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A measurement of the splitting scales occuring in the kt jet-clustering algorithm is presented
for final states containing a Z boson. The measurement is done using 20.2 fb−1 of proton–
proton collision data collected at a centre-of-mass energy of

√
s = 8 TeV by the ATLAS

experiment at the LHC in 2012. The measurement is based on charged-particle track inform-
ation, which is measured with excellent precision in the pT region relevant for the transition
between the perturbative and the non-perturbative regimes. The data distributions are correc-
ted for detector effects, and are found to deviate from state-of-the-art predictions in various
regions of the observables.
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1 Introduction

A collimated spray of particles arising from a cascade of strong interactions is commonly referred to as
a hadronic jet. Jet production in association with other final-state particles can constitute signal as well
as an important background process in many of the precision measurements and new-physics searches
conducted at CERN’s Large Hadron Collider (LHC). A good understanding of processes initiated by
strong interactions is therefore crucial.

Jet production in association with a leptonically decaying heavy gauge boson (V = W,Z) allows effects
of the strong interaction to be studied in a relatively clean environment. Good progress has been made in
recent years towards higher-order calculations of these processes in quantum chromodynamics (QCD),
e.g. fixed-order calculations of high jet multiplicities at next-to-leading order (NLO) [1, 2] and the in-
clusive as well as V + 1-jet processes at next-to-next-to-leading order (NNLO) [3]. Furthermore, new
methods have been published for matching NLO V + multijet predictions with the parton shower in a
merged sample [4–6], or to match NNLO calculations to a parton shower for the inclusive processes [7,
8]. Comparisons of precision measurements to these accurate predictions are a powerful means by which
to study aspects of QCD.
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While properties of the jets can be studied directly using the jet momenta, a complementary approach is
taken in this paper by studying the jet production rates at different resolution scales. To this end, splitting
scales of jets are constructed using an infrared-safe clustering algorithm based on sequential combination
of the input momenta. In this analysis the kt algorithm [9, 10] is used, with distance measures defined for
every iteration as follows:

di j = min
(
p2

T,i, p2
T, j

)
×

∆R2
i j

R2 , (1)

dib = p2
T,i, (2)

where the transverse momentum pT carries an index corresponding to the ith and jth constituent mo-
mentum in the input list, for all possible permutations of i and j in the given clustering step. The input
momenta separation ∆Ri j is defined in terms of the rapidity y and the azimuthal angle φ via the relation(
∆Ri j
)2

=
(
yi − y j

)2
+
(
φi − φ j

)2
. The index b denotes the beam line and the parameter R governs the

average cone size in y–φ space around the jet axis. For a given iteration of the algorithm in which the
number of input momenta drops from k + 1 to k, the associated squared splitting scale dk is given by the
minimum of all the di j and dib scales defined for that iteration step:

dk = min
i, j

(di j, dib). (3)

If this minimum is a di j, the ith and jth momenta in the input list are replaced by their combination. If
the minimum is a dib, the ith momentum is removed from the input collection and is declared a jet. The
index k defines the order of the splitting scale, with k = 0 being the last iteration step before the algorithm
terminates. Hence the zeroth-order splitting scale,

√
d0, corresponds to the pT of the leading kt-jet, and

one can regard the Nth splitting scale,
√

dN , as the distance measure at which an N-jet event is resolved
as an (N + 1)-jet event. The steps of a kt clustering sequence using three input momenta are illustrated in
Figure 1.

In this paper, measurements of differential distributions of the splitting scales occurring in the kt clustering
algorithm using charged-particle tracks in events with Z + jets are presented. The aim is to constrain
the theoretical modelling of strong-interaction effects, and charged-particle tracks are used instead of
calorimeter cells to reduce the systematic uncertainties of the measurements significantly. In addition to
these primary results using only charged-particle information, less precise extrapolated results including
neutral particles are also provided to allow comparisons to fixed-order calculations.

