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Abstract: We study the space of vacua of three-dimensional N = 4 theories from a

novel approach building on the type IIB brane realization of the theory and in which

the insertion of local chiral operators in the path integral is obtained from integrating

out light modes in appropriate brane setups. Most of our analysis focuses on abelian

quiver theories which can be realized as the low-energy theory of D3-D5-NS5 brane

arrays. Their space of vacua contains a Higgs branch, parametrized by the vevs of

half-BPS meson operators, and a Coulomb branch, parametrized by the vevs of half-

BPS monopole operators. We show that the Higgs operators are inserted by adding

F1 strings and D3 branes, while Coulomb operators are inserted by adding D1 strings

and D3 branes, with specific orientations, to the initial brane setup of the theory. This

approach has two main advantages. First the ring relations describing the Higgs and

Coulomb branches can be derived by looking at specific brane setups with multiple

interpretations in terms of operator insertions. This provides a new derivation of the

Coulomb branch quantum relations. Secondly the map between the Higgs and Coulomb

operators of mirror dual theories can be derived in a trivial way from IIB S-duality.ar
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1 Introduction and Discussion

Three-dimensional N = 4 Yang-Mills gauge theories (i.e. with eight Poincaré super-

charges) are fully characterized by a choice of gauge group G, associated to a vector

multiplet, and a pseudo-real representation R in which the hyper-multiplet matter

fields transform. This data fixes uniquely the Lagrangian of the theory. Their space of

vacua splits into several subspaces or “branches”, each of which is a product of hyper-

Kähler manifolds, with two branches playing a special role. The Higgs branch, which

is free of quantum corrections [1], is parametrized by the vacuum expectation values

(vevs) of the scalars in the hyper-multiplet, subject to a triplet of D-term constraints,

and modulo gauge transformations. In a chosen complex structure the Higgs branch

can be described as a complex algebraic variety, with singularities, parametrized by

the vevs of gauge invariant operators, which are chiral with respect to a certain N = 2

subalgebra, subject to algebraic relations (inherited from the chiral ring relations). The

Coulomb branch is parametrized by the vevs of half-BPS monopole operators which are

chiral with respect to another N = 2 subalgebra, and which form a ring with relations

arising from non-trivial quantum effects [2, 3]. The monopole operators are defined in

the quantum theory by imposing in the path integral formulation a Dirac monopole

singularity for the gauge field at a point in Euclidean space and “dressing” it with a

polynomial in the vector multiplet complex scalars. A special case are monopoles with

zero magnetic charges which are simply gauge invariant combinations of the vector

multiplet complex scalars.1

While there is a relatively clear path to study the Higgs branch from the classical

Lagrangian of the theory, the Coulomb branch is more difficult to access, since the ring

relations between monopole operators do not follow from a superpotential, but from

the quantum dynamics of the theory. In abelian theories the Coulomb branch metric

receives corrections only at one-loop and can be computed directly [4, 5]. It is also pos-

sible to rely on mirror symmetry [1], which exchanges the Higgs and Coulomb branches

of mirror dual theories. Much progress has been made recently on deriving the ring

relations of the Coulomb branch of quiver gauge theories from different approaches.

One approach uses the Coulomb branch Hilbert series [6–10] 2, which is a protected

index counting chiral monopole operators refined with fugacities keeping track of their

charges under Cartan R-symmetry and global topological symmetries. From the re-

sumed series one is able to extract a set of generators and to read the Coulomb branch

relations, up to coefficients which must be determined by other methods. Non-abelian

1In addition there can be mixed branches which will not be studied in this paper, to keep the
presentation simple.

2See [11] for a recent review on 3d (and 4d) Hilbert series.
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quiver theories of ADE types with unitary or ortho-symplectic gauge nodes have been

studied using this method. A different construction was proposed by Bullimore, Di-

mofte and Gaiotto in [12] to derive the Coulomb branch relations of non-abelian quiver

theories. The construction is based on the embedding on the non-abelian CB (Coulomb

branch) chiral ring into the CB chiral ring of the low-energy abelian theory which exists

at generic points on the Coulomb branch. Each monopole operator of the non-abelian

theory is mapped to a gauge invariant polynomial of abelian monopole operators and

the non-abelian relations can be extracted from “abelianized” relations involving the

operators of the abelian theory. A mathematical approach to 3d N = 4 Coulomb

branches was also proposed in [13–15]. Despite this spectacular progress it remains of-

ten cumbersome to extract the ring relations in terms of a minimal basis of generators

in a systematic way.

In this paper we propose an alternative approach to study the Coulomb branch and

the Higgs branch of 3d N = 4 theories using in a new way the realization of the theories

as the low-energy theory of D3 branes stretched between NS5 and D5 branes in type IIB

string theory. This elegant brane realization introduced by Hanany and Witten [16] is

particularly useful to study mirror symmetry which is realized as S-duality in IIB string

theory, leaving the D3 branes invariant and exchanging the D5 and NS5 branes. Using

the brane construction and the action of S-duality the Higgs and Coulomb branches of

large classes of quiver theories were identified as moduli spaces of solutions of Nahm’s

equations, namely intersections of (the closure of) nilpotent orbits and Slodowy slices

[17, 18].3 Here we use the brane picture in a spirit closer to [20], where half-BPS loop

operators were realized with F1 or D1 string arrays added to the brane configuration

of the theory. The path integral insertion of a loop operator was then understood as

arising from integrating out the light modes on the strings in the brane configuration.

This approach proved to be very useful in understanding the action of mirror symmetry

on loop operators, using IIB S-duality. The idea that we develop is that local half-BPS

operators can be engineered in a similar way, by adding extra ingredients in the brane

realization of the 3d theory and integrating out light modes. From these new brane

setups we are able to extract the chiral ring relations and the mirror map between

Higgs branch and Coulomb branch operators.

For simplicity we focus our analysis on quiver theories with abelian gauge nodes,

except in the last section of the paper where we derive some preliminary results for

non-abelian theories. In the brane picture the D3 branes are stretched between NS5

branes and span a finite interval in one direction. The three dimensional theory arises

3See also [19] for an application of the brane formalism to study an inclusion relation for nilpotent
orbits associated to minimal singularities and related to higgsings of the quiver theories.
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in low-energy limit of the D3 branes worldvolume theory. Using previous results in

the literature and some simple arguments, we show that the chiral meson operators,

or HB (Higgs branch) operators, are inserted from F1 strings stretched between pairs

of D5 branes and ending on the D3 segments along the finite direction (e.g. Figure

5), or by D3 branes, that we call D3’, intersecting the initial D3 segments at points.

For the CB (Coulomb branch) operators we show that chiral monopole operators are

inserted from D1 strings stretched between pairs of NS5 branes and ending on the D3

segments (e.g. Figure 8-a), while scalar operators are realized by D3 branes, that we

call D3”, intersecting the initial D3 segments at a point (e.g. Figure 8-c). The specific

orientations of the F1, D3’, D1 and D3” preserve four out of the eight supercharges4,

as appropriate to realize the insertion of half-BPS operators, and are given in Table 2
5. In a few places in our derivation we have to rely on indirect arguments or motivated

assumptions, which are ultimately validated by the global consistency of the emerging

picture.

Having understood how to realize the insertion of the operators forming bases of

the Higgs branch and Coulomb branch, we proceed to studying the brane setups related

to ring relations. For the Higgs branch there are two types of setups to consider. The

F-term relations (or complex D-term equations) follow from identifying brane setups

related by D3’ brane moves along the interval direction, involving Hanany-Witten F1

string creation effects as a D3’ passes through a D5 (e.g. Figure 10). The other HB

relations, which are trivial in the sense that they involve only recombining products

of hyper-multiplet scalars in different products of mesons, can be related to multiple

interpretations of a given brane setup with F1 strings (e.g. Figure 9). The different

interpretations can be associated to different recombinations of the F1 strings across

D3 and D5 branes. For the Coulomb branch there is a single type of brane setups

to consider, involving D1 branes (e.g. Figure 11), and the CB relations follow from

interpreting each setup in two different ways: either as several semi D1 branes ending

on D3s inserting a product of monopole operators, or as D1 branes crossing D3s. In

this latter case we are able to integrate out the low-energy zero-dimensional theory

arising from open string light modes and to show that the resulting insertions are

polynomials in the complex scalars. There are also relations following from D1 brane

recombinations across NS5 branes. This approach provides a new derivation of the

quantum Coulomb branch relations. To be precise the relations that we extract from

brane setups are not directly the exact ring relations, we therefore call them pre-

4The F1 and D3’ preserve four supercharges. The D1 and D3” preserve four supercharges. The
two sets have two common supercharges.

5There are actually many choices of brane orientations, related by SO(3) rotations, corresponding
to different choices of complex structures/N = 2 sub-algebras under which the operators are chiral.
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relations. The exact relations are obtained by allowing the cancellation of operators

which appear multiplicatively on both sides of a pre-relation (AC = BC ⇒ A = B). At

the end of our analysis we are left with a small set of rules from which one can extract

the HB and CB relations in abelian quiver theories from a few brane setups. The

dictionary between brane setups and operator insertions is summarized in Appendix B.

It might be worth emphasizing that, to our knowledge, this brane approach provides

the first derivation of the Coulomb branch relations in a large class of abelian quiver

theories6 which does not rely dualities.

This brane approach is also particularly useful to study mirror symmetry. Acting

with S-duality on the type IIB brane setups responsible for the insertions of the chiral

operators, one finds the map between HB and CB operators of mirror dual theories with

no effort. Under S-duality the F1 strings are simply mapped to D1 strings, and the

D3’ branes are mapped to D3” branes. It also immediately follows from IIB S-duality

that the “trivial” HB ring relations are mapped to the quantum CB ring relations.

We study non-abelian theories in the last section of the paper and provide a deriva-

tion of the abelianized relations, postulated in [12], in the SQCD theory from a set of

simple brane setups. We also comment on the a possible analogue approach to deriving

the Higgs branch relations in non-abelian theories.

The approach presented in this paper could be extended to study the moduli space

of vacua of other N = 4 theories. The generalization to non-abelian theories is not

straightforward, in particular in the analysis of the ring relations beyond what we found

in this paper, however it should be possible to find the brane setups inserting the chiral

operators and the mirror map. It would also be interesting to study the moduli space

of N = 4 Chern-Simons theories with matter which also have a brane realization in IIB

string theory (with (1,±1) 5branes). Considering brane setups realizing 3d theories

with only N = 2 supersymmetry or operator insertions preserving a smaller amount of

supersymmetry might be interesting directions to investigate. The direct computation

of correlators of Higgs branch operators from supersymmetric localization in [21] is also

a very fruitful approach. It could be extended to the study of correlators of monopole

operators and should reproduce the CB ring relations. We hope to report on some of

these topics in future publications.

After a brief review on the Higgs and Coulomb branches of 3d N = 4 theories in

Section 2, we study the brane configurations in type IIB responsible for the insertion of

half BPS local operators in Section 3, identifying the F1 string and D3’ branes as the

objects inserting HB operators, and the D1 and D3” branes as the object inserting CB

6A direct derivation of the Coulomb branch relation in N = 4 SQED using CFT methods was
given in [3].
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operators. We then start the discussion in Section 4 with the analysis of the T [SU(2)]

theory. We identify the brane setups inserting specific HB and CB operators and work

out the ring relations from other brane setups. We explain how the mirror map of

operators follows from S-duality (T [SU(2)] is a self-mirror theory). In Section 5 we

extend the discussion to other abelian theories. We study in detail the cases of SQED

and its mirror dual abelian quiver theory. At this point all the rules for operator

insertions and ring relation readings for (linear) abelian quiver theories are derived.

We illustrate our method in another example at the end of the section. In Section 6

we discuss briefly the brane setups inserting chiral operators which do not belong to

the bases of the chiral rings, such as monopole operators with non-minimal magnetic

charges, or products of mesons. Finally in Section 7 we provide a preliminary analysis

of the non-abelian theories, by recovering the SQCD abelianized relations of [12] from a

brane setup. Some computations are relegated to Appendix A. The dictionary between

brane setups and HB/CB operator insertions and the general mirror map are presented

in Appendix B.

