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Motivated by the problem of stability of anti–de Sitter (AdS) spacetime, we discuss nonlinear
gravitational perturbations of maximally symmetric solutions of vacuum Einstein equations in general
and the case of AdS in particular. We present the evidence that, similarly to the self-gravitating scalar field
at spherical symmetry, the negative cosmological constant allows for the existence of globally regular
asymptotically AdS, time-periodic solutions of vacuum Einstein equations whose frequencies bifurcate
from linear eigenfrequencies of AdS. Interestingly, our preliminary results indicate that the number of one-
parameter families of time-periodic solutions bifurcating from a given eigenfrequency equals the
multiplicity of this eigenfrequency.
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I. INTRODUCTION

The problem of late-time dynamics in asymptotically
anti–de Sitter (AdS) spacetimes received quite a lot of
attention in the past five years and revealed a few surprises.
First, paper [1] provided numerical and heuristic evidence
for two types of possible scenarios in the model Einstein-
AdS–massless scalar field system at spherical symmetry:
(1) turbulent dynamics leading to concentration of
(a fraction of) energy on small spatial scales leading to a
black hole formation on the time scale Oðϵ−2Þ, where ϵ
measures the amplitude of initial data and (2) quasiperiodic
evolution. Second, stable time-periodic solutions for this
model were discovered [2], providing an explanation for
quasiperiodic evolution, as being anchored to stability
islands of these time-periodic solutions (see also [3] vs
[4]) and an important role of the nondispersive spectrum of
linear perturbations for instability was identified [5,6].
Finally, a new perturbation scheme was proposed [7]
and firmly developed [8,9] to capture the dynamics on
theOðϵ−2Þ time scale. It consists in setting a time-averaged
system of equations, for the slow time dependence of
Fourier-like coefficients (“slow” with respect to the “fast”
time scale of Fourier modes themselves). The main
advantage of this system (hereafter referred to as the
resonant system) is that it has a scaling symmetry: if its
solution with the initial amplitude 1 does something at time
t, then the corresponding solution with the initial amplitude
ϵ does the same thing at time t=ϵ2. Thus, by solving the

resonant system one can probe the regime of arbitrarily
small perturbations (whose outcome of evolution of full
Einstein equations is beyond the possibility of numerical
verification). Interestingly, the solutions of the resonant
system generically develop an oscillatory blow-up in finite
time giving an extra piece of evidence for instability of
AdS [10].
After gaining some insights on the AdS stability problem

from a toy model of a matter field coupled to Einstein
equations at spherical symmetry, it becomes crucial to
decide if it constitutes a good model for a general setting
and for Einstein equations in vacuum in particular.
Extrapolating from [1,2] beyond spherical symmetry, one
could make the following two conjectures (for effectively
reflecting boundary conditions at timelike boundary of
AdS): (1) the turbulent instability is present in AdS, i.e., the
transfer of energy to arbitrarily high frequencies does not
saturate and probably leads to a gravitational collapse,
(2) there exist globally regular, time-periodic (TP), asymp-
totically AdS (aAdS) solutions of Einstein equations (TP
solutions, also refereed to as geons in [11–13]), immune to
this instability; their frequencies are expected to bifurcate
from eigenfrequencies of the spectrum of linear perturba-
tions of AdS. One possible way to build evidence for these
conjectures is to set the resonant system for vacuum
Einstein equations (to study instability) and to construct
TP solutions perturbatively. To achieve these goals one has
to master gravitational perturbations of AdS (in principle,
up to arbitrarily high orders to construct TP solutions, but
only up to the third order to construct the resonant system).
There is a limited number of results on the AdS

instability outside spherical symmetry. Horowitz and
Santos showed numerically that in the vacuum case there
are linear modes that can be extended to form TP solutions
[11]. The results of perturbative calculations performed
around some single modes (or some linear combination of
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modes) up to the third order were given in [12] and its
sequel [13]. However a systematic approach to gravita-
tional perturbations of AdS has never been presented. The
main aim of this work is to fill in this gap and to treat higher
order perturbations of AdS in a systematic manner. We
hope that our results will provide a solid base for the future
construction of the resonant system for vacuum AdS and
for more systematic studies of regular, asymptotically AdS,
time-periodic solutions of Einstein vacuum equations. We
restrict ourselves to the case of axially symmetric pertur-
bations as a relatively simple and illustrative example. All
conceptual difficulties are encountered when stepping out
from spherical symmetry to axial symmetry. Once this
model case is well understood, adding azimuthal angle
dependence (in 3þ 1 dimensions) is a technical, not a
conceptual, issue.
The novel feature of vacuum perturbation with respect to

the spherically symmetric self-gravitating scalar field
model is the degeneracy in the spectrum of linear pertur-
bations. Namely, the spectrum of linear perturbation in
3þ 1 dimensions reads ωl;j ¼ qþ lþ 2j, where l is the
mode angular momentum index, j is the nodal number of
the corresponding radial wave function, and q reads 1 or 2
for polar and axial modes, respectively. It was noted with a
bit of surprise that only in special cases (listed in Sec. VI
in [13]) linear eigenmodes do admit a nonlinear extension
to a TP solution. However, it is well known since quantum
mechanics that the degeneracy case may require a special
treatment in the perturbation expansion, and a more
appropriate question to ask is which linear frequencies
(rather then which linear modes) are bifurcation points for
TP solutions. It seems that, similarly to the spherically
symmetric scalar field case, there are one-parameter
families of TP solutions, bifurcating from each linear
frequency and the number of these families of TP
solutions is equal to the multiplicity of the linear eigen-
frequency [14]. In fact, the key property allowing the
time-periodic solutions of the type studied in [2] (i.e.,
bifurcating from a single linear eigenfrequency) to exist, is
the absence of ðþþþÞ resonances; see [8] for the
definition and a brute force proof for the Einstein-AdS–
massless scalar field system (for a deeper discussion and
the proof of this property for a test scalar field on AdS
background see [15] and references therein). It seems that
there are no ðþþþÞ resonances also in the vacuum AdS
case and, in this sense, the self-gravitating scalar field
seems to be a good toy model to study the gravitational
stability of AdS.
We concentrate in this work on (nonlinear) perturbations

of AdS space; however, it is quite clear that a similar
approach can be taken for perturbations of any spherically
symmetric solution of vacuum Einstein equations. In fact
all formulas in the paper, that are not specific to a particular
asymptotic structure of the spacetime, are general enough
to work for any maximally symmetric solution of vacuum

Einstein equations (anti–de Sitter, Minkowski and de Sitter)
in static coordinates, i.e., with the line element in the form
(10). The key observation is to split perturbative Einstein
equations into these satisfied identically by a suitable
choice of master scalar variables (see below) and those
that govern the dynamics of these master scalar variables.
To the best of our knowledge this splitting has never been
highlighted in the literature.
The paper is organized as follows. In Sec. II we discuss

the general setup for perturbation expansion around exact
solutions of vacuum Einstein equations and Regge-
Wheeler [16] decomposition of metric perturbations. In
Secs. III and IV we discuss polar- and axial-type perturba-
tions of maximally symmetric spacetimes. We apply the
formalism of these sections in Sec. V to construct and study
some properties of globally regular, aAdS, time-periodic
solutions of vacuum Einstein equations. Then we conclude
in Sec. VI.