The measurements are performed independently in the Z → e+e− and Z → µ+µ− decay channels as
well as for jet-radius parameters of R = 0.4 and R = 1.0 in each decay channel. The presented analysis
is complementary to the ATLAS measurement of the kt splitting scales in W + jets events at

√
s =

7 TeV [11].

2 ATLAS detector

The ATLAS detector is described in detail in Ref. [12]. Tracks and interaction vertices are reconstructed
with the inner detector (ID) tracking system, consisting of a silicon pixel detector, a silicon microstrip
detector (SCT) and a transition radiation tracker. The ID is immersed in a 2 T axial magnetic field,
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Figure 1: Simplified illustration of the kt clustering algorithm, starting with three input momenta p0, p1 and p2 (step
1). The dotted line labelled b represents the beam line. In step 2, the minimum distance measure is the one between
two input momenta p1 and p2, so that the two input momenta are replaced by their vector combination. In step 3,
the minimum distance measure is between the p0 and the beam line, so that p0 is declared a jet ( j2) and removed
from the input list. Finally in step 4, there is only the combined input momentum p12 left and so it will be declared
a jet ( j1) and the algorithm terminates.

providing charged-particle tracking in the pseudorapidity range |η| < 2.5.1 The ATLAS calorimeter
system provides fine-grained measurements of shower energy depositions over a wide range of η. An
electromagnetic liquid-argon sampling calorimeter covers the region |η| < 3.2 and is divided into a barrel
part (|η| < 1.475) and an endcap part (1.375 < |η| < 3.2). The hadronic barrel calorimeter (|η| < 1.7)
consists of steel absorbers and active scintillator tiles. The hadronic endcap calorimeter (1.5 < |η| <

3.2) and forward electromagnetic and hadronic calorimeters (3.1 < |η| < 4.9) use liquid argon as the
active medium. The muon spectrometer comprises separate trigger and high-precision tracking chambers
measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The
precision chamber system covers the region |η| < 2.7 with three layers of monitored drift tube chambers,
complemented by cathode strip chambers in the forward region. The muon trigger system covers the
range |η| < 2.4 with resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.
A three-level trigger system is used to select events of interest [13]. The Level-1 trigger reduces the
event rate to less than 75 kHz using hardware-based trigger algorithms acting on a subset of the available
detector information. Two software-based trigger levels then reduce the event rate further to about 400 Hz
using the complete detector information.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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3 Event selection

The measurement is performed using proton–proton collision data recorded at a centre-of-mass energy of
√

s = 8 TeV. The data were collected between April and December 2012 in data-taking periods where the
detector was fully operational, resulting in an integrated luminosity of 20.2 fb−1.

3.1 Object reconstruction and event selection at detector level

Events containing a dilepton candidate were retained for further analysis using dedicated triggers requir-
ing the presence of two oppositely charged electrons with transverse momentum above 12 GeV or two
oppositely charged muons with transverse momenta above 18 GeV and 8 GeV respectively.

Inner detector tracks are selected in the phase-space region pT > 400 MeV and |η| < 2.5. The track can-
didates are required to have at least one hit in the pixel detector and at least five SCT hits. A hit in the
innermost pixel layer is required in cases where the track candidates have passed through an active region
of that layer. The track reconstructed from the hits is then extrapolated and combined with information
from the transition radiation tracker [14]. The reduced χ2 of the track fit is required to be less than 3 in
order to remove mismeasured tracks or combinatorial background. In order to reject backgrounds stem-
ming from other proton–proton collisions in the same or different bunch crossings (pileup), the transverse
and longitudinal impact parameters are required to be |d0| < 1.0 mm and |z0×sin θ| < 0.6 mm with respect
to the primary vertex, respectively. The primary vertex in the event is defined as the collision vertex with
the highest sum of squared transverse momenta of the associated ID tracks.