2 Light review on N = 4 theories and their moduli space of

vacua

A three-dimensional Yang-Mills theory withN = 4 supersymmetry with gauge group G

has an algebra-valued vector multiplet, whose bosonic fields are a vector Aµ and three

real scalars φ1, φ2, φ3, transforming in the adjoint representation of G. The matter

fields come in hyper-multiplets, whose bosonic fields are two complex scalars Q, Q̃

transforming in complex conjugate representationsR,R respectively 7. In term of these

data, the Lagrangian of the theory in uniquely fixed. The couplings of the theory are the

Yang-Mills couplings g
(i)
YM for each semi-simple factor in the gauge group. The couplings

g
(i)
YM

2 have the dimension of a mass, implying that the theories are asymptotically free

and strongly coupled at low energies.

The R-symmetry group is SU(2)C × SU(2)H , with (φ1, φ2, φ3) transforming in the

(3,1) and (Q, Q̃†) transforming in the (1,2). There also exists twisted vector and hyper-

multiplets, for which the roles of SU(2)C and SU(2)H are exchanged.

The moduli space of vacua of these theories is parameterized by the vevs of scalar

operators, including monopole operators. It is given by a union of subspaces (branches)

of the form Cn ×Hn, where, in broad lines, Cn is parametrized by the vev of a certain

subset of the vector multiplet scalars and monopole operators, whileHn is parametrized

7This is not the most general situation. In general a hyper-multiplet has a complex scalar trans-
forming in a pseudo-real representationRpr of G. In this paper we focus on theories withRpr = R⊕R.
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by the vev of a subset of the hyper-multiplet scalars. These subspaces intersect on

lower-dimensional loci and the total moduli space isM = ∪n(Cn×Hn). There are two

particular subspaces: the Coulomb branch MC ' C × {0}, where all hyper-multiplet

scalar vevs are zero, and the Higgs branchMH ' {0} × H, where all vector multiplet

scalar vevs and monopole vevs are zero. The other subspaces are called mixed branches.

The R-symmetry group SU(2)C acts non-trivially on the Coulomb branchMC , as well

as on the subspaces Cn, and acts trivially on MH and the subspaces Hn. Conversely

the R-symmetry group SU(2)H acts non-trivially on the Higgs branch MH , as well as

on the subspaces Hn, and acts trivially onMC and the subspaces Cn. We will focus our

discussion on the Coulomb and Higgs branches, the extension to the mixed branches

being straightforward. The Coulomb and Higgs branches are hyper-Kähler spaces,

with the three complex structures transforming as triplets of SU(2)C and SU(2)H
respectively.

The Higgs branch is protected from quantum corrections and can be studied from

the classical Lagrangian. It is parametrized by the vevs of the 4N real hyper-multiplet

scalars, with N =dim(R), satisfying the triplet of D-term equations, and modulo gauge

transformations. This defines the Higgs branch as the hyper-Kähler quotient R4N///G.

At a generic point on the Higgs branch the gauge group is completely broken and the

low-energy theory is that of free hyper-multiplets. Often one describes the Higgs branch

in an equivalent but simpler way, as a holomorphic quotient C2N/GC, by choosing a

N = 2 subalgebra of the N = 4 super-algebra and parametrizing the Higgs branch by

the vevs of the 2N complex scalars which are chiral with respect to this subalgebra,

imposing the N = 2 F-term equation (or complex D-term equation) and quotienting by

complex gauge transformations. The gauge invariant combinations of the chiral scalar

operators form a ring, the Higgs branch chiral ring, and their vevs are holomorphic

functions on the Higgs branch moduli space MH . There is a CP1 worth of choices of

N = 2 subalgebras, each corresponding to a choice of complex structure on MH .

At a generic point on the Coulomb branch the gauge group is broken to a maximal

torus U(1)rank(G) and the matter fields are massive. The deep infrared theory is then

described by free abelian vector multiplets8. Classically the Coulomb branch is the

symmetric product of rank(G) U(1) Coulomb branches (R3×S1)rank(G)/WG, where the

factors R3 × S1 are parametrized by the Cartan components of the scalars φ1, φ2, φ3

and by the dual photons (compact scalar dual to the Cartan vector fields), and WG is

the Weyl group of G, permuting the Cartan elements. The Coulomb branch receives

quantum corrections which modify the geometry and in particular the topology of the

classical description. A construction was presented in [12] to describe the Coulomb

8The abelian vector multiplets can be dualized to twisted hyper-multiplets
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branch as a complex algebraic variety. It involves the choice of complex structure on

MC , or equivalently the choice of an N = 2 subalgebra of the N = 4 theory. As for

the Higgs branch, there is a CP1 worth of choices of complex structures (since MC

is hyper-Kähler). The Coulomb branch is then parametrized by monopole operators

which are chiral with respect to the N = 2 subalgebra, subject to ring relations. The

chiral (half-BPS) monopoles are defined in the quantum theory by the prescription

in the path integral of a Dirac monopole singularity for the Cartan elements of the

vector field and a corresponding singularity for one of the real scalars in the vector

multiplet. The monopole singularity breaks the gauge group to a subgroup G′. To

complete the definition such an operator is dressed with a G′-invariant polynomial

of the complex scalar (which combines the two remaining vector multiplet scalars)

valued in G′. This defines a monopole operator VA,p labeled by a vector of monopole

charges A ∈ Zrank(G) and a G′ invariant polynomial p. When A = 0, the monopole

operator is simply a gauge invariant polynomial in the vector multiplet complex scalars.

Linear combinations of the chiral monopole vevs define holomorphic functions onMC .

The ring of monopole operators can be called Coulomb branch chiral ring. Unlike

the Coulomb branch metric, the ring relations are independent of the gauge coupling

constants. They can be computed using the method of [12]. For abelian theories, which

is our primary interest in this paper, the ring relations are explicitly given in [12].

In the UV description, the theories have global symmetries U(1)rank(G)×GH , where

the U(1) factor acts by shifting the dual photons and GH is the flavor symmetry acting

on the hyper-multiplets. In the infrared theory, the global symmetry group is enhanced

to GC × GH , where GC acts on monopole operators. Therefore the group GC acts on

the Coulomb branch, while the group GH acts on the Higgs branch.

The theories admit supersymmetry preserving deformations by mass terms, with

triplets of (real) mass parameters m1,m2,m3, and by FI terms, with triplets of (real)

FI parameters ξ1, ξ2, ξ3. These deformations can be understood as arising from weakly

gauging the Cartan subgroup of the GH and GC symmetry respectively. The triplets

are then identified with the vevs of scalars in background vector multiplets. A triplet

(m1,m2,m3) is the background of a regular vector multiplet and therefore transforms

as a triplet of SU(2)C , but a triplet (ξ1, ξ2, ξ3) is the background of a twisted vector

multiplet and therefore transforms as a triplet of SU(2)H instead. The mass deforma-

tions lift part (or all) of the Higgs branch and modify the geometry on the Coulomb

branch. In particular, in a chosen complex structure, a complex combination mC ap-

pear as a deformation parameter in the CB relations. The FI deformations lift part (or

all) of the Coulomb branch and affect the geometry on the Higgs branch. In a chosen

complex structure, a complex combination ξC appear as a deformation parameter in
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the HB relations.

In the following we will study exclusively linear quiver gauge theories with unitary

nodes (and for most of the discussion only abelian theories). This means that the

gauge group is of the form G =
∏P

i=1 U(Ni) and that the matter content comprises

only fundamental and bifundamental hyper-multiplets. A fundamental hyper-multiplet

of the U(Ni) node transforms in the representation Ni ⊕Ni. A bifundamental hyper-

multiplet of the U(Ni) × U(Nj) nodes transforms in the representation (Ni,Nj) ⊕
(Ni,Nj). Such quivers are conveniently described by quiver diagrams, where circles

denote gauge nodes, squares denote flavor nodes, and links between two circles, or

between a circle and a square, denote bifundamental hyper-multiplets. In this language

a bifundamental hyper-multiplet for gauge-flavor nodes U(N)gauge × U(M)flavor is the

same as M fundamental hypermultiplets of the U(N)gauge gauge node. Moreover we will

focus on quiver theories of A type, namely linear quivers. In this case the matter content

comprises one bifundamental hyper-multiplets for each pair of nodes U(Ni)× U(Ni+1)

and arbitrary numbers of fundamental hyper-multiplets. The generic quiver diagram

is shown in Figure 1.

N
1

M
1

N
2

N
P

M
2 M

P

Figure 1. General linear quiver.

3 The brane realization of half-BPS local operator insertions

The linear quiver theories described by the general quiver diagram of Figure 1 arise as

the low-energy theory of brane arrays in type IIB string theory [16]. The configurations

involve D3 branes stretched between NS5 branes and intersecting D5 branes, with the

orientations given in Table 1.

A U(Ni) gauge node is associated to Ni D3 branes stretched between two NS5s.

The fundamental hypermultiplets are the light modes of D5-D3 open strings. The

bifundamental hyper-mulitplets are the light modes of D3-D3 open strings stretched

across NS5 branes. The 3d quiver theory is the low-energy theory on the D3-brane

worldvolume, along the x0,1,2 directions common to all branes. The general construction
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0 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X
NS5 X X X X X X

Table 1. Brane array realizing 3d N = 4 A-type quiver theories.

is illustrated in Figure 2, which realizes the generic linear quiver theory of Figure 1 in

the three nodes case (P = 3).

M
1
 D5

NS5 NS5

N
1
 D3

M
2
 D5

N
2
 D3

M
3
 D5

N
3
 D3

NS5 NS5

Figure 2. Brane configuration associated to a general linear quiver with three nodes.

3.1 Branes and strings inserting half-BPS local operators

We have reviewed how a 3d N = 4 quiver theory can be engineered by a brane con-

figuration in type IIB string theory. In various studies, including studies of 4d N = 4

Super-Yang-Mills and 4d N = 2 theories [22, 23], it was found that the insertion of BPS

loop operators and surface defects have a realization in terms of brane configurations in

string or M theory, in the sense that integrating out the light degrees of freedom of the

brane configuration results in the insertion of the loop or surface operator in the path

integral of the theory. For three-dimensional N = 4 theories the brane configurations

associated to the insertion of half-BPS Wilson loops and Vortex loops were constructed

in [20]. It is natural to assume that also the local half-BPS operators have a realization

in terms of certain brane setups.

To realize the insertion of half-BPS local operators, namely local operators pre-

serving four out of the eight supercharges of the 3d theory, we need to include in the

setup extra branes and/or strings with two properties:

• Their orientation must preserve four type IIB supercharges. In particular extra

D-branes must (at least) be oriented such that the numbers of ND (Neumann-
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Dirichlet) directions with the D3s and with the D5s in the configurations are

multiples of four. For extra fundamental strings (F1s), one can consider the

S-dual brane configurations, where they become D1s, to apply this criteria.

• Their intersection with the D3s must be in a point or along the direction x3, in

which the D3s have a finite extent. This ensures that the extra brane or string

sits at a point in the space x0,1,2, which supports the low-energy 3d theory, and

therefore inserts a local operator in the 3d theory.

These constraints select four possible extra ingredients, which are fundamental

strings (F1s), D1-branes and two types of D3-branes, that we denote D3’ and D3”,

with the orientations given in Table 2. There are actually other possible choices of

0 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X
NS5 X X X X X X
F1 X X
D3’ X X X X
D1 X X
D3” X X X X

Table 2. Brane array for 3d N = 4 theories and half-BPS local operators.

orientation, corresponding to rotations in (x4, x5, x6) and (x7, x8, x9), and preserving

different supercharges. These choices of orientation are mapped to the choices of N = 2

subalgebra in the N = 4 theory reviewed in Section 2. We will stick to the orientations

displayed in Table 2 in our discussion. Note that these extra branes or strings are

extended only along spacial directions, as appropriate to include point-like operators.

