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Results on the thermal transition of QCD with 3 degenerate flavors, in the lower-left corner of
the Columbia plot, are puzzling. The transition is expected to be first-order for massless quarks,
and to remain so for a range of quark masses until it turns second-order at a critical quark mass.
But this critical quark mass and resulting ”pion” mass disagree violently between Wilson and
staggered fermions at finite lattice spacing, and decrease sharply with the lattice spacing, for
staggered fermions at least. To clarify this puzzle and eliminate potential systematic effects from
rooting, we study the 4-flavor theory with staggered fermions, on lattices with 4 to 10 time-
slices. Our results are qualitatively similar to the 3-flavor case, so that rooting is not an issue.
However, dramatic cutoff effects are visible, even on our finest lattices. Universality implies that
cutoff effects for Wilson fermions are even more dramatic. In order to obtain a first-order thermal
transition in the continuum theory, extremely light quarks are needed.
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Figure 1: (left) Columbia plot: we focus on the N f = 3 chiral critical point (arrow), and its N f = 4 analogue;
(right): adding a vertical axis for the chemical potential µ , a possible QCD chiral critical point occurs when
the surface swept by the µ = 0 chiral critical line intersects the physical quark masses’ vertical line.

1. Introduction

The QCD phase diagram summarizes the various behaviors of QCD as a function of temper-
ature T and matter density, or equivalently quark chemical potential µ . Since the chiral and the
center symmetry, which play crucial roles in the phase diagram, are both explicitly broken in QCD
by the quark masses, it is useful to consider these masses as QCD parameters: mu,d for the two
light quark masses considered degenerate for simplicity, and ms for the strange quark mass. Our
expectations for the µ = 0 phase diagram, projected along the T -direction, are contained in the
“Columbia plot” Fig. 1 (left).

The upper-right and lower-left corners of the Columbia plot are simpler to analyze:
- In the first, all quarks are infinitely massive. They decouple, and the resulting SU(Nc = 3) Yang-
Mills theory obeys the global Z(3) center symmetry, which is spontaneously broken at high tem-
perature via a first-order transition.
- In the second, all quarks are massless, and the theory obeys the global SU(N f = 3) chiral sym-
metry, which is spontaneously broken at low temperature and restored at high temperature. For 3
massless flavors or more, one expects symmetry restoration to occur via a first-order transition [1],
because no 3d SU(N f ),N f ≥ 3, second-order universality class is known [2].

In the middle of the Columbia plot, where both symmetries are badly broken explicitly, Monte
Carlo simulations indicate an analytic crossover as T is raised. Thus, there must exist two critical,
second-order lines separating the two first-order regions above from the central crossover region.
Because no particular symmetry is at play along these critical lines, their universality class should
be that of a 3d φ 4 theory, i.e. that of the 3d Ising model.

A simple way to pin down the location of these two critical lines is to consider the N f = 3
case, with all quark masses equal, shown as the diagonal of the Columbia plot. Two critical quark
masses should be observed, to be determined with high precision via Monte Carlo simulations. In
practice, it is difficult to adopt a reference scale, since an N f = 3 theory is a distortion of real-world
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Action Nt mc
π Ref. Year

standard staggered 4 ∼ 290 MeV [6] 2001
p4 staggered 4 ∼ 67 MeV [7] 2004

standard staggered 6 ∼ 150 MeV [8] 2007
HISQ staggered 6 . 45 MeV [9] 2011
stout staggered 4-6 could be zero [10] 2014
Wilson-clover 6-8 ∼ 300 MeV [5] 2014
Wilson-clover 4-10 ∼ 100 MeV [11] 2016

Table 1: Summary of previous studies of the N f = 3, µ = 0 chiral critical point – adapted from [10].
The general trend is: finer lattices and/or improved actions drive the critical ”pion” mass down; Wilson
fermions favor much heavier values. The last line (Wilson, Nt = 10) was presented at the Lattice confer-
ence [11]. Other, related studies have kept fixed to their physical value the strange quark mass [12], or the
ratio ms/mu,d [13].

QCD. So, it is convenient to trade the critical quark mass for the ratio of the corresponding T = 0
“pion” mass mc

π over the transition temperature Tc: mc
π/Tc is of order 1 for real-world QCD, and

allows to separate the regime of "light" and that of "heavy" quarks.