Electron candidates are identified as clusters of energy in the electromagnetic calorimeter which are as-
sociated with a corresponding ID track. They are required to have pT > 25 GeV and |η| < 2.47, excluding
the transition regions between the barrel and endcap electromagnetic calorimeters (1.37 < |η| < 1.52).
The electron candidates must satisfy a set of medium selection criteria [15] that have been optimised for
the high rate of proton–proton collisions per beam crossing observed in the 2012 data. Electron candid-
ates are required to be isolated, meaning that the scalar sum of the pT of those tracks within ∆R = 0.2
around the electron track is required to be less than 13 % of the pT of the electron. (The definition of ∆R
is the same as for the kt algorithm, except that it makes use of pseudorapidity rather than rapidity.) Impact
parameter requirements are imposed to ensure that the electron candidates originate from the primary
vertex.

Muon candidates are reconstructed using the combined muon algorithm [16], which involves matching
and combining ID tracks with tracks in the muon spectrometer. The muon candidates are required to
have pT > 25 GeV and |η| < 2.4. Muon track quality requirements are imposed to suppress backgrounds,
along with impact parameter requirements to ensure that the muon candidates originate from the primary
vertex. Muon candidates are also required to be isolated, meaning that the scalar sum of the pT of those
tracks within ∆R = 0.2 around the muon track (using pseudorapidity again) is required to be less than
10 % of the pT of the muon.

A Z-boson candidate is selected by requiring exactly two opposite-charge same-flavour leptons (electrons
or muons) and requiring the invariant mass of the dilepton system to satisfy 71 GeV < m`` < 111 GeV.
The momenta of all selected ID tracks – apart from the two lepton tracks – are then passed into the kt
clustering algorithm introduced in Section 1 to construct the splitting scales.

5



3.2 Particle-level selection and phase-space definition

Particle-level predictions are obtained using final-state objects with a mean decay length (cτ) longer than
10 mm. Leptons are defined at the dressed level, i.e. they are given by the four-momentum combination
of the respective lepton (an electron or a muon) and all nearby photons within a cone of size ∆R = 0.1
centred on the lepton. Electrons are required to pass |η| < 2.47, excluding the transition region between
the barrel and end cap electromagnetic calorimeters 1.37 < |η| < 1.52, whilst muons are selected with
|η| < 2.4. Furthermore, a transverse momentum requirement of pT > 25 GeV is imposed for either lepton
flavour.

Events are required to contain a Z-boson candidate, defined as exactly two oppositely charged, same-
flavour leptons (electrons or muons) with a dilepton invariant mass of 71 GeV < m`` < 111 GeV.

All charged final-state particles with pT > 400 MeV and |η| < 2.5 – excluding the selected leptons –
serve as input to the kt clustering algorithm to construct the splitting-scale observables. The measurement
is performed twice, using jet-radius parameters of 0.4 and 1.0 respectively. This allows studies of the
resolution scales of both narrow and broad jets, which have different sensitivity to the hadronisation and
underlying-event modelling.

4 Monte Carlo simulation

4.1 Samples of simulated events

Signal event samples for Z → e+e− and Z → µ+µ− production in association with jets (QCD Z + jets)
were generated in order to correct the data for detector effects in an unfolding procedure and to estimate
systematic uncertainties. The samples were produced using the Sherpa v1.4.3 and Powheg-Box [17–19]
(SVN revision r1556) event generators. The Sherpa samples are based on matrix elements with up to four
additional hard emissions at leading order (LO), using parton distribution functions (PDFs) from the CT10
set [20], which were matched and merged to the Sherpa parton shower using the set of tuned parameters
developed by the Sherpa authors. The Powheg-Box samples (hereafter referred to as the Powheg samples)
use the CT10 PDF set and are passed through Pythia v8.175 and subsequently through PHOTOS++ [21]
for parton showering and radiative quantum-electrodynamical corrections, respectively.

Z → τ+τ− as well as W+jets production were generated with Sherpa using the MEnloPS prescription [22]
to merge the results of inclusive Z → τ+τ− and W → `ν calculations performed at NLO accuracy with
the LO multi-leg prediction. All QCD V + jets samples are normalised using an inclusive NNLO cross
section [23].

