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ABSTRACT: We consider SUSY-like events with two decay chains, each terminating in an
invisible particle, whose true energy and momentum are not measured in the detector.
Nevertheless, a useful educated guess about the invisible momenta can still be obtained by
optimizing a suitable invariant mass function. We review and contrast several proposals
in the literature for such ansatze: four versions of the Mpg-assisted on-shell reconstruc-
tion (MAOS), as well as several variants of the on-shell constrained M, variables. We
compare the performance of these methods with regards to the mass determination of a
new particle resonance along the decay chain from the peak of the reconstructed invariant
mass distribution. For concreteness, we consider the event topology of dilepton tf events
and study each of the three possible subsystems, in both a ¢t and a SUSY example. We
find that the M, variables generally provide sharper peaks and therefore better ansatze
for the invisible momenta. We show that the performance can be further improved by
preselecting events near the kinematic endpoint of the corresponding variable from which
the momentum ansatz originates.
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1 Introduction

The bread and butter method for discovering a new particle! in high energy physics is
the “bump hunt”: one identifies and measures the momenta and energies of all relevant
decay products, and forms their total invariant mass. Signal events, which are due to the
production of a new resonance, appear as a localized “bump” feature over the relatively
smooth background continuum. This technique has led to many discoveries in the past,
including the most recent discovery of the Standard Model Higgs boson, which was first
observed as an invariant mass peak in the four-lepton and di-photon channels [1, 2].

However, this tried and true method faces a major challenge when one (or more) of the
decay products are neutral, weakly interacting particles, which are invisible in the detector,
and as a result their energies and momenta remain unknown. Many well-motivated models
of new physics Beyond the Standard Model (BSM) contain such particles, as they are
the prototypical dark matter candidates. Consequently, one has to develop alternative
methods for discovery (and mass measurement) which are applicable to the case of such
semi-invisible resonance decays.

The situation is further complicated by the fact that most BSM models with dark
matter candidates introduce a conserved discrete symmetry, often a Zs parity, in order

L As well as measuring its mass and lifetime.



to protect the lifetime of the dark matter particle. The new particles which are charged
under this symmetry are necessarily pair produced; therefore, each event contains not one,
but at least two invisible (dark matter) particles whose 4-momenta? ¢}’ and ¢4 are not
individually measured. At hadron colliders, it is only the sum @17 + ¢br of their transverse
momenta which can be measured in the form of the missing transverse momentum 1}3T of
the event:

qir + Gor = Pr. (1.1)

However, the partitioning of the measured ﬁT into ¢i7 and @7 is a priori unknown, and
furthermore, the longitudinal components g1, and g2, remain arbitrary at this point as well.

Over the last 15-20 years, a large number of methods have been proposed to deal
with measurements in such “SUSY-like” events, i.e., events with two decay chains, each
terminating in an invisible particle (see ref. [3] for a recent review). One possibility is to
try to calculate exactly the unknown individual 4-momenta ¢! of the invisible particles,
which in turn would allow one to reconstruct an invariant mass peak again. Unfortunately,
this idea can only be applied to very specific event topologies, where the decay chains are
sufficiently long, yielding enough mass-shell constraints in addition to (1.1) [4-7]. This is
why the majority of the proposed methods have abandoned the idea of directly measur-
ing a mass peak, and instead focused on measuring a kinematic endpoint for a suitably
defined variable.

Now, what constitutes a “good” kinematic variable for a kinematic endpoint measure-
ment? The answer to this question in principle depends on several factors, including the
assumed event topology, the nature of the visible SM particles in the final state, the preci-
sion with which their momenta p; are measured, etc. Roughly speaking, we can divide the
set of kinematic variables into two categories:

o Variables built only from directly measured quantities, i.e., the momenta p; of the
visible final state particles and the missing transverse momentum ET- The primary
example of such a variable is the invariant mass of a collection of visible particles. This
idea forms the basis of the classic method for mass determination in supersymmetry
from kinematic endpoints [8-14]. Other variables belonging to this class include the
scalar sum Hrp of the transverse momenta of visible objects (jets or leptons), the
effective mass Mg [8, 15], the contransverse mass variable Mcr [16, 17] and its
variants Mcr, and Mcr [18], the ratio of visible transverse energies [19, 20], and
the energy itself [21-26]. The advantage of these variables is their simplicity, since
one does not have to even face the question about the individual momenta ¢; or
masses m; of the invisible particles in the event. In principle, these variables are very
general and can be usefully applied in certain situations; however, they also fail to
take advantage of the specific characteristics of the event, and become suboptimal
for more complex event topologies.

2Throughout this paper we shall employ the convention where the letter p (q) is used to denote the
measured (unmeasured) momentum of a particle which is visible (invisible) in the detector. In addition,
the true (hypothesized) mass of the i-th invisible particle will be denoted with m; (/).



o Variables defined in terms of both the measured momenta p; and the invisible mo-
menta q;. Of course, since the individual invisible momenta ¢; are unknown, the
definition of any such variable

v =v(pj, i) (1.2)

must be supplemented with a procedure for fixing the values of the invisible momenta
q; through a suitable ansatz. More concretely, the ansatz should allow us to compute
the invisible 4-momenta ¢!’ in terms of the measured visible 4-momenta py and a set
of hypothesized masses m; for the invisible particles:

q =g (p7,mi), (1.3)

so that at the end of the day, the kinematic variable (1.2) can be equivalently ex-
pressed in terms of visible momenta p; and invisible masses 7; only:

v =v(pj, ¢i(pj, My)). (1.4)

If one is solely interested in the kinematic variable v itself and its properties (differen-
tial distribution, kinematic endpoints, etc.), the intermediate step (1.3) of computing
the individual invisible momenta ¢; is unimportant and can be regarded simply as
a convenient calculational tool. In fact, many of the computer codes on the mar-
ket which are used to compute kinematic variables of the type (1.2), by default do
not even report the values for the invisible momenta found from the ansatz (1.3).
There are also some special cases, e.g., the minimum partonic center-of-mass energy
Vémin [27, 28], the razor variables [29, 30], or the transverse mass My [31, 32], where
one can solve for the ansatz (1.3) analytically, eliminate the invisible momenta, and
derive an exact analytical expression for the variable v in the form of (1.4), which can
then serve as an alternative definition, without reference to any invisible momenta
at all.

Perhaps the two best known examples of variables of the type (1.2) are the transverse
mass [31, 32] and the Cambridge M7 variable [33, 34]. Recently this set of variables
was expanded significantly and now includes Mz, and Mpo [35], the asymmetric
Mrs [36, 37], Mac [38, 39], Mcro [40, 41], MZEP™ [42], and the constrained Mo
variables [43-47]. As the index “2” suggests, all these variables were designed for
the case of SUSY-like events with two decay chains, and they also carry an implicit
dependence® on the test masses 1m; of the invisible particles, as indicated in (1.4).
Despite the large number of such variables on the market, they all share the same
common idea [54]: choose a suitable target function and minimize it over all possi-

3 At first, the dependence on the unknown masses 7; was considered undesirable, which perhaps pre-
vented the more widespread use of variables of the type (1.2). Later on, it was realized that the m;
dependence itself contains a large amount of useful information, e.g., a “kink” develops at the true value
m; of the invisible particle mass [36, 48-51] (related techniques for measuring the invisible particle masses
by utilizing the m; dependence are described in [18, 35, 52, 53]).



ble values of the individual invisible momenta ¢; which are consistent with the ﬁT
condition (1.1). The variations arise because one faces a menu of choices:

— Partitioning of the event. One groups the final state particles according to the
assumed production process — single production, pair production, etc. Ideally,
one should also have a separate category for jets which are suspected to come
from initial state radiation [55-58].

— Choice of target function. The target function can be a full (341)-dimensional
invariant mass, as in the case of Vémin [27], Mac [38, 39] and My [43, 44]; a
(24+1)-dimensional transverse mass, e.g., Mz [31, 32] or M2 [33], and even a
(14+1)-dimensional mass as in the case of My, and Mgy [35]. Note that the
projection to lower dimensions in general does not commute with the partition-
ing, so by performing those two operations in different order, one obtains in
principle different variables [54].

— Imposing additional on-shell constraints. The minimization of (3+41)-
dimensional mass target functions over the invisible momenta can be per-
formed by taking into account the fT constraint (1.1) only, or by adding addi-
tional kinematic constraints which are motivated by the assumed event topol-
ogy [43, 44, 59, 60], a prior kinematic endpoint measurement [38], or by the
presence of a known SM particle in the decay chain (for example, a W bo-
son [59, 61-63] or a 7 lepton [59, 64, 65]). The additional on-shell constraints
further restrict the allowed domain of values for the components of the individ-
ual invisible momenta ¢; and in general lead to a different outcome from the
minimization procedure.

