

Searching for exotic BSM physics:

Extrapolation Until the End of Run-3

Marie-Hélène Genest

On behalf of the ATLAS and CMS Collaborations

LHC Schedule: Run-2

- No change of beam energy in the current Run-2
 - The goal will be to prepare the LHC to run at 14 TeV during Run-3
- Already ~45 fb⁻¹ delivered in 2015-2016
- Plan for this year:
 - 45 fb⁻¹
 - Should reach ~1.9 x 10³⁴ cm²s⁻¹
- Run-2 goal: > 120 fb⁻¹ @ 13 TeV

LHC Schedule: Run-3

- Run-3 @ 14 TeV (?)
- Goal: 300 fb⁻¹ accumulated by the end of 2023

Dark Matter in jet+E_Tmiss events

- High- p_T jet, large E_T^{miss} well separated from jets, veto on leptons and too many extra jets
- Estimate the main Z(vv)+jets BG using a $W(\mu v)$ +jet CR and/or a γ +jets CR
- Projection studies done *before the start on Run-2*, based on the model used at that time: EFT (vector type) with suppression scale M_{*}
 - Increase in sensitivity was also confirmed with simplified models.

- Important to have tighter signal regions in E_T^{miss} to keep improving with data
 - Up to >800 GeV in the study, but could possibly gain further with larger dataset
- Optimistic scenario: if one could reduce the systematic uncertainty to 1% at the end of Run-3, could gain 0.5 TeV more

Phys. Rev. D 94 (2016) 032005

Dark Matter in jet+E_Tmiss events

Where are we now (2015 data analysis)?

- Multiple signal regions with increasing E_T^{miss} cuts, up to E_T^{miss} > 700 GeV
- Present limit on a simplified model of dark matter and not on EFTs anymore:

Largest uncertainty in the highest E_T^{miss} bin:

- Statistical (data in CR): 10%
- Total: 12.0%

Important systematic from Z+jet/W+jet ratio:

- EW radiative NLO correction differences in W+jets and Z+jets increase with boson p_T
 - Up to 4% in the highest E_T^{miss} SR
 - Could become a limiting factor... especially as it increases with tighter cuts
- Discussions / work in progress in the <u>LHC DM WG</u>

Dark Matter in H >> invisible

• Predictions done before Run-2 for 300 fb-1 in the Z(II)H(inv) channel :

BR(H→inv.) limits at 95%CL	CMS	ATLAS
Best scenario Assumptions	17% Theo. uncert. halved, others scaling as 1/sqrt(L)	23% Uncert. on the main BG scales as 1/sqrt(L)
Conservative scenario Systematics as before	28%	32%
Run-1 limit observed/expected in this channel	81% / 83% Eur. Phys. J. C 74 (2014) 2980	75% 62% Phys. Rev. Lett. 112 (2014) 201802

Nice improvement foreseen, but VBF is the most sensitive channel:

As for the jet+MET analysis, the Z(vv)+jets main BG is constrained using $W(\mu v)$ control regions

Important to reduce the Z/W ratio uncertainty

Di-jet resonances

• Smoothly falling di-jet BG: functional form fit:

$$f_4(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$$

$$x \equiv \frac{m_{jj}}{\sqrt{s}}$$

 Predicted limit evolution with data (14 TeV) for two benchmarks (excited quarks and ADD quantum black hole with n_D=6):
 ATLAS-EXOT-2016-21

integrated	m _{q*} [TeV]	m _{QBH} [TeV]	-
luminosity [fb ⁻¹]	1		F -
0.1	4.0	8.2	_
1	5.0	8.9	-
5	5.9	9.2	נ
25	6.6	9.7	\ \ \
300	7.4	10.0	ť
3000	8.0	10.1	5

- Current limit with 37.0 fb-1 of 13 TeV data:
 - q*> 6 TeV (5.8 TeV) observed (expected)
 - m_{OBH}> 8.9 TeV (obs & exp)]

Still some gain to be had at high mass by the end of Run-3

Low-mass di-jet resonances

An interesting recent development of di-jet searches

- Need to by-pass the huge trigger-rate wall:
 - Bandwith = rate x size

12.9 fb⁻¹ (13 TeV)

Data

---- gg (0.75 TeV)

qg (1.20 TeV)

aa (1.60 TeV)

Dijet mass [TeV]

- reduce the size: data scouting
- Trigger on an ISR object (e.g. a high-p_T jet)
 - Can use boosted techniques at very low masses

Data scouting

With ISR: boosted

With ISR: resolved

CMS-PAS-EXO-16-030

soft drop mass (GeV)

ATLAS-CONF 2016-0

arXiv:1611.03568

dσ/dm_{jj} [pb/TeV]

(Data-Fit) Uncertainty

Di-jet resonances: DM searches

Another interesting recent development of di-jet searches

• Search directly for the DM mediator...