The selection criteria applied above to preserve supersymmetry are necessary but

may not be sufficient. To confirm that these configurations really preserve four super-

charges, one needs to check that the projection on the IIB supercharges imposed by

each additional brane in the D3-D5-NS5 setup is satisfied by four supercharges. Let us

denote by ε, ε̃ the two 32-components Weyl spinors parametrizing the supersymmetries

of IIB string theory. We introduce ΓA, A = 0, 1, · · · , 9, the ten-dimensional gamma

matrices and Γ11 = −Γ0Γ1 · · ·Γ9 the chirality matrix. We work here in (− + + · · ·+)

signature 9. The Weyl spinors have the same chirality Γ11ε = ε and Γ11ε̃ = ε̃. The

9We perform the analysis of brane supersymmetries in the more familiar Lorentzian space. However
the field theory discussion is based on the Euclidean theory, so one could adapt the analysis by
implementing a Wick rotation in the brane setup.
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projections imposed by each brane on the spinors ε, ε̃ are the following

D3 : ε = Γ0123ε̃ ,

D5 : ε = Γ012456ε̃ ,

NS5 : ε = Γ012789ε , ε̃ = −Γ012789ε̃ ,

F1 : ε = −iΓ34ε , ε̃ = iΓ34ε̃ ,

D1 : ε = iΓ37ε̃ ,

D3′ : ε = iΓ4789ε̃ ,

D3′′ : ε = iΓ4567ε̃ , (3.1)

where we defined ΓA1A2···An = ΓA1ΓA2 · · ·ΓAn , for A1 6= A2 6= · · · 6= An. The projec-

tions associated to Euclidean branes or strings differ from the projections associated to

Lorentzian branes by an extra factor of i, which follows from a Wick rotation. The NS5

brane projections were given in [16]. The projection due to the fundamental string can

be worked out from the Green-Schwarz super-string action in light-cone gauge: in type

IIB string theory there are twice sixteen supercharges, the two sets satisfying opposite

2d chirality projections on the worldsheet (which in this case is extended along the x3

and x4 directions) and forming the two ten-dimensional spinors.

Solving the system of equations for each configuration10, one finds that the (D3-D5-

NS5)-F1 setup and the (D3-D5-NS5)-D3’ setup preserve the same four supercharges,

say Q1, Q2, Q3, Q4, and that the (D3-D5-NS5)-D1 setup and the (D3-D5-NS5)-D3”

setup also preserve four identical supercharges, with two common supercharges with

the previous setups, say Q1, Q2, Q5, Q6. This shows that the setup with both F1s and

D3’s preserve four supercharges, that the setup with both D1s and D3”s also preserve

four supercharges, and that a setup with F1, D1, D3’ and D3” still preserves two

supercharges Q1, Q2. We will restrict to studying setups with F1s and D3’s, or D1s

and D3”s.

In the next section we will find that the insertion of Higgs and Coulomb branch

operators are realized by F1-D3’ and D1-D3” setups respectively. Not surprizingly, the

F1-D3’ setups are mapped to D1-D3” setups under S-duality of IIB string theory.

To conclude this discussion on the brane setups, it is important to discuss the

Hanany-Witten (HW) brane creation effects [16] arising in the above configurations.

The Hanany-Witten effect in the D3-D5-NS5 setup is the phenomenon of D3 brane

creation, stretched between a D5 and an NS5 branes, as the two 5-branes pass through

10We used an explicit representation of the Gamma matrices and solved the systems of equations
in Mathematica.
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each-other. Consider a configuration with a D5 on the letf and an NS5 on the right

in the x3 direction, with ND and NNS the net numbers11 of D3s ending on the D5

and NS5 respectively. After moving the two 5-branes across each other, the new net

numbers N ′D, N
′
NS are given by N ′D = ND − 1, N ′NS = NNS + 1, due to the creation

of one D3 brane stretched between them. Using T-dualities and S-duality of string

theories, one can generate various dual setups where this brane/string creation effect

happens [24, 25], with different explanations of the effect in different setups. In the

setups described above we have three such HW effects:

• the D3-D5-NS5 system, with D3 brane creation, arising in the initial brane setup

realizing the quiver theories;

• the F1-D3’-D5 system, with F1 string creation stretched between the D3’ and the

D5;

• the D1-D3”-NS5 system, with D1 brane creation stretched between the D3” and

the NS5.

The two latter situations are related by S-duality. These HW effects are depicted in

Figure 3. They will play a role in our analysis. There is no other brane creation effects

in the setups that we study.

A

B

N
1

N
2

N
3

N
1

N
2

N
3

B

A

~
CC

Figure 3. Hanany-Witten brane creation effect. The triplet of branes (A,B,C) can be either
(D5, NS5, D3), or (D3′, D5, F1), or (D3′′, NS5, D1). As the A and B branes pass across each other

the number of C branes stretched between them goes from N2 to Ñ2 = N1 +N3 −N2 + 1.

In HW configurations with a triplet of branes (A,B,C) and C brane creation effect,

the lowest mode on a C brane stretched between an A and a B brane is fermionic. This

implies the so-called s-rule, stating that there can be at most one C brane stretched

between an A and a B brane at low energies.

11The net number is the number ending on the left minus the number ending on the right in the x3

direction.
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4 Analysis in the T [SU(2)] theory

To start with we consider in this section the simple setup of a U(1) gauge theory with

two fundamental hyper-multiplets with complex scalars (Qα, Q̃α), α = 1, 2, also called

T [SU(2)] theory. The brane realization of this theory is shown in Figure 4. It has two

D5s intersecting a single D3. We denote D5(1) the D5 on the left in the figure and D5(2)

the D5 on the right.

D5 D5

NS5 NS5

1

2

D3

Figure 4. Quiver and brane configuration for the T [SU(2)] theory.

4.1 Higgs branch operators

The operators whose vevs parametrize the Higgs branch, or HB operators, are the

mesons

Zα
β = Q̃βQ

α , α, β = 1, 2 , (4.1)

which satisfy by definition the relation

detZ ≡ Z1
1Z

2
2 − Z2

1Z
1

2 = 0 , (4.2)

and are subject to the F-term constraint

TrZ ≡ Z1
1 + Z2

2 = 0 . (4.3)

We claim that the meson operator insertions are realized by the following brane setups:

• The operators Z2
1 and −Z1

2 are realized with a single semi-infinite F1 string

stretched between the two D5s and ending on the D3 from above and from below

respectively, as shown in Figure 5.

• The operator −Z1
1 is realized with one infinite F1 string extended on the left

of the configuration and ending on D5(1), as shown in Figure 6-a. The meson
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operator Z2
2 is realized with one infinite F1 string extended on the right of the

configuration and ending on D5(2), as shown in Figure 6-b.

F1

F1

D5
(1)

D5
(2)

D5
(1)

D5
(2)

a) b)

Figure 5. Brane configurations for the insertion of the meson operators (a) Z2
1 and (b) −Z1

2.

F1 D5
(1)

D5
(2) F1D5

(1)
D5

(2)
a) b)

Figure 6. Brane configurations for the insertion of the meson operators (a) −Z1
1 and (b) Z2

2.

We will not provide a direct derivation of these results from string perturbation the-

ory. Instead we will rely on known results and consistency arguments leading to the

proposals and the observation that they are consistent with expectations.

First we recall the result in [22] that a configuration with a semi-infinite F1 string

ending on a stack of N D3s is responsible for the insertion a half-BPS Wilson loop in

the fundamental representation of U(N), in the four-dimensional low-energy theory on

the D3s 12.

Let us be more precise. With D3s along x0,1,2,3, the low-energy theory on the D3s

is the four-dimensional N = 4 U(N) SYM theory. The bosonic fields are the 4d gauge

12The simplest brane configuration studied in [22] has a string stretched between a stack of N D3s
and a single D3 at a large distance. Here we think of the extra D3 brane as being sent to infinity,
leaving only a semi-infinite F1 string ending on the stack of N D3s.
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field Aµ and the six real scalars φi, i = 4, ..., 9, corresponding to the D3 motions along

the x4,5,6,7,8,9 directions, all valued in the u(N) algebra.

A semi-infinite F1 string spanning the directions x3 and x4 > 0, ending on the D3s

at x4 = 0, inserts in the path integral of the SYM theory the half-BPS Wilson loop in

the fundamental representation13

Wfund = Tr fundP exp

(∫ ∞
−∞

dx3 (iA3 + φ4)

)
, (4.4)

where Tr fund is the trace in the fundamental representation and A3 is the component

of the gauge field along the direction x3. When there is a single D3 brane, the string

inserts the Wilson loop P exp
∫∞
−∞ dx

3 (iA3 + φ4) in the abelian N = 4 SYM theory.

Similarly we can consider a stack of K D5s along the directions x0,1,2,4,5,6 in the

presence of a semi-infinite F1 string along the directions x3 < 0 and x4, ending on the

D5s at x3 = 0. The computation in [22] carries over to this situation, concluding that

this setup corresponds to the insertion of a half-BPS Wilson loop in the fundamental

representation of the 6d U(K) SYM theory living on the D5s. In the abelian case,

K = 1, the Wilson loop is

WD5 = exp

(∫ ∞
−∞

dx4 (iA
(D5)
4 + φ

(D5)
3 )

)
, (4.5)

where A
(D5)
4 is the component of the 6d gauge field along x4 and φ

(D5)
3 is the 6d scalar

field associated to motion of the D5 along x3.

F1 F1D5 D5
(1)

D5
(2)

a) b)

D3

x4

x3

Figure 7. a) F1 string with a D3-D5 corner. b) F1 string with two D3-D5 corners.

The situation that we want to consider is slightly more complicated. We have both

13The factors of i differ from [22] due to the fact that the string is extended along two space directions
here, instead of space and time there.
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a D3 and a D5 brane, intersecting, say, at (x3, x4) = (0, 0), and we stretch an F1 string

along the x3,4 directions such that it ends both on the D3 and on the D5, and has a

D3-D5 corner. So the string spans, say, x3 < 0 and x4 > 0, as shown in Figure 7-a.

At low-energies, we infer from the above analysis that this setup corresponds to the

insertion of the product of Wilson loops

exp

(∫ 0

−∞
dx3 (iA3 + φ4)

)
exp

(∫ ∞
0

dx4 (iA
(D5)
4 + φ

(D5)
3 )

)
, (4.6)

where the 6d fields can be considered frozen to a background in the low-energy limit.

However this cannot be the whole story, since this operator is not gauge invariant

under the 4d or 6d gauge transformations: the integration contours of the Wilson loops

have a common boundary at the point P = (0, 0) where the F1, D3 and D5 meet.

To restore gauge invariance, the insertion of an extra local field at the point P is

needed, which transforms with charges (−1, 1) under U(1)D3 × U(1)D5. The minimal

extra insertion needed is with a bifundamental scalar, so we propose that the complete

operator insertion is

exp

(∫ 0

−∞
dx3 (iA3 + φ4)

)
Q(P ) exp

(∫ ∞
0

dx4 (iA
(D5)
4 + φ

(D5)
3 )

)
, (4.7)

where Q(P ) is the hypermultiplet complex scalar Q of charge (−1, 1) under U(1)D3 ×
U(1)D5 living at the 3d intersection of the D3 and D5 branes, evaluated at P . This

operator is gauge invariant and preserves half of the supersymmetries of the D5-D3

configuration.

If one consider the analogous situation of an F1 string stretched along x3 > 0 and

x4 > 0 instead, the corresponding insertion would be

exp

(
−
∫ ∞

0

dx4 (iA
(D5)
4 + φ

(D5)
3 )

)
Q̃(P ) exp

(∫ ∞
0

dx3 (iA3 + φ4)

)
, (4.8)

where the change of sign (or charge) for the Wilson loop in the D5 theory is due to the

fact that the F1 string now ends on the other side of the D5 brane. Here Q̃(P ) is the

hypermultiplet complex scalar Q̃ of charge (1,−1) under U(1)D3×U(1)D5 living at the

3d intersection of the D3 and D5 branes, evaluated at P , and preserving the same four

supercharges as the preceeding operator involving Q.

Finally we consider the situation when there is one D3 brane and two D5 branes,

sitting at x3 = 0 and x3 = L > 0, with an F1 string stretched along x4 > 0 and the

finite interval 0 < x3 < L, ending on both D5s, as shown in Figure 7-b. The same

considerations as above lead us to the conclusion that the half-BPS operator insertion
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is

exp

(
−
∫ ∞

0

dx4 (iA
(D51)
4 + φ

(D51)
3 )

)
Q̃1(P1) exp

(∫ L

0

dx3 (iA3 + φ4)

)
Q2(P2) exp

(∫ ∞
0

dx4 (iA
(D52)
4 + φ

(D52)
3 )

)
,

(4.9)

where Q̃1 is the 3d scalar of charge (−1, 1) under U(1)D3 × U(1)D5(1) and Q2 is the

3d scalar of charge (−1, 1) under U(1)D3 × U(1)D5(2) . The points P1 and P2 are the

intersections of the F1, D3 and D51, and F1, D3 and D52, respectively. They have the

same positions in all coordinates, except x3, with x3(P1) = 0 and x3(P2) = L.

