φ̃0,0(p∗)φ̃0,0(−p∗)

〉
−
〈
φ̃0,0(0)2

〉〈
φ̃0,0(p∗)φ̃1,0(−p∗) + φ̃0,0(−p∗)φ̃1,0(p∗)

〉
〈
φ̃0,0(0)2 − φ̃0,0(p∗)φ̃0,0(−p∗)

〉2 p̂2
∗,

a0,1 = −

2
〈
φ̃0,0(0)φ̃0,1(0)

〉〈
φ̃0,0(p∗)φ̃0,0(−p∗)

〉
−
〈
φ̃0,0(0)2

〉〈
φ̃0,0(p∗)φ̃0,1(−p∗) + φ̃0,0(−p∗)φ̃0,1(p∗)

〉
〈
φ̃0,0(0)2 − φ̃0,0(p∗)φ̃0,0(−p∗)

〉2 p̂2
∗,

and so forth. By construction a0,0 = m2, so at lowest order in g0 the mass m is the

mass that enters the scalar propagator (3.10). Having determined the coefficient ak,` in

(A.6) we can now determine the coefficients m2
k of the expansion

δm2 =
∑
k≥1

m2
k g

k
0

by imposing the relation (A.6) order by order in g0, thus obtaining

m2
1 = −a1,0

a0,1
,

m2
2 = −a2,0 + a1,1m

2
1 + a0,2m

4
1

a0,1
,

m2
3 = −a3,0 + a2,1m

2
1 + 2a0,2m

2
1m

2
2 + a1,2m

4
1 + a1,1m

2
2 + a0,3m

6
1

a0,1
,

m2
4 = −

a4,0 + a3,1m
2
1 + a2,1m

2
2 + a1,1m

2
3 + a2,2m

4
1 + 2a1,2m

2
1m

2
2

+a0,2m
4
2 + 2a0,2m

2
1m

2
3 + a1,3m

6
1 + 3a0,3m

4
1m

2
2 + a0,4m

8
1

a0,1
,

...

Once δm2 is determined, the field φ and any other observable previously computed as

a series in δm2 and g0 can be reduced to a series in g0 alone.

A.3 Wavefunction renormalization

The renormalization of a generic correlation function by the wavefunction renormal-

ization, or any multiplicative renormalization factor, does not present any additional
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difficulty. We may compute Z as a power series in g0 and δm2 from the renormalization

condition (2.9),

Z = m2χ =
∑
k,`≥0

Zk,` g
k
0 (δm2)`,

where

Z0,0 = a0,0

〈
φ̃0,0(0)2

〉
Z1,0 = a1,0

〈
φ̃0,0(0)2

〉
+ 2a0,0

〈
φ̃1,0(0)φ̃0,0(0)

〉
Z0,1 = a0,1

〈
φ̃0,0(0)2

〉
+ 2a0,0

〈
φ̃0,0(0)φ̃0,1(0)

〉
Z2,0 = 2a0,0

〈
φ̃0,0(0)φ̃2,0(0)

〉
+ a0,0

〈
φ̃1,0(0)2)

〉
+ 2a1,0

〈
φ̃0,0(0)φ̃1,0(0)

〉
+ a2,0

〈
φ̃0,0(0)2)

〉
Z1,1 = 2a0,0

〈
φ̃0,0(0)φ̃1,1(0)

〉
+ 2a0,0

〈
φ̃1,0(0)φ̃0,1(0)

〉
+ 2a0,1

〈
φ̃0,0(0)φ̃1,0(0)

〉
+ 2a1,0

〈
φ̃0,0(0)φ̃0,1(0)

〉
+ a1,1

〈
φ̃0,0(0)2

〉
Z0,2 = 2a0,0

〈
φ̃0,0(0)φ̃0,2(0)

〉
+ a0,0

〈
φ̃0,1(0)2

〉
+ 2a0,1

〈
φ̃0,0(0)φ̃0,1(0)

〉
+ a0,2

〈
φ̃0,0(0)2

〉
,

and so forth. We can now compute a renormalized correlation function as a power series

in g0 and the renormalized mass m as

Zn/2
〈
φ(x1) · · ·φ(xn)

〉
=

( ∑
k,`≥0

Zk,` g
k
0 (δm2)`

)n/2

×
〈 ∑
k1,`1≥0

φk1,`1(x1)gk1
0 (δm2)`1 · · ·

∑
kn,`n≥0

φkn,`n(xn)gkn0 (δm2)`n

〉

=

( ∑
k,l≥0

Zk,` g
k
0

(∑
j≥1

m2
j g

j
0

)`)n/2

×
〈 ∑
k1,`1≥0

φk1,`1(x1)gk1
0

(∑
j1≥1

m2
j1 g

j1
0

)`1 · · · ∑
kn,`n≥0

φkn,`n(xn)gkn0

( ∑
jn≥1

m2
jn g

jn
0

)`n〉
.

This expansion in the bare coupling g0 can be replaced by one in the renormalized cou-

pling g as explained in §A.1, and the correlation function is then properly renormalized.
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