II. AdSd + 1 PERTURBATION IN VACUUM:
GENERAL SETUP

We are interested in solutions of vacuum Einstein equa-
tions with negative cosmological constant Λ ¼ − dðd−1Þ

2l2 :

Rμν þ
d
l2
gμν ¼ 0: ð1Þ

Let the “bar” quantities stand for the AdS quantities (i.e.,
ḡμν, ḡμν, Γ̄α

μν, R̄μν are AdS quantities). Now let gμν ¼
ḡμν þ δgμν or in matrix notation g ¼ ḡþ δg, where δgμν will
be expanded as

δgμν ¼
X
1≤i

ðiÞhμνϵi ð2Þ

later on. Then we have

gαβ ¼ ðḡ−1 − ḡ−1δgḡ−1 þ ḡ−1δgḡ−1δgḡ−1 −…Þαβ
¼ ḡαβ þ δgαβ; ð3Þ

Γα
μν ¼ Γ̄α

μν þ
1

2
ðḡ−1 − ḡ−1δgḡ−1 þ ḡ−1δgḡ−1δgḡ−1 −…Þαλ

× ð∇̄μδgλν þ ∇̄νδgλμ − ∇̄λδgμνÞ
¼ Γ̄α

μν þ δΓα
μν; ð4Þ

Rμν ¼ R̄μν þ ∇̄αδΓα
μν − ∇̄νδΓα

αμ þ δΓα
αλδΓλ

μν − δΓλ
μαδΓα

λν

¼ R̄μν þ δRμν: ð5Þ

Equation (3) is straightforwardly obtained by recursive
application of the formula gαβ ¼ ḡαβ − ḡαμδgμνgνβ and
then Eqs. (4) and (5) easily follow. Thus, the Einstein
equations read (bar quantities are solutions to Einstein
equations)
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δRμν þ
d
l2
δgμν ¼ 0: ð6Þ

Now, plugging the expansion (2) into (6) and collecting the terms at the same powers of ϵ, we get the following hierarchy of
equations:

ðiÞEμν ≔ ΔL
ðiÞhμν − ðiÞSμν ¼ 0: ð7Þ

The Lorentzian Lichnerowicz operator ΔL reads

ΔLhμν ¼
1

2
ḡαλð∇̄αð∇̄μhλν þ ∇̄νhλμ − ∇̄λhμνÞ − ∇̄νð∇̄αhλμ þ ∇̄μhλα − ∇̄λhαμÞÞ þ

d
l2
hμν

¼ 1

2
ð−∇̄α∇̄αhμν − ∇̄μ∇̄νh − 2R̄μανβhαβ þ ∇̄μ∇̄αhνα þ ∇̄ν∇̄αhμαÞ; ð8Þ

where h ¼ ḡαβhαβ, hαβ ¼ ḡαμḡβνhμν and we have used

ð∇̄α∇̄ν − ∇̄ν∇̄αÞhαμ ¼ R̄α
βανhβμ − R̄βμανhαβ

¼ −
d
l2
hνμ − R̄βμανhαβ:

The source terms in (7) read

ðiÞSμν ¼ ½ϵi�f−ð1=2Þ∇̄α½ð−ḡ−1δgḡ−1 þ ḡ−1δgḡ−1δgḡ−1 − � � �Þαλð∇̄μδgλν þ ∇̄νδgλμ − ∇̄λδgμνÞ�
þ ð1=2Þ∇̄ν½ð−ḡ−1δgḡ−1 þ ḡ−1δgḡ−1δgḡ−1 − � � �Þαλð∇̄μδgλα þ ∇̄αδgλμ − ∇̄λδgμαÞ�
− δΓα

αλδΓλ
μν þ δΓλ

μαδΓα
λνg; ð9Þ

where ½ϵi�f denotes the coefficient at ϵi in the (formal)
power series expansion of f ¼ P

ifiϵ
i. The formulas (7)–

(9) are in fact completely general, i.e., they work for any
value of the cosmological constant and any zero order
solution, no matter if spherically symmetric or not. From
now on we limit to d ¼ 3 spatial dimensions.
Before presenting all further technicalities let us start

with discussing general strategy. We will follow the
Regge-Wheeler (RW) seminal paper [16] and use spheri-
cal symmetry of the zero order solution (AdS in our case)
to expand the metric perturbations into scalar, vector, and
tensor spherical harmonics. The reader unfamiliar with the
RW decomposition can consult Sec. II of the excellent
review by Nollert [17]. After separating angular depend-
ence, the system of 10 perturbative Einstein equations (7)
splits into the system of seven equations for polar
(alternatively called scalar) type perturbations and the
system of three equations for axial (alternatively called
vector) type perturbations [16,17]. The polar and axial
parts decouple at linear order, but generally mix at higher
orders. The axial symmetry is exceptional in this respect,
as if we excite only polar perturbations at linear order
we stay in the polar sector at all higher orders as well,
while starting with only axial perturbations at linear order
results in axial perturbations at all odd orders and polar
perturbations at all even orders of perturbation expansion.

The most general gauge vector (for given spherical
harmonics indexes l, m) splits accordingly into polar
and axial parts parametrized by three and one function,
respectively. It turns out that the Lichnerowicz operator
(8) depends only on four and two RW gauge invariant
variables in polar and axial sectors, respectively, while the
sources (9) contain also gauge degrees of freedom. After
introducing RW variables the system is still messy;
however, it is well known that at linear order both polar
and axial sector are governed by only one (for given l, m)
master scalar variable each. It is very convenient to
introduce corresponding scalar variables also at higher
orders—not only to ease the solution of the system of
Einstein equations but also to make the resonant structure
of these equations explicit. There are, however, a few
problems to be faced here:

1. to find the correct definition of master scalar
variables at higher orders,

2. to build the source term for the (inhomogeneous)
wave equation for this scalar variable from the
sources (9) in perturbative Einstein equations (7),

3. to be able to switch between the components of
metric perturbations and the master scalar variables
(to solve Einstein equations easily) and back (to
reconstruct the metric perturbations from scalar var-
iables and to be able to find the sources (9) necessary
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to step to the next order of the perturbation
expansion),

4. to set the metric perturbations to the aAdS form with
a suitable gauge transformation (it is necessary to
insure the correct asymptotics of the sources to step
to the next order),

5. to treat the special cases l ¼ 0 (for polar-type
perturbations only) and l ¼ 1 (both for polar- and
axial-type perturbations); they correspond to gauge
degrees of freedom at linear order but have to be
correctly dealt with at higher orders.

In the two following sections we discuss solutions to all
problems listed above for axially symmetric perturbations
starting from polar- and axial-type perturbations at linear

order. In what follows we use coordinates ðt; r; θ;ϕÞ in
which the AdS line element reads

ds2 ¼ −Adt2 þ A−1dr2 þ r2dΩ2
2; ð10Þ

with A≡ AðrÞ ¼ ð1þ r2=l2Þ. Then we use Mukohyama
[18], Appendix B’s definitions for scalar, vector, and
tensor spherical harmonics (up to normalization factors).
In 3þ 1 dimensions any tensor Tμν can be split into seven
polar and three axial components. For any tensor Tμν, its
polar components expanded into (one scalar-, one vector-,
and two tensor-types) polar spherical harmonics at axial
symmetry read

Tabðt; r; θÞ ¼
X
l

Tl abðt; rÞPlðcos θÞ; a; b ¼ 0; 1; ð11Þ

Ta2ðt; r; θÞ ¼
X
l

Tl a2ðt; rÞ∂θPlðcos θÞ; a ¼ 0; 1; ð12Þ

1

2

�
T22ðt; r; θÞ þ

T33ðt; r; θÞ
sin2θ

�
¼

X
l

Tl þðt; rÞPlðcos θÞ; ð13Þ

1

2

�
T22ðt; r; θÞ −

T33ðt; r; θÞ
sin2θ

�
¼

X
l

Tl −ðt; rÞð−lðlþ 1ÞPlðcos θÞ − 2 cot θ∂θPlðcos θÞÞ; ð14Þ

where Pl are Legendre polynomials. For any tensor Tμν, its axial components expanded into (one vector- and one tensor-
type) axial spherical harmonics at axial symmetry read

Ta3ðt; r; θÞ ¼
X
l

Tl a3ðt; rÞ sin θ∂θPlðcos θÞ; a ¼ 0; 1; ð15Þ

T23ðt; r; θÞ ¼
X
l

Tl 23ðt; rÞð−2 cos θ∂θPlðcos θÞ − lðlþ 1Þ sin θPlðcos θÞÞ: ð16Þ

Accordingly, in 3þ 1 dimensions any vector Vμ can be split
into three polar and one axial component. For any vector Vμ,
its polar components expanded into (one scalar- and one
vector-type) polar spherical harmonics at axial symmetry read

Vaðt; r; θÞ ¼
X
l

Vl aðt; rÞPlðcos θÞ; a ¼ 0; 1; ð17Þ

V2ðt; r; θÞ ¼
X
l

Vl 2ðt; rÞ∂θPlðcos θÞ: ð18Þ

For any vector Vμ its axial component expanded into (one
vector-type) axial spherical harmonics at axial symmetry
reads

V3ðt; r; θÞ ¼
X
l

Vl 3ðt; rÞ sin θ∂θPlðcos θÞ: ð19Þ

In what follows, the symbols ðiÞhl μν, ðiÞSl μν, ðiÞEl μν, and
ΔL

ðiÞhl μν appear in expansion of tensors ðiÞhμν, ðiÞSμν, ðiÞEμν,
andΔL

ðiÞhμν according to (11)–(16), respectively [cf. (2) and
(7)]. The symbols ðiÞζl μ and ðiÞηl μ appear in expansion of
polar gauge vectors ðiÞζμ and axial gauge vectors ðiÞημ
according to (17)–(19), respectively (see below for the usage
of these gauge vectors).

