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1. INI'RODUCTION 

Since the amazing discovery that the large Pr hadron-hadron inclusive 
cross-sections do not simply extrapolate the low Pr behaviour1 ) , much experi­
mental and theoretical effort has been devoted to the understanding of this 
phenomenon with the aim of revealing elementary processes between hadron con­
stituents at small distances2 ' 3 ) . At present the most appealing possibility 
is that large Pr events are due to hard collisions between point-like ·hadron 
constituents 4) , qualitatively along the same line of thought of quark-parton 
models for deep-inelastic lepton-hadron processes . Although the theoretical 
difficulties of such a naive picture are man/) , the prediction of hard­
scattering constituent models for p-p collisions is in general the presence 
of a coplanar , non-collinear , two-jet structure at large Pr which exhausts 
the transverse momentum balance . This jet structure would be of cours<e 
washed out into a fan in experiments where many events are averaged ov,er . 

Studies of correlations in events with the requirement of a large Pr 
trigger particle [�0 • s  have been rather popular so far2) ] have providei the 
first hints towards a jet-like structure of the collisions by showing a rise 
in particle density compared to low Pr production over a wide angular :range . 
The picture of the large Pr event emerging from the study of angular cor­
relations can be sumnarized by three cornponents2) : 

i) an underlying normal event, at all rapidities , with an exp(-6pr) dis­
tribution, azimuthally synunetric , which corresponds �o the low Pr be­
haviour at a centre-of-mass energy ,!Seff � IS - z!{rigger ; 

ii) jets on the same side of the trigger particle ,  confined in the an1�lar 
range M � 100° , 11y � 2 units , and centred around the trigger particle; 

iii) fans on the opposite side with /1cjl � 180° , 11y � 4 units , centred at 
y = o .  

Such an event structure is apparent in Fig . 1 which shows the angular cor­
relations observed by the Aachen-CERN-Heidelberg-MGnchen Collaboration with 
etrigger = 90° and 53° in the c.m. s .  s) However, this type of experiment has 
suffered in the past because of the lack of momentum measurernent5 ' 6 )  or the 
limited solid angle7) , and therefore the most important question (i . e .  lbw 
does the fan behave event-by-event? Does it look similar to the same side 
jet?) could not be answered. 

The experiment8 ) described here overcomes the above-mentioned difficul­
ties by making use of a large solid angle detector with magnetic analy�:is , 
the CERN ISR Split-Field Magnet (SFM) facility' ) . 
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2.  SCME EXPERIMENTAL DETAILS 
Figure 2 shows the top view of the apparatus used by the CERN R412  

group . Since the experimental set-up an d  the methods are discussed in de­
tail elsewhere" ) , only the key features will be recalled here . 

8 Lead Glass / � Array <) D 
' I 

0 3m 

Fi g .  2 Layout of the set-up used in the CERN R412 experiment . The forward 
(dotted) and the central (black) chambers of the SFM detector are 
shown. Tl and T2 are plastic scintillators used to detect small­
angle secondaries .  The two positions , 8 = �0° and 8 = 45° , of the 
l ead-glass array used to select the high P¥ trigger are indicated . 

The large Py trigger is provided by 1 m2 lead-glass detector1 0) posi­
tioned to accept IT0 1 s  emitted either at 90° or at 45° in the p-p centre-of­
mass system. The IT0 is identified by requiring the (yy) invariant mass to 
be compa�ible to mIT0 within the experimental resolution in the interval 
2 . 0  < p� < 4 . 1  GeV/c. The average value of the transverse momentum is 

ITO (pT ) = 2 . 45 GeV/c .  
Charged secondaries are momentum-analysed in the SFM mul tiwire propor­

tional chamber detector' ) ;  no chambers were available below and above foe 
intersect at the time of the experiment . The regions of good acceptance 
are : 

IT0 hemisphere 
(Py > 400 MeV/c) 

{ I Y I 
1 4> 1  � 27° 

*) The rapidity y = !ln[(E + P1) / (E - p1) ] is calculated assuming all par­
ticles to be pions . 



opposite hemisphere { IY I $ 2 · 5 
(Pt > 200 MeV/c) l lSOo _ cp l ,;: 350 • 

over this region, inefficiencies c� 20%) due to interactions and decays , 
chambers ' support lines and cuts in track-finding , have been corrected 
weighting the tracks by the inverse of their detection probability .  