Note that whenever the target function is a transverse mass in (241) dimensions, the
minimization fixes only the transverse components g of the invisible momenta, and
for the longitudinal components one must rely on additional measurements or assump-
tions. For example, in the Mpo-assisted on-shell (MAOS) reconstruction method, one
assumes knowledge of the mass of the mother particle and enforces its on-shell condi-
tion, which allows to solve for the longitudinal momenta [66]. The method was then
tested in examples where the mothers are known SM particles, e.g. top quarks, W-
bosons or 7-leptons [67—72]. Since the on-shell constraints are nonlinear functions, the
MAOS approach typically yields multiple solutions for the longitudinal momentum
components, so one must also specify a prescription for handling this multiplicity. In
contrast, target functions defined in (3+1) dimensions automatically yield ansatze
for the full energy-momentum 4-vectors ¢!', without any need for additional assump-
tions [54]. Another benefit of the (3+1) formulation is that the obtained solutions
for the longitudinal components ¢;, are typically unique [44, 47].

In this paper, we would like to reemphasize the existence of various ansatze (1.3) for
the individual invisible momenta in missing energy events, and demonstrate their utility in
the context of a mass measurement through a “bump hunt”. Following previous studies,
we shall consider the general event topology of dilepton ¢t events, which already have



very rich kinematics, as one can define and study three different subsystems [73]: one
associated with the two b-jets, another associated with the two leptons, and a third one
referring to the event as a whole (see figure 1 below). After briefly introducing our notation
and conventions in section 2, in the next section 3 we shall carefully define and contrast
the different ansatze for invisible momenta which follow from some of the most commonly
discussed in the literature variables of type (1.2): Mpy, Ms, and V/8min. The transverse
variable M7 is already at the heart of (as well as in the name of) the MAOS method [66].
In addition to the traditional MAOS method described earlier, in section 3.1 we shall also
consider two modified MAOS prescriptions [67-70], which avoid using information about
the mother particle mass, and instead rely on the calculated value of Mr7s in the event.
(There will also be a fourth variant of the MAOS method, which will assume a known
mass for a particle other than the parent.) Then in section 3.2 we shall consider the case
of (3+1)-dimensional target functions, since it automatically provides an ansatz for the
longitudinal invisible momenta [27, 44].

Next we would like to compare the performance of the difference ansatze (1.3). One
possibility is to compare the momenta predicted by (1.3) to the true invisible momenta
in the event. However, the ultimate goal of any invisible momentum reconstruction is to
perform some kind of physics measurement. In particular, once we have a guess for the
invisible momenta, we can revisit the original idea for a bump hunt, and compare the
precision of mass measurements performed with different ansatze. This will be the subject
of section 4, in which we shall study the position and the sharpness of the corresponding
reconstructed invariant mass peak. Our main result will be that the invisible momenta
provided by Ms-type variables generally lead to the most accurate mass measurements.

In section 5 we shall generalize our discussion to the case of BSM collider signals
exhibiting the ¢t event topology. In particular, we shall explore the general mass parameter
space of the three particles in each decay chain, and analyze the performance of the invisible
momentum reconstruction from Mos-type variables as a function of parameter space. In
doing so, we shall identify the parameter space regions where the accuracy is degraded, and
then propose a solution for recovering sensitivity by applying a preselection cut. The same
idea has already been used successfully in the case of MAOS [66] and here we demonstrate
its validity in a more general context. Section 6 is reserved for our conclusions.

2 Notations and setup

In this paper we shall largely follow the notation and terminology of ref. [44], which we
briefly review here for the reader’s convenience.
2.1 The physics process

We focus on the generic event topology which is schematically depicted in figure 1. We
assume the pair production of two heavy particles, A; and Ay, whose subsequent decay
chains consist of two two-body decays:

pp — A1A2, AZ — aiBZ-, Bl — szzy (Z = 1, 2) (21)
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Figure 1. The decay topology under consideration in this paper with the corresponding three
subsystems explicitly delineated. Each parent particle, A;, (i = 1,2) decays to two visible particles,
a; and b;, and an invisible daughter particle, C;, through an intermediate on-shell resonance, B;.
The blue dotted, green dot-dashed, and black solid lines indicate the subsystems (a), (b), and
(ab), respectively.

Here the particles a; and b; are SM particles which are visible in the detector, so that
their 4-momenta pa,, pj, , Pa,, and p, are measured known quantities. In contrast, the
particles C; are invisible in the detector — they can be dark matter candidates or SM
neutrinos — and their 4-momenta, ¢!', are a priori unknown, being constrained only by
the Pr measurement (1.1) and our conjectured values e, and mg, for their masses:

@ =mg, (i=1,2). (2.2)

As usual, all visible particles are assumed massless (this is done merely for simplicity). The
masses of the intermediate resonances in figure 1 are denoted by m 4, and mp,, with m4, >
mp,. The process (2.1) depicted in figure 1 covers a large class of interesting and motivated
scenarios, including dilepton ¢t events in the SM, stop pair production in supersymmetry
with ¢ — by™, followed by xy* — Ty, gluino pair production in supersymmetry with
g — qq, followed by § — ¢x°, and many more.

2.2 Event subsystems and the particle family tree nomenclature

As first discussed in the context of the Mpy variable [73], within the original event one
can consider several useful subsystems which are delineated by the colored rectangles in
figure 1. Each subsystem is defined by a choice of parent particles and a choice of daughter
particles among the set of three particles {A;, B;, C;}. Since the parents must be heavier
than the daughters, there are only three possibilities, and in each case, the remaining third
type of particles will be referred to as relatives. Following the notation of [44], we shall
label each subsystem by the set of visible particles on each decay side which are used to
construct the kinematic variable:

e The (ab) subsystem. This system refers to the event as a whole and is indicated by
the solid black box in figure 1. Here the A;’s are the two parent particles and the



C;’s are the daughter particles, leaving the intermediate resonances B; as the relative
particles. The visible particles on each side, a; and b;, are combined into a composite
visible particle with 4-momentum pj, + pj, .

e The (b) subsystem. This subsystem is outlined by the green dot-dashed box in figure 1.
Now the parents are the B; particles, the daughters are the C; particles, and the
relatives are the A; particles. The kinematic variables for this subsystem will be
defined in terms of the 4-momenta pgi of the visible particles b;.

e The (a) subsystem. This subsystem is depicted by the blue dotted box in figure 1.
The A; particles are again treated as parents, but the daughters are now the B;
particles, while the relatives are the C; particles. The kinematic variables will use
the 4-momenta péfi of the visible particles a;.

3 Ansatze for the invisible momenta

We are now in position to define the different kinematic variables of interest, for each of the
three subsystems: (ab), (b) and (a). For each variable (1.2), we first identify a target func-
tion, which is then minimized over all possible values of the individual invisible momenta
¢! consistent with the missing transverse momentum condition (1.1). This minimization
will yield the required ansatz for the missing momenta (1.3). In section 3.1 we begin our
discussion with (2+1)-dimensional target functions defined on the transverse plane, where
the minimization fixes only the transverse components ¢;7 of the invisible momenta. One
then needs to impose an additional requirement in order to obtain a suitable value for the
longitudinal components, and we shall review the different options discussed in the liter-
ature. Then in section 3.2 we shall proceed to discuss (3+1)-dimensional invariant mass
target functions, where the minimization results in fully specified invisible momenta ¢!
In preparation for the numerical comparisons to follow in the next two sections, we shall
again review the different possibilities arising from applying various on-shell constraints on
the parent and/or relative particles.

3.1 Transverse mass target functions and MAOS reconstruction

At hadron colliders, where the longitudinal momentum of the initial state is a priori
unknown, transverse variables are attractive since they are invariant under longitudinal
boosts. When targeting an event topology with two separate decay chains like that of
figure 1, one should consider the two parent particles P; and their corresponding decay
products {a;, b;, C;}. In order to obtain a useful generalization of the canonical transverse
mass variable for this case, one follows the prescription behind the Cambridge Mo vari-
able [33] — first form the individual transverse masses My p, of the two parents, then choose
the larger of the two, max (Mrp,, Mrp,), as our target function, and minimize it with re-
spect to the transverse components of the momenta of the daughter particles, subject to
the ﬁT constraint (1.1). We obtain three different versions of the My variable, depending
on the subsystem under consideration [73]. For subsystem (ab), the parents are A; and the



daughters are C;, thus*
Mo (ab) = (Tlr;l’i};T {max [Mpa, (G117, mcy), Mra,(Gor, mecy)]}- (3.1)
@it + Gor = Pr
In subsystem (b), the parents are the B; particles, and one gets
Mps(b) = ﬁrﬁi}; {max [Mrp, (G117, mcy), MrB,(2r, mc,)]} - (3.2)
Gir + Gor = Pr
The case of subsystem (a) is somewhat more complicated since the daughters are the B;

particles and the minimization is performed in terms of their momenta as opposed to the
momenta of the C; particles. If we introduce the 4-momenta of the B; particles,

Qi = i + Py, (3.3)

we can define
Mry(a) = min {maX [MTAl (G, M), MTAQ(QQTamBQ)} }7 (3.4)
Q17,Q21
Qv + Qar = Pr + P17 + Dot

where instead of (2.2) we have
Qf =myp, (i=12). (3.5)

The three minimizations in (3.1), (3.2) and (3.4) in principle provide three independent
ansatze for the transverse momenta ¢ of the C; particles,® as shown in table 1. As for
the longitudinal components ¢;,, one has to impose additional constraints and compute g;,
independently. There are several different options:

o MAOSI: use the known mass of a parent particle. This is the idea of the original
MAOS method [66]. If we imagine that the mass of the parent particle is already
known from a prior measurement,% we can enforce two mass shell conditions (one

“In what follows, to simplify the notation we shall not indicate explicitly the parent mass dependence
on the visible momenta p,, and ps,, which should be clear from the chosen subsystem.