III. POLAR PERTURBATIONS AT
AXIAL SYMMETRY

Although the polar-type perturbations are technically
much more involved than axial-type perturbations (in the
case of linear Schwarzschild perturbation it took 13 years
after solving axial linear perturbations [16] to solve the
polar ones [19]), we start the discussion of gravitational
perturbations with polar-type perturbations as they are
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indispensable at nonlinear level: even if we start with axial-
type perturbations at linear order we end up with polar-type
perturbations at second order of perturbation expansion. In
axial symmetry for polar perturbations we have

ððiÞhαβÞ ¼

0
BBB@

ðiÞh00 ðiÞh01 ðiÞh02 0

ðiÞh01 ðiÞh11 ðiÞh12 0

ðiÞh02 ðiÞh12 ðiÞh22 0

0 0 0 ðiÞh33

1
CCCA; ð20Þ

with [cf. (11)–(14)]

ðiÞhl 00 ¼ ðiÞfl 00 þ 2∂t
ðiÞζl 0 − AA0ðiÞζl 1; ð21Þ

ðiÞhl 11 ¼ ðiÞfl 11 þ 2∂r
ðiÞζl 1 þ

A0

A
ðiÞζl 1; ð22Þ

ðiÞhl 01 ¼ ðiÞfl 01 þ ∂r
ðiÞζl 0 þ ∂t

ðiÞζl 1 −
A0

A
ðiÞζl 0; ð23Þ

ðiÞhl 02 ¼ ðiÞζl 0 þ ∂t
ðiÞζl 2; ð24Þ

ðiÞhl 12 ¼ ðiÞζl 1 −
2

r
ðiÞζl 2 þ ∂r

ðiÞζl 2; ð25Þ

ðiÞhl þ ¼ r2ðiÞfl þ þ 2rAðiÞζl 1 − lðlþ 1ÞðiÞζl 2; ð26Þ
ðiÞhl − ¼ ðiÞζl 2; ð27Þ

where ðiÞζl 0, ðiÞζl 1, ðiÞζl 2 polar components define the ith
order polar gauge vector ðiÞζμ [cf. (17) and (18)] and

ðiÞfl 00ðt; rÞ, ðiÞfl 11ðt; rÞ, ðiÞfl 01ðt; rÞ, ðiÞfl þðt; rÞ are
Regge-Wheeler variables [16,17], being gauge invariant with
respect to gauge transformations induced by ðjÞζμ with j ≥ i,
i.e., gauge transformations of the form

X
1≤i

ðiÞhμνϵi →
X
1≤i

ðiÞhμνϵi þ ϵjLðjÞζ ḡμν þOðϵjþ1Þ: ð28Þ

Of course, ðiÞfl 00, ðiÞfl 11, ðiÞfl 01, ðiÞfl þ so defined are not
gauge invariant in general; they change under gauge trans-
formations induced by ðjÞζμ with j < i [cf. Bruni et al. [20],
Garat and Price [21], Eq. (25)]. TheRWgauge corresponds to
setting ðiÞζl 0 ¼ ðiÞζl 1 ¼ ðiÞζl 2 ¼ 0 in (21)–(27).Otherway
round, it can be easily seen that starting with any metric
perturbation of the form (20), one can put ððiÞh22 −
ðiÞh33=sin2θÞ to zero with a suitable choice of ðiÞζl 2, then
put ðiÞh12 to zero with a suitable choice of ðiÞζl 1, and finally
put ðiÞh02 to zerowith a suitable choice of ðiÞζl 0 rendering the
metric perturbation in RW gauge. At each nonlinear order
(i > 1) sources have the form

ððiÞSαβÞ ¼

0
BBB@

ðiÞS00 ðiÞS01 ðiÞS02 0

ðiÞS01 ðiÞS11 ðiÞS12 0

ðiÞS02 ðiÞS12 ðiÞS22 0

0 0 0 ðiÞS33

1
CCCA; ð29Þ

with the components expanded according to (11)–(14). In the
following we will use extensively the fact that the sources
ðiÞSl μν fulfill three types of identities:

ðiÞN l 0 ≔
1

2

�
1

A
∂t

ðiÞSl 00 þ A∂t
ðiÞSl 11

�
þ 1

r2
∂t

ðiÞSl þ − A∂r
ðiÞSl 01 −

2Aþ rA0

r
ðiÞSl 01 þ

lðlþ 1Þ
r2

ðiÞSl 02 ¼ 0; ð30Þ

ðiÞN l 1 ≔
1

2

�
1

A
∂r

ðiÞSl 00 þ A∂r
ðiÞSl 11

�
−

1

r2
∂r

ðiÞSl þ −
1

A
∂t

ðiÞSl 01 þ
2Aþ rA0

r
ðiÞSl 11 −

lðlþ 1Þ
r2

ðiÞSl 12 ¼ 0; ð31Þ

ðiÞN l 2 ≔
1

2

�
1

A
ðiÞSl 00 − AðiÞSl 11

�
−
1

A
∂t

ðiÞSl 02 þ A∂r
ðiÞSl 12 þ

2Aþ rA0

r
ðiÞSl 12 −

ðl − 1Þðlþ 2Þ
r2

ðiÞSl − ¼ 0: ð32Þ

These are easily obtained by taking the background
divergence of (7): ðiÞN l ν ¼ 0 (with ν ¼ 0, 1, 2) follows
from (three) polar components of ∇̄μðiÞEμν ¼ 0. We point
out that the authors of [12,13] give different identities:
∇̄μðiÞSμν ¼ 0 that are apparently not correct in the case of
polar-type perturbations, as the (three) polar components of
∇̄μΔL

ðiÞhμν are not identically zero.
The polar components of the system of perturbative

Einstein equations (7) are also expanded according to
(11)–(14). It is important to note that the gauge degrees of

freedom enter ðiÞEl μν only through the source terms ðiÞSl μν

[ðiÞSl μν dependongaugefunctions ðjÞζl 0, ðjÞζl 1, ðjÞζl 2with
j < i, that is, on the gauge choices made in previous steps].
On the other handΔL

ðiÞhl μν components are given in terms
of Regge-Wheeler gauge invariant variables ðiÞfl 00, ðiÞfl 11,
ðiÞfl 01, ðiÞfl þ only [22]. Thus, we solve (7) at order i for
Regge-Wheeler variables ðiÞfl 00, ðiÞfl 11, ðiÞfl 01, ðiÞfl þ
and then recover aAdS gauge with a suitable gauge
transformation (see below). It is also known since the
Regge and Wheeler seminal paper [16] that it is convenient
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to search for the solutions of the system (7) in terms of one
scalar master variable. To achieve it we note that

ðiÞEl − ¼ 1

4

�
1

A
ðiÞfl 00 − AðiÞfl 11

�
− ðiÞSl − ð33Þ

sets purely algebraic relation between ðiÞfl 00 and ðiÞfl 11,
and the combination

0¼−
1

2

�
1

A
ðiÞEl 00−AðiÞEl 11

�
þ 1

A
∂t

ðiÞEl 02−A∂r
ðiÞEl 12

−
2AþrA0

r
ðiÞEl 12þ

ðl−1Þðlþ2Þ
r2

ðiÞEl−

≡1

2

�
1

A
ðiÞSl 00−AðiÞSðiÞl 11

�
−
1

A
∂t

ðiÞSl 02þA∂r
ðiÞSl 12

þ2AþrA0

r
ðiÞSl 12−

ðl−1Þðlþ2Þ
r2

ðiÞSl− ð34Þ

reduces to the identity (32) fulfilled by the sources. Thus,
after eliminating ðiÞfl 00 from (33) we are left with three RW
gauge invariant potentials ðiÞfl 11, ðiÞfl 01, ðiÞfl þ to satisfy
five linearly independent equations: ðiÞEl 00 ¼ ðiÞEl 01 ¼
ðiÞEl þ ¼ ðiÞEl 02 ¼ ðiÞEl 12 ¼ 0. All formulas presented so
far hold for any spherically symmetric solution of vacuum
Einstein equations [i.e., Schwarzschild and Schwarzschild-
(anti–)de Sitter] in Schwarzschild-like coordinates (10) with
A ¼ 1� ðr2=l2Þ − 2M=r. Being interested in perturbations
of AdS space, from now on we restrict to maximally
symmetric solutions (M ¼ 0), as in this case apart form
the general identity r2A00 ¼ 2A − 2we have also an identity
rA0 ¼ 2A − 2 (valid only in M ¼ 0 case) and it slightly
simplifies discussion that follows. We introduce the master

scalar variable for polar perturbations at linear order in such
a way, to make the equations ð1ÞEl 02 ¼ ð1ÞEl 12 ¼ 0 iden-
tically satisfied. Namely, writing down the potentials
ð1Þfl 11, ð1Þfl 01, ð1Þfl þ at linear order in terms of linear
combination of the derivatives (up to second order) of one
master scalar variable for polar perturbations ð1ÞΦP

l , and then
plugging this combination into ð1ÞEl 02 ¼ ð1ÞEl 12 ¼ 0
yields a unique such combination (up to a multiplicative
factor):

