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A generic expression to compute triple parton scattering cross sections in high-energy proton-proton
(pp) collisions is presented as a function of the corresponding single parton cross sections and the
transverse parton profile of the proton encoded in an effective parameter σeff;TPS. The value of σeff;TPS is
closely related to the similar effective cross section that characterizes double parton scatterings, and
amounts to σeff;TPS ¼ 12.5� 4.5 mb. Estimates for triple charm (cc̄) and bottom (bb̄) production in pp
collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative
calculations for single cc̄, bb̄ cross sections. At

ffiffiffi
s

p
≈ 100 TeV, about 15% of the pp collisions produce

three cc̄ pairs from three different parton-parton scatterings.

DOI: 10.1103/PhysRevLett.118.122001

The existence of multiparton interactions in high-energy
hadronic collisions is a natural consequence of the finite size
of hadrons, the fast increase of the parton flux at small parton
longitudinal momentum fractions (Bjorken x), and the
requirement of unitarization of the cross sections in pertur-
bative quantum chromodynamics (pQCD) [1]. The field of
multiparton interactions has attracted an increasing interest
in the past years motivated, among other reasons, by the
accumulated experimental evidence of double parton scatter-
ing (DPS) processes concurrently producing two independ-
ently identified hard particles in the same proton-(anti)proton
(pp, pp̄) collision, at Tevatron and LHC energies [2–6].
Multiple hard parton interaction rates depend chiefly on the
degree of overlap between the matter distributions of the
colliding hadrons [7], and provide valuable information on
the poorly known transverse parton profile of the proton, the
unknown energy evolution of the parton density as a function
of impact parameter (b), as well as on the role ofmany-parton
correlations in the hadronic wave functions [8].
In this Letter, we present for the first time a quantitative

estimate of the cross section for observing three separate hard
interactions in a pp collision [triple parton scattering (TPS)],
a possibility considered earlier [9–11], but for which no
simple formula of the expected rates based on the underlying
single parton scattering (SPS) cross sections existed so far.
A good understanding of TPS is not only useful to improve
our knowledge of the 3D parton structure of the proton, but is
also of relevance for a realistic characterization of back-
grounds for rare final states with multiple heavy particles in

searches of new physics. As we show below, TPS can
represent a non-negligible fraction of some particular final
states at future hadron colliders such as FCC, projected to
deliver several 100 fb−1=yr integrated luminosities in pp
collisions at a c.m. energy of

ffiffiffi
s

p ¼ 100 TeV [12].
We review first the theoretical expression for TPS cross

sections in a generic hadron-hadron collision, expressed as a
convolution of SPS cross sections and generalized parton
densities (dependent on x, Q2, and b), and derive a simple
factorized expression for the TPS cross sections as a triple
product ofSPScross sectionsnormalizedbyan effective cross
section σeff;TPS characterizing the transverse area of triple
partonic interactions. From simple geometric considerations,
we show how σeff;TPS is closely connected to the effective
cross section σeff;DPS already measured in DPS. From the
existingmeasurements ofσeff;DPS and realistic protonprofiles,
we derive the numerical value of σeff;TPS, which proves very
robust with respect to any particular choice of the underlying
transverse parton density. As a concrete numerical example,
we provide estimates for triple charm (cc̄) and bottom (bb̄)
cross sections in pp collisions at the LHC and FCC, based
on next-to-next-to-leading-order (NNLO) calculations of the
corresponding SPS cross sections.
In a generic hadron-hadron collision, the inclusive TPS

cross section from three independent parton subprocesses
(hh0 → abc) can be written [9–11] as a convolution of
generalized parton distribution functions (PDFs) and elemen-
tary cross sections summed over all involved partons:

σTPShh0→abc¼
m
3!

X
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In this expression,Γijk
h ðx1; x2; x3;b1;b2;b3;Q2

1; Q
2
2; Q

2
3Þ are

the triple parton distribution functions, depending on the
momentum fractions x1, x2, x3 at transverse positions b1, b2,
b3 of the three partons i, j, k, producing final states a, b, c at
energy scalesQ1,Q2,Q3, with subprocess cross sections σ̂ila ,
σ̂jmb , σ̂knc . The combinatorial prefactor m=3! takes into
account the different cases of (indistinguishable or not) final
states: m ¼ 1 if a ¼ b ¼ c; m ¼ 3 if a ¼ b, or a ¼ c, or
b ¼ c; and m ¼ 6 if a, b, c are different. The triple parton
distribution functions Γijk

h ðx1; x2; x3;b1;b2;b3;Q2
1; Q

2
2; Q

2
3Þ

encode all the parton structure information of relevance for
TPS, and are typically assumed to be decomposable in terms
of longitudinal and transverse components,