Besides increasing our fundamental knowledge, the quantitative determination of the Columbia
plot is useful when considering the effect of a chemical potential µ , which can be viewed as an ad-
ditional vertical axis. The two µ = 0 critical lines discussed above will sweep critical surfaces as µ

is turned on. The chiral critical surface, near the lower-left corner, may bend away from the origin,
and reach the physical quark mass values for a sufficiently large µ: this signals the presence of
a QCD chiral critical point, as in Fig. 1 (right). Or this critical surface may bend the other way,
and there may be no chiral critical point [3]. Even in the first case, reaching the critical point will
require more bending if the µ = 0 critical line corresponds to smaller quark masses. Thus, an ac-
curate determination of this critical line is an important ingredient to shape our understanding of
the finite-density properties of QCD. This can all be studied at µ = 0, without having to face the
“sign problem” present at non-zero chemical potential.

The importance of pinning down the µ = 0,N f = 3 critical points has been recognized. The
technical difficulty is to control the approach to the continuum limit. For the heavy quark case,
the masses are & O(1) GeV, which requires fine lattices to avoid UV cutoff effects. Numerical
work so far has focused on coarse lattices with Nt = 4 time-slices [4]. Such difficulties are absent
in the light quark case, so that one would expect reasonable accuracy for lattice spacings O(0.1)
fm, i.e. Nt & 8. However, one observes (i) large cutoff effects (∼ 30%) for Nt = 4,6,8 [5], and
(ii) enormous discrepancies (a factor of ∼ four!) between staggered and Wilson fermions at these
values of Nt .

Table I, adapted from [10], summarizes the results of past studies, and adds some results pre-
sented at the Lattice conference [11]. The general trend is: the more one approaches the continuum
limit, by decreasing the lattice spacing or by improving the action, the softer the transition, and
the lighter the critical “pion” is. The most remarkable case is that of [10]: using a stout-improved
action with staggered fermions on an Nt = 4 lattice, no sign of a first-order transition was found,
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Figure 2: N f = 3 comparison of mc
π/Tc as a function of the lattice spacing a2, between standard staggered

fermions [8] and non-perturbatively improved Wilson fermions [5]. The Nt = 4 and 6 Wilson fermion data
would mistakenly suggest small lattice artifacts. The Nt = 10 Wilson point was presented at the Lattice
conference [11]. The numbers along the y-axis indicate the results of linear extrapolations in a2.

down to arbitrarily small quark masses! In contrast, with Wilson fermions Ref. [5] finds a critical
“pion” mass of about 300 MeV after extrapolating from Nt = 6 and 8.

Thus, one is led to mistrusting the staggered simulations for two reasons: they indicate a very
small critical “pion” mass, consistent with zero; and they disagree strongly with Wilson fermion
results, both at finite lattice spacing and after continuum extrapolation.

One plausible culprit for these two puzzles might be rooting. With staggered fermions, the
Dirac determinant is raised to the power 3/4 to mimic N f = 3 degenerate flavors. The danger of
this procedure has been pointed out [14]: the consensus is that danger appears when the chiral limit
is approached first, before the continuum limit is taken. This is potentially the case here, since the
quark masses needed for criticality quickly approach zero as Nt is increased.

To eliminate a possible issue with rooting, we have studied the case of N f = 4 degenerate
flavors: no rooting is required, and the thermal transition in the chiral limit is expected to be
first-order as for N f = 3. Actually, a naive counting of the degrees of freedom suggests that the
first-order transition will be stronger for N f = 4 than for N f = 3, so that the critical “pion” mass
will be heavier, thus reducing the computing cost of the simulations.

2. Results: N f = 4

As argued above, we have simulated standard staggered fermions with N f = 4 flavors and Wil-
son plaquette action, in order to bypass potential harmful effects of rooting and to keep computing
costs down. The numerical simulations have been performed using a code running on GPUs [15].
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Figure 3: (left): finite-size scaling of the Binder cumulant B4(ψ̄ψ) with the bare quark mass, here for
Nt = 4. (right): N f = 4 variation of mc

π/Tc as a function of the lattice spacing a2, with linear and quadratic
extrapolations. N f = 3 staggered results are shown for comparison: the critical “pion” mass is smaller, as
expected.