ð1Þfl 00 ¼
r
2
ð∂tt

ð1ÞΦP
l þ A2∂rr

ð1ÞΦP
l Þ þ A2∂r

ð1ÞΦP
l

¼ A2ð1Þfl 11; ð35Þ

ð1Þfl 01 ¼ r∂rt
ð1ÞΦP

l þ A−1∂t
ð1ÞΦP

l ; ð36Þ

ð1Þflþ¼−
r
2
ðA−1∂tt

ð1ÞΦP
l −A∂rr

ð1ÞΦP
l Þþð2A−1Þ∂r

ð1ÞΦP
l :

ð37Þ

This is an easy way to recover old results of Mukohyama
[18], Eq. (44) andKodama and Ishibashi [23], Eq. (3.14). At
linear order, the three remaining equations ð1ÞEl 00 ¼
ð1ÞEl 01 ¼ ð1ÞEl þ ¼ 0 are satisfied if and only if ð1ÞΦP

l
solves the homogeneous radial wave equation [24]:

~□l
ð1ÞΦP

l ≔
1

A
∂tt

ð1ÞΦP
l − A∂rr

ð1ÞΦP
l − A0∂r

ð1ÞΦP
l

þ lðlþ 1Þ
r2

ð1ÞΦP
l ¼ 0; ð38Þ

namely, under the substitution (35)–(37)

ð1ÞEl 00 ¼
A2

4

�
1

A2
∂tt þ r∂rr þ ∂r þ

6

r

�
~□l

ð1ÞΦP
l ; ð39Þ

ð1ÞEl 01 ¼
�
r
2
∂r þ 1þ 1

2A

�
∂t

~□l
ð1ÞΦP

l ; ð40Þ

ð1ÞEl þ ¼
�
−
r3

4A
∂tt þ

r3A
4

∂rr þ r2
�
2A −

1

2

�
∂r þ r

�
5

2
A − 1

��
~□l

ð1ÞΦP
l : ð41Þ

To proceed to higher orders it is convenient to invert (35)–(37) for the master scalar variable ð1ÞΦP
l . We take the following

linear combination of RW gauge invariant potentials ðiÞfl 11, ðiÞfl 01, ðiÞfl þ and their first derivatives:

ðiÞΦP
l ¼ 2r

lðlþ 1Þ
�

ðiÞfl þ þ 2A
AðiÞfl 11 − r∂r

ðiÞfl þ
ðl − 1Þðlþ 2Þ

�
: ð42Þ

Indeed at linear order, under substitution (35)–(37) with (38) fulfilled (42) becomes an identity. If translated to the
asymptotically flat Schwarzschild case, this definition would corresponds to Brizuela et al. [25], Eq. (11), which dates back
to the choice made by Moncrief [26]. We take (42) as a definition of the master scalar variable also at higher (nonlinear)
orders. This definition determines the source for the inhomogeneous wave equation for master scalar variable at higher
orders, namely, substituting (42) on the rhs of (38) we find that
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~□l
ðiÞΦP

l ¼ 4r2

ðl − 1Þlðlþ 1Þðlþ 2Þ

×

�
ðA=rÞ

�
AΔL

ðiÞhl 11 −
1

A
ΔL

ðiÞhl 00

�
þ ðl − 1Þðlþ 2Þ − 2ð3A − 2Þ

r3
ΔL

ðiÞhl þ − 2A∂rðΔL
ðiÞhl þ=r2Þ

−
2lðlþ 1Þ

r2
AΔL

ðiÞhl 12 þ
ðl − 1Þlðlþ 1Þðlþ 2Þ

r3
ΔL

ðiÞhl −

�
: ð43Þ

Thus, at higher orders (i ≥ 2) the definition (42) leads to

ðiÞBP
l ≔ ~□l

ðiÞΦP
l − ðiÞ ~SPl ¼ 0; ð44Þ

with

ðiÞ ~SPl ¼ 4r2

ðl − 1Þlðlþ 1Þðlþ 2Þ

×

�
ðA=rÞ

�
AðiÞSl 11 −

1

A
ðiÞSl 00

�
þ ðl − 1Þðlþ 2Þ − 2ð3A − 2Þ

r3
ðiÞSl þ − 2A∂rððiÞSl þ=r2Þ

−
2lðlþ 1Þ

r2
AðiÞSl 12 þ

ðl − 1Þlðlþ 1Þðlþ 2Þ
r3

ðiÞSl −

�
ð45Þ

for l ≥ 2 (here the l ¼ 0 and l ¼ 1 cases have to be treated separately). The linear rules (35)–(37) are generalized to

ðiÞfl 00 ¼ A2

�
r
2

�
1

A2
∂tt

ðiÞΦP
l þ ∂rr

ðiÞΦP
l

�
þ ∂r

ðiÞΦP
l þ ðiÞαlðt; rÞ

�
þ 4AðiÞSl −; ð46Þ

ðiÞfl 11 ¼
r
2

�
1

A2
∂tt

ðiÞΦP
l þ ∂rr

ðiÞΦP
l

�
þ ∂r

ðiÞΦP
l þ ðiÞαlðt; rÞ; ð47Þ

ðiÞfl 01 ¼ r∂rt
ðiÞΦP

l þ A−1∂t
ðiÞΦP

l þ ðiÞβlðt; rÞ; ð48Þ

ðiÞfl þ ¼ −
r
2

�
1

A
∂tt

ðiÞΦP
l − A∂rr

ðiÞΦP
l

�
þ ð2A − 1Þ∂r

ðiÞΦP
l þ ðiÞγlðt; rÞ; ð49Þ

with the set of three functions ðiÞαl, ðiÞβl, and ðiÞγl for each l, which still have to be specified. These functions are set in
such a way that the equations ðiÞEl 02 ¼ ðiÞEl 12 ¼ 0 are identically satisfied, while the equations ðiÞEl 00 ¼ ðiÞEl 01 ¼
ðiÞEl þ ¼ 0 are satisfied if and only if ðiÞΦP

l solves the inhomogeneous wave equation (44), i.e.,

ðiÞEl 00 ¼
A2

4

�
r
A2

∂tt þ r∂rr þ ∂r þ
6

r

�
ðiÞBP

l ; ð50Þ

ðiÞEl 01 ¼
�
r
2
∂r þ 1þ 1

2A

�
∂t

ðiÞBP
l ; ð51Þ

ðiÞEl þ ¼
�
−
r3

4A
∂tt þ

r3A
4

∂rr þ r2
�
2A −

1

2

�
∂r þ r

�
5

2
A − 1

��
ðiÞBP

l ; ð52Þ

cf. the linear case (39)–(41). It is worth noting that due to the identities (30)–(32) the solutions for ðiÞαl, ðiÞβl and ðiÞγl can be
found in a purely algebraic way, without the need to solve any (partial) differential equations. The results read

ðiÞαl ¼ −
2r2

�1
A

ðiÞSl 00 − AðiÞSl 11

�
−
r2

A
ðl − 1Þðlþ 2Þ

�1
A

ðiÞSl 00 þ AðiÞSl 11

�
þ 4∂rðrðiÞSl þÞ þ

4r3

A
∂t

ðiÞSl 01

ðl − 1Þlðlþ 1Þðlþ 2Þ
−
2

A
Sl −; ð53Þ
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ðiÞβl ¼ rlðlþ 1ÞðiÞSl 02 − r2ð4A − 1 − lðlþ 1Þ=2ÞðiÞSl 01 − r3A∂r
ðiÞSl 01