Γijk
h ðx1; x2; x3;b1;b2;b3;Q2

1; Q
2
2; Q

2
3Þ

¼ Dijk
h ðx1; x2; x3;Q2

1; Q
2
2; Q

2
3Þfðb1Þfðb2Þfðb3Þ;

where fðb1Þ describes the transverse parton density, often
assumed to be a universal function for all types of partons,
from which the corresponding hadron-hadron overlap func-
tion is derived:

TðbÞ¼
Z

fðb1Þfðb1−bÞd2b1; with
Z

d2bTðbÞ¼1:

Making the further assumption that the longitudinal compo-
nents reduce to the product of independent single PDFs,
Dijk

h ðx1; x2; x3; Q2
1; Q

2
2; Q

2
3Þ ¼ Di

hðx1; Q2
1ÞDj

hðx2; Q2
2Þ

Dk
hðx3; Q2

3Þ, the cross section of TPS can be expressed in the
simple generic form

σTPShh0→abc ¼
�
m
3!

�
σSPShh0→aσ

SPS
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SPS
hh0→c

σ2eff;TPS
; ð1Þ

i.e., as a triple product of independent single inclusive cross
sections.

σSPShh0→a ¼
X
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normalized by the square of an effective TPS cross section,

σ2eff;TPS ¼
�Z

d2bT3ðbÞ
�

−1
; ð3Þ

which is closely related to the similar quantity

σeff;DPS ¼
�Z

d2bT2ðbÞ
�

−1
; ð4Þ

determined to beσeff;DPS ≃ 15� 5 mb inDPSmeasurements
at Tevatron and the LHC [5,13–16].
Whereas any TPS cross section can always be expressed

as the triple product Eq. (1), with σeff;TPS encoding all
unknowns about the TPS dynamics, the geometrical inter-
pretation of this latter quantity given by Eq. (3) relies on
the assumption of the aforementioned simplifying yet
economical assumptions on the factorization of longi-
tudinal and transverse degrees of freedom, the absence
of multiparton correlations, and flavor (gluon, quark)-
independent transverse parton profiles. In addition, there
is no a priori reason to take the transverse hadron profile
fðbÞ, and therefore also σeff;TPS and σeff;DPS, as a constant
with collision energy. As a matter of fact, DPS studies
[13,14,17] indicate that the experimentally extracted
σeff;DPS ≃ 15 mb values are about a factor of 2 smaller
(i.e., the DPS cross sections are about twice larger) than
expected from Eq. (4) for a “standard” proton geometric
profile. The concurrent measurement of σeff;TPS and σeff;DPS
in different colliding systems and for different final states
can help clarify all these open issues, shedding light on the
3D partonic structure of the proton and its evolution as a
function of energy. Of course, achieving those goals will
also require parallel theoretical developments in order to
appropriately control the SPS contributions to final states
with triple-hard (as well as DPS plus single-hard) particle
production. In the case of double-SPS scatterings with
charm states (plus electroweak bosons), calculation tools
exist already today that show that carefully chosen kin-
ematical cuts can reduce such SPS processes [18,19].
To estimate the value of σeff;TPS, let us consider first a

simplistic class of analytical models for the overlap
function of a given hadronic AA collision,

TAAðbÞ ¼
� A2ðnþ1Þ

4πR2
A

f1 − ½b=ð2RAÞ�2gn b < 2RA

0 b > 2RA;
ð5Þ

normalized to
R
d2bTAAðbÞ ¼ A2, where exponents n ¼

0; 1;∞ give, respectively, a flat, hard-sphere-like, and
Gaussian-like distribution in the interval ½0; RA�. This
generic expression applies to any hadronic system, includ-
ing collisions of nuclei with nucleon number A [20], but we
will mostly focus below on the proton case for which
A ¼ 1, and RA ¼ rp is its characteristic transverse “radius.”
From Eq. (3) one obtains

σ2eff;TPS ¼
�Z

d2bT3
AAðbÞ

�
−1

¼ ð4πR2
AÞ2ð3nþ 1Þ

A6ðnþ 1Þ3 :

Instead of an expression that depends on RA, it is more
convenient to express the effective TPS cross sections as a
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function of the experimentally determined σeff;DPS param-
eter. From [20]

Z
d2bT2

AAðbÞ ¼
A4ðnþ 1Þ2

4πR2
Að2nþ 1Þ ¼ A2TAAð0Þ

nþ 1

2nþ 1
;

one obtains, via Eqs. (3) and (4), the relationship between
σeff;TPS and σeff;DPS:

