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Abstract

We derive, to all orders in perturbation theory, the Fs gauge coupling and the mod-
ified dilaton-axion Kahler potential for the effective theories of a class of d = 4,
N = 1 heterotic string models. The derivation relies on an extended version of
the Green-Schwarz anomaly cancellation mechanism, and exploits target-space du-
ality invariance. Although we deal with field-dependent effective gauge couplings
and scales in a non-renormalizable supergravity theory, we derive for them a renor-
malization group equation as a relation among dynamical fields. When expectation
values of these fields are considered, our results agree with those previously obtained
in renormalizable theories with N = 1 global supersymmetry. We finally comment
on possible generalizations of the present results.
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A powerful tool to connect four-dimensional string solutions with physics at experimentally
accessible energies is provided by the associated effective theories, which describe the low-energy
dynamics of the light string excitations. For potentially realistic models, and neglecting higher
derivative terms, these are particular versions of d = 4, N = 1 supergravity. In the last years,
intense theoretical effort has been devoted to the determination of these effective low-energy
theories, using both explicit string calculations and general symmetry arguments.

The first efective theories to be studied in detail were those reproducing the tree-level string
predictions for scattering amplitudes among light states. These classical cffective theories,
however, are not sufficient for a description of low-energy physics. A striking example is provided
by the effective gauge couplings ¢,, associated with the different factors of the four-dimensional
gauge group G = [I, G.. At the classical level, the string coupling constant is universal,
and is determined (modulo Kac-Moody levels) by the vacuum expectation value of the four-
dimensional dilaton field. To reproduce the differences among the low-energy effective gauge
couplings, one needs to consider quantum corrections, in analogy with conventional Grand
Unified Theories. In the early days of string model building, one-loop estimates of the effective
low-energy gauge couplings were obtained by using renormalization group arguments at the
level of the effective field theory, i.e. considering only loop diagrams involving light states.
For more reliable estimates, however, one cannot neglect the effects of loop diagrams involving
the exchange of heavy string modes. Recently, one-loop moduli-dependent corrections to gauge
coupling constants have been computed at the string level in a large class of four-dimensional
heterotic string models [1-8].

In this work, we generalize the previous results by introducing a framework to compute
the effective gauge couplings to all orders in the string perturbative expansion. We obtain an
all-order result under the assumption that no dilaton-dependent correction to the low-energy
effective Lagrangian other that the anomaly terms are generated in (string) perturbation theory.
Our approach relies on some quantum string symmetries, namely the target-space dualities [9],
which must be incorporated in the string-derived effective supergravities. The other important
ingredient, which allows us to extract an all-loop result from explicit one-loop calculations, is the
intimate connection [10], due to supersymmetry, between the anomaly of the dilatation current
(related to the effective S-functions) and the U(1) o-model anomalies associated to target-
space duality transformations. It is precisely this supersymmetric relation between anomalies
which causes a formal agreement between our determination of the field-dependent effective
gauge couplings, derived for the non-renormalizable effective supergravity theory of strings as a
relation among dynamical fields, and previous results obtained in renormalizable theories with
N =1 global supersymmetry [11-13], and using instanton calculus [14, 15].

We consider here d = 4, N = 1 heterotic string models. At the classical level, and in
the standard formulation [16,17] with matter described by chiral multiplets only, their effective
supergravity theories are characterized by a universal gauge kinetic function [18]

fab = 5&651 (1)

(we omit Kac-Moody levels, since they are usually equal to 1 in potentially realistic string
vacua), by a Kihler potential of the general form [19)]

and by a superpotential w(C). In egs. (1) and (2), § is the dilaton-axion chiral superfield,
whereas M and ' represent the moduli and matter chiral superfields, respectively. In the
following, we will consider only the moduli-dependent part of K, freezing all the matter fields
to zero. Limiting ourselves to (2,2) models, we can write the general formula [20]

Py

K =—log [V(l,l) ' V(ZJ)] ! (3)
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where Vj11) and V{21 are the volume factors of the internal manifolds for the (1,1) and (2,1)
moduli, respectively (the former are associated with deformations of the Kahler class, the latter
with deformations of the complex structure).