ðl − 1Þlðlþ 1Þðlþ 2Þ=4 ; ð54Þ

ðiÞγl ¼ −
r2ðiÞSl 00 þ rAlðlþ 1ÞðiÞSl 12 þ ð2A − 1 − lðlþ 1Þ=2ÞðiÞSl þ þ rA∂r

ðiÞSl þ
ðl − 1Þlðlþ 1Þðlþ 2Þ=4 þ 2ðiÞSl −: ð55Þ

We stress that the Regge-Wheeler gauge [i.e., setting
ðiÞζl 0 ¼ ðiÞζl 1 ¼ ðiÞζl 2 ¼ 0 in (21)–(27)] is not aAdS
(nor asymptotically flat in the corresponding Λ ¼ 0 case).
The asymptotic form of vacuum metric perturbations
corresponding to an aAdS space was found in [27]. Here
we follow the discussion in Sec. II.C of [28]. We ensure
thatOð2; 3Þ is an asymptotic symmetry of gμν ¼ ḡμν þ δgμν
by requiring the Killing equation to be satisfied in an
asymptotic sense

Lξgμν ¼ OðδgμνÞ ð56Þ

for all Killing vectors of AdS space. Thus, we are looking
for an asymptotic form of metric perturbations δgμν ∼
1=rγμν , such that this asymptotic form is preserved by
coordinate transformations generated by any AdS Killing
vector ξ. This holds for

γrr ¼ 5; γrμ ¼ 4 and γμν ¼ 1 for μ; ν ≠ r ð57Þ

(in 3þ 1 dimensions) [27,28]. The asymptotic behavior of
solutions of homogeneous wave equation ~□lΦl ¼ 0 (38)
reads

Φl ∼ al þ
bl
r
þO

�
1

r2

�
; ð58Þ

thus, already at linear order RW variables reconstructed
from (35)–(37) do not have AdS asymptotics and the RW
gauge is not aAdS. This is not a problem as long as a
suitable gauge transformation [i.e., suitable functions
ðiÞζl 0, ðiÞζl 1, ðiÞζl 2] to render metric perturbation ðiÞhμν
in aAdS form can be found. The necessary condition for
such a gauge transformation to exist for polar-type pertur-
bations is bl ≡ 0 in (58); that is, the correct boundary
condition at infinity for master scalar variable for polar
perturbations ðiÞΦP

l reads

ðiÞΦP
l ¼ ðiÞal þO

�
1

r2

�
ð59Þ

(this correct form of asymptotics was stressed for the first
time in [12]). After separating time dependence in (44)
in the form ðiÞΦP

l ðt; rÞ ¼
P

k
ðiÞΦP

l kðrÞ cos ðωktþ ϕkÞ
(with some suitable set of frequencies ωk) we end up with
ordinary second order differential equations for ðiÞΦP

l kðrÞ
coefficients. Thus, to obtain a unique solution we need two
boundary conditions; these are smoothness in the center

and (59). To get the asymptotics of the sources ðiÞSPl in (44)
compatible with the asymptotics of the ~□l operator (58) (to
allow for an easy control over aAdS asymptotics step after
step in perturbation expansion) it is necessary to keep
metric perturbations in aAdS form at each order. Once the
boundary condition (59) is satisfied the aAdS gauge can be
recovered with the polar gauge vector induced by [cf. (17)
and (18)]

ðiÞζl 1 ¼
1

4
ðl2A−1∂tt

ðiÞΦP
l − 4r∂r

ðiÞΦP
l − r2∂rr

ðiÞΦP
l Þ;

ð60Þ

ðiÞζl 0 ¼ −r∂t
ðiÞζl 1 þ

r
3A

∂tðl2∂tt
ðiÞΦP

l þ ðiÞΦP
l Þ; ð61Þ

ðiÞζl 2 ¼
r
3
ðiÞζl 1: ð62Þ

In fact at first and second order we found also somewhat
simpler rules:

ð1Þζl 1 ¼
1

4
ðl2A−1∂tt

ð1ÞΦP
l − r∂r

ð1ÞΦP
l Þ; ð63Þ

ð1Þζl 0 ¼ −r∂t
ð1Þζl 1 þ

r
3A

∂tðl2∂tt
ð1ÞΦP

l þ ð1ÞΦP
l Þ; ð64Þ

ð1Þζl 2 ¼
r
3
ð1Þζl 1; ð65Þ

and

ð2Þζl 0 ¼ 0; ð66Þ

ð2Þζl 1 ¼
1

2

�
ð2ÞΦP

l −
1

2
∂rrðr2 ð2ÞΦP

l Þ
�
; ð67Þ

ð2Þζl 2 ¼
r
3
ð2Þζl 1: ð68Þ

To summarize: to satisfy the set of perturbative Einstein
equations (7) for polar-type perturbations at axial sym-
metry, at any nonlinear order, for angular momenta l ≥ 2
[cf. (11)–(14)], it is enough to solve just one inhomo-
geneous wave equation for a scalar master variable for
polar perturbations (44) with the source term given in (45),
and then reconstruct the Regge-Wheeler gauge invariant
potentials ðiÞfl 00, ðiÞfl 11, ðiÞfl 01 and ðiÞfl þ according to
(46)–(49) together with (53)–(55). Then with the gauge
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transformation (60)–(62) the resulting perturbations ðiÞhl μν

[cf. (21)–(27)] can be put in asymptotically AdS form.
As was stressed above the special cases l ¼ 0 and l ¼ 1

need a special treatment.

A. The l = 0 case for polar perturbations

In the l ¼ 0 case, the only nontrivial equations are 0 ¼
ðiÞE0 þ ¼ ðiÞE0 01 ¼ ðiÞE0 1�0 ≔ ðAðiÞE0 11 � ð1=AÞðiÞE0 00Þ.
In fact

ðiÞE0 1−0 −
1

r
∂r

ðiÞE0 þ þ r
2
∂r

ðiÞE0 1þ0 −
r
A
∂t

ðiÞE0 01 þ
2A − 1

A
ðiÞE0 1þ0 ≡ 0; ð69Þ

∂t

�
ðiÞE0 þ þ r2

2
ðiÞE0 1þ0

�
− 2rð2A − 1ÞðiÞE0 01 − r2A∂r

ðiÞE0 01 ≡ 0 ð70Þ

[due to identities (30) and (31)], and ðiÞf0 01, ðiÞf0 þ become gauge degrees of freedom [i.e., they can be put to zero with a
suitable choice of ðiÞζ0 0 and ðiÞζ0 1]. Thus, we are left with two equations 0 ¼ ðiÞE0 01 ¼ ðiÞE0 1þ0 for two unknown
functions ðiÞf0 00 and ðiÞf0 11, where ðiÞf0 01 and ðiÞf0 þ can be freely specified and we put them to zero. This system can be
easily integrated to yield

ðiÞf0 11 ¼ ðiÞfP res
0 þ rA−1

Z
t ðiÞS0 01dt0 ð71Þ

ðiÞf0 00 ¼ A2ðiÞf0 11 − A
Z

r

∞
r0
�

ðiÞS0 11 þ
1

A2
ðiÞS0 00

�
dr0; ð72Þ

with the residual degree of freedom ðiÞfP res
0 ≡ ðiÞfP res

0 ðrÞ that is not set by the equations 0 ¼ EðiÞ
0 01 ¼ EðiÞ

0 1þ0. It is, however,
uniquely determined as the solution of the first order ordinary differential equation set by (the time independent part of) the
equation ðiÞE0 þ ¼ 0. The solution reads

ðiÞfP res
0 ¼ 1

rA2

Z
r

0

�
r02

2

�
1

A
ðiÞS̄0 00 þ AðiÞS̄0 11

�
þ ðiÞS̄0 þ

�
dr0; ð73Þ

where ðiÞS̄l μν are time independent parts of ðiÞSl μν and ðiÞfP res
0 is thus by definition time independent. At linear order the

l ¼ 0 part of the perturbation reduces to a pure gauge, as expected [as ð1ÞSμν ≡ 0]. Moreover, for i > 1, ðiÞf0 00 and ðiÞf0 11

satisfy aAdS conditions (56) and (57), thus no further gauge transformation is needed.