For successive values of Nt = 4,6,8 and 10, we have simulated lattices of spatial size Ns≥ 2Nt ,
and determined the light bare quark mass mc

q for which the finite-temperature chiral transition is
second-order. Following [3], the order of the phase transition was established by monitoring the
Binder cumulant B4(ψ̄ψ), where B4(X) ≡ 〈(δX)4〉

〈(δX)2〉2 and δX ≡ X −〈X〉. Near criticality, B4 should
be a function of the ratio Ls/ξ of the spatial lattice size over the spatial correlation length, which
diverges as |mq−mc

q|−ν . The critical value 1.604.. and the critical exponent ν ≈ 0.63 are known
from the 3d Ising universality class. Thus, one can expand B4(mq) near mc

q as

B4(mq) = 1.604+ c1(mq−mc
q)N

1/ν
s +O((mq−mc

q)
3) (2.1)

An illustrative fit (including cubic terms) is shown in Fig. 3 (left) for Nt = 4.
For a given value of Nt , this procedure determines the bare parameters amc

q and β required for
criticality. A zero-temperature simulation is then performed, at these parameters, to determine the
T = 0 pion mass (amc

π)(Nt). Finally, one obtains the physically meaningful ratio mc
π/Tc = Ntamc

π ,
and repeats this procedure for successive values of Nt . These successive ratios are shown in Fig. 3
(right).

The zero-temperature simulations require large lattices (N0
s )

3×N0
t , both spatially (to maintain

(mπLs)� 1) and temporally (to achieve T ≈ 0). To reduce the computing effort, we chose N0
s ≥ 2Nt

and N0
t ≥ 4Nt , i.e. we used a 203× 40 “zero-temperature” lattice in combination with a 203× 10

finite-temperature lattice. We are aware that our choice is only marginally satisfactory, and causes
systematic errors in the extracted pion mass. However, Fig. 3 (right) shows variations of order
100% as Nt is varied, which makes our systematic errors negligible in comparison.

3. Discussion

Our N f = 4 results Fig. 3 (right) are qualitatively similar to previous N f = 3 results: the
dramatic reduction or mc

π/Tc as the lattice spacing is reduced is still present, and thus not related
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to rooting. Actually, a similar reduction is now visible in the Wilson data as well, with the new
Nt = 10 point [11] (see Fig. 2). Therefore, there is no reason to doubt the universality of the
continuum limit: the Wilson and the staggered values should converge as Nt is increased.

What is remarkable, however, is how slow this convergence is, even with a non-perturbatively
improved action as in the Wilson case! Note that Nt = 10, from which the continuum value of
mc

π/Tc will probably differ by a factor 2 or more, corresponds to a lattice spacing a ∼ 0.13 fm.
State-of-the-art thermodynamic studies use a maximum number of Nt = 16 time-slices.

Let us speculate on the reason for such large cutoff effects. Taste-breaking could be the expla-
nation: N f = 4 staggered fermions possess 16 ”pions”, but only one of them is really light, and the
15 others become degenerate with it in the continuum limit only. Thus, as the lattice spacing is re-
duced, the number of light pions effectively increases. But this should make the transition stronger,
not weaker as observed. Moreover, the opposite occurs with Wilson fermions: there, the doublers
become heavier toward the continuum limit. Nevertheless, Wilson and staggered fermions both
lead to the transition becoming softer in the continuum limit. Thus, the explanation must reside
elsewhere.

Perhaps cutting off all but the Nt lowest Matsubara frequencies has larger than expected con-
sequences. One simple exercise consists of calculating the pressure of a free massless boson on the
lattice, and comparing it with the continuum Stefan-Boltzmann law [16]. An instructive figure can
be found in Fig. 2 of [17]. It shows that the lattice pressure can easily differ from the continuum
one by factors well beyond 10. The pressure deficit due to the Matsubara cutoff is less pronounced
if the boson is more massive, so that the cutoff will extend the parameter regime of the confined
phase, and push the critical ”pion” mass upward.

If this guess is correct, then it is essential to reduce the temporal lattice spacing, not so much
the spatial one. Lattice actions with anisotropic couplings would afford an economical approach
to the continuum limit. For the measurement of mc

π/Tc, the non-perturbative tuning of the (gauge
and fermion) anisotropy coefficients is not needed, as long as the continuum limit is consistent.
Alternatively, one could improve the action so as to approach the Stefan-Boltzmann law better, in
the spirit of the p4-improved action [19].

Controlling the continuum extrapolation of the N f = 4 finite temperature transition will serve
us for the N f = 2+1 case as well. There, unexpected results have been obtained for the upper-left
corner of the Columbia plot: the thermal transition appears to be first-order – on a coarse, Nt = 4
lattice [20]. Lattice corrections should also be carefully considered in the search for a conformal
window in the number of flavors: it has been proposed to identify the lower edge of this window
as the number of massless flavors for which the critical temperature of the chiral phase transition
reaches zero [21] – there too, lattice corrections may well be very significant.

Finally, it is clear that the continuum value of mc
π/Tc, for N f = 4 and even more so for N f =

3, is going to be extremely small. At present, continuum extrapolations as in Fig. 3 (right) are
compatible with a zero value. Could it actually be exactly zero, in contradiction with the predictions
of [1] ?
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