σ2eff;TPS ¼
A2ð3nþ 1Þðnþ 1Þ

ð2nþ 1Þ2 σ2eff;DPS;

which for a proton-proton collision reads

σ2eff;TPS ¼ ð3nþ 1Þðnþ 1Þ
ð2nþ 1Þ2 σ2eff;DPS:

For the distributions given by Eq. (5) with exponents
n ¼ 0 −∞, one obtains σeff;TPS ¼ ½1 − 0.87� × σeff;DPS;
i.e., the effective TPS and DPS cross sections are numeri-
cally very similar. This result holds also for more realistic
hadron profiles. Indeed, modern pp Monte Carlo (MC)
event generators, such as PYTHIA [21], often parametrize
the pp overlap function in the form

TðbÞ ¼ m
2πr2pΓð2=mÞ exp ½−ðb=rpÞ

m�; ð6Þ

normalized to one, where Γð2=mÞ is the gamma function.
The exponent m depends on the MC “tune” obtained from
fits to the measured pp “underlying event” and various
DPS cross sections [14]. It varies between a pure Gaussian
(m ¼ 2) to more peaked exponential-like (m ¼ 0.7, 1)
distributions. From the corresponding integrals of the
square and cube of TðbÞ,

Z
d2bT2ðbÞ ¼ m

2πr2pΓð2=mÞ22=m

and

Z
d2bT3ðbÞ ¼

�
m

2πr2pΓð2=mÞ
�
2 1

32=m
;

we obtain, via Eqs. (3) and (4),

σeff;TPS ¼ ð3=4Þ1=mσeff;DPS;

which is again independent of the exact numerical value of
the proton radius rp, but depends on the overall shape of
its transverse profile characterized by the exponent m. For
typical PYTHIA m ¼ 0.7, 1, 2 exponents tuned from
experimental data [14], one obtains σeff;TPS ¼ ½0.66; 0.75;
0.87� × σeff;DPS, respectively. An alternative phenomeno-
logically motivated description of the proton profile is

given by the dipole fit of the two-gluon form factor in the
momentum representation [22]

F2gðqÞ ¼ 1=ðq2=m2
g þ 1Þ2; ð7Þ

where the gluon mass mg parameter characterizes its
transverse momentum q distribution, and the transverse
density is obtained from its Fourier transform: fðbÞ ¼R
e−ib·qF2gðqÞ½d2q=ð2πÞ2�. Such a proton profile is used in

other common pp MC generators, such as HERWIG [17].
The corresponding DPS and TPS effective cross sections
read [11]

σeff;DPS ¼
�Z

F4
2gðqÞ

d2q
ð2πÞ2

�−1
¼ 28π

m2
g

ð8Þ

and

σ2eff;TPS ¼
�Z

ð2πÞ2δðq1 þ q2 þ q3ÞF2gðq1Þ

× F2gðq2ÞF2gðq3ÞF2gð−q1ÞF2gð−q2Þ

× F2gð−q3Þ
d2q1
ð2πÞ2

d2q2
ð2πÞ2

d2q3
ð2πÞ2

�
−1
:

Numerically integrating the latter and combining it with
Eq. (8), we obtain σeff;TPS ¼ 0.83 × σeff;DPS, quite close to
the value obtained for the Gaussian pp overlap function.
We note that in order to reproduce the experimentally

measured σeff;DPS ≃ 15 mb, one should fix the character-
istic proton “size” to rp ≃ 0.11; 0.24; 0.49 fm for pp
overlaps of the form given by Eq. (6) with m ¼ 0.7, 1,
2; to rp ≃ 0.35; 0.40; 0.46 fm for exponents n ¼ 0, 1, 2 as
defined in Eq. (5); and to rg ¼ 1=mg ≃ 0.13 fm in the case
of the two-gluon dipole fit Eq. (7). Despite the wide range
of effective proton radius parameters derived, one of the
main conclusion of this study is the robustness of the
σeff;TPS ≃ σeff;DPS result. Indeed, the average and standard
deviation of all typical parton transverse profiles considered
here yields

σeff;TPS ¼ k × σeff;DPS; with k ¼ 0.82� 0.11;

i.e., for the typical σeff;DPS ≃ 15� 5 values extracted from
a wide range of DPS measurements at Tevatron [13] and
LHC [5,13–16], we finally obtain