Processes involing matrix elements with up to one additional parton emission for electroweak Z + jets
production (including all diagrams with three electroweak couplings at tree level) were simulated using
Sherpa. The background contribution from WW production with both bosons decaying leptonically is
estimated using Powheg+Pythia 8.

Background contributions stemming from top-quark interactions (tt̄, t-channel single top and Wt) were
generated using Powhegwith the CT10 PDF set in the hard scattering in conjunction with Pythia v6.427 [24]
for parton showering and hadronisation using the CTEQ6L1 [25] PDF set and the corresponding Peru-
gia 2011C [26] set of tuned parameters. The hdamp parameter, which controls the pT of the first additional
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emission beyond the Born configuration, is set to the mass of the top quark. The tt̄ sample is normalised
using a NNLO calculation in QCD including resummation of next-to-next-to-leading logarithmic (NNLL)
soft gluon terms [27], while the single-top samples are normalised using an approximate NNLO calcula-
tion including NNLL-accurate resummation of soft gluon terms [28–30].

The Monte Carlo event samples mentioned above were passed through GEANT4 [31, 32] for a full
simulation [33] of the ATLAS detector and are reconstructed with the same analysis chain as used for the
measured data. Pileup is simulated with Pythia v8.175 [34] using the A2 [35] set of tuned parton shower
parameters and the MSTW2008lo [36] set of parton distribution functions.

4.2 Theoretical predictions

In addition to the samples of fully simulated events, additional particle-level predictions were generated
to provide a state-of-the-art comparison to the unfolded measurements.

Predictions for Z boson production in association with jets are obtained using the Sherpa v2.2.1 genera-
tor [37]. Matrix elements are calculated for up to two additional parton emissions at NLO accuracy and
up to four additional parton emissions at LO accuracy using the Comix [38] and OpenLoops [39] matrix
element generators, and merged with the Sherpa parton shower [40] which is based on Catani–Seymour
subtraction terms. The merging of multi-parton matrix elements with the parton shower is achieved us-
ing an improved CKKW matching procedure [41, 42], which is extended to NLO accuracy using the
MEPS@NLO prescription [4]. The PDFs are provided by the NNPDF3.0nnlo set [43] and the dedicated
set of tuned parton shower parameters developed by the Sherpa authors is used.

Predictions for Z + jets production at NNLO were provided by the DY@NNLOPS authors [8]. The
calculations are obtained using DYNNLO [44, 45] along with the multi-scale improved NLO (MiNLO)
prescription [46] for the scale choices as implemented in the Powheg-Box package [19, 47]. For the hard
scattering the PDF4LHC15nnlo PDF set [48] is used, and parton showering is provided by Pythia v8.185
using the Monash [49] set of tuned parameters.

5 Analysis method

Distributions of the kt splitting scales up to the seventh order were constructed from track momenta
selected according to Section 3.1.

5.1 Background estimation

Events from the signal process and the background contributions from Z → τ+τ−, W + jets, top-quark
pair and single top quark production as well as diboson and electroweak Z + jets production are obtained
by applying the analysis chain to the dedicated simulated samples introduced in Section 4.1. The multijet
background can also contribute if two jets are misidentified as leptons or if they contain leptons from
b- or c-hadron decays. A multijet-enhanced sample is obtained from the data by reversing some of the
lepton identification criteria. A two-component template fit to the dilepton invariant mass spectrum is then
employed to determine the normalisation in the fiducial measurement region, using the multijet template
and a template formed from all other processes. Table 1 shows the estimated composition in each lepton
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channel. The relative sizes of the various background contributions are also illustrated in Figure 2, which
shows the

√
d1 distribution at the detector level in both the electron and the muon channel. The purity of

the signal is close to 99 %.

Table 1: Observed and expected numbers of events in the electron and the muon channels. The signal as well as the
electroweak Z + jets, WW, W + jets, tt̄ and single-top background rates are estimated using dedicated Monte Carlo
samples. The multijet background is estimated using a data-driven technique.