PStrictly speaking, in the case of subsystem (a), we initially obtain an ansatz for the transverse momenta
C_Q’Z'T of the intermediate particles B;, but they can be easily related to ¢ir with the help of eq. (3.3).

5Tt is important to distinguish the two different situations in which we can use such information about
the parent mass. First, the parents can be SM particles, which decay semi-invisibly, e.g., top quarks,
W-bosons or tau leptons. In this case the parent mass is known exactly. Second, the parents can be
BSM particles, whose masses are a priori unknown, but some partial information can be obtained from
the standard kinematic endpoint measurements, which typically establish a relationship between the mass
of the daughter and the mass of the parent. In this case, the left-hand sides of egs. (3.6)—(3.8) should be
thought of as functions of the test mass of the daughter particle, m¢, or mp,, depending on the subsystem.
In other words, in practical applications of the MAOS method to BSM analyses, one first introduces a
value for the daughter test mass, after which the parent mass can be computed from a kinematic endpoint
measurement and substituted in (3.6)—(3.8).



Ansatz for the invisible momenta
Method required inputs | longitudinal No of transverse
components | solutions | components
MAOS1(ab) ma, mc eq. (3.6) up to 4
MAOS2(ab me eq. (3.9 up to 2
(ab) (3.9) | Mo (ab)
MAOS3(ab) mc eq. (3.12) unique
MAOS4(ab) mpg,mc eq. (3.15) up to 4
MAOS1(b) mg, mc eq. (3.7) up to 4
MAOS2(b . (3.10
() me ¢d- (3.10) unique Mo (b)
MAOS3(b) eq. (3.13)
MAOS4(b) ma, me eq. (3.16) up to 4
MAOS1(a) ma, mp eq. (3.8) up to 4
MAOS2(a) eq. (3.11) .
mpg unique Mrs(a)
MAOS3(a) eq. (3.14)
MAOS4(a) mc, mp eq. (3.17) up to 4

Table 1. A summary of the different possible MAOS schemes. The transverse invisible momenta
are fixed by the Mrs calculation in one of the three possible subsystems (ab), (a), and (b), while
the longitudinal invisible momenta can be computed from any one of the four conditions MAOST,
MAOS2, MAOS3 and MAOS4 described in the text. The second column lists the required mass
inputs for each case.

for each parent) in order to determine the longitudinal momentum of the respective
invisible particle. Depending on the subsystem under considerations, the MAOSI1
constraint reads

Subsystem (ab) : mii = (pa, + Db, + %‘)27 (3.6)
Subsystem (b) : m2BZ. = (pv, + )%,
Subsystem (a) : mii = (pa, + Qi)*.

The first two relations will provide an ansatz directly for g;,, while the last one can
be solved for Q;, after which ¢;, will be obtained from (3.3). In all cases, we have
to deal with a quadratic equation for each decay chain, thus we may end up with up
to four valid solutions, as indicated in table 1.

o MAOS2: use the value of My calculated in the event. The main disadvantage of
the original MAOS1 scheme is that one needs precise prior knowledge of the mass of
the parent particle, which may not be available immediately. In order to circumvent
this difficulty, an alternative proposal, which does not require the parent mass as
an input, was suggested in refs. [67-70]. The idea is to use the numerical value of
the event-wise My value in place of the parent mass. Depending on the subsystem,



we have:

Subsystem (ab) :  M#y(ab) = (pa; + pv; + 4i)?, (3.9)
Subsystem (b) :  M#5(b) = (py, + @:)°, (3.10)
Subsystem (a) :  M#y(a) = (pa, + Q:)*. (3.11)

At first glance, these relations may look weird, since the left-hand side is a transverse
quantity, while the right-hand side is a genuine (3+1)-dimensional invariant mass.
This observation is the key to understanding the physical meaning of the ansatz: the
invisible momentum is chosen so that its rapidity is the same as the rapidity of the
agglomerated visible decay products, which allows a longitudinal boost to a frame
where the momenta are purely transverse, and the transverse mass becomes the same
as the mass [54].

MAOSS: use the individual parent transverse masses obtained in the Mo calculation.
One remaining disadvantage of the MAOS2 method is that the obtained solution for
the longitudinal momenta may not be unique. This occurs for the so-called “un-
balanced” events, where the minimum of the target function is at a point where
the transverse masses of the two parents are not equal [44]. This motivated an-
other choice, where one makes use of the individual parent transverse masses in each
branch [69], namely

Subsystem (ab) : M%Ai = (pa; + v, + )% (3.12)
Subsystem (b) : M%Bi = (pv, + @)°, (3.13)
Subsystem (a) : M%Ai = (pa, + Q)% (3.14)

With this prescription, the obtained values for the longitudinal momenta are unique.
As shown in table 1, the distinction between MAOS2 and MAOS3 only arises in the
case of subsystem (ab), since subsystems (a) and (b) always lead to balanced events,
for which MAOS2 and MAOS3 are identical procedures.

MAOS): use the known fized mass of a relative particle. This method is similar in
spirit to MAOSI1, only this time we use as an input the mass of a relative particle.
In analogy to (3.6)—(3.8), we get

Subsystem (ab) : m2BZ_ = (py, + @)% (3.15)
Subsystem (b) :  m?%. = (pa, + po, + ¢)°, (3.16)
Subsystem (a) : m%i = (Qi — pp,)* (3.17)

As shown in table 1, three different versions of MAOS4 are possible in dilepton ¢t
events. For example, MAOS4(ab) requires that the lepton and the neutrino on each
side of the event reconstruct to the true W-boson mass, which makes it suitable for
studying the reconstructed top quark mass. On the other hand, in MAOS4(b) one
demands that the two top quarks have nominal masses, in which case the interesting
variable to study would be the reconstructed W-boson mass.

~10 -



In principle, all twelve MAOS methods listed in table 1 are valid procedures for ob-
taining the invisible momenta and they will all be illustrated in section 4.1 below. To
the best of our knowledge, only some of the options in table 1 have been used in the
literature so far. The original proposal [66] focused on MAOS1(ab), while MAOS2(ab)
and MAOS3(ab) were introduced later in [67-70]. Ref. [71] made use of MAOS1(ab) and
MAOS4(ab) to tackle the two-fold combinatorial ambiguity in dilepton ¢t events [74, 75].
The possibility to use different subsystems for MAOS reconstruction was pointed out in
ref. [72], which performed a comparison of MAOS1(ab), MAOS1(a) and MAOS1(b) using
dilepton ¢t events and concluded that the best ansatz for the momenta of the invisible par-
ticles is provided by MAOS1(ab), followed by MAOS1(b) and finally, MAOS1(a). Quite
recently, the MAOS1(b) version was used by the CMS collaboration to measure the top
mass in dilepton ¢t events [76].

3.2 (3+1)-dimensional invariant mass target functions

Following [43, 44, 54], one could also consider target functions in (3+1)-dimensions. Start-
ing with the actual parent masses, Mp,, we can schematically define the (341)-dimensional
analogues of (3.1), (3.2) and (3.4) as

MQ(m) = gnl(;,ﬁ {maX [Mpl (@17m)a MPz((Tva)]}v (3'18)
1,32

Gt + Gor = Pr

where m is the daughter test mass for the corresponding subsystem and the minimization
is performed over all 3-components of the vectors ¢ and ¢».” If (3.18) is left as is, we will
obtain nothing new — the result of the minimization will be equal to the corresponding
value of Mrpo [38, 44, 54], and furthermore, we will derive the same invisible momenta as
with the MAOS2 method. This motivates us to modify the naive definition (3.18) appropri-
ately, by taking into account the specific features of the event topology of figure 1 [44]. For
example, in many BSM realizations of figure 1, the two decay chains are symmetric in the
sense that the original parent particles A; are identical (or at worst a particle-antiparticle
pair) and decay in the same fashion. As a result, the corresponding masses on the two
sides of the event are the same:

maA, = Ma, =ma, (3.19)
mp, = mp, =map, (3.20)
me, = mc, = mc, (3.21)

and we can incorporate some number of these constraints into the definition of the kinematic
variable. Note that the first equal sign in egs. (3.19)—(3.21) refers to the symmetry of the
event topology, while the second additionally implies knowledge of the actual value® of

"Recall that in the case of subsystem (a) we are actually using the momenta @Q; which are related to g;
by eq. (3.3).

