Search for Exotic Phenomena Using Events with Same Charge Dileptons + b-Jets at 13 TeV with ATLAS

Sarah Jones on behalf of the ATLAS Collaboration

Recontres de Moriond Electroweak 2017 Young Scientist Forum

Motivations for Search

- Standard Model backgrounds are low ($t\bar{t} + V$, Diboson, etc.)
- A variety of new and exotic physics can lead to our final state of interest, our focus is:
 - \rightarrow **Vector-Like** T, B, and $T_{5/3}$ pair production (more on this in tomorrow's BSM II)
 - \rightarrow **4-top** $t\bar{t}t\bar{t}$ production via: contact interaction (C_{4t}/Λ^2) , SM, and 2UED/RPP model

General Search Strategy

Run II priorities

General strategy is cut-and-count

- Early Run II dataset (2015 ~ 3.2 fb⁻¹): check same signal regions for slight excess found in Run I (plots shown in this talk are from this set of data)
 → no excess in Run II found so far
- Full Run II dataset (2015+2016 \sim 36.1 fb⁻¹): in progress, optimizing selections, data-driven background estimations, and signal regions

Backgrounds

Three major backgrounds:

- Irreducible: SM processes that produce real pairs of same-sign leptons and corresponding jets
 - \rightarrow Estimated with MC
- Fake/non-prompt leptons: leptons fakes by heavy flavored jets (most likely *b*-jets) or originating from sources other than hard scatter
 - → Estimated with data
- Charge mis-id: charge mis-measured for electrons
 - \rightarrow Negligible for muons
 - → Estimated with data

Object and Event Selection

Major Systematic Uncertainties

Results

- Modest excess from Run I unconfirmed so far in Run II
- 95% CL limits set on various signal models:
 - $\rightarrow |C_{4t}|/\Lambda^2 > 3.5 \text{ TeV}^{-2}$ (shown left top)
 - $\rightarrow m_{T_{5/3}} > 0.99$ TeV (pair prod. limit only) (shown left bottom)
 - $\rightarrow m_{VLB} > 0.83 \text{ TeV}, m_{VLT} > 0.78 \text{ TeV}$
 - $\rightarrow m_{KK} > 1.4 \text{ TeV}$

Both systematic and statistical uncertainties are shown.

Thank you!

BACKUPS

Production of Vector Like Quarks

Pair production modes

$$gg, q\bar{q} \longrightarrow Q\bar{Q}$$

where $Q = T, B, T_{5/3}, B_{-4/3}$ Single production modes

$$gq \rightarrow T\bar{b}q',$$

 $gq \rightarrow B(B_{-4/3})\bar{b}q(q'),$
 $gq \rightarrow T(T_{5/3})\bar{t}q'$

T5/3 production cross-sections at 13 TeV

where q and q' are light jets

- SS+b-Jets Analysis: focuses on T, B pair production and $T_{5/3}$ pair and single production
 - → Sensitivity to same-charge leptons in the final state is higher

Definition							
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_j \ge 2$							
$400 < H_{\rm T} < 700 {\rm GeV}$	$N_b = 1$		SR0				
	$N_b = 2$	$E_{\rm T}^{\rm miss} > 40~{ m GeV}$	SR1				
	$N_b \ge 3$		SR2				
$H_{\rm T} \ge 700~{ m GeV}$	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100 {\rm GeV}$	SR3				
		$E_{\rm T}^{\rm miss} \ge 100 {\rm GeV}$	SR4				
	$N_b = 2$	$40 < E_{\rm T}^{\rm miss} < 100 {\rm GeV}$	SR5				
		$E_{\rm T}^{\rm miss} \ge 100 {\rm GeV}$	SR6				
	$N_b \ge 3$	$E_{\rm T}^{\rm miss} > 40~{ m GeV}$	SR7				

• These are being re-optimized for use with the full 2015+2016 dataset

Systematic Uncertainties

Largest systematics on total background:

Source	Signal region							
	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7
Cross section	8	11	26	13	9	27	23	57
Jet energy scale	1	1	3	1	1	3	2	4
Jet energy resolution	<1	2	2	2	< 1	1	<1	3
b-tagging efficiency	1	2	5	3	1	2	2	7
Luminosity	1	1	1	1	1	1	1	1
Fake/non-prompt leptons	17	7	15	13	26	13	17	17
Charge misID	8	3	7	5	3	6	5	8

Largest systematics for typical signal (4-top SM)

Source	Signal region							
	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7
Jet energy scale	2	12	2	6	4	3	3	3
Jet energy resolution	16	6	7	16	14	11	1	2
b-tagging efficiency	8	5	5	21	14	15	5	5
Lepton ID efficiency	1	1	1	4	2	2	2	1
Luminosity	2	2	2	2	2	2	2	2

Backgrounds: Fake/Non-Prompt

Leptons can be faked by heavy and light flavor jets (most often from *b*-jets) **Leptons can be non-prompt** if they don't originate from primary hard-scatter