Under any classical symmetry transformation of the tree-level effective action, the Kahler
potential K transforms as follows

K—K+e+7, (4)

where ¢ is a holomorphic function of the chiral superfields. Since the classical supergravity
Lagrangian depends on K and w only via the combination G = K + log|w|?, the previous
transformation can be compensated by a corresponding transformation of the superpotential w

w — we ¥, (5)

It is important to keep in mind, however, that any classical symmetry transformation acts on
the fermions ¥y of the theory (gauginos A, and matter fields ;}, appropriately rescaled in order
to have canonically normalized kinetic terms, in the form of a chiral rotation

U;— @Ie—%(w—ﬁ)’ (6)

where £; is an appropriate real weight. As a result of this chiral rotation, any given classical
symmetry of the theory can be violated at the quantum level, i.e. is potentially anomalous.
For example, triangle graphs with external lines corresponding to two gauge bosons of G, and
one (composite) connection associated with the symmetry under consideration, will induce at
one-loop anomaly terms of the form

?
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where @ is any of the generators of G, in the representation of the fermions W;. As apparent
from the previous formula, the coefficients ¢, can be easily calculated in the effective theory
once one knows the weights ;7. Explicit string calculations are bound to give an identical
result, except if some or all anomalies are cancelled by a generalized (Green-Schwarz mechanism
involving the massless states.

The previous general argument finds a relevant application in the case of target-space duality
symmetries, which are known to be good string symmetries to any order of the string (higher
genus) perturbation theory [21]. It was recently shown [3,5,6,8] that in any (2,2) symmetric
abelian orbifold model, all anomalies with respect to target-space modular invariance are can-
celled by the combination of two different mechanisms. The first one is purely field-theoretical,
and generalizes [3,4,6] the Green-Schwarz anomaly cancellation mechanism [22]. One introduces
in the loop-corrected effective Lagrangian a term of the form

1
- ZI«:@“"‘"”C‘M >, (8)

where C, is a composite vector field and QO , 1s the Yang-Mills Chern-Simons form. The

variation of (8) under a symmetry transformation gives
J —\ e e

gkl - P)F,EH, (9)

with the constant k independent of the gauge group factor. Since the term (8) is also gauge

variant, restoration of gauge invariance requires the presence of a linear supermultiplet [23], the

gauge transformation of its antisymmetric tensor component compensating the gauge variation
of the Chern-Simons form. Since superstrings possess a single linear multiplet, the constant k
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in eq. (8) must be group-independent. The seconnd mechanism is a purely string phenomenon
[2,5], which generates in the one-loop effective Lagrangian, after integration of the string massive
modes, additional terms of the form

z - ,.
— gda(é — o) F, F*H, (10)

where 6 is a holomorphic function of the scalar fields in the chiral multiplets, which under the

symmetry transformation varies as

and the d, are constants which depend in general on the gauge group factor. In the (2,2) mod-
els under discussion, these local anomaly cancelling terms in the effective one-loop Lagrangian
involve automorphic functions of the target-space duality group [24,2]. From the field theory
point of view, the terms in eq. (10) can be seen as local ‘counterterms’, necessary for the cancel-
lation of target-space modular anomalies [3,5]. The condition for complete anomaly cancelation
is then d, + k = ¢,. A fact of main importance, which will be used in the following, is that
once the anomaly coefficients are known, then, because of supersymmetry, the expressions of
the field-dependent effective gauge coupling constants are completely determined up to field-
independent terms. The latter are also fully controlled by the infrared divergences of the theory,
due to the massless modes only [23].

To simplify the discussion, we consider here the case of the s gauge coupling constant and
anomaly terms in (2,2) symmetric abelian orbifolds with no N = 2 fixed planes, e.g. Z3 and Z;.
In this case, only gauginos undergo chiral rotations, and the composite connection associated to
target-space modular invariance is actually proportional to the Kéhler connection. Moreover,
the coefficients dg, are identically zero [6], and the full anomaly cancellation is achieved by
means of the Green-Schwarz mechanism only [3]. To discuss anomalies and effective gauge
couplings at once, the superfield formalism proves to be very useful. Using standard techniques
[26,27] one can then extract all relevant component expressions.

In the formalism in which the § chiral superfield is replaced by a linear multiplet L via a
supersymmetric duality transformation [23], the tree-level effective Lagrangian can be written
as a superconformal density [28]

1 — PR
ﬁ:—;§K%%W%4”ﬂﬂﬂD+QﬁﬂF+hq, (12)
where L = L—Q =L — 3,8, Q, is the Chern-Simons superfield associated with the gauge
group factor G, and Sp is the compensating multiplet of supergravity'. To see the equivalence
with the S-representation, it is sufficient [29] to replace L with an unconstrained real superfield
V and to introduce the Lagrangian

L=LlE—-V)-[(s+5)V+0),. (13)

The equation of motion for (S + S) indicates that V + (1 is a lincar multiplet, and substituting
the solution into eq. (13), one goes back to the previous description in terms of the linear
multiplet, eq. (12).