8As in the case of MAOS, for BSM applications the parent mass may only be known as a function of
the test daughter mass, as the latter is always a necessary input to the analysis.
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the mass, ma, mp or meo. Due to the freedom of choosing different sets among the
constraints (3.19)—(3.21), several classes of variables are possible.

o FEquality of the two parent masses. In the absence of any knowledge of the actual
masses of the parent particles, the best one can do is to apply the constraint of
identical parents

Mp, = Mp,. (3.22)

Following the notation of [44], variables for which this condition is enforced, will carry
a first index C for “constrained”.

o Equality of the two relative masses. In analogy to (3.22), we can demand that the
two relative particles in each decay chain are the same:

Mg, = Mpg,. (3.23)

Following the notation of [44], variables for which this condition is enforced, will carry
a second index C.

o Fized mass for the two relatives. An even stronger constraint arises if we enforce the
relative mass to be equal to some fixed value Mp (compare to the MAOS4 method
introduced above in section 3.1):

MR1 = MR2 = MR. (324)

Further expanding upon the notation of [44], variables for which this condition is
enforced, will carry a second index R indicating the relative particle whose mass is
known. For example, in the special case of the event topology of figure 1 applied to
dilepton ¢t events, the index R can take the values R =t in subsystem (b), R = W
in subsystem (ab), and R = v in subsystem (a).

In summary, the My class of variables will be labelled by two? subscripts. The first
refers to the parent hypothesis and takes a value C' if (3.22) is applied, and X otherwise.
The second subscript refers to the relative hypothesis and takes a value C' if (3.23) is
applied, a value R if (3.24) is applied, and X otherwise. Altogether, we have six!? possible
variables: MQX)(, ngc, M2XR, MQCX, Mgcc, and MQCR.

In table 2 we collect the full set of 6 x 3 = 18 variables of type M. The table is
organized as follows. We group the variables by subsystem — first (ab), then (b), and
finally, subsystem (a). Within each subsystem, we order the variables according to the
amount of theoretical input — variables with fewer (more) constraints appear earlier (later)

9For simplicity, in this paper we shall always assume the masses of the two daughter particles in a
given subsystem to be the same, otherwise we would need a third index for the daughter particles. This
assumption is done only for simplicity and can be easily relaxed, see, e.g., [36, 37].

10 Additional variables can be obtained if we make further assumptions about the event topology. For
example, if we assume an “antler” topology, where the two parents A; arise from the decay of a heavy
resonance G with a known mass mg, one can further impose the constraint (3, (pa; + pv; + ¢i))° =
mg [60, 65].
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Subsystem | Mass Applied constraints for

Variable type inputs parents relatives
Msx x (ab) (ab) me — —
Msxc(ab) (ab) me — mp, = mp,
Msex (ab) (ab) me ma, =ma, —
Mscc(ab) (ab) me ma, = ma, mp, = mp,
Msx r(ab) (ab) mg, mo — mp, =mp, =mpg
Mscr(ab) (ab) mp,MC | M, =Ma, | Mp, =mp, =mp
Msx x (b) (b) me — —
Msxc(b) (b) me — ma, =ma,
Mscx (b) (b) me mp, = mp, —
Mscce(b) (b) me mp, = mp, ma, = ma,
Msx r(b) (b) ma, mc — ma, =ma, =m4
Macr(b) (b) ma, M | MpB, =Mp, | Ma, =Ma, =ma
Msx x(a) (a) mp — —
Msxc(a) (a) mp — me, = mc,
Mscx(a) (a) mp ma, =ma, —
Macc(a) (a) mp | ma, =ma, me, = me,
Msxr(a) (a) mpg, mc — me, = me, = mg
Mascr(a) (a) mp,Mc | Ma, = M4, | Moy, = Mc, = Me

Table 2. A summary of the 6 x 3 = 18 variables of type My defined in the text. For each of the
three subsystems (ab), (a), and (b), one may choose to apply (or not) the parent constraint (3.22),
and then choose to apply (or not) one of the relative constraints (3.23) or (3.24).

in the list. As indicated by the entries in the third column of table 2, four of the variables
within each subsystem require a single input mass parameter, namely the hypothesized
mass of the daughter particle for this subsystem. These 12 variables, of type Msxx,
Mscox, Maxc, and Mscco, are precisely the on-shell constrained My variables discussed
in [44]. The remaining 6 variables in table 2 require an additional mass input — the mass
of the relative particle. In this sense, they are the analogues of the MAOS1 or MAOS4
schemes for invisible momentum reconstruction, which also required an additional mass
input, see table 1.

The pros and cons of the different types of My variables from table 2 will be discussed
in our numerical examples below (see section 4.2). The exact definition for each variable
should be clear from our earlier discussion (see also [44]), but at this point it may still be
instructive to give a few specific examples, particularly for the newly introduced variables
Msx g and Mscr which employ the stricter constraint (3.24).

For concreteness, let us consider the dilepton ¢t realization of the event topology of
figure 1, in which the visible particles are: a pair of b-quarks (a; = b, az = b) and a pair
of leptons (by = €T, by = 7). One could imagine that the leptons are still the result of
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leptonic decays of SM W-bosons to neutrinos, so that mp, = my and m¢;, = 0, while the
parents A; are some new particles, e.g., 4th generation up-type quarks. Then, the physics
process under consideration (2.1) becomes

pp = tt, t bW, Wt =Ty, (3.25)

In this case, it makes sense to consider the variable Macoyy (b) defined as

Moy (b0) = glg; {max [(py + pr+ + @1)%, (P +pe- + @)°] }, (3.26)
g =0
% =0

Gt + Gr = Pr
(pe+ + Q1)2 = mIZ/V

(pe- + @2)* = miy

(oo +po+ + @) = (0 + Do~ + @2)°
whose upper kinematic endpoint would be the mass of the top partner ¢'.

Another possibility is to consider stop production in SUSY, followed by sequential
decays to charginos and sneutrinos:

pp = tt*, t—=bxt, X — (o (3.27)

In this case, a prior measurement of the Mrpy(¢) kinematic endpoint could provide knowl-
edge of the chargino mass as a function of the sneutrino mass, mg+(mz,), which would

allow us to consider the maximally constrained kinematic variable Mycg+(bf) defined as

M3pis (bl) = ;{11(;21 {max [(py + pr+ + @1)%, (P +pe- + @)°] }, (3.28)
g = mz,
g5 = mj,

@it + @r = Pr
(per +@1)* = m2s(mz,)
(P~ + ¢2)* = mix (my,)

(py + per +@1)* = (P + po- + q2)*

The minimizations in (3.26) and (3.28) are essentially one-dimensional minimizations, since
they involve a total of seven constraints for the eight unknown components ¢}’ and ¢5.

One could also consider situations where the masses for the A; particles are known
instead. If we stick to the case where A; is the SM top quark, we can imagine that the
particles B; are not W bosons, but some other charged scalars H*. Then the process under
consideration becomes

pp —tt, t—bH", H' = /(Ty,. (3.29)
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The relevant variable now is

M3, (0) = min {max [(pp+ + @1)?, (0~ + @2)?]}, (3.30)
1,
g =0
% =0

QT + Gor = ﬁT
(pe+ + @) = (P~ + @2)?

(po +pe+ +q1)* = m

(P + po- +¢2)° = mj
whose upper kinematic endpoint is the mass of the charged boson H*. Note that the first
My subscript “C” in (3.30) refers to the presence of the parent mass constraint (3.22) for
the H* particles in the leptonic subsystem, while the second subscript “t” identifies the
relative particles A; as top quarks.

In conclusion of this section, we also mention the possibility to define a class of vari-
ables, M, where one minimizes a target mass function without any partitioning of the
event [54]. If this minimization is performed in the absence of any additional kinematic

constraints besides (1.1), one obtains the usual /s variable [27, 58]. In the example of

min

the ¢t event topology we have

Smin(b0) = MfXX(bﬂ) = %11@1; {(pb + P+ +q1 +pp +Ppe- + QQ)2} , (3.31)
g =0
g =0

Gt + Gor = Pr

where we have assumed zero test masses for the two invisible particles. However, one
may also choose to partition the event post factum in order to define a suitable kinematic
constraint of the type (3.22), (3.23) or (3.24). Consider, for example, the single production
of a heavy Higgs boson, H?, subsequently decaying to two on-shell W-bosons, which in
turn decay leptonically:

pp— HY, HC Swtw—, Wt o tty, W = (i (3.32)

The relevant variable to consider in this case would be

My (0) = gﬁq% {(pe+ + @1 + P~ + @)*} (3.33)
g =0
g =0

G+ Gr = Pr
(pe+ + @) = miy

(pe- + @) = m%v
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bound

which was called mJ?*"* in [62] and §597°

cons in [59]. In all those cases, the minimization again
results in an ansatz for the invisible 3-momenta ¢ and ¢5, so that the M; class of variables

can in principle also be used for fixing the momenta of the invisible particles.