Z → e+e− Z → µ+µ−

Process Events Contribution [%] Events Contribution [%]
QCD Z + jets 5 090 000 98.93 % 7 220 000 99.40 %
Multijet 42 000 0.81 % 25 000 0.34 %
Electroweak Z + jets 5 350 0.10 % 7 340 0.10 %
Top quarks 6 190 0.12 % 8 440 0.12 %
W(W) 1 100 0.02 % 1 460 0.02 %
Z → τ+τ− 1 100 0.02 % 1 700 0.02 %
Total expected 5 150 000 100.00 % 7 260 000 100.00 %
Total observed 5 196 858 7 349 195
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Figure 2: Detector-level splitting scale distributions in the electron and muon channels using the jet-radius parameter
R = 0.4. The lower panel shows the ratio of the combined Monte Carlo predictions to the data. The size of the error
bars reflects the statistical uncertainty for predictions and data, while the combined experimental and systematic
data uncertainty is indicated by a grey band around unity.

5.2 Unfolding

The estimated number of background events is subtracted from the data in each bin of a given distribution.
The background-subtracted data are then unfolded back to the particle level using an iterative procedure
based on Bayes’ theorem [50, 51], which makes use of an unfolding prior that is updated at each iteration.
In the first iteration, the nominal particle-level predictions from Sherpa are used as the unfolding prior.
The detector resolution causes bin-to-bin migrations, which are corrected for using a detector response
matrix in the unfolding procedure. Acceptance and efficiency losses in the fiducial measurement region
as well as fake contributions (e.g. due to pileup) are also accounted for. The unfolded bin values are
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found to converge after five iterations in most cases. The statistical uncertainty in data and simulation is
estimated using pseudoexperiments.

In addition to the nominal charged-particle-level results (“charged-only”), the unfolding procedure is
repeated using particle-level predictions that include the neutral particles as well, thereby extrapolating
the data to a particle-level including all particles (“charged+neutral”). The requirements on the Z-boson
candidate and the particles entering the clustering sequence remain identical to those of the charged-only
analysis. These extrapolated results are provided for the benefit of theoretical calculations which cannot
account for hadronisation processes, and depend strongly on the modelling of hadronisation processes
in the generator used during the unfolding. Since the extrapolation and the corresponding uncertainty
estimate could change with other hadronisation models in the future, the “charged-only” measurements
should be considered the primary results of this publication.

5.3 Systematic uncertainties

The systematic variations outlined below are propagated through the unfolding procedure by creating a
new response matrix constructed from the simulation after reweighting, smearing or shifting the relevant
event weights or objects. The shift in the unfolded spectrum is symmetrised and taken as a systematic
uncertainty in the final result. The binning is chosen to be uniform in logarithmic space, with some bins
merged towards the tails of the distributions to compensate for statistical fluctuations in the data.

Experimental uncertainties arise from the lepton-based and luminosity systematic uncertainties, the pileup
modelling as well as the track reconstruction efficiency. The systematic uncertainties in the lepton recon-
struction, identification, isolation and trigger efficiencies, as well as the lepton momentum scale and
resolution, are defined in Refs. [15, 16]. The total impact of the lepton-based systematic uncertainties
on the final results is typically 1 % or less. The uncertainty in the integrated luminosity is 1.9 %, as
determined from beam separation scans [52] performed in November 2012. The difference in the pileup
profile between the detector-level simulation and the data is corrected for by reweighting the simulation to
match the average number of proton–proton collisions observed in the data. The impact of the remaining
mismodelling on the measurement is found to be at most 1 %, which is assigned as a systematic uncer-
tainty. The efficiency to reconstruct an ID track depends on the ID material distribution. A corresponding
uncertainty is derived by comparing the nominal simulation to a dedicated simulation using a distorted
ID geometry and a 15 % increase in the material budget. The resulting systematic uncertainty associated
with the track reconstruction efficiency is typically at the level of 5 % but can rise to 10 % in the tails
of the distributions, in particular for higher-order splitting scales. Uncertainties associated with the track
momentum are found to be negligible for the range of track momenta probed in this measurement. As a
cross-check, splitting scales are also constructed in data and simulation using tracks that do not pass the
nominal longitudinal impact parameter requirements in order to assess the modelling of pileup and fake
tracks in the simulation. Good agreement is observed between data and simulation, with the data being
generally described to within 10 %. The differences are covered by the assigned uncertainties, which are
larger in that region due to the larger fraction of fake and pileup tracks, and so no additional systematic
uncertainties in the pileup modelling or fake-track rates are assigned.