Solving the equations of motion with respect to V, one obtains an equivalent form of the
Lagrangian in terms of the chiral supermultiplet S. Explicitly, the equation of motion for V

reads a2 B
i l ( 505 ) _ S+ 5

2 \ 2V ekh/3 2 (14)

10ur conventions are such that the D-density —(3/2)[5050®(, T)]p generates an Einstein term of the form
—(1/ 2)eR|So|*®(X, ). We also use the same notation for chiral superfields Sy or £, and for their lowest complex
scalar components.
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As discussed later, eq. (14) is modified by one-loop and higher-loop effects. Since gauge kinetic
terms are of the form

—((§+8)p = SW*W°|F + h.c.

= LiS+TEFLF 4., (15)
satisfying eq. (1), we will make the identifications
5+85 1
3 T & (16)
where go is the unrenormalized gauge coupling, and
1
U=—, 17
py (17)

where gg, is the loop-corrected effective gauge coupling for the factor group Fs. Eq. (14) is the
obvious statement that go and g, coincide at the tree-level. Also, we will see that the Kahler
potential for the dilaton, which at tree-level takes the form

Kiitaton = — 10g(S + g) = lOg —= (18)

or
2

Kitaron = — log(2U) = log 222, (19)

keeps this last form at one-loop, but in terms of the one-loop effective gauge coupling, and
receives corrections at higher orders. We will derive below an exact, all-order formula for

R’di!amﬂ .
To begin, we observe that the classical Lagrangian (12) is invariant under the transformations

K —» K4¢+7

So — .5'0850/3

w — we ¥ (20)
I = I

In particular, target-space duality transformations have an action of this type, with a specific
form of . Therefore, under target-space duality transformations, So transforms with weight
1/3, whereas its scaling dimension is 1. The combination So5oe~H/3 has scaling dimension 2,
and is invariant under target-space duality transformations. Both these properties also hold for
L. Then the combination I/ defined in eq. (14), which is related both to the Eg gauge coupling
constant and to the dilaton Kahler potential, is at the same time target-space duality invariant
and dimensionless.

To prepare the ground for the all-loop result, we first review the determination of the one-
loop corrected gauge couplings and dilaton Kahler potential, and the anomaly cancellation
mechanism at the one-loop level [3]. In the case of Eg, the triangular graph associated to
the target-space duality anomaly can be represented, in superfield language, by a non-local
Lagrangian of the form

K +he. (21)

1 1 D'D? C(Es)
Es _ 207 A7 a T 8
Luf = fd 94WEBWES 16 O 82

Performing a Kahler transformation gives rise to anomalies of the form

C(Es)

= e+ PELE 4 (0 = PIFLF] (22)
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which are compensated by the local Green-Schwarz term

Los = [C(ES)]_T}I;’] = [%f log eR/B] . (23)
D D

872 8

This gives the one-loop result discussed in refs. [3,4,6]. Taking into account eq. (23), and
performing as before the substitution L — V', one obtains

.él = ,é -+ ﬁgs(li — V),
and the equation of motion for V' becomes

_S5+5_ ClE),

u 2 1672

(24)

We have thus obtained the one-loop correction to eq. (14). Solving the above equation of
motion leads to the one-loop corrected effective action. In the resulting S-field formulation, as
announced before, the effective Eg gauge coupling becomes

1 §+35 C(B),

g%s 2 1672 7 (25)
and the Kahler potential for the dilaton reads
z_ C(Es) ; 9%
Cditaton, = — 1 — () = log 258
Kgitas og (S + 5 3r2 K log 5 (26)

identical to eq. (19). This was the result of ref. [3].

The Green-Schwarz term of eq. (23) can be further completed if we remember that in a
general superconformal gauge the compensating multiplet Sq is also not inert under target-
space duality transformations. As a consequence, the Green-Schwarz counterterm should also
cancel, simultaneously, the anomaly due to 5, transformations. This is because physics must
be independent of the particular gauge choice for S;. It is immediate to see that there is
only one possible modification of the one-loop Green-Schwarz counterterm, eq. (23), which is
simultaneously compatible with target-space duality invariance and superconformal invariance,
namely

Sogo

K = 3log (eﬁf":‘) — 3log (eﬂ'/sﬁ) =3log ( ) — 2log(2U). (27)
Indeed, eq. (27) is the most general term compatible with the one-loop scaling symmetry [30,29]
and which reproduces the desired anomaly.