B. The l= 1 case for polar perturbations

In the l ¼ 1 case we proceed similarly to the l ¼ 0 case. There are six nontrivial Einstein equations: 0 ¼ ðiÞE1 þ ¼
ðiÞE1 01 ¼ ðiÞE1 02 ¼ ðiÞE1 12 ¼ ðiÞE1 1�0 ≔ ðAðiÞE1 11 � ð1=AÞðiÞE1 00Þ. In fact

1

2
ðiÞE1 1−0 þ

1

A
∂t

ðiÞE1 02 − A∂r
ðiÞE1 12 −

2

r
ð2A − 1ÞðiÞE1 12 ≡ 0; ð74Þ

∂t

�
ðiÞE1 þ þ r2

2
ðiÞE1 1þ0

�
− 2rð2A − 1ÞðiÞE1 01 − r2A∂r

ðiÞE1 01 þ 2ðiÞE1 02 ≡ 0; ð75Þ

−
1

r
∂r

ðiÞE1 þ þ r
2
∂r

ðiÞE1 1þ0 þ
2A − 1

A
ðiÞE1 1þ0 −

r
A
∂t

ðiÞE1 01 −
2

r
ðiÞE1 12 þ ðiÞE1 1−0 ≡ 0 ð76Þ

due to identities (30)–(32), and ðiÞf1 þ becomes gauge degree of freedom [i.e., it can be put to zero with a suitable choice of
ðiÞζ1 1 in function of ðiÞζ1 2]. We set ðiÞf1 þ to zero and integrate in sequence the equations 0 ¼ rðiÞE1 01 þ 2ðiÞE1 02 ¼
ðiÞE1 þ þ ðr2=2ÞðiÞE1 1þ0 ¼ ðiÞE1 12 to get
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ðiÞf1 01 ¼
1

rA1=2

Z
r

0

r0

A1=2 ðr0ðiÞS1 01 þ 2ðiÞS1 02Þdr0; ð77Þ

ðiÞf1 11 ¼
1

r2A3=2

Z
r

0

r0

A1=2

�
r02

2

�
1

A
ðiÞS1 00 þ AS1 11

�
þ ðiÞS1 þ

�
dr0; ð78Þ

ðiÞf1 00 ¼ rA1=2

Z
r

∞

A1=2

r0

�
2ðiÞS1 12 þ

1

A
∂t

ðiÞf1 01 −
2A − 1

r0
ðiÞf1 11

�
dr0; ð79Þ

respectively. Then equations 0 ¼ ðiÞE1 01 ¼ ðiÞE1 þ are also satisfied due to identities (30)–(32). Alternatively, one
can integrate the ðiÞE1 01 ¼ 0 equation [instead of the ðiÞE1 þ þ ðr2=2ÞðiÞE1 1þ0 ¼ 0 equation] up to a residual
ðiÞfP res

1 ≡ ðiÞfP res
1 ðrÞ:

ðiÞfðiÞ1 11 ¼ ðiÞfP res
1 þ 1

A

Z
t
�
rðiÞS1 01 −

1

r
ðiÞf1 01

�
dt0; ð80Þ

and then set ðiÞfP res
1 by (the time independent part of) the equation ðiÞEðiÞ

1 þ þ ðr2=2ÞðiÞE1 1þ0 ¼ 0:

ðiÞfP res
1 ¼ 1

r2A3=2

Z
r

0

r0

A1=2

�
r02

2

�
1

A
ðiÞS̄1 00 þ AðiÞS̄1 11

�
þ ðiÞS̄1 þ

�
dr0: ð81Þ

Then the equations 0 ¼ ðiÞE1þ ¼ ðiÞE1 1þ0 are also satisfied
due to identities (30)–(32). This is a bit more convenient
in some practical applications, as for the sources generated
by time-periodic solutions, taking integrals in time is
straightforward. At linear order the l ¼ 1 part of the
perturbation reduces to a pure gauge, as expected [as
ð1ÞSμν ≡ 0]. Moreover for i > 1, ðiÞf1 01, ðiÞf1 00, and
ðiÞf1 11 satisfy aAdS condition (56) and (57); thus, no
further gauge transformation is needed.

IV. AXIAL PERTURBATIONS AT
AXIAL SYMMETRY

The axial-type perturbations can be treated along the
same lines as polar-type perturbations discussed in the
previous section, but are in fact much easier to deal with at a
technical level. We describe axial-type perturbations in this
section for the sake of completeness. In axial symmetry for
axial-type perturbations we have

ððiÞhαβÞ ¼

0
BBB@

0 0 0 ðiÞh03
0 0 0 ðiÞh13
0 0 0 ðiÞh23

ðiÞh03 ðiÞh13 ðiÞh23 0

1
CCCA; ð82Þ

with [cf. (15) and (16)]

ðiÞhl 03 ¼ ðiÞfl 03 þ ∂t
ðiÞηl; ð83Þ

ðiÞhl 13 ¼ ðiÞfl 13 þ ∂r
ðiÞηl − 2ðiÞηl=r; ð84Þ

ðiÞhl 23 ¼ ðiÞηl; ð85Þ

where an axial component ðiÞηlðt; rÞ defines the ith order
axial gauge vector ðiÞημ [cf. (19)] and ðiÞfl 03ðt; rÞ,
ðiÞfl 13ðt; rÞ are Regge-Wheeler variables [16,17] being
gauge invariant with respect to gauge transformations
induced by ðjÞημ with j ≥ i; cf. (28). The sources and
Einstein equations (7) read accordingly:

ððiÞSαβÞ ¼

0
BBB@

0 0 0 ðiÞS03
0 0 0 ðiÞS13
0 0 0 ðiÞS23

ðiÞS03 ðiÞS13 ðiÞS23 0

1
CCCA; ð86Þ

with the components expanded according to (15) and
(16). In the axial case, the sources fulfill the following
identity:

ðiÞN l 3 ≔ −
1

A
∂t

ðiÞSl 03 þ A∂r
ðiÞSl 13 þ

2

r
ð2A − 1ÞðiÞSl 13

−
ðl − 1Þðlþ 2Þ

r2
ðiÞSl 23 ¼ 0: ð87Þ

This is again obtained by taking the background diver-
gence of (7): ðiÞN l 3 ¼ 0 follows from the (one) axial
component of ∇̄μðiÞEμν ¼ 0 [the (one) axial component of
∇̄μΔL

ðiÞhμν vanishes identically thus the (one) axial

component of ∇̄μðiÞSμν vanishes as well and (only) in

that sense the formula ∇̄μðiÞSμν ¼ 0 in [12] is correct for
axial perturbations]. Similarly to the polar case, the gauge
degrees of freedom enter ðiÞEl μν only through the source
terms ðiÞSl μν [and ðiÞSl μν depend on gauge functions
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ðjÞηl with j < i]. Thus, we solve (7) at order i for Regge-
Wheeler variables ðiÞfl 03, ðiÞfl 13 and then recover the
aAdS gauge with a suitable gauge transformation (see
below). In the axial case, the perturbative Einstein
equations can be easily integrated and the definition of
the master scalar variable is straightforward. We set

ðiÞfl 13 ¼
r
A

ðiÞΦA
l : ð88Þ

For l ≥ 2 the three perturbative Einstein equations
ðiÞEl 03, ðiÞEl 13, and ðiÞEl 23 can be combined as follows:
[the l ¼ 1 case has to be treated separately, as
ðiÞE1 23 ≡ 0]. First,

0 ¼ −
1

A
∂t

ðiÞEl 03 þ A∂r
ðiÞEl 13 þ

2

r
ð2A − 1ÞðiÞEl 13

−
ðl − 1Þðlþ 2Þ

r2
ðiÞEl 23 ð89Þ

reduces to the identity (87). Second,

0¼2A
r
ððiÞEl 13−∂r

ðiÞEl 23Þþ
4

r2
ðiÞEl 23≡ ~□l

ðiÞΦA
l − ðiÞ ~SAl ;

ð90Þ

where the ~□l operator was defined in (38) and the axial
source ðiÞSAl reads

ðiÞ ~SAl ¼ 2A
r
ððiÞSl 13 − ∂r

ðiÞSl 23Þ þ
4

r2
ðiÞSl 23: ð91Þ

Finally,

2AðiÞEl 23 ¼ −∂t
ðiÞfl 03 þ A∂rðAðiÞfl 13Þ − 2AðiÞSl 23 ¼ 0

ð92Þ

can be easily integrated in time for ðiÞfl 03. Similarly to
the polar case RW gauge [i.e., ðiÞηl ≡ 0 in (83)–(85)] is
not aAdS and the necessary condition, for a gauge
transformation to aAdS gauge to exist, is al ≡ 0 in
(58), that is, the correct boundary condition at infinity for
a master scalar variable for axial perturbations ðiÞΦA

l
reads

ðiÞΦA
l ¼

ðiÞbl
r

þO
�
1

r3

�
: ð93Þ

Once the boundary condition (93) is satisfied the aAdS
gauge can be recovered with the axial gauge vector
induced by [cf. (19)]

ðiÞηl ¼ l2

3
ðiÞΦA

l : ð94Þ

To summarize, to satisfy the set of perturbative
Einstein equations (7) for axial-type perturbations at
axial symmetry, at any nonlinear order, for angular
momenta l ≥ 2 [cf. (15) and (16)], it is enough to solve
just one inhomogeneous wave equation for the scalar
master variable for axial perturbations (90) with the
source term given in (91), and then obtain the Regge-
Wheeler gauge invariant potentials ðiÞfl 03, ðiÞfl 13 from
(88) and (92). Then with the gauge transformation (94)
the resulting perturbations ðiÞhl μν [cf. (83)–(85)] can be
put in asymptotically AdS form.
As was stressed above the special case l ¼ 1 needs a

special treatment.