σeff;TPS ¼ 12.5� 4.5 mb: ð9Þ

The experimental observation of triple parton scatterings
in pp collisions requires perturbatively calculable proc-
esses with not too high energy (mass) scales so that their
SPS cross section are not much smaller thanOð1 μbÞ since,
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otherwise, their corresponding TPS cross sections (which
go as the cube of the SPS values) are extremely reduced.
Indeed, according to Eq. (1) with the data-driven estimate
Eq. (9), a triple-hard process pp → aaa, with SPS cross
sections σSPSpp→a ≈ 1 μb, has a very small TPS cross section
σTPSpp→aaa ≈ 1 fb, already without accounting for extra reduc-
ing factors from decay branching ratios and experimental
acceptances and reconstruction inefficiencies. Promising
processes to probe TPS, with not too small pQCD cross
sections, are inclusive charm pp → cc̄þ X and bottom
pp → bb̄þ X production. These processes are dominated
by gluon-gluon fusion, gg → QQ̄, and at high energies
receive contributions from scatterings at very small x, for
which one can expect a non-negligible probability of DPS
[23–25] and TPS in their total inclusive production.
The TPS heavy-quark cross sections are computed via

Eq. (1) for m ¼ 1, i.e., σTPSpp→QQ̄ ¼ ðσSPSpp→QQ̄Þ3=ð6σ2eff;TPSÞ,
with σeff;TPS given by Eq. (9), and σSPSpp→QQ̄ calculated via

Eq. (2) at NNLO accuracy using a modified version [26] of
the TOP++ (v2.0) code [27], with Nf ¼ 3, 4 light flavors,
heavy-quark pole masses at mc;b ¼ 1.67, 4.66 GeV, default
renormalization and factorization scales μR ¼ μF ¼ 2mc;b,
and using the ABMP16 PDFs [28]. The NNLO calculations
increase the total SPS heavy-quark cross sections by up to
20% at LHC energies compared to NLO results [29,30],

reaching a better agreement with the experimental data, and
featuring much reduced scale uncertainties (�50%, �15%

for cc̄, bb̄) [26]. Figure 1 shows the resulting total SPS
and TPS cross sections for charm and bottom production
over

ffiffiffi
s

p ¼ 35 GeV–100 TeV, and Table I collects a few
values with associated uncertainties for nominal LHC and
FCC energies. The PDF uncertainties are obtained from
the corresponding 28 eigenvalues of the ABMP16 set. The
dominant uncertainty comes from the theoretical scale
dependence, which is estimated by modifying μR and μF
within a factor of 2. The TPS cross sections are small but
rise fast with

ffiffiffi
s

p
, as the cube of the SPS cross sections.

Although triple-bb̄ cross sections remain quite small and
reach only about 1% of the inclusive bottom cross section
at the FCC (

ffiffiffi
s

p ¼ 100 TeV), triple-cc̄ production from
three independent parton scatterings amounts to 5% of the
inclusive charm yields at the LHC (

ffiffiffi
s

p ¼ 14 TeV) and to
more than half of the total charm cross section at the FCC.
Since the total pp inelastic cross section at

ffiffiffi
s

p ¼ 100 TeV
is σpp ≃ 105 mb [31], charm-anticharm triplets are
expected to be produced in about 15% of the pp collisions
at these energies.
The study presented here demonstrates that triple parton

scatterings are a non-negligible source of perturbative
particle production in pp collisions at increasingly higher
energies. The formulas derived here allow one to easily
estimate the TPS yields for any final state of interest. Using
accurate NNLO predictions for heavy-quark production in
single parton scatterings, we have shown that the production
cross section of three cc̄ pairs from three separate parton
interactions is in principle observable at the LHC, and
approaches the total charm cross section at

ffiffiffi
s

p
≈ 100 TeV.

Discussions with A. P. Kryukov and M. A. Malyshev on
TPS, and with M. Cacciari, M. Czakon, A. Mitov, S. Moch,
and G. Salam on NNLO heavy-quark calculations are
gratefully acknowledged.
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FIG. 1. Total charm (left) and bottom (right) cross sections in pp collisions as a function of c.m. energy, in single parton (solid line)
and triple parton (dashed line) scatterings. Bands around curves indicate scale, PDF (and σeff;TPS, in the case of σTPS) uncertainties added
in quadrature. The symbols are experimental data collected in Ref. [26].

TABLE I. Total charm and bottom SPS (NNLO) and TPS cross
sections (in mb) in pp at LHC and FCC with scales (sc), PDF,
and total (quadratic, including σeff;TPS) uncertainties.

Final state
ffiffiffi
s

p ¼ 14 TeV
ffiffiffi
s

p ¼ 100 TeV

σðcc̄þ XÞ 7.1� 3.5sc � 0.3PDF 25.0� 16.0sc � 1.3PDF
σðcc̄cc̄cc̄þ XÞ 0.39� 0.28tot 16.7� 11.8tot

σðbb̄þ XÞ 0.56� 0.09sc � 0.01PDF 2.8� 0.6sc � 0.1PDF
σðbb̄bb̄bb̄þ XÞ ð0.19� 0.12totÞ10−3 ð24� 17totÞ10−3
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