A data-driven uncertainty associated with the imperfect modelling of the unfolded observables at the
detector level is obtained by reweighting the simulation such that the level of agreement between the
detector-level distributions and the data is improved before performing the unfolding procedure. The
reweighting is applied at the particle level using the ratio of the distributions in data and detector-level
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simulation and results in a systematic uncertainty of at most 5 %. An algorithmic uncertainty associated
with the number of iterations chosen in the unfolding procedure is taken to be the difference between the
results unfolded using ten iterations and the nominal results obtained using five unfolding iterations. The
algorithmic unfolding uncertainty is at the subpercent level.

An uncertainty due to the choice of generator used to unfold the data, which is the dominant systematic
uncertainty, is obtained by replacing the nominal Sherpa prediction in the full analysis chain with a pre-
diction from Powheg+Pythia 8, which uses a very different parton shower and hadronisation model com-
pared to the nominal generator. The difference between the results unfolded with the nominal predictions
and the alternative predictions is then symmetrised and assigned as an uncertainty in the choice of unfold-
ing prior. This uncertainty estimate might be reduced by reweighting both Sherpa and Powheg+Pythia 8
to the experimental data at reconstruction level before constructing the response matrices. Since it is
not clear that this would still cover the full impact of non-perturbative effects on the unfolding, no such
reweighting is applied when assessing the unfolding-prior uncertainty.

The extrapolated “charged+neutral” results are also obtained using the generator combinations described
above as unfolding priors, providing an estimate of the extrapolation uncertainty.

To cover further systematic effects of the unfolding algorithm on the extrapolated results, an MC-closure
uncertainty was derived by unfolding Powheg+Pythia 8 from detector level to the charged+neutral level
using response matrices generated from the Sherpa samples. The difference with respect to the direct
charged+neutral predictions from Powheg+Pythia 8 is then added as an MC-based closure uncertainty in
analogy to the data-driven reweighting uncertainty described above.

The breakdown of the corresponding systematic uncertainties can be found in Figure 3. In the break-
downs, the total uncertainty shown is the full quadrature sum of all the individual statistical and systematic
uncertainty components. This includes a constant ±1.9 % uncertainty in the luminosity estimate, which
is omitted from the breakdown for clarity. The curve labelled ‘experimental’ contains the tracking and
pileup uncertainties as well as the systematic uncertainties associated with the Z-boson candidate selec-
tion. The curve labelled ‘unfolding’ contains the uncertainties associated with the unfolding procedure,
namely the unfolding closure uncertainty, the uncertainty associated with the number of iterations as well
as the unfolding-prior uncertainty.

6 Results

In this analysis, distributions for eight splitting scales,
√

d0 . . .
√

d7, are obtained for all combinations
of

• two lepton flavours, Z → e+e− and Z → µ+µ−,

• two radius parameters in the jet algorithm, R = 0.4 and R = 1.0, and

• two particle-level definitions: “charged-only” and “charged+neutral”, as introduced in Section 5.2.

A full set considering all splitting scales is shown only for the electron-channel analysis with R = 0.4 in
Figure 4, while other combinations can be found in Appendices A and B.