Data have been taken at IS = 53 GeV and 45  GeV in the 90° position and 
at IS = 45 GeV in the 45° position . Here , mainly the data at IS = 53 GeV, 
8no = 90° a) will be discussed , and to a lesser extent those at IS = 45 GeV , 
8n o = 45o 1 1 ) .  

Data have also been taken with a minimum bias trigger , using only the 
wire chamber information and the associated scintillators (no lead-glass in 
the trigger) , to be used as reference in the comparison with large Pr events . 

The inclusive behaviour is to be contrasted with the increase of par­
ticle multiplicity at all transverse momenta which is observed in large Pt 
events8 ) . The excess over the minimum bias Pt distribution grows with Pt • 
both on the trigger side and in the opposite hemisphere , and is at least a 
factor five at Pt = 1 . 2  GeV/c ,  which will be the cut used here to define the 
fast particles participating in the high Pt process .  Similar results , namely 
that also slow particles share the transverse momentum balance and that the 
excess increases dramatically with Pt • have been obtained previously by the 
CERN-Columbia-Rockefeller-Saclay Collaboration7) 

• 

3 • THREE HINfS FOR JETS 

3 . 1  Jets along the direction of the large Pr trigger 

The rapidity distributions of charged particles in the n° hemisphere 
and the corresponding (n°n±) mass distributions from the 90° data are shown 
in Fig . 3 for various px

*) intervals between 0 . 4  and 1 . 7  GeV/c .  Similar 
distributions from the 45° data are shown in Fig . 4 .  The relevant feature 
of the rapidity distributions is an excess of particle density , compared to 
minimum bias events , centred around the trigger direction , in agreement with 
previous observations5 ' 6 ) . This excess grows and shrinks with Px• its inte­
gral being 0 . 13 ± 0 . 02 particles per event in the 90° data for 
0 . 4 $ Px $ 1 . 7  GeV/c and ! cp l  $ 27° . 

The angular shrinking of the correlated piece with increasing transverse 
momentum implies an associated mass distribution limited at low nn masses : 

*) Px is the momentum component along the n°  transverse momentum. 
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expected for uncorrelated particles . 

. 

ooat--:-Lt_�i]--�_!__ 80�\ (a)  

004 + + 40 I '� . I -2 -1 0 + 1 2 0 1 2 3 l�-1.-�--.!-j �� /'11_ 1" ' 
0.02 + I 20� 

-2 -1 0 1 2 0 1 2 3 

j 004b� 40�(c) 
i:; + + :z ao2 + 20 " +-.------t---. 

�-
-

-2 -1 0 1 2 0 1 2 3 

r 
o.o'�f 
001 +++---1.--
-2 -1 0 1 2 

20�

,

�(d) 
10 . 

.... -- -
0 1 2 3 

m(n°n')(GeV/c2 )  
Fi g .  4 Same as Fig .  3 for the 45° data. 



this is clearly observed in Figs . 3 and 4 as a bump sitting over the back­
ground cal01lated from uncorrelated minimum bias distributions . The whole 
bump cannot be attributed to charged p meson productions since the mass reso­
lution is about ±SO MeV: at l�rge Px ' however, there is a clean signal at 
the p mass , consistent with the instrumental resolution and with the natural 
p decay width (see Fig. 5) . By assuming that the p differential cross­
section is a multiple of the n° cross-section , one obtains at 90° a cross­
section ratio ! (P+ + p-)/n° = 0 . 9  ± 0 . 2  between p and direct n ° production 

p ( TIO } at an average transverse :ioomentum (Pf } = Pr = 3 . 5  GeV/c . 
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Fi g .  5 (n°n±) mass distribution for particles in the n° hemi­
sphere with 0 . 7 < Pi < 1 . 7  GeV/c (90° data) . The 
dashed curve is the mass distribution expected for 
uncorrelated particles and the dashed-dotted line is 
the background assumed to estimate the p signal . 