A. the l= 1 case for axial perturbations

In the l ¼ 1 case the nontrivial equations are 0 ¼
ðiÞE1 13 ¼ ðiÞE1 03 and either ðiÞf1 03 or ðiÞf1 13 becomes a
gauge degree of freedom [i.e., it can be put to zero with a
suitable choice of ðiÞη1].
If we decide to put ðiÞf1 03 to zero, then from ðiÞE1 13 ¼ 0

we get

∂t
ðiÞf1 13 ¼ ðiÞfA res

1 þ 2A
Z

t ðiÞS1 13dt0 ð95Þ

where ðiÞfA res
1 ≡ ðiÞfA res

1 ðrÞ is set from ðiÞE1 03 ¼ 0:

ðiÞfA res
1 ¼ 2

r2

Z
r

0

r02

A
ðiÞS̄1 03dr0; ð96Þ

where ðiÞS̄1 03 is the time independent part of ðiÞS1 03 and we
used (87).
If we decide to put ðiÞf1 13 to zero then from ðiÞE1 13 ¼ 0

we get

ðiÞf1 03 ¼ ðiÞfA res
1 − 2r2

Z
r

∞

A
r02

�Z
t ðiÞS1 13dt0

�
dr0; ð97Þ

where ðiÞfA res
1 ≡ ðiÞfA res

1 ðrÞ can be easily obtained from
ðiÞE1 03 ¼ 0:

∂r

�
1

r2
∂rðrðiÞfA res

1 Þ
�
¼ −

2

rA
ðiÞS̄1 03; ð98Þ

where ðiÞS̄1 03 is the time independent part of ðiÞS1 03 and we
used (87).
At linear order the l ¼ 1 part of the perturbation reduces

to a pure gauge, as expected [as ð1ÞSμν ≡ 0].
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V. APPLICATION: PERTURBATIVE
CONSTRUCTION OF TIME-PERIODIC

SOLUTIONS, PRELIMINARIES

After discussing our approach to (nonlinear) perturba-
tions of AdS in previous sections, we apply it on some
examples. In this section, we present some preliminary
results on the perturbative construction of globally regular,
time-periodic, aAdS solutions of Einstein equations.
Although for more systematic studies of TP solutions it
is necessary to go beyond the third order in perturbation
expansion (that we postpone for future studies) already the
results from the third order can provide some intuitions
about TP solutions.
We start with gathering some spectral properties of

gravitational perturbations of AdS. Separating the time
dependence in the homogeneous wave equation (38)

~□lΦ ¼ 0 in the form Φðt; rÞ ¼ eðrÞ cosðωtÞ we
get

A

�
−

d
dr

�
A

d
dr

e

�
þ lðlþ 1Þ

r2
e

�
¼ ω2e: ð99Þ

The frequencies ω are quantized by two boundary
conditions: regularity at r ¼ 0 and the required asymp-
totic behavior at infinity, (59) and (93) for polar and axial
modes, respectively, and the spectra of linear perturba-
tions of AdS (AdS eigenfrequencies) read

lωP
l;j ¼ 1þ lþ 2j and lωA

l;j ¼ 2þ lþ 2j; ð100Þ

where nonnegative integers j are nodal numbers of the
corresponding eigenfunctions (AdS eigenmodes)

ePl;jðrÞ ¼ NP
l;j

lrlþ1

ðl2 þ r2Þlþ1
2

2F1ð−j; 1þ lþ j; 1=2; l2=ðl2 þ r2ÞÞ; ð101Þ

eAl;jðrÞ ¼ NA
l;j

lrlþ1

ðl2 þ r2Þlþ2
2

2F1ð−j; 2þ lþ j; 3=2; l2=ðl2 þ r2ÞÞ: ð102Þ

Thus, all AdS eigenfrequencies are real and AdS is linearly stable. The AdS eigenmodes with a given l form a complete
orthogonal set with respect to the scalar product

ðu; vÞ≡
Z

∞

0

uðrÞvðrÞ
1þ r2=l2

dr; ð103Þ

namely,

ðePl;j; ePl;kÞ ¼
l3πj!Γðlþ jþ 3=2Þ

2ð1þ lþ 2jÞΓðjþ 1=2ÞΓð1þ lþ jÞ ðN
P
l;jÞ2δjk; ð104Þ

ðeAl;j; eAl;kÞ ¼
lπj!Γðlþ jþ 3=2Þ

8ð2þ lþ 2jÞΓðjþ 3=2ÞΓð2þ lþ jÞ ðN
A
l;jÞ2δjk: ð105Þ

To ease the comparison between our results and those of [13] we take NP
l;j ¼ NA

l;j ¼ 1 in the following. At any instant of

time the master scalar variables ðiÞΦP
l and ðiÞΦA

l can be expanded in the bases of polar and axial eigenmodes

ðiÞΦPjA
l ðt; rÞ ¼

X
j

ðiÞcPjAl j ðtÞePjAl;j ðrÞ: ð106Þ

Similarly the inhomogeneous equations (44) and (90) can be projected on the eigenmodes leading to the forced harmonic

oscillator equations for Fourier-like coefficients ðiÞcPjAl j :

ðiÞc̈PjAl j þ ðωPjA
l;j Þ2ðiÞcPjAl j ¼ ðePjAl;j ; AðiÞ ~SPjAl Þ: ð107Þ

Since the general solution to the forced harmonic oscillator equation

c̈ðtÞ þ ω2
0cðtÞ ¼ a cosðωtÞ ð108Þ
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reads

cðtÞ ¼ _cð0Þ
ω0

sin ðω0tÞ þ cð0Þ cos ðω0tÞ þ

8>><
>>:

aðcosðωtÞ − cos ðω0tÞÞ
ω2
0 − ω2

; ω0 ≠ ω;

a
2ω0

t sin ðω0tÞ; ω0 ¼ ω;
ð109Þ

if the projection ðePjAl;j ; AðiÞ ~SPjAl Þ is resonant, i.e., it contains
harmonic time dependence cosðωPjA

l;j tÞ or sinðωPjA
l;j tÞ then a

secular term of the form t sinðωPjA
l;j tÞ or t cosðωPjA

l;j tÞ
appears in ðiÞcPjAl j and the naive perturbation expansion
breaks down. Resumming of all such possible secular
terms gives rise to the resonant system (cf. [7,8] in the
case of a massless scalar field at spherical symmetry). It
may be also possible for some particular first order solution
ð1ÞΦPjA

l ðt; rÞ to be dressed at higher orders by a suitable
choice of frequency corrections and free integration con-
stants [cf. (109)] in such a way, to remove all resonant terms

at higher orders and then such ð1ÞΦPjA
l ðt; rÞ (suitably

dressed at higher orders) give rise to TP solutions. For
the Einstein-AdS–self-gravitating massless scalar field
system, any linear eigenmode can be extended to form
the TP solution [2] due to the absence of the so-called
(þþþ) resonances (see [8] for a rigorous theorem). In a
recent work [13], Dias and Santos contrasted the gravita-
tional sector of perturbations with the scalar one by
noticing that only in special cases (listed in Sec. VI in
[13]) linear eigenmodes do admit a nonlinear extension to a
regular time-periodic solution. The reason is that at the
third order of the perturbation expansion, around most
eigenmodes there appear resonant terms that, in contrast to
spherically symmetric scalar perturbations studied in [1,2],
cannot be removed by a frequency correction. However,

this is a purely technical obstruction in constructing TP
solutions, due to the degeneracy of the spectrum and, when
this degeneracy is properly taken into account, one can
construct perturbatively a TP solution bifurcating from
each linear eigenfrequency as was pointed out in [14]. Here
we complete [14] with some more examples of TP
solutions bifurcating from degenerated eigenfrequencies.
We aim at constructing a TP solution in the form