The measured differential cross sections are compared to state-of-the-art predictions obtained from Sherpa
(‘MEPS@NLO’) and DY@NNLO+Powheg+Pythia 8 (‘NNLOPS’). Details of the respective generator
setups are given in Section 4.2. PDF uncertainties for the MEPS@NLO prediction are estimated with
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Figure 3: Breakdowns of the total systematic uncertainty into its contributions in the electron channel using the
jet-radius parameter R = 0.4. The total uncertainty shown is the full quadrature sum of all the individual statistical
and systematic uncertainty components, including a constant ±1.9 % uncertainty in the luminosity estimate.
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the NNPDF3.0nnlo [43] replicas using LHAPDF [53]. They are combined with an uncertainty estimate
based on 7-point scale variations, i.e. all combinations of factors of 0.5, 1 and 2 in the factorisation and
renormalisation scales are taken into account except the opposite combinations of (0.5, 2) or (2, 0.5). The
scale uncertainty envelope for the NNLOPS prediction is obtained from 21-point scale variations using
the prescription described in Ref. [8].

Neither of the generators provides a fully satisfactory description of the experimental data. In the ratio
plots of the lower-order splitting scales it is seen that both predictions underestimate the cross section
in the peak region at values of around 3 GeV by typically 10–20 %, but are consistent with the data at
10 GeV. At higher values the MEPS@NLO prediction agrees well with the data while the NNLOPS
prediction systematically overestimates the cross section. Both overshoot the data significantly in the
region close to 1 GeV. The level of agreement of the NNLOPS predictions in the soft region is improved
significantly for the higher-order splitting scales.

The generator uncertainties in these comparisons are only estimated by varying parameters related to the
perturbative aspects of the MC generators. In the soft region of the splitting-scale distributions other
aspects become relevant, such as hadronisation and multiple parton interactions, and even the parton
shower modelling. The discrepancies unveiled by these measurements indicate that the data can provide
new input for the tuning of parameters in the non-perturbative stages of event generators.

Figure 5 displays again the first-order splitting scale,
√

d1, to demonstrate the different variations in the
analysis due to the choice of lepton flavour, jet-radius parameter and particle level. A detailed breakdown
of the systematic uncertainties is included here in the same style as described earlier.

The uncertainties for the extrapolated charged+neutral distributions are increased due to the unfold-
ing procedure, which includes the correction for going from a fiducial phase space using only charged
particles to one using all particles. This effect is most significant for low values of the lower-order splitting
scales such as

√
d1, where uncertainties grow beyond 10 % compared to less than 5 % in the charged-only

measurement. For higher values of the splitting scales the differences between the charged-only and
charged+neutral uncertainties are not as large, as this region is not affected much by hadronisation ef-
fects. The peak of the extrapolated distributions, when compared to the nominal (charged) distributions,
is shifted by roughly 1 GeV in the R = 0.4 case and by about 2.5 GeV in the R = 1.0 case. It moves to
higher values of the splitting scales as expected given that the jet energies increase with the addition of
neutral particles.

The two lepton flavours agree to better than 1σ, once differences in the fiducial lepton selection are
accounted for. The channels are not combined, because data statistics is a subdominant uncertainty. The
R = 1.0 comparisons reveal features similar to the R = 0.4 case. A full set of distributions and systematic
uncertainties in the R = 1.0 case are shown in Appendix A. Distributions of all possible combinations are
furthermore provided in HEPDATA [54] along with an associated Rivet [55] routine.
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Figure 4: Charged-only distributions for the eight leading splitting scales in the electron channel using the jet-radius
parameter R = 0.4. The size of the error bars reflects the statistical uncertainty, while the combined statistical
and systematic uncertainty is indicated by the grey band. Theoretical predictions from Sherpa with NLO multijet
merging (“MEPS@NLO”) and from Powheg+Pythia 8 with NNLO matching (“NNLOPS”) are displayed including
error bands for the generator uncertainties.