This configuration, with one D3, two D5s at x3 = 0 and x3 = L > 0, and an

F1 string stretched between them, is embedded in a setup where the D3 spans a finite

interval in the x3 direction, ending on two NS5s at positions x3
L < 0 and x3

R > L (Figure

5-a). The boundary conditions on the 4d fields living on the D3 at x3
L and x3

R have

been studied in [17]. They are of Neumann type for the vector field. We have14

A3 = 0 , φ4,5,6 = 0 , ∂3φ7,8,9 = 0 , ∂3Aµ = 0 , µ = 0, 1, 2 . (4.10)

At low energies the 6d fields are non-dynamical and the 4d fields obey the constraints

(4.10) on the whole interval x3
L < x3 < x3

R. The operator (4.9) then reduces to

Q̃1(P1)Q2(P2)WD51WD52 , (4.11)

where WD5i and WD5i denote the flavor Wilson loops of charge −1 and +1 under the

U(1)D5i respectively. In the 3d effective theory the points P1 and P2 are identified,

P1 ∼ P2 ≡ x ∈ R3. The flavor Wilson loops will play no role in our discussion, so

we take them to be trivial (equal to one). We conclude that the brane configuration

inserts the local meson operator

Q̃1(x)Q2(x) = Z2
1(x) . (4.12)

The same analysis for the configuration with a semi-infinite F1 string spanning 0 <

x3 < L and x4 < 0 (figure 5-b), where the Wilson loop in the D3 worldvolume theory

has opposite charge, leads to the insertion of the half-BPS meson operator

−Q1(x)Q̃2(x) = −Z1
2(x) . (4.13)

14The scalars φ4,5,6 can actually be fixed to non-zero constants at the boundaries, but we take these
constants to be vanishing for simplicity.
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The minus sign inserted here does not follow from our analysis, which is not sensitive

to overall constants. We fix it by consistency with the analysis of ring relations that is

presented in later sections.

The brane setup with an F1 string extended along x3 < 0 and x4, ending on D5(1)

on its left, as shown in Figure 5-a, can be understood as having two D3-D5(1) corners,

one above and one below the D3, inserting the meson operator

−Q1(x)Q̃1(x) = −Z1
1(x) . (4.14)

Again the minus sign is fixed by consistency with later analysis.

The brane setup with an F1 string extended along x3 > L and x4, ending on D5(2)

on its right, as shown in Figure 5-b, can be understood as having two D3-D5(2) corners,

one above and one below the D3, inserting the meson operator

Q2(x)Q̃2(x) = Z2
2(x) . (4.15)

This interpretation requires the F1 string to lie at the same x5,6 positions as the D3,

so that it breaks in two pieces, both ending on the D3.

We recover all the insertions proposed at the beginning of the section. So far the

D3’ branes did not play a role in the HB operator insertions. They will enter into play

when we study the HB relations and mirror symmetry.

4.2 Coulomb branch operators

We now turn to the Coulomb branch operators, or CB operators, of the T [SU(2)]

theory. A basis generating the CB chiral ring is given by three half-BPS (or chiral)

scalar operators: the complex scalar ϕ and the abelian monopole operators u± of

monopole charge ±1. They are subject to the CB quantum relation

u+u− = −ϕ2 . (4.16)

To realize the path integral insertion of the CB operators, we propose that the following

brane setups:

• The u+ and −u− 15 operator insertions are realized by adding a semi-infinite D1

brane stretched between the two NS5s and ending on the D3 from above and

from below respectively, as shown in Figure 8-a and -b.

15The minus sign here is purely conventional (it could be eliminated by redefining u−). We introduce
it in order to get a simple mirror map with HB operators.
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• The ϕ operator insertion is realized by adding a D3” brane between the two NS5s,

intersecting the D3 at a point, as shown in Figure 8-c.

D1a) b)

NS5 NS5

D5 D5

x7

x3 D1

c)

D3''

Figure 8. a) Semi infinite D1 ending on the D3 from above, inserting the monopole operator u+. b)
Semi infinite D1 ending on the D3 from below, inserting the monopole operator −u−. c) D3” brane
crossing the D3 at an arbitrary position in x3 between the two NS5s, inserting the scalar operator ϕ.

To argue for the realization of monopole operator insertions, we start from the

brane configuration with only a D3-brane and a semi-infinite D1, along x3 and x7 > 0,

ending on it at x7 = 0. At low energies on the worldvolume of the D3 lives the abelian

4d N = 4 SYM theory. It is well-known [26] that a D1 brane stretched between two

separated D3 branes can be associated to the presence of an SU(2) half-BPS monopole

of charge (1,−1) under the U(1)2 Cartan subalgebra, in the D3 worldvolume YM

theory. The limit when one of the D3 brane is sent at infinity corresponds to the

limit of infinitely small size of the monopole soliton, leaving a half BPS monopole line

operator, called ’t Hooft loop, in the 4d theory, with charge +1 (or −1). We pick the

convention that the charge is +1 when the D1 ends on the D3 from above. This ’t

Hooft loop is defined as a Dirac monopole singularity of the abelian gauge field at each

point on the x3 line (here in Euclidean space),

F = ?d

(
1

2r

)
, r =

√
(x0)2 + (x1)2 + (x2)2 , (4.17)

and a corresponding singularity for the real scalar φ7 corresponding to motions of the

D3 along x7, and ensuring that the configuration preserves half of the supersymmetries.

In our situation the D3 and D1 span only a finite interval along x3 since they end

on the two NS5 branes. This means that the 4d theory with a unit charge ’t Hooft

loop lives on an interval with Neumann boundary conditions (4.10). These boundary

conditions are compatible with the ’t Hooft loop singularity. At low energies, the theory
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becomes effectively three-dimensional and the loop operator becomes a local operator

inserting a charge one Dirac monopole singularity and the corresponding singularity

for the real scalar σ ∼ φ7, preserving half of the supersymmetries. This is precisely the

insertion of the u+ monopole operator advertized above.

The insertion of the u− monopole operator from a D1 ending on the D3 from below

follows from the same argument, with the negative charge ’t Hooft loop insertion in 4d.

The last configuration involves a D3” crossing the D3 at an arbitrary point along

x3 between the two NS5s (Figure 8-c). We can analyse the spectrum of light string

modes at the intersection point between D3 and the D3”. These branes have eight

Neumann-Dirichlet directions, therefore the light string excitations corresponds to a

single zero-dimensional fermion χ, with minimal coupling to the two 4d bulk SYM

theories, preserving eight supercharges. These couplings can be worked out from the

dimensional reduction to zero dimensions of the (8,0) Lagrangian of a 2d Weyl spinor,

leading to

S0d ∼ χ̄
(
∆φ8 + i∆φ9

)∣∣
P
χ , (4.18)

where ∆φ8 + i∆φ9 can be understood as arising from the reduction of a 2d gauge field

in Euclidean space16, and are identified in the brane picture with the relative motion

between the D3 and D3” in the directions x8 and x9 transverse to both branes. The

scalar fields are evaluated at the point P corresponding to the location of the D3-D3”

intersection. In the low energy limit the 4d SYM theory on the D3” is non-dynamical

and the vector multiplet complex scalars are set to background values that we take to

be vanishing. The scalar combination ∆φ8 + i∆φ9 = φ8 + iφ9 then corresponds to the

3d vector multiplet complex scalar ϕ. Integrating out the complex fermion χ in the

path integral leads to the insertion of the local operator φ8 + iφ9 ∼ ϕ at the point P .∫
dχ̄dχ exp[χ̄

(
φ8 + iφ9

)∣∣
P
χ] =

(
φ8 + iφ9

)∣∣
P
∼ ϕ(P ) . (4.19)

We conclude that the D3” brane is associated to the insertion of the local operator ϕ in

the low-energy limit. Here we have assumed that the D3” interactions with the other

branes in the configuration are irrelevant at low energies.

4.3 Ring relations

From the brane realizations of the Higgs and Coulomb branches operators of T [SU(2)]

described in the previous section, we can deduce the relations they obey.

16The two scalars are constant values of the 2d gauge field along the two space directions. In
Lorentzian 2d space the combination appearing would be ∆φ8 + ∆φ9, but after Wick rotation this
becomes ∆φ8 + i∆φ9.

– 21 –



F1D5
(1)

D5
(2)

Figure 9. Setup for the operator −Z2
1Z

1
2 or equivalently −Z1

1Z
2
2.

First we explain how to find the relations of the Higgs branch, (4.2) and (4.3),

which we repeat here for convenience:

detZ ≡ Z1
1Z

2
2 − Z2

1Z
1

2 = 0 , TrZ ≡ Z1
1 + Z2

2 = 0 . (4.20)

The first relation follow trivially from the definition of the meson operators in terms

of the hyper-multiplet scalars. However we will see that this trivial relation is mapped

under mirror symmetry to a non-trivial quantum relation on the Coulomb branch of the

dual T [SU(2)] theory. Therefore, to provide a unified picture between Higgs branch and

Coulomb branch, we wish to find a way to recover the relation from the brane picture

(as we will do for the CB relation). For that purpose we consider the setup with an

infinite F1 string stretched between the two D5s and intersecting the D3, as in Figure

9. This brane configuration can be interpreted in two ways. First we can see it as two

semi-infinite F1s ending on the D3. This leads, according to the discussion above, to

the insertion of the meson operators Z2
1 and −Z1

2, which means the insertion of the

product −Z2
1Z

1
2. Alternatively it can be seen as a single infinite F1 string, crossing

the D3, in which case the insertion of meson operators can be associated to the two D5-

D3 intersections with a full F1 ending on the D5. Re-using the arguments of section 4.1

one finds that the F1 ending onright side of D5(1) inserts the operator Z1
1 and the same

F1 ending on the left side of D5(2) inserts the operator −Z2
2. In section 4.1 we had a

configuration with infinite F1 extended to the left or to the right and realizing −Z1
1 and

Z2
2 separately. Here we have a single F1 string respondible for the insertion the product

of the two operators −Z1
1Z

2
2. The first Higgs branch relation detZ = 0 follows from

the identification of the two operator insertions: −Z2
1Z

1
2 = −Z1

1Z
2

2. These two

“readings” of the same brane setup may seem artificial when one thinks in terms of

(gauge non-invariant) scalars Qα, Q̃α insertions. The purpose of this discussion is to
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extract the rules to read ring relations directly in terms of gauge invariant operators.

We will then show that parallel rules apply to Coulomb branch operators, making

mirror symmetry transparent.

The second relation TrZ = 0 follows from the F-term constraint in the gauge

theory. We find it by first considering the brane setup for the operator −Z1
1 (Figure

6-a), with an infinite F1 extended to the left and ending on D5(1). We can then let the

string end on a D3’ brane far away to the left, without changing the operator insertion

(and preserving the same supersymmetry), as in Figure 10-a. It was a crucial point

in [16] to argue that the brane moves along the x3 direction leave invariant the low-

energy physics on the D3 branes, as long as branes of the same type do not cross each

other (e.g. a D5 does not cross another D5). This property allows to derive 3d mirror

symmetry from IIB string theory using S-duality and 5-brane moves along x3. Here

we use this property to move freely the D3’ along x3, across the brane configuration,

all the way to a far region on the right. As it passes through the two D5s, HW F1-

creation effects occur, as explained in section 3.1: after crossing D5(1) the D3’ stands

inbetween the two D5s with no F1 ending on it and after crossing D5(2), there is an

F1 string stretched between D5(2) and the D3’. This process is depicted in Figure 10.

The end configuration is the one inserting the operator Z2
2. Identifying the initial and

final brane setups, we obtain the second relation −Z1
1 = Z2

2. Therefore the F-term

relation follows from a D3’ brane move and involves the HW effects.

F1
D5

(1)
D5

(2)
a)

D3'

D5
(1)

D5
(2)

b)

D3'

F1D5
(1)

D5
(2)

c)

D3'

Figure 10. a) Setup realizing −Z1
1, with a D3’ on the left of the configuration. b) Setup after

moving the D3’ inbetween the D5s. c) Setup after moving the D3’ to the right, realizing Z2
2.