4 Mr,-assisted and M,-assisted mass reconstructions of mass peaks

In the previous section, we identified a number of different ways in which one can obtain an
ansatz for the unknown momenta of the invisible particles in the event. The main purpose
of this section is to compare the usefulness of these different ansatze with regards to mass
measurements through bump hunting. To be specific, we shall focus on the dilepton ¢t
event topology from figure 1 and we shall consider the three subsystems, (ab), (a) and (b).
In subsection 4.1 we shall first discuss the twelve versions of the traditional MAOS method
which are listed in table 1, while in subsection 4.2 we shall compare the different types
of Ms-based reconstructions from table 2. Depending on the procedure, one expects to
obtain an invariant mass bump for one of the three particles involved — the top quark, the
W-boson or the neutrino, as the case may be. The sensitivity of the mass measurement
will be judged by the width of the obtained invariant mass distribution — a narrow (broad)
peak will indicate high (reduced) sensitivity. Finally, in subsection 4.3 we shall contrast
the MAOS methods from section 4.1 to the Ms-based methods from section 4.2.

4.1 Comparison of the different MAOS methods

First we compare the performance of the twelve different MAOS schemes introduced in
section 3.1. Generally, we will be reconstructing the mass of the relative particle — the
W boson mass My in subsystem (ab), the top quark mass M; in subsystem (b) and the
neutrino mass M, in subsystem (a). However, in the case of MAOS4, the result would
be trivial since the mass of the relative particle itself is used as one of the constraints.
This is why in the case of MAOS4 only we shall instead plot the mass of the parent
particle, i.e., My for MAOS4(b) and M, for MAOS4(ab) and MAOS4(a). Our results are
presented in figures 2-4, where events were generated with MADGRAPH [77] for the LHC
with energy 14 TeV. Since it is difficult to distinguish a b-jet from a b-jet in practice, there
is a two-fold combinatorial ambiguity which may occur at different stages — in forming
the Mpo variable, in using the top mass to solve for ¢;,, or in forming M,. Either way,
this combinatorial ambiguity inevitably affects the results, which is why in the figures we
show separately results for the correct lepton-jet pairing (left panels), the wrong lepton-jet
pairing (middle panels) and combining both pairings (right panels).

Figure 2 shows results from reconstructing the top quark mass M; with the five rel-
evant MAOS methods: MAOS1(b) (red solid lines), MAOS2(b) (green dot-dashed lines),
MAOS3(b) (blue dotted lines), MAOS4(ab) (orange dashed lines), and MAOS4(a) (cyan
solid lines). In all cases, we use the correct test mass when calculating Mrs: the true neu-
trino mass m, = 0 in subsystems (ab) and (b), and the true W-boson mass my = 80 GeV
for subsystem (a). In the case of MAOS2(b) and MAOS3(b), this is the only mass input
needed to reconstruct My, see table 1. Unfortunately, this theoretical advantage seems to
be offset by the inferior performance of these two methods: even for the correct lepton-jet
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Figure 2. Comparison of the performance of different MAOS schemes in reconstructing the top
mass in dilepton ¢f events. Distributions of the reconstructed top mass M; are shown for the case
of the correct lepton-jet pairing (left panel), the wrong lepton-jet pairing (middle panel) and both
pairings (right panel). The top quark is treated as a relative particle in the case of MAOS1(b) (red
solid line), MAOS2(b) (green dot-dashed line) and MAOS3(b) (blue dotted line), and as a parent
particle in the case of MAOS4(ab) (orange dashed line) and MAOS4(a) (cyan solid line).

combination, the MAOS2(b) and MAOS3(b) distributions in the left panel in figure 2 peak
below the true top mass m;, so that a bump hunt will systematically underestimate the
value of m;. The remaining three MAOS methods illustrated in the figure, MAOS1(b),
MAOS4(ab) and MAOS4(a), use an additional mass input, and are thus expected to per-
form better.!! This is confirmed by figure 2, which suggests that MAOS4(ab) slightly
outperforms the other two methods, MAOS4(a) and MAOS1(b), which are utilizing the
smaller individual subsystems (a) and (b). There are two effects which contribute to this.
First, for the correct lepton-jet combination (the left panel in figure 2) the distributions for
all three methods, MAOS1(b), MAOS4(ab) and MAOS4(a), have their peaks very close to
the true mass my, but the peak for MAOS4(ab) is more narrow than the other two. Second,
for the wrong lepton-jet combination (the middle panel in figure 2), the MAOS4(ab) dis-
tribution is relatively broad, but happens to peak right around the top quark mass again,
while the distributions for MAOS4(a) and MAOS1(b) peak at slightly lower values. If one
does not attempt to resolve the combinatorics [71, 74, 75] and instead does the simplest
thing, namely, combine the two distributions from the left and middle panels of figure 2,
one would obtain the combined distributions shown in the right panel of figure 2. We
see that among the methods using two mass inputs, MAOS4(ab) appears to be the best,
followed by MAOS4(a) and MAOS1(b). The remaining two procedures, MAOS2(b) and
MAOS3(b), rely on a single mass input, and give identical answers, in accordance with our
expectations for subsystem (b).

Figure 3 shows the analogous results for the reconstruction of the mass My of the W-
boson, using MAOS1(ab) (red solid line), MAOS2(ab) (green dot-dashed line), MAOS3(ab)

1Tn MAOS1 and MAOS4, the additional mass input is used to solve for the longitudinal momenta. Since
the relevant equations are non-linear, one may end up with multiple solutions. In such cases, we plot
the result for each solution with a corresponding weight factor so that each event has weight 1. Similar
comments apply to the case of MAOS2, where for unbalanced events one may find two solutions for g;..
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Figure 3. Comparison of the performance of different MAOS schemes in reconstructing the W-
boson mass in dilepton ¢ events. Distributions of the reconstructed W-boson mass Myy are shown
for the case of the correct lepton-jet pairing (left panel), the wrong lepton-jet pairing (middle
panel) and both pairings (right panel). The W-boson is treated as a relative particle in the case
of MAOSI1(ab) (red solid line), MAOS2(ab) (green dot-dashed line) and MAOS3(ab) (blue dotted
line), and as a parent particle in the case of MAOS4(b) (orange dashed line).

(blue dotted line), and MAOS4(b) (orange dashed line). In all cases we use the correct test
mass as an input to the Mo calculation, and then the correct value of the additional mass
input required for MAOS1(ab) and MAOS4(b). The left panel of figure 3 clearly demon-
strates the benefit of the additional mass input, as MAOS1(ab) and MAOS4(b) greatly
outperform MAOS2(ab) and MAOS3(ab). Since the corresponding wrong-combination
distributions in the middle panel have similar shapes, this advantage is preserved in the
combined distributions shown in the right panel. Upon closer inspection, MAOS4(b) (or-
ange dashed line) appears slightly better than MAOS1(ab) (red solid line). However, in new
physics applications of the MAOS methods, the knowledge of the additional mass input is
not always guaranteed, and one would have to do with MAOS2(ab) or MAOS3(ab), which
perform very similarly. Among the two, MAOS3(ab) has a slight theoretical advantage in
the sense that its invisible momentum ansatz is always unique and well-defined.

Our third and final mass reconstruction for the dilepton tf topology is shown in figure 4,
where we plot in analogous fashion the reconstructed neutrino mass-squared MVQ when
the neutrino is treated as a relative particle in subsystem (a): MAOS1(a) (red solid line),
MAOS2(a) (green dot-dashed line) and MAOS3(a) (blue dotted line). This time the benefit
of the additional mass input m; in the case of MAOS1(a) is not so clear — all three
distributions have similar shapes (the distributions for MAOS2(a) and MAOS3(a) are in
fact identical, since subsystem (a) has only balanced events) and peak near the origin.

4.2 Comparison of the different M>-based methods

We shall now use the dilepton ¢ example to test the accuracy of the invisible momentum
reconstruction from the different Ms-based methods listed in table 2. We shall not consider
all 18 possibilities in table 2, since some are closely related. For example, it is known that
for any subsystem, the Msx x and Mscx variables are identical, and furthermore, equal to
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Figure 4. Comparison of the performance of different MAOS schemes in reconstructing the neu-
trino mass-squared in dilepton # events. Distributions of the reconstructed neutrino mass-squared
MB are shown for the case of the correct lepton-jet pairing (left panel), the wrong lepton-jet pairing
(middle panel) and both pairings (right panel). Here the neutrino is always treated as a relative
particle in the case of MAOS1(a) (red solid line), MAOS2(a) (green dot-dashed line) and MAOS3(a)
(blue dotted line).

the value of the Cambridge transverse mass variable Mpo [44]:
Moxx = Macx = Mrs. (4.1)

In spite of this relation, the corresponding three ansatze for the invisible momenta are
not necessarily the same. First of all, Mpo is a transverse variable and it only fixes the
transverse components g1 and @, while Msx x and Mscx in addition provide values for
the longitudinal components ¢, and gs.. In the case of balanced events, those predictions
are unique and the same for Msxx and Mscx, while for unbalanced events, there is a
two-fold ambiguity for ¢;, and ¢s, in the case of Mo x and a flat direction in the case of
Msxx [44]. In what follows, we shall therefore prefer to consider the invisible momentum
reconstruction from the My x variable instead of Msx x.