13



1 10 210

 [p
b 

/ G
eV

]
1d

d
σd

4−10

3−10

2−10

1−10

1

10

210

-1, 20.2 fb = 8 TeVs
, R = 0.4-µ+µ →Z 

ATLAS

Data (2012)
MEPS@NLO
NNLOPS

 [GeV]1d
1 10 210

  
D

at
a

P
re

di
ct

io
n

0.5

1

1.5

2

 [GeV]1d
1 10 210F

ra
ct

io
na

l u
nc

er
ta

in
ty

 [%
]

0

5

10

15

20

25

30

35

-1, 20.2 fb = 8 TeVs
, R = 0.4-µ+µ →Z 

ATLAS

Total uncertainty
Unfolding
Experimental
Data statistics
MC statistics

57 %
↑

(a) muon, R = 0.4, charged-only
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(b) electron, R = 1.0, charged-only
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(c) electron, R = 0.4, charged+neutral
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(d) electron, R = 1.0, charged+neutral

Figure 5: Unfolded
√

d1 splitting scale for four different variations of the analysis as described in the sub-captions.
The upper panels show the distributions in the same style as Figure 4. The lower panels show breakdowns of the
systematic uncertainties in data in the same style as Figure 3.
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7 Conclusions

Differential cross sections are measured as a function of the splitting scales in the kt algorithm applied to
the hadronic activity in Z → `` events. The measurements use an 8 TeV proton–proton collison data set
recorded by the ATLAS detector at the LHC with an integrated luminosity of 20.2 fb−1.

Splitting scales up to the seventh order are measured for both the Z → e+e− and Z → µ+µ− channels and
for jet-radius parameters of R = 0.4 and R = 1.0. Charged-particle tracks are used for the analysis.

The measurements are corrected for detector effects. In addition to the charged-particle final state, a
Monte Carlo simulation-based extrapolation to the charged- and neutral-particle final state is provided.
The final results are compared to two state-of-the-art theoretical predictions, one including NNLO accur-
acy matrix elements, and a second prediction with multi-leg NLO merging. Significant deviations from
data are found for both predictions, in the perturbative as well as the non-perturbative regimes.

The measurements of splitting scales are sensitive to the hard perturbative modelling at high scale values
as well as soft hadronic activity at lower values. They thus provide a valuable input complementary to
standard jet measurements, in particular in the transition region. With their specific identification of QCD
jet evolution they provide means to constrain and potentially tune Monte Carlo event generators.
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Appendix

A Results for the electron channel with R = 1.0

This section contains results obtained with a jet radius parameter R = 1.0 in the electron channel.
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Figure 6: Charged-only distributions for the eight leading splitting scales in the electron channel using the jet-radius
parameter R = 1.0. The size of the error bars reflects the statistical uncertainty, while the combined statistical and
systematic uncertainty is indicated by the grey band. Theoretical predictions from Sherpa with NLO multijet
merging (“MEPS@NLO”) and from Powheg+Pythia 8 with NNLO matching (“NNLOPS”) are displayed.
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B Results for the muon channel with R = 0.4 and R = 1.0

This section contains results obtained with a jet-radius parameter R = 0.4 and R = 1.0 in the muon
channel.
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Figure 7: Charged-only distributions for the eight leading splitting scales in the muon channel using the jet-radius
parameter R = 0.4. The size of the error bars reflects the statistical uncertainty, while the combined statistical
and systematic uncertainty is indicated by the grey band. Theoretical predictions from Sherpa with NLO multijet
merging (“MEPS@NLO”) and from Powheg+Pythia 8 with NNLO matching (“NNLOPS”) are displayed.
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Figure 8: Charged-only distributions for the eight leading splitting scales in the muon channel using the jet-radius
parameter R = 1.0. The size of the error bars reflects the statistical uncertainty, while the combined statistical
and systematic uncertainty is indicated by the grey band. Theoretical predictions from Sherpa with NLO multijet
merging (“MEPS@NLO”) and from Powheg+Pythia 8 with NNLO matching (“NNLOPS”) are displayed.
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