We can now write the non-local contribution in a general superconformal gauge as

=2
i = [ PO W g e [og (¢5L)] + e

2¢K/3], ( SOEJ)
1 1 41 + hee.. 28
og( A ) g | =5 ¢ (28)

K/z2

=2
1 1 DD? 3C(Eg)

— 2 __ufa. [
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In the first expression, L corrects the quantum dimension of ¢%/* without spoiling the transfor-
mation properties of K under target-space duality. In the second expression, we have rearranged
the terms to evidentiate the scale-invariant and duality-invariant combination 20 defined in (14)
[after replacement of L by V). The log(5,5,/2) term contains the violation of duality as well
as scaling invariances.



Using the same scaling argument, the local counterterm of eq.(23) must be modified as

follows C(Ee)
Lo = [ 2 231 log (e"'/ai)]

T2

D

C(EB) a 2€R/3£ Sg?o)
= — . 2
[ 82 3L {log ( 3.3, -+ log 5 ) (29)

The second term in the last member precisely cancels the anomaly induced by the non-local
terms.

The connection between the cancellation of target-space modular anomalies and the Eg 3-
function is now transparent. The 8 function is the dilatation anomaly obtained by varying the
compensator field Sy (see, for example, refs. [11,27]). However, this is related to the duality
anomaly, since Sy transforms under duality. To move from the linear multiplet formulation to
the S-field formulation, after the correction given in eq. (29), one has to write

ﬁm” = ﬁ + ﬁfGS(-i’ — V) (30)

Solving the equation of motion for V, one finds

5+ S C(Es) 3 T
where 3 5
cz—-2—+§log2. (32)

Identifying as before U with g—%—, where g%, is the corrected Eg effective coupling constant, one
8

finds —
1 8+8  C(Es)

3 _
;}%—8 5 + S [— log ggEE +c— §log(5’050)] . (33)

From the previous formula one can immediately derive the effective F-function for the F3 gauge
group factor. Remembering that SpSo ~ M? sets the unit of measure for masses, we can write

1 dg?
y) = ———— 34
and therefore, in the case of Fj,
_3C Eg
— g3 ——dér 35

which coincides with the formula of refs. [12, 14]. One can also write the all-loop corrected
Kihler potential for the dilaton field,

2 C(E -
Kitaton = log [gES (1 + ( B)Q?E,B) } ) (36)

2 1672

where now gg, is the solution of eq. (33).

The relation between the fields U and (S + §)/2, which we have associated with the all-
loop corrected and uncorrected Eg gauge couplings in the effective supergravity theory of (2,2)
four-dimensional string models, turns out to be exactly the relation between 1 /g* and 1/g% in
renormalizable, globally supersymmetric N = 1 Yang-Mills theories. In principle, there is no
reason why it should be so, since we are working in a non-renormalizable gauge theory coupled to
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gravity, so a plausible explanation is required. In string theory, and in the corresponding effective
supergravity theories, couplings and scales are dynamical variables, so relations between them
must be interpreted as field equations. This is the meaning of our eq. (33). On the other hand,
the all-loop renormalization group equation obtained in global supersymmetry is a consequence
of the general structure of the anomaly supermultiplet. This is the reason why the two results
formally agree.

In eq. (33), the running of the gauge coupling is encoded in 5o, because So itself determines
the energy scale of the theory. In order to define a modular invariant effective gauge coupling,
one should fix the superconformal gauge with a condition of the form

Sodgo = Mzeﬁ-ﬁ, (37)

where M? is an arbitrary modular invariant function, which in particular can be taken to be a
constant. To connect the modular invariant effective gauge coupling defined by eqgs. (33,37) with
the running gauge coupling defined in the renormalizable, low-energy effective theory in a given
renormalization scheme (for example, MS or DR), one should impose on the two couplings an
appropriate boundary condition, as discussed for example in refs. [1,3,7]. This would also allow
to define, as usual, a modular invariant, renormalization group invariant scale Ag,, analogous to
Agcp, which plays a role in the discussion of possible non-perturbative phenomena like gaugino
condensation.

The previous result is valid only for the Eg gauge group factor, where only gaugino fields
contribute to the modular anomaly, and in the absence of anomaly cancellation mechanisms
other than the Green-Schwarz one. In more general cases, one has also to consider the associated
massless charged matter fields, which are subject to a rescaling under duality transformations,
and the composite connections associated to duality transformations are not simply the Kahler
connection but also involve the metric of the matter fields. Similarly, in globally supersymmetric
theories the 3 function formula contains also the anomalous dimensions of the matter fields, and
mixing is possible in the presence of different gauge group factors. Here we will not examine
these complications, work along this line is in progress and will be presented elsewhere.

The results of this paper have been presented at the Erice and Les Houches Summer Schools,
July 1991 [31].
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