Similar considerations apply in the case of the pair of variables Msxc and Mscc, as
well as for Moxpr and Mscgr. In each case, the variables are equal for balanced events
and only differ for unbalanced events, where this time the obtained invisible momentum
configurations are unique. This is why we shall also not consider Msxc and Msx g, and
instead focus on Mscc and Msc g, respectively.

Figure 5 shows distributions of the reconstructed top quark mass M; with the four
relevant My methods from table 2: Mscpr(ab) (red solid line), Maocx (b) (green dot-dashed
line), Macc(b) (blue dotted line), and Mscr(a) (orange dashed line). In analogy to fig-
ure 2, we show separately the distributions obtained for the correct lepton-jet pairing (left
panel), the wrong lepton-jet pairing (middle panel), and both pairings (right panel). Note
that some distributions have fewer events, since the constraints cannot be simultaneously
satisfied. This is most notable for the case of Macr(a), and is typically due to events in
which an intermediate resonance (a top quark or a W-boson) is rather off-shell (we expect
this effect to be further amplified once we account for the finite detector resolution). Also
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Figure 5. The same as figure 2, but using the appropriate M, variables for fixing the invisible
momenta. Distributions of M, are shown for the case of Macg(ab) (red solid line), Macx (b) (green
dot-dashed line), Mycc(b) (blue dotted line), and Macr(a) (orange dashed line).

note that in subsystems (ab) and (a) the top quark is a parent particle, while in subsystem
(b) it is a relative particle. This distinction is indicated in the legend of figure 5 with a
superscript P or R, respectively.

Figure 5 confirms that the more constrained variables generally provide better guesses
for the invisible momenta, as measured by the location and width of the reconstructed
mass peak in ]\th. The most constrained version of the My variable is Mscg, which has
one parent constraint and two relative constraints, leaving a single momentum degree of
freedom to be minimized over. In figure 5, both Mscpr(ab) and Mscr(a) seem to work
very well — for the correct lepton-jet pairing, the reconstructed top mass peak is very well
defined and located at the correct position (marked with the vertical dashed line). However,
the disadvantage of Mycr(ab) and Mycr(a) is that one uses both the W-boson mass and
the neutrino mass as inputs to the calculation, which restricts their applicability to BSM
scenarios. Under those circumstances, the single-input variables Mscx (b) and Macc(b)
will be more useful for momentum reconstruction — in figure 5 the corresponding M,
distributions are shown with the green dot-dashed and the blue dotted line, respectively.
We see that even with the lack of knowledge of the precise value of the W-boson mass, the
Mscc(b) variable still provides a good momentum ansatz, as judged by the location of the
peak of its M, distribution.

In figures 6 and 7 we similarly show distributions of the reconstructed W-boson mass
My and the reconstructed neutrino mass squared ME, respectively. (These two figures are
the analogues of figures 3 and 4 for the MAOS case.) The My distributions in figure 6
use invisible momentum reconstruction from Mscx (ab) (green dot-dashed line), Moo (ab)
(blue dotted line), and Macg(b) (red solid line), while the M? distributions in figure 7 use
the invisible momenta obtained by Mscx (a) (red solid line) and Mscc(a) (blue dashed
line). We again observe that the maximally constrained variable, Mscr(b), which uses as
inputs the neutrino and top quark masses, is able to provide us with a very good ansatz
for the invisible momenta, and the My distribution in figure 6 exhibits a very narrow peak
at the proper location (80 GeV). The remaining four distributions in figures 6 and 7 are
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Figure 7. The same as figure 4, but using the appropriate M, variables for fixing the invisible
momenta. Distributions of M2 are shown for the case of Macx(a) (red solid line) and Macc(a)
(blue dashed line).

derived from single-input variables, where we again observe that Mscc performs slightly
better than Msox.

In the above discussion of figures 5 and 6 we have been focusing on measuring the
top quark mass and the W-boson mass from the peaks of the respective M; and My
distributions. However, one should keep in mind that whenever we reconstruct a parent
mass, we always have the option of measuring it from a kinematic endpoint as well. This
is clearly evident in the left panel of figure 5 for the case of Macr(ab) and Mycg(a), and
in the left panel of figure 6 for the case of Mycgr(b). Even with the pollution from the
wrong combinatorics in the middle panels of figures 5 and 6, the endpoint structures are
still preserved in the corresponding combined distributions shown in the right panels.

4.3 Comparison of Mps-assisted and Ms-assisted reconstruction schemes

Having discussed the different versions of the more traditional MAOS method in section 4.1
and the different options for Ms-assisted invisible momentum reconstruction in section 4.2,
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Figure 8. Comparison of the MAOS and Ms-assisted methods for top mass reconstruction from
figures 2 and 5. The left panel shows distributions of the reconstructed top mass M; with methods
which use two mass inputs (the W-boson mass and the neutrino mass): the three MAOS methods
from figure 2, MAOS4(ab) (blue solid line), MAOS1(b) (green dot-dashed line), and MAOS4(a)
(cyan dotted line), and the two May-based methods from figure 5, Macr(ab) (red solid line) and
Mscr(a) (orange dashed line). The right panel shows distributions of the reconstructed top mass
M, with methods which use a single mass input (the neutrino mass): MAOS2(b) (blue dotted
line) and MAOS3(b) (green dot-dashed line) from figure 2 and Macx (b) (orange dashed line) and
Msce(b) (red solid line) from figure 5.

we are now ready to contrast the two methods to each other. For this purpose, we reassem-
ble the results from the previous two subsections in figures 8-10, so that only methods using
the same number of theoretical mass inputs are compared on each plot: the distributions
shown on the left panels of these figures require two mass inputs, while the distributions
in the right panels need only one. Since we already showed the effects of combinatorics
in the previous two subsections (compare the left and middle panels of figures 2-7), here
for simplicity we plot only the combined distributions, which include both the correct and
the wrong lepton-jet assignment. Naturally, the use of the extra mass input should allow
for a better measurement, thus one should expect the distributions in the left panels of
figures 8-10 to be more sharply peaked than those in the corresponding right panels.

Figure 8 summarizes our previous results from figures 2 and 5 for the reconstruction
of the top mass M;. The distributions shown in the left panel require prior knowledge of
both the W-boson mass my, and the neutrino mass m,,, while for the distributions shown
in the right panel one only needs to know m,,. The left panel of figure 8 demonstrates that
the two My methods, Macr(ab) (the red solid line) and Macgr(a) (the orange dashed line)
clearly outperform their MAOS counterparts, MAOS4(ab) (blue solid line), MAOS1(b)
(green dot-dashed line) and MAOS4(a) (cyan dotted line) — the peaks reconstructed by
means of My are significantly more narrow, which should lead to a more precise mass mea-
surement. Regardless of this width difference, in all five cases the peak of the distribution
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Figure 9. The same as figure 8, but for the reconstructed mass My, of the W-boson. The left
panel shows distributions of the reconstructed W-boson mass My with methods which use two mass
inputs (the top mass and the neutrino mass): MAOS1(ab) (green dot-dashed line) and MAOS4(b)
(blue dotted line) from figure 3 and Macg(b) (red solid line) from figure 6. The right panel shows
distributions of the reconstructed W-boson mass My, with methods which use a single mass input
(the neutrino mass): MAOS2(ab) (blue dotted line) and MAOS3(ab) (green dot-dashed line) from
figure 3 and Mycx (ab) (orange dashed line) and Macc(ab) (red solid line) from figure 6.

is correctly centered on the true top mass used in the simulations (indicated by the vertical
dashed line). The right panel of figure 8 leads to a very similar conclusion for the set
of methods which rely on a single mass parameter input — here the method of Macc(b)
(red solid line) is clearly the best, while the other three, MAOS2(b) (blue dotted line),
MAOS3(b) (green dot-dashed line), and Macx (b) (orange dashed line), are in a perfect tie,
which is not a numerical coincidence, but rather expected theoretically. First, the proce-
dures of MAOS2 and MAOS3 differ only for unbalanced events, of which there are none
in subsystem (b). Furthermore, it is known that the variables M7y and Mscx are identi-
cal in any subsystem [44], see eq. (4.1). Therefore they would lead to the same invisible
momentum reconstruction, which is indeed confirmed by the right panel in figure 8.