Since the p mesons do not exhaust the two-particle correlation and no 
evidence is found for large w production (w + n+n-n°/n° < 1 at 95% confidence 
level at <1'* > = 3 . 5  GeV/c) , the natural question to ask is whether a three­
particle correlation shows up for high Px particles . By selecting a fast 
particle (px > 1 GeV/c) with rapidity around the n° rapidity and plotting 
the rapidity of all the other particles , a strong three-particle correlation 
is observed (see Fig . 6) . 
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3 . 2  Coplanarity and transverse lllOlllentum sharing 
i.n the OPposite hemisphere 

The single-particle rapidity distribution in the hemisphere opposite 
the trigger has been studied8) as a function of charge, Px and P';:0 , and it 
has been found to follow the well-known fan-like behaviour5 ' 6) with an over-o 
all particle density increase at .all Px roughly linear with P';: • The dis-
tributions are independent of charge, the +/- charge ratio being about 1 . 2 ,  

apart from the large Px• large y region where the +/- ratio increases to 
about 2 ,  qualitatively in a similar way to what is observed in inclusive dis­
tributions 1 2) • 

The important point to emphasize in order to test the jet structure in 
single-particle distributions is the coplanarity with the scatter plane de­
fined by the trigger and the incoming protons . The distributions in the mo­
mentum component orthogonal to the scatter plane, Pout ' are shown in Fig. 7 

for various Px intervals ranging from 1 . 0  to 3 . 2  GeV/c. The result is that 
the Pout distribution turns out to be independent of Px• whilst from mini­
Illl.ill bias events we expect 

{pout> � 0 . 6/P; (Pout' Px in GeV/c) • 

An empirical fit of the form 

dN/d \pout l = A exp(-B \Pout \ ) 

gives an excellent x2 and an average (pout> = l/B = (0 . 50 ± 0 . 05) GeV/c (see 
Table 1) . By studying the Pout distribution in various rapidity intervals 
and separately for + and - charges , (Pout> is found to be the same within 
errors and the Pout distribution is shown to factorize . 

Table 1 

Fits to the Pout distributions 

1 . 0  

Px range 
(GeV/c) 

$ Px < 1 . 43 

1 . 43 !:: Px < 1 .  72 

1 . 72 ·� Px � 3 . 2  

\(P�} 

1 . 17 

1 . 54 

2 .13 

B = l//(Pout1) 
(GeV/c) -1 

2.1 ± 0 . 2  

2 . 3  ± 0 .3 

1 .  7 ± 0 .4 

X2/DF 

0 . 9  

0 . 4  

0 . 3  

Since the coplanarity between the trigger plane and the particles emit­
ted with azimuth opposite to the trigger is indicated by the limited Pout • 
it is interesting to understand how the transverse momentum is balanced in 
the large Pr process . To do this we consider the distribution in 
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0 
xE = I Px/� I for fast particles (px > 1 . 2  GeV/c) presumably linked to the 
high pt process with little backgrolllld.  Figure Sa ·shows the xE distributions 
from the eTio = 90° and 6Tio = 45° data , after correcting for the llllSeen Pout 
region. 'Ibese distributions are equal within errors , as is expected from 
hard-scattering models if there is not a strong e dependence in the c.m. s .  
of the colliding constituents . '!be xE distribution i s  steeply falling and 
has an integral of about 0 . 25 for xE � 0 . 4 ,  i . e .  on the average 25\ of the 
events have a charged particle which balances more than 40% of the trigger 
TI

0 transverse momentum by itself. 

'!be assumption that the TI0  carries all the relevant nm in its hemisphere 0 • t • 1 (� = Pf e , say) may be questioned since particles correlated with the TI0 
are clearly observed (see Section 3 . 1) , and this correlation increases with 
the � in the opposite hemisphere (see Table 2) . 0 To test this assumption we 
show in Fig. Sb the distribution in XE = I Px/ (� + p�) I ' where p� r 0 for 
the fraction of events with a particle close to the TI° C IY' I < 1 and 
p� > 0 . 4  GeV/c) : the conclusion is that the xE distribution does not differ 
seriously from the xE distribution . 
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c) The XE distribution (90° data) is compared with the Feynmann xF d istribution observed in deep-inelastic e-p scattering (Ref . 13) and 
with %dN/dz ( z  = p/Pmax) observed in e+e- annihilations at 
Ecm = 4 . 8  GeV/c (Ref . 14) . 