Φðt; r; θÞ ¼ ð1ÞΦðt; r; θÞϵþ ð2ÞΦðt; r; θÞϵ2 þ ð3ÞΦðt; r; θÞϵ3
þOðϵ4Þ ð110Þ

taking for the seed ð1ÞΦ a linear combination of all polar
(axial) modes corresponding to a given eigenfrequency.
a. Polar modes with lωP ¼ 5 as the seed. If we start with

ðiÞΦðt; r; θÞ ¼ ðηeP2;1ðrÞP2ðcos θÞ þ ð1 − ηÞeP4;0ðrÞ
× P4ðcos θÞÞ cosðð5þ ð2Þωϵ2Þt=lÞ ð111Þ

at linear order [14], then at the third order we get two
resonant terms (for the modes eP2;1 and eP4;0) that can be
removed by a suitable choice of the frequency correction
ð2Þω and the mixing parameter η in (111). More precisely,
the resonant terms will be absent if ð2Þω and η satisfy the
following system of equations:

− 651980329η3 þ 673396185η2 − 358711575ηþ 22494375 ¼ 49201152ηð2Þω; ð112Þ

16847182891η3 − 38330631185η2 þ 31825994625η − 10200766875 ¼ 4182097920ð1 − ηÞð2Þω: ð113Þ

This system has two real solutions: ðη; ð2ÞωÞ ≈ ð0.1143;−1.900Þ and ðη; ð2ÞωÞ ≈ ð1.007;−6.487Þ; thus, we expect two one-
parameter ðϵÞ families of TP solutions to bifurcate from the double eigenfrequency lωP ¼ 5. Note that setting η ¼ 1 in
(112), we get ð2Þω ¼ −34397=5376, while setting η ¼ 0 in (113), we get ð2Þω ¼ −52311625=21446656, in agreement with
the values given in the Table 1 in [13].
b. Polar modes with lωP ¼ 6 as the seed. If we start with

ð1ÞΦðt; r; θÞ ¼ ðηeP3;1ðrÞP3ðcos θÞ þ ð1 − ηÞeP5;0ðrÞP5ðcos θÞÞ cos ðð6þ ð2Þωϵ2Þt=lÞ ð114Þ

at linear order, then at the third order the two potential resonances (for the modes eP3;1 and e
P
5;0) are removed iff the following

system holds:

405ð11274706467η3 − 9177443205η2 þ 4622768829η − 285923771Þ
48432676864

¼ −
315

128
ηð2Þω; ð115Þ
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405ð1192723542η3 − 2267107311η2 þ 1606711764η − 494724335Þ
30820794368

¼ 693

512
ð1 − ηÞð2Þω: ð116Þ

This system has two real solutions: ðη; ð2ÞωÞ ≈ ð0.1077;−3.770Þ and ðη; ð2ÞωÞ ≈ ð1.022;−22.92Þ, thus we expect two one-
parameter families of TP solutions to bifurcate from the double eigenfrequency lωP ¼ 6.
c. Axial modes with lωA ¼ 6 as the seed. If we start with

ð1ÞΦðt; r; θÞ ¼ ðηeA2;1ðrÞP2ðcos θÞ þ ð1 − ηÞeA4;0ðrÞP4ðcos θÞÞ cos ðð6þ ð2Þωϵ2Þt=lÞ ð117Þ
at linear order, then at the third order the two potential resonances (for the modes eA2;1 and e

A
4;0) are removed iff the following

system holds:

239225693η3 − 398050275η2 þ 217126035η − 14644125

9446621184
¼ −

35

384
ηð2Þω; ð118Þ

−4829869093η3 þ 13136236344η2 − 12398007825ηþ 4082879250

267654266880
¼ −

63

512
ð1 − ηÞð2Þω: ð119Þ

This system has two real solutions: ðη; ð2ÞωÞ ≈ ð0.1794;−0.08338Þ and ðη; ð2ÞωÞ ≈ ð1.008;−0.05162Þ; thus, we expect two
one-parameter families of TP solutions to bifurcate from the double eigenfrequency lωA ¼ 6. Note that setting η ¼ 1 in
(118) we get ð2Þω ¼ −19081=376320, in agreement with the value given in the second line in Table 2 in [13].
d. Axial modes with lωA ¼ 7 as the seed. If we start with

ð1ÞΦðt; r; θÞ ¼ ðηeA3;1ðrÞP3ðcos θÞ þ ð1 − ηÞeA5;0ðrÞP5ðcos θÞÞ cos ðð7þ ð2Þωϵ2Þt=lÞ ð120Þ

at linear order, then at the third order the two potential resonances (for the modes eA3;1 and e
A
5;0) are removed iff the following

system holds:

1978248043512η3 − 2997546380577η2 þ 1613025400770η − 106858809617

56956827992064
¼ −

21

256
ηð2Þω; ð121Þ

3608791248537η3 − 9113490099567η2 þ 8191761299127η − 2669524922785

144981016707072
¼ 231

2048
ð1 − ηÞð2Þω: ð122Þ

This system has two real solutions: ðη; ð2ÞωÞ ≈
ð0.1670;−0.1130Þ and ðη; ð2ÞωÞ ≈ ð1.018;−0.1085Þ; thus,
we expect two one-parameter families of TP solutions to
bifurcate from the double eigenfrequency lωA ¼ 7.
e. Some general remarks. In general, for the eigenfre-

quency with geometric multiplicity k we need to take a
linear combination of k corresponding eigenmodes as the
seed, and to remove the resonances at the third order we
have to fulfill the system of k equations that are cubic in the
mixing parameters η1; ::; ηk−1 and linear in ð2Þωηi terms
(with 1 ≤ i ≤ k − 1). Each real root of this system gives
rise to a TP solution bifurcating from the given eigenfre-
quency [the number of all (complex) roots is expected to
grow exponentially with k, as after eliminating ð2Þω, we are
left with the system of k − 1 equations that are quartic in
η1; ::; ηk−1]. Interestingly, in all cases that we have studied
so far (lωP ¼ 3, 4, 5, 6, 7, 8 and lωA ¼ 4, 5, 6, 7, 8 at axial
symmetry), the number of bifurcating one-parameter

families of time-periodic solutions is equal to the multi-
plicity of the eigenfrequency. This intriguing coincidence
deserves further studies. Finally, we remark that in a
parallel work Maliborski constructed axially symmetric
time-periodic solutions for the cubic wave equation on the
fixed AdS background [29], and in that model there is no
such coincidence.

VI. CONCLUSIONS

We have presented the formalism for nonlinear gravita-
tional perturbations of AdS spacetime and applied it to
provide the evidence for the existence and properties of
globally regular, asymptotically AdS, time-periodic solu-
tions of vacuum Einstein equations. These time-periodic
solutions bifurcate from the linear eigenfrequencies of
AdS, and the number of (one-parameter families of) such
solutions bifurcating from a given eigenfrequency equals
the multiplicity of this eigenfrequency. This intriguing
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coincidence deserves further study. Already the results
obtained at third order should provide the initial guess for
the numerical method of [13], which is good enough for
this method to converge and to provide an independent
cross-check of our results. The presented formalism should
form the solid base for the future construction of the
resonant system for vacuum Einstein-AdS equations, and
the more systematic study of time-periodic solutions.
Although we were mainly motivated by the gravitational

perturbations of AdS, all the formulas in the paper that are
not related to the asymptotic structure of spacetime are
general enough to encompass gravitational perturbations of
the other two maximally symmetric vacuum solutions of
Einstein equations, i.e., Minkowski and de Sitter space-
times, and with some modifications also spherically sym-
metric vacuum solutions and as such will hopefully find
application in the broad subject of perturbations of such
spacetimes. It would be also very interesting to introduce
matter in this context into the presented formalism.
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Note added.—A few days after the first arXiv version of
this paper was released, there appeared a very interesting
parallel work [30] on an AdS gravitational geons. In
particular, in [30] the families of excited geons, bifurcating
from degenerated linear frequencies of AdS, were numeri-
cally constructed.
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