Figure 9 reassembles our previous results from figures 3 and 6 for the reconstructed
W-boson mass Myy. The left panel shows the distributions which need two mass inputs,
the top mass m; and the neutrino mass m,. All three distributions peak at the correct
value of the W mass indicated with the vertical dashed line. However, the distribution
obtained with Mscpr(b) (the red solid line) is slightly more narrow than the other two,
corresponding to MAOS1(ab) (the green dot-dashed line) and MAOS4(b) (the blue dotted
line). The right panel in figure 9 collects the distributions from figures 3 and 6 which
require only the neutrino mass as an input. Here we notice that MAOS2(ab) (the blue
dotted line) and MAOS3(ab) (the green dot-dashed line) give slightly different results, due
to the presence of unbalanced events in subsystem (ab). Once again, the theorem from [44]
ensures that the distributions for MAOS2(ab) (the blue dotted line) and Mscx (ab) (the
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Figure 10. The same as figure 8, but for the reconstructed mass-squared M2 of the neutrino.
The left panel shows the distribution obtained with MAOS1(a) from figure 4, which uses two mass
inputs: the mass of the top quark and the mass of the W-boson. The right panel shows distributions
of the reconstructed neutrino mass squared ME with methods which use a single mass input (the
W-boson mass): MAOS2(a) (blue dotted line), and MAOS3(a) (green dot-dashed line) from figure 4
and Mscx (a) (orange dashed line) and Msce(a) (red solid line) from figure 7.

orange dashed line) are the same.'? Just like we saw in the right panel of figure 8, the
distribution obtained from the Mscc-type variable, in this case Macc(ab) (the red solid
line), has the best properties: its peak is relatively narrow and appears closest to the true
W-boson mass.

Finally, in figure 10 we revisit our results from figures 4 and 7 for the reconstructed
neutrino mass-squared M2, This time there is only a single method, MAOS1(a), which
uses two mass inputs, and correspondingly, it is depicted in the left panel. The remaining
four methods use a single input, the W-boson mass, and are shown in the right panel. Once
again, in accordance with the theorem from [44], the distributions for Macx (a) (the orange
dashed line) and MAOS2(a) (the blue dotted line) are identical. The lack of unbalanced
events in subsystem (a) implies that the distributions corresponding to MAOS2(a) and
MAOS3(a) are also the same. The remaining fourth distribution, based on Mycc(a) (the

12The careful reader might notice that in the right panel of figure 9, the blue dotted line for MAOS2(ab)
and the orange dashed line for M2cx (ab) are slightly different, in apparent violation of the theorem from [44].
The reason for this is somewhat technical and has to do with the different way in which we produce the
plots for MAOS2(ab) and Mac x (ab). We have verified that for balanced events, the results are identical, as
expected. However, for unbalanced events, the MAOS2(ab) prescription yields two possible values for the
longitudinal momenta, both of which are available to us as the solutions to a simple quadratic equation.
Then, when we produce plots for MAOS2, we enter both solutions in the histogram, each with a weight
1/2. These two solutions correspond to the two equally deep global minima of the target function used
to compute Macx (ab) [44]. Since the Mscx (ab) minimization is done numerically via OPTIMASS [47], its
numerical algorithm will randomly pick and converge to one of these minima, giving us only one of the two
solutions, which we then plot with weight 1.
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red solid line) is different, however, and appears to be the most promising for the purposes
of a mass measurement of My.

In conclusion of this section, let us summarize our main result. We contrasted the
MAOS and M5 methods for invisible momentum reconstruction by examining their poten-
tial for a mass measurement of an unknown particle through a bump hunt. We analyzed
each of the three subsystems in the event topology of figure 1 and found that the invisi-
ble momentum reconstruction offered by the Ms class of variables is generally superior to
MAOS — the reconstructed invariant mass peaks are more narrow and better localized.
An additional theoretical advantage of the Ms approach is that it is less ambiguous, as it
always provides a unique ansatz for balanced events. In the next section we shall continue
to investigate the My approach in the most general case of the event topology from figure 1,
where A, B and C' are arbitrary new physics particles.

5 Applicability to BSM scenarios

Our discussion in the previous section was limited to the SM ¢t dilepton event topology.
The dilepton tt example is appealing to an experimentalist mainly because we know it is
present in the data and can be used as a toy playground for new physics searches [76, 78, 79].
Given that the ultimate goal of the LHC is to discover new physics and measure the
new particle mass spectrum, in this section we shall abandon the ¢t example and instead
consider the most general case of the event topology of figure 1, where the mass spectrum
(ma, mp, me) is completely arbitrary, and not (mg, my,m,), as in the previous section.
A concrete realization in SUSY is provided by the process (3.27) of stop production, in
which the masses of the top squark, chargino and sneutrino are a priori unknown.

The main goal of this section will be to revisit the bump hunting mass measurement
technique discussed previously and investigate how well it does in the general mass pa-
rameter space (m4, mp, mc), away from our previous “study point” (my, my, m,). Since
the exact nature of the new physics particles A, B and C is unknown, in the simulations
of this section we shall decay particles A and B by pure phase space. For concreteness,
we shall continue to assume that particles A are colored fermions produced similarly to
top quarks. For fairness in comparing the sensitivity at different points in mass parameter
space, it would be nice to fix the overall signal rate. An easy way to do this is to fix the
mass (and hence the cross-section) of the heaviest particle A. In what follows we shall
choose my = 500 GeV; this has the additional benefit of reducing the dimensionality of the
relevant mass parameter space to two. The masses of the two remaining particles will be
varied as mp € (0,m4) and m¢o € (0,mp). We shall then investigate the sensitivity of the
method as a function of mp and mc.

In figure 11 we revisit the main study point considered in [44], namely m4 = 500 GeV,
mp = 300 GeV, mc = 200 GeV. In the left panels we show the distributions'® of Mg (ab)
(upper row) and Macc(b) (lower row), both made with the correct choice of mg. We
observe that both distributions peak very nicely at their kinematic endpoint, allowing

13For concreteness, all plots in this section will be made with the correct lepton-jet pairing, thus avoiding
the combinatorial issue.
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Figure 11. An example of stop production (3.27) which works rather well. The mass spectrum is
ma = 500 GeV, mp = 300 GeV, m¢c = 200 GeV. The top row shows the Msc(ab) distribution (left
panel), the corresponding reconstruction of the relative particle B in the (ab) subsystem (middle
panel), and their correlation (right panel). The bottom row shows the Macc(b) distribution (left
panel), the corresponding reconstruction of the relative particle A in the (b) subsystem (middle
panel), and their correlation (right panel). The dashed lines mark the true values of the particle
masses in each case.

a measurement of the corresponding mass (my4 for the case of Mscc(ab) and mp for
the case of Macc(b)) from either the peak of the distribution,'* or the location of the
kinematic endpoint. For our purposes, however, we are mostly interested in using the
invisible momentum ansatz for reconstructing the mass of the relative particle, namely
mp for the case of Mycc(ab) and my for the case of Msce(b). This reconstruction is
shown in the two middle panels of figure 11. We see that the reconstructed relative mass
distributions have very sharp, well-defined peaks positioned very close to the true values
of the masses, which are indicated by the vertical dashed lines. We conclude that for the
particular study point shown in figure 11, the invisible momentum reconstruction is quite
successful and the bump hunt measurement is very promising. For future reference, the
two right panels in figure 11 then show the correlations between the two variables plotted
in the left and middle panels of each row.

Figure 12 presents the same results, but for a different study point, m4 = 500 GeV,
mp = 450 GeV, and m¢c = 50 GeV. The mass spectrum was judiciously chosen so that

the shapes of the relevant kinematic distributions are adversely affected. For example,

“Note the importance of adding the relative constraint (3.23). Without it, the distribution of Macx (b)
does not peak at the kinematic endpoint, but at lower values [44].
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Figure 12. The same as figure 11, but for a study point which does not work as well: my =
500 GeV, mp = 450 GeV, m¢c = 50 GeV.

as shown in the upper left panel, the peak in the Mscc(ab) distribution is now much
broader, extending significantly to the left (compare to the upper left panel in figure 11).
Reconstructing the masses of the relative particles now appears to be a bit more prob-
lematic, as illustrated by the middle panels in figure 12 — in the upper row, the peak in
the distribution of mp reconstructed with the invisible momenta from Mscc(ab), is very
asymmetric. The lower middle panel shows an even worse situation: the distribution of
m 4 reconstructed with the invisible momenta from Mscc(b) appears flat from 300 GeV all
the way to 500 GeV, making the corresponding mass determination quite uncertain.

Fortunately, there exists a way to recover sensitivity. The basic idea can be understood
from the correlation plots in the right panels of figure 12. Notice that the most populated
bins are situated very close to the true values of the masses, mp = 450 GeV and my =
500 GeV. The problem arises because of the appearance of the tail extending towards lower
values of the reconstructed relative mass Mg, so that when we project this two-dimensional
plot on the y-axis, the obtained distribution is skewed towards lower values of Mp as well.
This basic observation suggests the two possible solutions to the problem. First, instead of
bump hunting on a one-dimensional histogram, one may target directly the most populated
bins in the two-dimensional correlation plots shown in the right panels of figure 12 (note
that this method would have also worked on our previous example shown in figure 11). The
use of such two-dimensional correlation plots was previously suggested in order to detect
the kinematic boundaries of the available phase space [13, 80-84], while here we propose
to use them in order to find the location of the highest density.
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Figure 13. The effect of a preselection cut on the reconstructed relative mass distributions shown
in the middle panel plots from figures 11, 12 and 15. The preselection cut is applied on the variable
Mscc(ab) (upper row) or Mace(b) (lower row). The left, middle and right plots correspond to the
study points from figure 11, figure 12 and figure 15, respectively. Events are selected in the top 5%
(red), top 10% (orange), top 20% (green) and top 50% of the allowed range for the Msco variable.