One may wonder what is the operator insertion corresponding to the brane setup

with the D3’ brane standing between the two D5s and crossing the D3 segment as

in the middle figure in Figure 10. It is a nice and instructive exercise to study this

configuration. The operator insertion in this case is obtained after integrating out the

light modes of the D3’-D3 open strings. This brane system is almost identical to the
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D3-D3” intersection studied above. The D3’ and D3 branes intersect at a point in

space and the light open string modes correspond to a single zero-dimensional fermion

χ, whose zero dimensional action is

S0d ∼ χ̄(φ5 + iφ6)
∣∣
P
χ , (4.21)

where P is the intersection point between the D3 and D3’ and φ5+iφ6 corresponds to the

relative motion between the two branes in the direction x5 + ix6 and is identified simply

with the D3 brane position along x5 + ix6 by placing the D3’ at (φ5 + iφ6)D3′ = 0. The

scalar φ5 + iφ6 then corresponds to a complex scalar in the 4d SYM theory on the D3

brane, which belongs to the 3d hyper-multiplet with complex scalars (A3 +iφ4, φ5 +iφ6)

under the embedding of the 3d N = 4 super-algebra into the 4d N = 4 super-algebra.

In the infrared limit the boundary conditions imposed by the NS5 branes and the D5

branes, studied in [17] are such that the complex scalar φ5 + iφ6 ≡ Φ vanishes at the

NS5 brane positions, say at x3 = 0 and x3 = L > 0, Φ(0) = Φ(L) = 0, and to obey the

equation17

∂3Φ + δ(x3
(1))Z

1
1 + δ(x3

(2))Z
2
2 = 0 , (4.22)

with x3
(α) the position of D5(α). This problem admits a solution only if Z1

1 + Z2
2 = 0,

which is another way to recover the F-term constraint, and the profile of the scalar Φ

is then

Φ(x3) =


0 , 0 < x3 < x3

(1) ,

−Z1
1 , x3

(1) < x3 < x3
(2) ,

−Z1
1 − Z2

2 = 0 , x3
(2) < x3 < L .

(4.23)

The action for the 0d fermion χ is then

S0d ∼ χ̄(−Z1
1)
∣∣
P
χ , (4.24)

and produces, upon integrating out the fermion, the insertion of the meson operator

−Z1
1(P ) = Z2

2(P ) in complete agreement with the previous analysis. In this differ-

ent point of view, the F-term constraint does not follow from identifying brane setups

(which is our preferred point of view in this paper) but instead from solving the equa-

tions on the scalar Φ which becomes non-dynamical in the infrared limit.

We now move on to the Coulomb branch relations. There is actually a single

relation for the T [SU(2)] theory, found in [3], given by

u+u− = −ϕ2 . (4.25)

17We thank Davide Gaiotto for informative discussions on this point.
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This non-trivial quantum relation can be recovered from a rather simple analysis of the

brane realizations inserting the Coulomb branch operators. The relevant brane setup

has a infinite D1 brane stretched between the two NS5s and crossing the D3, as in

Figure 11. We can regard this configurations in two ways, that we detail now.

D1

NS5 NS5

D5 x7

x3

D5

Figure 11. A D1 brane stretched between the two NS5s, crossing the D3 brane.

First we can see it as two semi-infinite D1s ending on the D3 from above and below

respectively. According to the rules described before, this corresponds to the insertion

of the product of two monopole operators −u+u−.

On the other hand we can regard the configuration as a single D1 stretched between

the two NS5s and crossing the D3 and study the low-energy spectrum of the open

strings stretched between the various branes. In the infrared limit, when the dynamic

of the theory in the x3 direction is frozen, the D1-D1 open string modes give rise to an

abelian vector multiplet of 1d N = (4, 4) supersymmetry18 living on a line along the

x7 direction and intersecting the three-dimensional theory living on the D3 at a point.

The D1-D3 open strings give rise to a zero-dimensional hyper-multiplet 19 trans-

forming in the bifundamental representation of U(1)1d×U(1)3d, where U(1)1d denotes

the abelian gauge symmetry of the theory on the D1 and U(1)3d that of the theory

living on the D3. The hyper-multiplet is coupled to 0d N = (4, 0) vector multiplets

embedded in the 1d and 3d vector multiplets. The coupling to the bosonic 1d and

3d fields is through a complex mass coupling with mass parameter ϕ′ − ϕ, where ϕ′

combines two out of the five real scalars of the 1d vector multiplet. The difference

ϕ′ − ϕ corresponds to the distance between the D1 and D3 branes along x8 + ix9. In

the configuration that we study, we impose that the D1 crosses the D3, which means

that ϕ′ = ϕ, making the hyper-multiplet massless. To regularize the path integral we

18This is the dimensional reduction of a 6d N = (1, 0) vector multiplet. It has five real scalars.
19This is the dimensional reduction of a 6d hyper-multiplet.
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need to remove the zero modes of this massless hypermultiplet from the path integral.

A more detailed analysis of this hyper-multiplet theory will be given in Section 7.

The D1-D5(α) open strings give rise to a single zero-dimensional fermion living at

the intersection of the branes, with complex mass ϕ−ϕ(D5), associated to the distance

between the D1 and the D5 along the x8 + ix9 direction20 (this is similar to the D3-D3”

intersection studied above). Here the D5 is at the origin ϕ(D5) = 0, so that the 0d

action is

S0d,(α) ∼ χ(α)ϕχ(α) , α = 1, 2 . (4.26)

In addition there can be cubic interactions between the D1-D3, D3-D5 and D5-D1

open string modes. We will assume that they do not affect the integration over the

zero-dimensional and one-dimensional fields.

Integrating out the 1d vector multiplet and the 0d hyper-multiplet yields a factor

independent of the 3d fields, so we neglect it. Integrating out the fermion χα yields a

factor ϕ(Pα), where Pα is the intersection point of the D1 and D5(α) branes. The total

insertion after integrating out the zero-dimensional fields is then

ϕ(P1)ϕ(P2) ' ϕ(P )2 , (4.27)

since the points P1 and P2 are indistinguishable in the low-energy limit P1 ' P2 ≡ P .

Identifying the two “readings” of the brane setup, we obtain the relation (4.25).

Here we see that no brane move was necessary to get the relation.

Finally we note that we made an implicit assumption in our analysis, which is

that the presence of the D5 branes do not affect the monopole operator insertion in

a configuration with a single semi-infinite D1 ending on the D3 (Figure 8-a,-b). Our

analysis of the CB relation indicates that there is no effect due to these strings when

the D1 is dissolved in the D3 to insert a monopole operator. On the contrary, when the

D1 is flat (crossing the D3) the D1-D5 string modes play a crucial role in the operator

insertion, as we discussed. One way to think about this phenomenon is that in the

configuration inserting a monopole operator the D1 forms a spike ending on the D3.

Then there is no distinction between D1-D5 strings and D3-D5 strings and therefore

no additional light modes due to D1-D5 strings.

4.4 Mirror symmetry

Three-dimensional N = 4 theories are subject to an infrared duality called mirror

symmetry. The main statement is that pairs of mirror dual theories flow in the same

(strongly coupled) infrared fixed point and that the Higgs branch of one theory is

20The D1 is at the same position ϕ as the D3 in x8 + ix9.

– 26 –



identified with the infrared quantum corrected Coulomb branch of the dual theory

[1]. Since the HB and CB chiral rings are independent of the RG flow, we obtain the

prediction that the HB chiral ring of one theory must match the CB chiral ring of the

mirror dual theory. The duality swaps the SU(2)C and SU(2)H R-symmetry actions,

the infrared enhanced topological symmetry GC and the flavor symmetry GF , and the

mass and FI deformation parameters.

The T [SU(2)] theory is known to be self-dual under mirror symmetry, therefore

its Higgs branch and Coulomb branch operators and ring relations should be mapped

under the duality. In this simple theory, the map is easily found to be

ϕ ↔ Z2
2(= −Z1

1) ,

u+ ↔ Z2
1 ,

u− ↔ Z1
2 .

(4.28)

This identification maps the CB quantum relation u+u− = −ϕ2 to the HB trivial

relation Z2
1Z

1
2 = Z2

2Z
1

1.

The point of view that we develop in this paper is that the mirror map of operators

can be found directly from the brane realizations. Indeed it is now well-known that

mirror symmetry of the three dimensional theory follows from the action of type IIB

S-duality on the brane realizations. In order to find the mirror map between operators,

one can start with the brane setup realizing a local operator, then act with S-duality

on the configuration and read off the mirror operator from the resulting brane setup.

The action of S-duality on the various branes involved is described in Table 3. Here

we combine S-duality with the space rotation (x4,5,6, x7,8,9) → (x7,8,9,−x4,5,6), so that

the branes always have orientations as in Table 2.

Brane D3 D5 NS5 F1 D1 D3’ D3”
S-dual brane D3 NS5 D5 D1 F1 D3” D3’

Table 3. S-duality action on branes and strings.

Let us see how this works for the T [SU(2)] theory. In the absence of local operator

insertion the theory is realized by the brane configuration of Figure 4. Applying S-

duality, we obtain a configuration with a D3 stretched bewteen two D5s and crossing

two NS5s. We then need to move the D5s to the middle of the configurations, so that

each D5 passes across an NS5. Taking into account the HW brane creation effect (see

Section 3.1) we recover the initial configuration, confirming that the T [SU(2)] theory

is self-dual under mirror symmetry. This process is depicted in Figure 12.
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D5 D5

NS5 NS5

D3

D5 D5

NS5 NS5

D3

D5 D5

NS5 NS5

D3

S

x7

x3

x4

x3

Figure 12. Brane configuration of T [SU(2)]. After acting with the S transformation and moving
the D5s to the middle, one recovers the initial configuration.

The brane setup realizing the monopole operator u+ is that of Figure 8-a. Acting

with the S-transformation and moving the D5s to the middle, as in Figure 13-a, we

directly obtain the setup realizing the meson operator Z2
1. Similarly starting from the

setup of Figure 8-b, realizing −u−, we find that the S-dual setup is that of the oper-

ator −Z1
2. We therefore obtain immediately the mirror map involving the monopole

operators. For the insertion of the scalar operator ϕ, we start with the configuration

of Figure 8-c, which has a D3” brane crossing the D3. Acting with S-duality and mov-

ing the D5s we obtain the configuration of Figure 13-b, which has a D3’ crossing the

D3. As argued in section 4.3, this setup realizes the insertion of the meson operator

Z2
2 or equivalently −Z1

1. This can be seen by moving the D3’ to the right of the

configuration, leading to the creation of an F1 string ending on D5(2) (Figure 6-b and

13-b), or to the left, leading to the creation of an F1 string ending on D5(1) (Figure

6-a). This reproduces the mirror map (4.28). In addition, we observe that the brane

configurations with two interpretations leading to the HB and CB relations are S-dual

to each other.

4.5 Deformations

To complete the analysis of the T [SU(2)] theory, we discuss the complex mass and

Fayet-Iliopoulos deformations.

The mass deformations are simpler to understand. In the field theory there are

three real mass deformations for each hypermultiplet, transforming as a triplet of

SU(2)C . They can be seen as background values of scalars in vector multiplets gauging

the flavor symmetries. The mass deformations lift the Higgs branch and modify the

Coulomb branch geometry. For each triplet of masses, two out of the three parameters

combine into a complex mass mC
21. In the T [SU(2)] theory there are two such complex

21This choice is correlated to the choice of complex structure on the Coulomb branch (see Section
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S

D5 D5

NS5 NS5D1 D5 D5

NS5 NS5

F1 F1

S

D5 D5

NS5 NS5 D5 D5

NS5 NS5

F1D3'' D3'D3'' D3'

a)

b)

Figure 13. a) Starting from the u+ insertion setup and applying S-duality leads the Z2
1 insertion

setup, after brane rearrangements. b) Starting from the ϕ insertion setup and applying S-duality leads
to the Z2

2 insertion setup, after brane rearrangements.

masses mα, α = 1, 2, for the two hyper-multiplets, and the CB relation becomes [12]

u+u− = −(m1 − ϕ)(m2 − ϕ) . (4.29)

Simultaneous shift of complex masses by the same constant can be re-absorbed into a

redefinition of the complex scalar ϕ, so that only the parameter m1 −m2 is physical.