New interpretation of the di-jet searches:

$$g_0 = 0.25$$
, $g_{DM} = 1$

$$g_q = 0.1, g_{DM} = 1.5$$

Di-lepton resonances

- Benchmark: Sequential Standard Model Z' (same fermionic couplings as the SM Z)
- Main Z BG from Monte Carlo, normalised in low m_{II} region

Still room for searching until the end of Run-2/3
Also exploring interplay with dark matter searches now...

Search for a W' \rightarrow Iv

q W'/W q ψ

- Looking for an excess in the m_T(lep, E_T^{miss}) tail
- *Discovery reach* for a W' @ 14 TeV (assuming constant reconstruction and isolation efficiency for leptons):

• Current limit with 36.1 fb⁻¹ @ 13 TeV: 5.11 TeV (expected: 5.24 TeV)

Main W BG from MC with NNLO corrections

CMS NOTE-13-002

CMS PAS EXO-14-007

Di-top resonance (semi-leptonic)

- Benchmark: Z' boson in the TopColour model
- Main tt BG from MC
- Boosted channel at high mass
- Expect a 3 TeV limit at the end of Run-3
- Main uncertainties:
 - tt BG normalisation
 - Large-jet uncertainties
 - Taken as is for the extrapolation
 - conservative scenario
- Current limit with 3.2 fb⁻¹ of 13 TeV data
 - boosted channel only

Heavy vector-like T quark

- Predicted e.g. in some Higgs compositness models
- Extrapolation based on the Run-18TeV search:

• 8 signal regions: at least one electron or muon + a number of jets identified as originating

from a b-quark or a boosted W or Z

- Mass limit could still increase by ~1.7
- Many searches now also searching for single-production:
 - More model-dependent (as production depends on the coupling)
 - Can reach higher masses
 - Limits on σ x BR in the T \rightarrow Wb (<u>arXiv:1701.08328</u>), T \rightarrow Zt (<u>arXiv:1701.07409</u>) and T \rightarrow Ht (<u>arXiv:1612.00999</u>) channels already set using the 2015 dataset

Long-lived particles

Challenging as often need special triggers, custom reconstruction, etc

these searches often take more time

- Effort ongoing between the LHC experiments and theorists to produce a white paper
 - How do we best ensure that we don't miss BSM LLP signatures for the remainder of the LHC program?
 - Identify the gaps in coverage (e.g. higgs portals?)
 - Especially important if new triggers need to be set
 - New search ideas?
 - Identify some benchmarks / ways to present results?
 - Next workshop: 24-26 April at CERN

Conclusions

- The 13 TeV dataset should increase by a factor ~3 by the end of Run-2 in 2018
- After LS2, data taking should resume in 2021 with Run-3 lasting until the end of 2023, possibly at 14 TeV
 - By then, expect ~300 fb⁻¹ of data to analyse
- Searches for BSM physics will continue to explore uncharted territories
 - as more data will populate the tails we're after...
 - as we will be able to probe smaller couplings in the bulk of the distributions...

Conclusions

- Improvements will come from:
 - Continuing to improve selection of existing analyses as data is taken
 - e.g. going to higher MET in the jet+MET searches, developments in boosted techniques,...
 - Maintaining excellent performance in an increasingly challenging environment
 - Both experiments have shown very good resilience against increasing pileup
 - Including theoretical improvements on SM predictions
 - Developing new analyses
 - Searching for smaller couplings at low masses, like recent low-mass dijet searches ...
 - Covering more extensively long-lived signatures
 - ...

Further info

Search for a W' \rightarrow Iv

• CMS limit with 2.3 fb⁻¹ @ 13 TeV:

main W BG from MC with mass-dependent NNLO corrections

<u>arXiv:1612.09274</u>

Di-jet resonances

Low-mass searches in ATLAS:

Di-jet resonances

Interplay with DM searches in CMS:

Dilepton resonances

• Limits predicted for 14 TeV data:

$300{\rm fb^{-1}}$
6.5
6.4

• Current limits with 13.3 fb⁻¹ of 13 TeV data:

	Width [%]	θ_{E_6} [Rad]	Lower limits on m _{Z'} [TeV]					
Model			ee		μμ		$\ell\ell$	
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{ m SSM}$	3.0	-	3.85	3.86	3.49	3.53	4.05	4.06

ATLAS-CONF-2016-045