Table 2 

Percentage of events with a fast particle 
correlated to the n° C IY I < 0 . 5 ,  
Px > 1 GeV/c) versus XE, of the fastest 
particle in the opposite hemisphere 
(90° data) . 

xE range % 

All events 4 . 5  ± 0 . 5  

0 . 4-0 . 6  (Px > 1 . 2  GeV/c) 7 . 8 ± 1 . 6  

Above 0 . 8 5  13 . 6  ± 3 . 9  

A comparison between the � distribution and the fractional hadron mo­
mentum distribution observed in deep inelastic e-p scattering1 3) and in e+e­
annihilations 1 �) is shown in Fig . Be . All these distributions are again 
similar in shape and magnitude , a result which is expected in quark-parton 
models where the hadrons in the final state are interpreted to be the frag­
ments of a large transverse momentum quark. 

3 . 3  

Further evidence for an event-by-event j et-like structure comes from 
the study of rapidity correlations in the hemisphere opposite the trigger. 
This is done by selecting events with a fast particle (px > 1 . 2  GeV/c) in 
different rapidity intervals and plotting the rapidity distribution of the 
other secondaries irrespective of their momenta , as shown in Fig. 9 .  The 
density of particles accompanying a large XE particle is seen to shift in 
rapidity towards its direction, in such a way that a fraction of the parti­
cles is closely correlated to the largest xE particle and another fraction 
is more or less uniformly distributed over the available rapidity range . 
This compares well with what is observed on the trigger side in the ACl:f.f 
data5) , where no llXlmentum analysis was available (see Fig. 1) . Figure 10 

shows the average additional charged particle densities when selecting 
a) the fastest particle (px > 1 . 2  GeV/c at least) , b) a random slow particle 
(px < 0 . 6  GeV/e) . Both distributions can be decomposed into an excess 
centred at �y = O and a background proportional to the uncorrelated particle 
density. The correlated piece is narrower when selecting fast particles , 
±0 . 6  units of rapidity versus ± 0 . 8 ,  and contains more particles per event, 
0 . 33 ± 0 . 07 versus 0 . 18 ± 0 . 03 .  
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The fact that, with a large Pr trigger , the request of a fast particle 

in the opposite hemisphere enhances and shrinks the short-range rapidity cor­
relation as compared to the selection of low Pr secondaries , is new and 

points to some intrinsic similarity between the side of the trigger and the 
opposite s ide . 

Since the only quantum number which can be studied in the present ex­

periment is charge, we display in Fig . 11 the charge content of the excess 

of correlated particles . It is found that the excess consists of 1/3 of the 
secondaries with charge equal to the large xE particle , and of 2/3 of the 

secondaries with charge opposite to the large xE particle. Similar short­

range charge correlations have been studied in inclusive events1 5) leading 

to similar results . 

The final question is to see whether the uncorrelated background can be 

further reduced by asking the secondaries to have also a large transverse 
momentum. Figure 12 shows the rapidity distributions of particles with 
Px > 0 . 8  GeV/c in events where a large xE particle (px > 1 . 2  GeV/c) is pre­
sent. A background calculated under the asslUilption that the largest xE pro-

11 0  duct and the high Px secondary are uncorrelated and follow the Pr spectrum 
and the minimum bias distribution, respectively , reproduces well the low 
background observed and leaves an excess of 0 .15 ± 0 . 06 particles per event 
over a narrow rapidity range . 
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4 .  COOCLUSIONS 

All the correlation features presented above for particles accompai1ying 
a high Pr particle in the hemisphere opposite the trigger rr0 are qualita­
tively very similar to the features seen for particles accompanying the rr 0  
in its hemisphere . This evidence for narrow rapidity clustering on both 
sides , in addition to the coplanarity structure of the large Pr event an.d 
to the transverse momentum distribution in the opposite hemisphere, conspires 
towards a coplanar two-jet picture of large Pr p-p collisions in analogy with 
what is found in deep inelastic lepton-proton and e + e - collisions . Thi�; co­
planar two-j et structure is always superimposed on the underlying behaviour 
of the normal low Pr ' 'background" event . 

Needless to say, much more experimental work is required in several di­
rections before firmly establishing the picture outlined above . Let us list 
a few points : i) transverse momentum larger than in the present experiment 
have to be studied; ii) quantum number correlations have to be investigated 
(e .g .  identifying baryons and strange particles) ; and iii) it might be useful 
to trigger the large Pr event with a large solid-angle calorimeter in order 
not to single out a possibly special jet . 

* * * 
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