In the brane setup the complex mass deformations are associated to D5 brane

displacements along the x8 and x9 directions. Denoting x8,9
α , α = 1, 2, the positions of

the two D5s, we have mα ≡ ϕ
(D5)
α = x8

α + ix9
α. It is easy to correct the derivation of

the CB relation from the brane picture. In the second interpretation of the setup of

Figure (11) (see Section 4.3), considering the D1 crossing the D3, the zero-dimensional

fermion χα living at the intersection of the D1 and D5(α) branes now has mass mα−ϕ,

corresponding to the distance between the D1 and the D5 in the x8 and x9 directions,

S0d,(α) ∼ χ(α)(mα − ϕ)χ(α) , α = 1, 2 . (4.30)

2)
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Integrating out the two fermions yields the operator insertion

(m1 − ϕ)(m2 − ϕ) , (4.31)

leading to the deformed relation (4.29).

Let us turn to the FI deformations. Those lift the Coulomb branch and deform

the Higgs branch. They are parametrized by three real parameters, transforming as

a triplet of SU(2)H . Two out of the three deformations combine into a complex FI

parameter ηC which affects the F-term relations in the Higgs branch chiral ring. For

the T [SU(2)] theory there is a single complex FI parameter η and the HB relations are

TrZ = η , detZ = 0 . (4.32)

In the brane picture the η deformation can be identified with displacements of the NS5s

along the x5 and x6 directions. More precisely, denoting x5,6
i , i = 1, 2, the positions of

the two NS5s, we can define ξi = x5
i + ix6

i and the complex FI parameter is η = ξ1− ξ2.

The modified setup is depicted in Figure 14-a.

D5
(1)

D5
(2)

a)

F1

NS5
(1)

NS5
(2)

ξ
1

ξ
2

a

b)

a-ξ
2

x5

x3

Figure 14. a) Configuration associated to the FI deformation η = ξ1 − ξ2 (x3,5 plane). b) Brane
setup inserting the operator Y = Z2

2 + ξ2.

The modification of the brane analysis due to NS5 displacements is not straight-

forward to understand, as it is often the case with NS5 brane effects. We can give a

heuristic argument leading to the conclusion that the displacements affect the operator

insertions, rather than the reading of the HB relations. One can imagine giving a vev

to the meson operators Z2
2 and Z1

1. This corresponds in the brane picture to moving

the D3 segment between the two D5s along the x5,6 directions. In the absence of FI

deformations, the D3 displacement along x5,6 to the position a = x5 + ix6 corresponds

to giving vevs 〈Z2
2〉 = −〈Z1

1〉 = a 22, namely giving a vev a to the operator inserted

22This follows from the analysis in [17]. It can also be seen as the mirror-dual operation of giving a
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by the setups of Figure 6-a and -b. The origin of the moduli space, a = 0, corresponds

to the D3 segment in the middle being aligned with the two external D3 segments.

Let us focus on the brane setup of Figure 14-b and let us denote Y the operator

inserted by the F1 string ending on the right side of D5(2) and aligned with the middle

D3 segment. Moving the middle D3 segment to a position a is now associated to giving

a vev to the operator O, 〈Y 〉 = a. When a = ξ2, the middle D3 segment is aligned with

the D3 segment stretched between D5(2) and NS5(2) (the NS5 on the left). Locally this

situation is identical to the situation without FI deformation when we sit at the origin

of the moduli space and must correspond to having 〈Z2
2〉 = 0, namely a vanishing vev

for the meson sourced by D3-D5(2) open string modes. This suggests the identification

Z2
2 = Y − ξ2 . (4.33)

A corresponding reasoning, applied to the brane setup of Figure 6-a, with the F1 string

ending on D5(1), which also inserts the operator Y , leads to the identification

− Z1
1 = Y − ξ1 . (4.34)

The relations following from the brane realizations, as described in Section 4.3, with

these deformed insertions are

Z2
2 + ξ2 = −Z1

1 + ξ1 ≡ Y , −Z2
1Z

1
2 = −Z2

2Z
1

1 , (4.35)

where the second relation is the same as before. These relations match the deformed

relations (4.32).

There is an alternative and more robust way to understand these operator insertions

by studying the brane configuration with a D3’ brane between the two D5s, intersecting

the D3 (middle figure in Figure 10), which is obtained from the above brane setup by

HW moves. This setup was analyzed in Section 4.3 using the results of [17], with

the operator insertion following from integrating out a 0d fermion with complex mass

−Z1
1 = Z2

2. The FI deformation changes the analysis by modifying the boundary

conditions on the scalar Φ to Φ(0) = ξ1 and Φ(L) = ξ2. Requiring the existence of a

solution for Φ(x3) imposes the modified F-term constraint ξ1 − Z1
1 − Z2

2 = ξ2, and

the operator insertion is ξ1 − Z1
1 = ξ2 + Z2

2 ≡ Y , in agreement with our heuristic

derivation.

Mirror symmetry now related the T [SU(2)] theory deformed by masses, with lifted

vev a to ϕ by moving the D3 between the two NS5s along x8,9. Indeed ϕ is the mirror-dual operator
to Z2

2(= −Z1
1) in the absence of FI deformation.
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Higgs branch and deformed Coulomb branch, to a dual T [SU(2)] theory deformed by

FI terms, with lifted Coulomb branch and deformed Higgs branch, with the map of

operators
ϕ ↔ Y ,

u+ ↔ Z2
1 ,

u− ↔ Z1
2 .

(4.36)

Note that this map is found after solving for the F-term relation on the HB side. The

second Higgs branch relation becomes

Z2
1Z

1
2 = −(Y − ξ1)(Y − ξ2) , (4.37)

which is mapped to the CB relation, through the usual map between masses and FI

parameters (m1,m2)↔ (ξ1, ξ2).

We have now completed our study of the T [SU(2)] theory. We have developed

most of the tools needed to analyse moduli spaces from brane realizations and we are

in a position to study more sophisticated theories.

5 Abelian generalizations

In this section, we extend the analysis of the vacuum moduli spaces from brane configu-

rations to more sophisticated abelian theories. We consider the abelian theory with Nf

fundamental hyper-multiplets, or N = 4 SQED, and its mirror dual theory, which is an

abelian quiver theory. We show that the Coulomb and Higgs branch operators and the

ring relations are correctly reproduced by following the brane reading rules found in

the previous section and some new rules that we derive. We provide the mirror map of

operators using S-duality of the brane picture. We illustrate our procedure in another

couple of mirror dual theories. Applications to arbitrary abelian quivers should then

be straightforward. The final dictionary between brane setups and operator insertions,

as well as the mirror map between HB and CB operators, are provided in Appendix B.

5.1 SQED

We consider the N = 4 SQED theory. It has U(1) gauge group and Nf fundamental

hyper-multiplets, with complex scalars (Qα, Q̃α), α = 1, · · · , Nf . The quiver diagram

and the brane realization are shown in Figure 15. In particular, there are now Nf

D5s crossing the D3, sourcing the hyper-multiplets. We will denote them D5(α) with

α = 1, · · · , Nf , labeling the branes from left to right.
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D5

NS5 NS5

1

N
f

D3

(1) (2) (N
f
)

Figure 15. Quiver and brane configuration of N = 4 SQED. There are Nf D5 branes.

5.1.1 Higgs branch

The Higgs branch of the theory is generated by the meson operators

Zα
β = Q̃βQ

α , α, β = 1, · · · , Nf , (5.1)

which satisfy by definition

Zα
βZ

γ
δ − Zα

δZ
γ
β = 0 , for all α, β, γ, δ , (5.2)

and are subject to the F-term constraint:

TrZ ≡
∑
α

Zα
α = 0 . (5.3)

The relations (5.2) can be recast as rank(Z) ≤ 1.

It will be useful to introduce

Z[α:β] ≡
β∑

γ=α

Zγ
γ . (5.4)

The mesons Zα
α can be traded for the operators Z[1:α] or Z[α+1:Nf ]. The mesons natu-

rally realized in terms of brane setups are of the type Zα+1
α, Zα

α+1, Z[1:α] and Z[α+1:Nf ]

(no sum over α), with the following dictionary:

• The insertions of the meson operators Zα+1
α and −Zα

α+1 are realized by adding

a semi-infinite F1 string stretched beween D5(α) and D5(α+1), and ending on the

D3 from above and below respectively, as in Figure 16-a,b.

• The insertion of the meson operator −Z[1:α] is realized by adding a D3’ brane on
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F1a) b)

(α+1)(α) (α+1)(α)

c)

(α)

12α

d)

(α+1)

1 2 N
f
-α

D3' D3'

Figure 16. Brane setups inserting the operators: a) Zα+1
α; b) −Zαα+1; c) −Z[1:α]; d) Z[α+1:Nf ].

The integers 1,2, ...,α indicate the number of superposed F1 strings in each region.

the left of the brane configuration and one F1-string stretched between the D3’

and D5(β), for all β ∈ [1, α], so that there is a total of α F1s in the setup. This is

described in Figure 16-c

• The insertion of Z[α+1:Nf ] is realized by adding a D3’ brane on the right of the

brane configuration and one F1-string stretched between the D3’ and D5(β), for

all β ∈ [α + 1, Nf ], so that there is a total of Nf − α F1s. This is described in

Figure 16-d.

These brane setups are simple generalizations of the one studied in Section 4.1 for the

T [SU(2)] theory, which corresponds to the case Nf = 2. 23

One important comment about these setups is that in each case there is a single

way of interpreting the configuration, namely there is a single way to describe which

brane ends on which other branes. This is obvious for the setups of Figure 16-a,b. For

the setups of Figure 16-c,d, this follows from the s-rule which imposes that there is

23From our previous discussions, it is not obvious why the configuration 16-c (and similarly 16-d)
realizes the insertion of the sum of meson operators

∑α
γ=1 Z

γ
γ and not the product of these mesons.

However this turns out to be consistent with our general analysis. Moreover we will find in Section 6
different brane setups realizing the insertions of products of mesons.
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at most a single F1 string stretched between a D3’ and a D5. This implies that the

F1 cannot break into several pieces ending on both sides of some D5. Since there is a

single way of interpreting these brane setups, they must insert operators which cannot

be generated by products of operators, so they must belong to a basis of the HB chiral

ring.

There is however a puzzle since the operators listed above are not enough to gen-

erate the whole Higgs branch ring, namely we are missing the operators Zα
β with

|α− β| > 1. We will see shortly that these operators appear in brane setups related to

the HB ring relations.

Ring relations:

We observe immediately that the F-term relation (5.3) follows from considering

the configuration realizing −Z[1:α], i.e. Figure 16-c, and moving the D3’ brane from the

left to the right in the configuration. Taking into account Hanany-Witten F1 creation

effect, we end up with the configuration of Figure 16-d, realizing the Z[α+1:Nf ] insertion.

We therefore obtain the relation

− Z[1:α] = Z[α+1:Nf ] , (5.5)

which is nothing but TrZ = 0, for any chosen α.

The other relations in the chiral ring (5.3) follow from interpreting in several ways

configurations with a semi-infinite or full F1 string stretched between two D5s, pre-

sented in Figure 17-a,b,c.

The brane setup of Figure 17-a is analogous to the one studied in Section 4.3 and

leads by the same reasoning to the relations

Zα+1
αZ

α
α+1 = Zα

αZ
α+1

α+1 , (5.6)

for all α. These are part of the HB relations (5.2).

The setup of Figure 17-b has an F1 stretched between D5α and D5β, with α < β,

and ending on the D3 from above. The analysis of the meson operator insertions in

Section 4.1 and the discussion of Section 4.3 leading to the “trivial” Higgs branch

relation24 can be adapted to the present situation. The setup of Figure 17-b can be

24We refer to the Higgs branch meson relations which follow from rearrangements of the elementary
hyper-multiplet scalar fields as trivial. In terms of gauge invariant operators, these relations are not
trivial at all.
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F1b) c)

(β)(α) (β)(α)

F1a)

(α) (α+1)

Figure 17. a) Setup realizing −ZααZα+1
α+1 or −Zα+1

αZ
α
α+1. b) Setup realizing Zβα

∏
α<γ<β

Zγγ .

c) Setup realizing (−)α+β+1Zαβ
∏

α<γ<β

Zγγ . The F1 can split along the D5s, leading to alternative

interpretations of the operator insertions.

interpreted as inserting the operator

Zβ
α

∏
α<γ<β

Zγ
γ , (5.7)

where the operator Zβ
α comes from the two F1 corners with D5(α) and D5(β) respec-

tively, and the operators Zγ
γ, with α < γ < β, come from the F1 edges crossing the

D5(γ) branes. We will say that Zβ
α is the contribution of an F1 stretched between

D5(α) and D5(β), ending on the D3 from above, and that Zγ
γ is the contribution of the

D3-D5(γ) intersection with an F1 ending on the D3 from above.