An alternative approach is based on the following observation. The right panels in
figures 11 and 12 show that the correct value of the relative mass Mp is obtained for
events with extreme values of the Mscc kinematic variable plotted on the x-axis. In other
words, the ansatz for the invisible momenta tends to work best for events near the Mscc
kinematic endpoint (this was first pointed out in the context of MAOS reconstruction [66],
and follows from the general principle that kinematic endpoints are attained at very special
extreme momentum configurations [8, 52, 85]). Thus the precision of the one-dimensional
bump hunting method will be recovered, if we simply apply a preselection cut on Msce to
eliminate the effect of the tail. Ideally, one would like to select only events which sit right
at the Mscc kinematic endpoint,'® but such a severe cut may cause too large of a loss of
statistics. This trade-off is illustrated in figure 13, which shows the effect of the preselection
cut on the reconstructed relative mass distributions shown in the middle panel plots from
figures 11 and 12. The preselection cut is applied on the corresponding Msc¢ variable from
the x-axis of the scatter plots in the right panels of figures 11 and 12, Mo (ab) (plots in
the upper row) or Macc(b) (plots in the lower row). The left (middle) plots correspond to
the study point from figure 11 (figure 12). The middle plots in figure 13 nicely illustrate

15 An additional benefit from selecting events near the kinematic endpoint is that the method becomes
less sensitive to spin correlations.
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Figure 14. The fraction of events falling within the rightmost 5% of the allowed range for Macc(ab)
(left panel), Macec(b) (middle panel) and Macc(a) (right panel). The mass of A is fixed at mg =
500 GeV, while mp and m¢ are varied as mp € (0,m4) and me € (0, mp).

the benefit from the preselection cut — the unwanted events from the tail are removed
and the mass bump is rendered more symmetric, and is now centered on the correct mass
value for the relative particle. However, those benefits do come at a cost - the number of
events in the mass bump is correspondingly reduced. (Note, however, the upper middle
panel of figure 13, where the cut seems to cause no appreciable loss in statistics.) On the
other hand, the left plots in figure 13 show that for our first study point from figure 11,
the cut does not lead to a big improvement in the shape of the distribution, but this is
because the shape was already very good to begin with, and thus a preselection cut would
be unnecessary.

The loss of statistics observed in figure 13 as a result of the preselection cut suggests
that a crucial issue for us to consider is the population of the Mscc bins near the upper
kinematic endpoint. This is investigated in figure 14 as a function of the general mass
parameter space (mp, m¢) for a fixed m4 = 500 GeV. The figure shows results for each of
the three subsystems: (ab) in the left panel, (b) in the middle panel, and (a) in the right
panel. For any given choice of mp and m¢, we take the allowed range for the corresponding
Msce variable, i.e., the difference between its upper and lower kinematic endpoints, and
divide it into 20 equal size bins. Then the rainbow scale in figure 14 indicates the fraction
of events which fell into the very last bin, i.e. in the upper 5% of the Mscc range, close to
the upper kinematic endpoint.

Figure 14 reveals that throughout the whole mass parameter space, the rightmost bin
is very well populated in the case of the (ab) subsystem, and less so in the case of the (b)
and (a) subsystems. Given that invisible momentum reconstruction works best for events
near the last bin, this suggests that variables based on the (ab) subsystem have a certain
advantage in terms of statistics and accuracy. Upon closer inspection of the left panel in
figure 14, we find that the last bin is maximally populated if the mass spectrum satisfies

the relation )

mo = B (5.1)

ma
whose physical meaning is the following — in the rest frame of particle A;, particle C;
remains at rest, while the visible particles a; and b; are back-to-back. The relation (5.1)
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Figure 15. The same as figure 12, but for an example with a relatively high value of m¢c: m4 =
500 GeV, mpg = 300 GeV, m¢c = 275 GeV.

was approximately satisfied for the study point in figure 11, where we had m¢c = 200 GeV
and m%/ma = 180 GeV. On the other hand, the study point in figure 12 was characterized
by mc = 50 GeV and m%/ma = 405 GeV, which significantly violated (5.1) by m¢ being
too low. Note that the relation (5.1) is scale invariant, i.e., the result does not change if
we inflate all masses by the same constant factor. We checked this with explicit simula-
tions, and verified that much heavier spectra which satisfy (5.1), continue to exhibit nice
reconstructed peaks and vice versa.

Next, we shall test the prediction (5.1) by choosing a point for which m¢ is too high.
Let us again take m4 = 500 GeV and mp = 300 GeV, as in figure 11, only now increase
the value of m¢ to 275 GeV, well above the prediction from (5.1). The result is shown
in figure 15. The upper left panel shows that, as designed, the events near the Mo (ab)
kinematic endpoint are depleted, and the peak of the Moo (ab) distribution has now moved
to lower values, away from the kinematic endpoint. The right panels again exhibit tails,
only this time the tails curl up towards higher values of the reconstructed relative mass,
leading to an overestimate of the mass — the bulk of the Mg distributions in the middle
panels extend above the nominal mass of the respective parent particle. However, these
problems can be again overcome by the two techniques considered earlier — applying a
preselection cut on events near the Mscc(ab) kinematic endpoint (see the right panels in
figure 13), or directly targeting the most populated bins in the two-dimensional correlation
plots in the right panels of figure 15.
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Figure 16. The same as figure 13, but including the effects of hadronization and jet resolution as
explained in the text.

In conclusion of this section, we investigate the effects of QCD hadronization and
detector jet resolution on our analysis. Until now, we have performed all our studies at
the parton level. However, the momenta of the reconstructed objects in the detector are
generally different from the true momenta of the partons from which they originate. This
mismatch is most pronounced for colored particles (quarks and gluons), where one has to
account for the effects of QCD hadronization and jet energy scale and resolution. We have
repeated the analysis which led to figure 13, only this time smearing the energy of the
b-quarks, i.e., the visible particles a; in figure 1, using the known parametrization from
CMS [86, 87]. The result is shown in figure 16. Upon comparison with the respective
parton-level distributions from figure 13, we notice that the shapes of the distributions
have changed — any sharp kinematic features tend to be smoothed out as a result of the
smearing. In particular, for the problematic study point previously discussed in figure 12,
the peak of the reconstructed relative mass distribution appears below the nominal mass of
the relative particle, see the middle panels in figure 16. However, our previous conclusions
remain valid — the preselection cuts are still able to reshape the distribution so that the
peak forms at the nominal value of the mass of the relative particle.

6 Conclusions and outlook

Understanding the kinematics of events with missing transverse momentum at hadron
colliders like the LHC is an important task, since many new physics models have collider
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signatures with dark matter particles and/or neutrinos, whose individual momenta and
energies are not measured in the detector. The two traditional approaches for analyzing
such events are 1) where available, use a sufficient number of on-shell constraints to solve
for the invisible momenta exactly; and 2) use variables which do not require any actual
knowledge of the individual invisible momenta. However, recently several prescriptions for
assigning approzrimate values to the individual invisible momenta have emerged. The main
goal of this paper was to advertise the existence of a large number of such ansatze (1.3)
and demonstrate their usefulness for the purposes of a mass measurement through a bump
hunt. Our specific points are the following.

o Many different ansatze are possible. Quite often, any given prescription for assigning
invisible momenta has many different variations, as we demonstrated in sections 3.1
and 3.2, where we defined 12 versions of the MAOS method and 18 versions of the
My method, respectively, in the case of the dilepton tf event topology.

o The Ms class of variables automatically provides ansatze for the longitudinal compo-
nents of the invisible momenta. As discussed in sections 3 and 4, the important ad-
vantage of the Ms class of (341)-dimensional invariant mass variables is that they au-
tomatically provide values for the longitudinal components of the invisible momenta,
without any need for additional mass inputs. In that sense, they are on the same
theoretical footing as the MAOS2 and MAOS3 versions of the MAOS method, but
significantly outperform them in the presence of the relative mass constraint (3.23).

e The Msy-based reconstruction of invisible momenta is superior to the MAOS schemes.
In this paper, we compared the performance of the two methods using the example of
a bump hunt mass measurement. Our results in section 4.3 showed that the invisible
momenta found by the Ms class of variables generally lead to a better determination
of the new particle masses.

o Software support. With the release of the public code OPTIMASS [47] which is capable
of computing the on-shell constrained My variables for general event topologies, the
corresponding ansatze for the invisible momenta are also readily available and can
be used for phenomenological studies similar to the one in this paper. For example,
one could imagine spin measurements as in refs. [66, 72, 88], or designing procedures
for reducing the combinatorial background [71, 74, 75, 89].

o Sensitivity study throughout the mass parameter space. In section 5 we investigated
the precision of the invisible momentum reconstruction throughout the full mass
parameter space, and identified the regions where sensitivity can be lost. We proposed
to mitigate the problem by either studying the 2D correlations of the reconstructed
mass and the My variable, or by applying a preselection cut on the My variable in
order to only select events near its kinematic endpoint.
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