Estimated using: Matrix Method

$$\begin{pmatrix} N_{tt} \\ N_{t\bar{t}} \\ N_{\bar{t}\bar{t}} \\ N_{\bar{t}\bar{t}} \end{pmatrix} = \mathbf{M} \begin{pmatrix} N_{rr}^{ll} \\ N_{fr}^{ll} \\ N_{fl}^{ll} \\ N_{ff}^{ll} \end{pmatrix}, \mathbf{M} \equiv \begin{pmatrix} r_1 r_2 & r_1 \underline{f_2} & f_1 r_2 & f_1 \underline{f_2} \\ r_1 \overline{r_2} & r_1 \overline{f_2} & f_1 \overline{r_2} & f_1 \underline{f_2} \\ \overline{r_1 r_2} & \overline{r_1 f_2} & \overline{f_1 r_2} & \overline{f_1 f_2} \\ \overline{r_1 r_2} & \overline{r_1 f_2} & \overline{f_1 r_2} & \overline{f_1 f_2} \end{pmatrix}$$

$$\begin{vmatrix} loose \ lepton \\ sample \\ (isolated \ leptons) \end{vmatrix}$$

$$f(r) = \frac{N_{fake(real)}^{fake(real)}}{N_{loose}^{fake(real)}}$$

Select control region enriched in either fake or real leptons

- **Calculate** r and f, parameterized by lepton p_T , η , and $\Delta R_{\min}(\ell, \text{jet})$
- **Invert matrix** *M* and calculate *N* tight leptons that are fake
- **Likelihood Matrix Method** used for stability in calculation

These backgrounds are modeled with **data**

Fake data-driven background

Poisson Likelihood Matrix Method

Apply **r** and **f** to the *loose* sample, use Matrix Method to calculate number of *fake* leptons in the *tight* sample

$$L = P(N^{tt}, N_{\text{pred}}^{tt}) P(N^{t\bar{t}}, N_{\text{pred}}^{t\bar{t}}) P(N^{\bar{t}t}, N_{\text{pred}}^{\bar{t}t}) P(N^{\bar{t}\bar{t}}, N_{\text{pred}}^{\bar{t}\bar{t}})$$

$$N_{\text{fake}}^{tt} = N_{rf}^{tt} + N_{fr}^{tt} + N_{ff}^{tt}$$

$$\begin{split} N_{\mathrm{pred}}^{tt} &= N_{rr}^{tt} + N_{rf}^{tt} + N_{fr}^{tt} + N_{ff}^{tt} \\ N_{\mathrm{pred}}^{t\bar{t}} &= \frac{\langle r_{1}\tilde{r}_{2}\rangle}{\langle r_{1}r_{2}\rangle}N_{rr}^{tt} + \frac{\langle r_{1}\tilde{f}_{2}\rangle}{\langle r_{1}f_{2}\rangle}N_{rf}^{tt} + \frac{\langle f_{1}\tilde{r}_{2}\rangle}{\langle f_{1}r_{2}\rangle}N_{fr}^{tt} + \frac{\langle f_{1}\tilde{f}_{2}\rangle}{\langle f_{1}f_{2}\rangle}N_{ff}^{tt} \\ N_{\mathrm{pred}}^{\bar{t}t} &= \frac{\langle \tilde{r}_{1}r_{2}\rangle}{\langle r_{1}r_{2}\rangle}N_{rr}^{tt} + \frac{\langle \tilde{r}_{1}f_{2}\rangle}{\langle r_{1}f_{2}\rangle}N_{rf}^{tt} + \frac{\langle \tilde{f}_{1}r_{2}\rangle}{\langle f_{1}f_{2}\rangle}N_{fr}^{tt} + \frac{\langle \tilde{f}_{1}f_{2}\rangle}{\langle f_{1}f_{2}\rangle}N_{fr}^{tt} \\ N_{\mathrm{pred}}^{\bar{t}\bar{t}} &= \frac{\langle \tilde{r}_{1}\tilde{r}_{2}\rangle}{\langle r_{1}r_{2}\rangle}N_{rr}^{tt} + \frac{\langle \tilde{r}_{1}\tilde{f}_{2}\rangle}{\langle r_{1}f_{2}\rangle}N_{rf}^{tt} + \frac{\langle \tilde{f}_{1}\tilde{f}_{2}\rangle}{\langle f_{1}r_{2}\rangle}N_{fr}^{tt} + \frac{\langle \tilde{f}_{1}\tilde{f}_{2}\rangle}{\langle f_{1}f_{2}\rangle}N_{ff}^{tt} \end{split}$$

Backgrounds: Charge Mis-ID

Lepton charge can be mis-measured

Only measured for electrons¹

Estimated using likelihood minimization

- Parametrized in electron $p_{\rm T}$ and $|\eta_{clus}|$
- Estimation of charge flip-rate in 'Z-peak' region: $|m_{ee} m_Z| < 10$ GeV using $Z \rightarrow ee$ events (no charge requirement)
- Apply event weight, w, on electrons in events matching signal region selection, but requiring opposite sign pairs

$$w = \frac{\varepsilon_1 + \varepsilon_2 - 2\varepsilon_1 \varepsilon_2}{1 - (\varepsilon_1 + \varepsilon_2 - 2\varepsilon_1 \varepsilon_2)}$$

These backgrounds are modeled with data

¹ Muon charge is measured in both ID and MS, the ATLAS Muon system has a long lever arm, and muons have a small probability of radiating a photon