Alternatively we can think of the setup as having β − α semi F1 strings, with one

string stretched between D5(γ) and D5(γ+1), for γ = α, · · · , β − 1. This corresponds to

the insertion of the operator product

β−1∏
γ=α

Zγ+1
γ . (5.8)

We therefore get the relation

Zβ
α

∏
α<γ<β

Zγ
γ =

β−1∏
γ=α

Zγ+1
γ , (5.9)

for each pair (α, β), with α < β. There are even more ways to read the setup of Figure

17-b, each corresponding to some splitting of the F1 string into several pieces ending

on D5s. They lead to redundant relations.
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The same considerations applied to the setup of Figure 17-c lead to the relations25

Zα
β

∏
α<γ<β

Zγ
γ =

β−1∏
γ=α

Zγ
γ+1 , (5.10)

for each pair (α, β), with α < β.

Together, the relations (5.6), (5.9) and (5.10) imply all the Higgs branch relations

(5.2), as we show in Appendix A, up to one caveat. The caveat in the derivation of

(5.2) is that at some point in the computations we need to divide by products of Zα
α

operators. This is valid only when these are non-zero, so strictly speaking we need

to add this extra ingredient, or rule, to our derivation of the relations, saying that

operators Zα
α appearing on both sides of a relation can be suppressed. This means

that the resulting relations remain valid even at Zα
α = 0. To avoid confusions we will

call the relations (5.6), (5.9) and (5.10) the pre-relations, indicating that these are not

yet the full set of ring relations, except in special cases (like in the T [SU(2)] theory).

From the pre-relations, the ring relations are uniquely determined by considering all

the relations generated by the pre-relations and suppressing Zα
α operators appearing

on both sides of a relation. In the following we will derive the pre-relations from the

brane setups and match them under mirror symmetry. This is equivalent to matching

the full set of ring relations.

We have thus recovered the HB relations from the brane analysis. Again the

“trivial” relations follow from different readings of some brane setups, while the F-

term relation follow from identifying brane setups after D3’ moves.

As for the T [SU(2)] theory, the Higgs branch can be deformed by FI terms. Turning

on a FI term with complex parameter η, appropriate to the chosen complex structure

on the Higgs branch, the F-term relation gets deformed to

TrZ = η . (5.11)

The counterpart in the brane picture is as in the T [SU(2)] theory: the deformation

corresponds to displacements of the NS5s along the x5,6 directions, with η = ξ1− ξ2 the

difference between the two brane positions. The argumentation in Section 4.5 leads in

the present situation to a modification of the operator insertions for the brane setups

of Figure 17-c and -d, which become −Z[1:α] + ξ1 and Z[α+1:Nf ] + ξ2 respectively. The

25In our conventions, each insertion comes with a minus sign and an overall factor (−1)α+β+1 drops
from both sides of the relation.
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relation following from moving the D3’ brane across the configuration becomes

− Z[1:α] + ξ1 = Z[α+1:Nf ] + ξ2 ≡ Yα , (5.12)

reproducing the deformed F-term relation, for any α.

The dictionary between brane setups and HB operator insertions is summarized in

Appendix B.

5.1.2 Coulomb branch

The Coulomb branch of N = 4 SQED is simpler than the Higgs branch. The chiral

ring is generated by the monopole operators u± of monopole charge ±1 respectively

and the complex scalar ϕ, subject to the quantum relation 26

u+u− = −
Nf∏
α=1

(mα − ϕ) , (5.13)

where we have included the complex mass deformations mα for the Nf hyper-multiplets.

The insertions of the operators ±u± and ϕ are realized as for the T [SU(2)] theory,

with the only difference that there are Nf D5s instead of two D5s. The brane setups

are shown in Figure 18-a,b,c. For the insertion of the operator ϕ the position of the

D3” along x3 (and with respect to the D5s) is irrelevant in the infrared limit.

D1a) b)

NS5 NS5

D5
(1) D5

(Nf)

x7

x3 D1

c)

D3''

D5
(1)

D5
(Nf)

Figure 18. a) Semi infinite D1 ending on the D3 from above, inserting the monopole operator u+.
b) Semi infinite D1 ending on the D3 from below, inserting the monopole operator −u−. c) D3” brane
crossing the D3 at an arbitrary position in x3 between the two NS5s, inserting the complex scalar
operator ϕ.

26Our conventions differ from those in [12] by reversing the sign of the complex scalars ϕ and complex
masses mα.
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The relation (5.13) is derived from the brane setup of Figure 19, with a full D1

brane stretched between the two NS5s. This can be interpreted as inserting the product

of monopole operators −u+u−, with two semi-D1s ending on the D3 from above and

from below. Alternatively it can be seen as a full D1 crossing the D3, with a one-

dimensional theory living on its worldvolume in the low energy limit, together with a

zero dimensional hyper-multiplet sourced by the D1-D3 strings andNf zero-dimensional

fermions sourced by the D1-D5 strings. The analysis of this system was done in Section

4.3. Integrating out the 1d theory and the hyper-multiplet yields a trivial factor.

Integrating out the fermions produces the product of operators

Nf∏
α=1

(mα − ϕ) , (5.14)

where mα−ϕ is the complex mass of the fermion sourced by the D5-D1(α) open strings

and corresponds to the distance along x8 + ix9 between the D5 and the D1. Identifying

the two interpretations of the same brane setup gives the CB relation (5.13).

D1

NS5 NS5

D5

x7

x3

D1

NS5 NS5

D5

x8

x3

a) b)

Figure 19. a) Single D1 crossing the D3 (x3,7 plane). b) The same configuration shown in the x3,8

plane. The D1 appears on top of the D3. The D5s positions along x8 correspond to the (real part of
the) mass parameters mα.

Here we have obtained directly the CB relation from a brane setup. This is one of

the special cases when the pre-relations – the relations read from the brane setups –

directly match the full ring relations.

To check mirror symmetry we need to study the mirror theory, which is an abelian

linear quiver.
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5.2 Abelian Quiver

The extension to abelian quivers requires a few more efforts. We explain in detail the

case of the abelian linear quiver with M nodes and one fundamental hyper-multiplet in

each exterior node, which is the mirror dual theory to SQED with M + 1 flavor hyper-

multiplets. In addition to the two fundamental hyper-multiplets, the matter content

has bifundamental hyper-multiplets connecting the nodes in a linear fashion. We will

call this theory Tabel. The quiver diagram and the brane realization of Tabel are shown

in Figure 20. The brane configuration has two D5 branes, which we denote D5(1) and

D5(2), and M + 1 NS5 branes, which we denote NS5(i) with i = 1, · · · ,M + 1, labeling

the branes from left to right.

D5
(1)

NS5

1

1

(1)1 1 1

1

M  nodes

(2) (M+1)(3)

D5
(2)

Figure 20. Quiver and brane configuration of the abelian quiver Tabel with M abelian nodes. There
are M + 1 NS5 branes in the brane configuration.

5.2.1 Higgs branch

The Higgs branch of Tabel is parametrized by gauge invariant combinations of the fun-

damental hyper-multiplet complex scalars Q1, Q̃1 and Q2, Q̃2 and the bifundamental

hyper-multiplet complex scalars qi, q̃i, i = 2, · · · ,M 27. The HB chiral ring is generated

by the M + 1 “short” mesons28

X1 = −Q̃1Q
1 ,

Xi = q̃iqi , i = 2, · · · ,M ,

XM+1 = Q̃2Q
2 ,

(5.15)

27The label i is chosen to start at i = 2, so that the scalars qi, q̃i are sourced by open string stretched
across NS5(i).

28We include a minus sign in the definition of X1, and a factor (−1)M−1 in the definition of W̃
below, for convenience.
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and the two “long” mesons 29

W = Q̃1q2q3 · · · qMQ2 , W̃ = (−1)M−1Q1q̃2q̃3 · · · q̃MQ̃2 , (5.16)

subject to the trivial relation

WW̃ = (−1)M
M+1∏
i=1

Xi , (5.17)

and the F-term relations

Xi + ξ̃i = Xi+1 + ξ̃i+1 , i = 1, · · · ,M, (5.18)

where we have included the deformations by FI terms with complex parameter ηi =

ξ̃i − ξ̃i+1 for the i-th abelian node.

The brane realization of the corresponding operator insertions are

• The long mesons W and −W̃ are realized with a semi-infinite F1 string stretched

between the two D5s and ending on the D3 segments from above and from below

respectively, as in Figure 21-a,b.

• The short meson X ′1 ≡ X1 + ξ̃1 is realized with one infinite F1 string extended on

the left of the configuration and ending on D5(1), as shown in Figure 22-a. The

short meson X ′M+1 ≡ XM+1+ξ̃M+1 is realized with one infinite F1 string extended

on the right of the configuration and ending on D5(2), as shown in Figure 22-b.

We can let the F1 strings end on a D3’ brane away from the configuration, as in

these figures.

• The short meson X ′i ≡ Xi + ξ̃i, with 2 ≤ i ≤ M , is realized with a D3’ brane

crossing NS5(i) as shown in Figure 22-c, with ξ̃i the position of NS5(i) along

x5 + ix6.

To justify the brane setup realizing the long meson W , we revisit the argument

of Section 4.1 for the insertion of meson operators, focusing on the part of the setup

around one NS5 brane. In the region near NS5(i), there is an F1 string ending on the

two D3 segments attached to the NS5 on the left and on the right. On the two D3

worldvolumes live two abelian vector multiplets for two adjacent nodes U(1)i−1×U(1)i
of the quiver. Locally we know that the F1 inserts a half-BPS Wilson loop of charge

29In the notation of appendix B, we have X1 ≡ −Z1
1, XM+1 ≡ Z2

2, W ≡ Z2
1 and W̃ ≡ Z1

2.
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a) F1 b)

F1

Figure 21. Brane setups of the long mesons (a) B and (b) −B̃.

a) b)

c)

D5
(1)

D5
(2)

D3'

D5
(1)

D5
(2)

D3'

D3'

NS5
(i)

F1 F1

Figure 22. Brane setups of the short mesons (a) X ′1, (b) X ′M+1 and (c) X ′i, 2 ≤ i ≤M − 1. These
brane configurations are all related by D3’ brane moves along x3 and are ultimately a single brane
setup.

one in each node:

exp

(∫ 0

−···
dx3 (iA

(i−1)
3 + φ

(i−1)
4 )

)
exp

(∫ +···

0

dx3 (iA
(i)
3 + φ

(i)
4 )

)
, (5.19)

with NS5(i) sitting at x3 = 0. This Wilson loop operator is not gauge invariant since

the contours has a boundary at x3 = 0. The minimal operator insertion which restores
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gauge invariance is the insertion of an extra bifundamental scalar qi(P ), where P is the

point where the F1 meets the NS5 (in particular x3(P ) = 0). We propose that the full

operator insertion is

exp

(∫ 0

−(··· )
dx3 (iA

(i−1)
3 + φ

(i−1)
4 )

)
qi(P ) exp

(∫ +(··· )

0

dx3 (iA
(i)
3 + φ

(i)
4 )

)
. (5.20)

Taking into account the whole brane setup and the fact that in the low energy limit,

with the Neumann boundary conditions along x3, the Wilson loop factors trivialize, we

obtain that the brane setup of Figure 21-a inserts the product of operators30

Q̃1q2q3 · · · qMQ2 = W , (5.21)

where the product of qi comes from the F1-NS5s regions and the factors Q̃1, Q
2 come

from the F1-D3-D5 corners, as in previous sections. The insertion of the long meson

−W̃ from the setup of Figure 21-b follows the same logic, with the insertion of the

bifundamental scalar −q̃i from the F1 ending from below on the D3-NS5(i) intersection.

The minus is sign fixed for compatibility with the ring relations (that we derive below).

The setups corresponding to the insertion of the short mesons X ′1 and X ′M+1 in

Figure 22 have already been explained in previous sections.

The last setup, shown in Figure 22-c, is new. The D3’ splits into two half-branes

ending on NS5(i). In the absence of FI deformation (ξ̃i = 0), the localized open strings

low modes contain the 3d bifundamental hyper-multiplet with scalars qi, q̃i from D3-

D3 strings across NS5(i), living on a x0,1,2 slice, the 3d bifundamental hyper-multiplet

with scalars (q′, q̃′) from D3’-D3’ open strings across NS5(i), living on a x7,8,9 slice,

and two zero-dimensional fermions χ, χ̃ from the D3-D3’ open strings, living at the

intersection point of the branes. The fermions χ and χ̃ have charges (1, 0,−1, 0) and

(0, 1, 0,−1) under the U(1)i−1 × U(1)i × U(1)′up × U(1)′down 3d gauge symmetry, where

U(1)′up × U(1)′down refers to the symmetries gauged by the two half-D3’ worldvolume

fields, and which can be considered as a flavor symmetry in the infrared limit31.

Our task is to integrate out the 0d fermions χ, χ̃. These fermions can have quar-

tic couplings with the hypermultiplet fields. From the supersymmetry of the brane

configuration we know that these couplings must preserve the same four supercharges

which annihilate the scalars qi, q̃i, q
′, q̃′. The gauge invariant quartic coupling between

30In the low energy limit all the insertion points of the scalars collapse to the same point P in the
x0,1,2 3d space.

31Four-dimensional fields are frozen in the low-energy effective three-dimensional theory.
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the four multiplets, compatible with this requirement32, is

S0d ∼ χqiq̃
′χ̃+ χ̃q̃iqχ̄ . (5.22)

There are also cubic couplings of the form χ̄φχ between the 0d fermions and the 4d

complex scalars associated to the D3 (and D3’) displacements along the directions

x5 + ix6 but these scalars are set to zero by the Neumann boundary conditions on the

4d vector multiplets. Integrating out χ and χ̃ leads to the insertion of the operator

qiq̃iq
′q̃′ , (5.23)

at the point where the D3’ intersect the NS5 and the D3s. This is not yet the insertion

that we proposed above. After integrating out the 0d fermions, the fields q′ and q̃′

are decoupled from the low-energy 3d theory living on the D3s and account only for

an overall number, which we can set to one for convenience, since our analysis is not

sensitive to such factors in the final operator insertions. We end up with the insertion

of the operator q̃iqi = Xi, as predicted in the absence of FI deformation.

The complex FI deformations are associated to the displacement of the NS5 branes

along the direction x5 + ix6. The displacement of NS5(i) to the position ξ̃i is associated

to a reconnection of the D3(i−1) and D3(i) branes. It is not obvious what is the cor-

responding deformation in terms of 0d couplings. On way to understand the effect of

this deformation is to look at the brane setup inserting the meson X ′M+1 (Figure 22-b).

Moving D5(2) to the right of NS5(M+1), with D3 creation effect, and moving the D3’

brane on top of NS5(M+1) lead to a configuration identical to those inserting the Xi

operators (a D3 and a D3’ crossing an NS5). Indeed, in the absence of deformations,

the operator inserted is XM+1 = Q̃2Q
2, where (Q2, Q̃2) are seen as bifundamentals of

the U(1)gauge
M × U(1)flavor

M+1 symmetry, in agreement with the above analysis. In the FI

deformed theory, with NS5(M+1) at the position ξ̃M+1, we have argued that the opera-

tor inserted is X ′M+1 = XM+1 + ξ̃M+1. We deduce that the operator inserted is by the

D3’-D3-NS5(i) intersection in the FI deformed theory is

X ′i ≡ Xi + ξ̃i . (5.24)

We could have derived this operator insertion solely from the knowledge of the X ′M+1

brane setup. The fact that we could understand it directly from the D3’-D3-NS5

intersection, in the absence of deformation, strengthen our conclusions. Knowing the

32We remind the reader that the fermions χ, χ̃ are invariant under preserved supersymmetry trans-
formations, as are the complex scalars qi, q̃i, q

′, q̃′.
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final operator insertion, we can deduce that the FI deformation corresponds in the 0d

theory to giving masses ±
√
ξi to the two fermions,

S0d ∼
√
ξ̃i(χχ− χ̃χ) + χqiq̃

′χ̃+ χ̃q̃iqχ̄ . (5.25)

Integrating out the fermions produces the insertion ξ̃i + qiq̃iq
′q̃′ ∼ ξ̃i +Xi.

Ring relations:

F1

Figure 23. A full F1 stretched between the two D5s and crossing the D3 segments, realizing −WW̃
or (−1)M+1X1X2 · · ·XMXM+1.

The trivial ring relation (5.17) follows from considering the configuration of Figure

23 , corresponding to the insertion of the product of long mesons −WW̃ and reading

it in an alternative way as a product of mesons −X1 and −XM+1, from the F1 string

ending on D5(1) and D5(2) respectively, and of the mesons −Xi, for i = 2, · · · ,M , from

the full F1 string crossing each D3-NS5(i) intersection. This latter configuration is seen

as the product of an F1 ending on the D3-NS5(i) intersection from above, inserting

qi and an F1 ending on the D3-NS5(i) intersection from below, inserting −q̃i. The

complete insertion is thus
∏M+1

i=1 (−Xi) and the ring relation following from the two

different readings is precisely (5.17).

It is not obvious, although it must be true, from the brane setup that the complex

FI deformations do not affect this relation, namely that NS5s movements do not affect

how we read the operator insertions.

The F-term relations (5.18) follow from the D3’ brane move from the left to the

right of the quiver, connecting the brane setup inserting X ′1 (Figure 22-a) to those

inserting X ′i, for each i, (Figure 22-c) and the brane setup inserting X ′M+1 (Figure 22-

b). There is therefore truely only a single brane setup for all these operators inserting

the operator Y = Xi+ ξ̃i, for any i = 1, · · · ,M+1, solving for the F-term constraints.33

33It is also possible to analyse the related brane setups when the D3′ brane intersect a D3(i) segment
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5.2.2 Coulomb branch

The description of the Coulomb branch of the Tabel theory can be found in [12]. As a

hyper-Kähler maniflod the Coulomb branch admits a triplet of symplectic forms. The

complex structure that is chosen to describe the Coulomb branch corresponds to a

certain symplectic form, from which a Poisson bracket can be defined. As a Poisson

algebra, the Coulomb branch is generated by the monopole operators with charge ±1

under a single node, u±i , for i = 1, · · · ,M , and the complex scalars of the U(1) vector

multiplet ϕi, for i = 1, · · · ,M .

As a simple ring, additional monopole operators are needed to generate the Coulomb

branch. Those are monopoles with the same charge +1 or −1 in sequences of adja-

cent nodes, namely the operators V ±[i:j] with charges +1 and −1 respectively under each

U(1)k with i ≤ k ≤ j and zero charge under the other nodes. In the Poisson algebra

description, these operators are generated by successive Poisson brackets of monopole

operators, starting with V ±[i:i] = u±i .

The ring relations, as derived in [12], are

VAVB = VA+BPA,B(ϕi) , (5.26)

with VA the monopole operator of charge A ∈ ZM under U(1)M and PA,B(ϕi) a certain

polynomial of the ϕi, depending on the charges A,B, which is defined in Equation

(3.13) of [12]. For most choices of charges (A,B) the polynomial P is trivial (equal

to one) and the above relation can be used to eliminate the monopole VA+B from the

description of the chiral ring. Ultimately the Coulomb branch can be described in terms

of the monopole operators V ±[i:j], i ≤ j, and the scalars ϕi with the following relations

V ±[i:j]V
±

[j+1,k] = V ±[i:k](ϕj − ϕj+1) ,

V +
[i:j]V

−
[i,k] =

{
V −[j+1:k](ϕi−1 − ϕi) , for j < k ,

V +
[k+1:j](ϕi−1 − ϕi) , for k < j ,

V +
[i:j]V

−
[k,j] =

{
V +

[i:k−1](ϕj − ϕj+1) , for i < k ,

V −[k:i−1](ϕj − ϕj+1) , for k < i ,

V +
[i:j]V

−
[i,j] = (ϕi−1 − ϕi)(ϕj − ϕj+1) .

(5.27)

with ϕ0 ≡ m̃1 and ϕM+1 ≡ m̃2, the complex masses of the fundamental hyper-multiplets

of the U(1)1 and U(1)M nodes respectively. In the following it will be useful to consider

away from the NS5s. Integrating out the zero-dimensional fermion living at the intersection then
produces the expected meson operator insertion, using the analysis in [17] of the 4d SYM theory on
the D3 segments (see Section 4.3).
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a subset of the ring relations, which we call pre-relations:

u+
i u
−
i = (ϕi−1 − ϕi)(ϕi − ϕi+1) , i = 1, · · · ,M , (5.28)

j∏
k=i

u±k = V ±[i:j]

j∏
k=i+1

(ϕk−1 − ϕk) , 1 ≤ i < j ≤M , (5.29)

where u±i = V ±[i:i]. From the pre-relations (5.28), (5.29), one can generate the complete

set of CB relations described above by manipulating them and allowing to suppress

factors of (ϕi−1 − ϕi) which appear on both sides of a relation. This is the same

procedure as described in Appendix A for the SQED Higgs branch relations, and, not

surprisingly, we will show that the Tabel Coulomb branch pre-relations are mapped to

the SQED Higgs branch pre-relations under mirror symmetry.

In the dual brane description we find that only the generators of the Poisson algebra

u±i and ϕi are naturally realized:

• The insertion of the monopole operators u+
i and −u−i , which have charge 1 and −1

respectively under U(1)i and zero under the other U(1)s, are realized by adding

a semi-infinite D1 stretched between NS5(i) and NS5(i+1) and ending on the D3(i)

segment (the segment stretched between the two NS5s) from above and from

below respectively. The setups are shown in Figure 24-a and -b.

• The insertion of the scalar operator ϕi is realized by adding a D3” brane inter-

secting the D3(i) segment, which support the U(1)(i) vector multiplet, at a point,

as in Figure 24-c.

These operator insertions are immediate generalizations of the analysis of Section 4.2.

The other operators needed to generate of the Coulomb branch as a ring, namely

the operators V ±[i:j], with i < j, will appear from brane setups associated to the CB

relations.

Ring relations

The ring relations are derived by considering the brane setups of Figure 25. To

obtain the relation (5.28), we consider the setup of Figure 25-a. Seen as two semi-infinite

D1 branes ending on the D3(i) segment from above and from below, it corresponds to

the insertion of the product of fundamental monopole operators −u+
i u
−
i . Regarding it

as a single D1 brane crossing the D3 segment instead, we can integrate out the 1d fields

living on the D1 and the 0d fields sourced by the D1-D3(k), for k ∈ {i−1, i, i+1}, open

string lowest modes. This configuration is actually very close to the one of Figure 19
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a)

D3''

NS5
(i+1)

D1

x7

x3

NS5
(i)

b)

NS5
(i+1)

D1

NS5
(i)

c)

NS5
(i+1)

NS5
(i)

Figure 24. Brane setups realizing the insertion of the CB operators: a) u+i , b) −u−i , c) ϕi.

a)

NS5
(i+1)

D1

NS5
(i)

b)

NS5
(j+1)

D1

NS5
(i)

...

Figure 25. The CB ring relations are derived from the configurations: (a) with a D1 stretched
between two adjacent NS5s, realizing −u+i u

−
i or (ϕi−1 − ϕi)(ϕi+1 − ϕi), and (b) with a semi D1

stretched between two distant NS5s, ending on the D3 segments from above, realizing
∏j
k=i u

+
k or

V +
[i:j]

∏j
k=i+1(ϕk−1 − ϕk).

studied in Section 5.1.2. The only differences are the presence of D3 segments on both

sides of the NS5s and the absence of D5s. However the configuration with D5s is related

to the configuration with external D3 segments by HW brane moves. Starting with the

setup of Figure 26-a with a D3 segment attached to the right of NS5(i+1), we can let

the segment end on a D5 (Figure 26-b) and move the D5 between NS5(i) and NS5(i+1)

(Figure 26-c). According to the analysis of Section 5.1.2 the final configuration realizes
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the insertion of the local operator m − ϕi = ϕi+1 − ϕi, where m ≡ ϕi+1 is the mass

of the hyper-multiplet sourced by the D3(i)-D5 strings, or the D3(i)-D3(i+1) strings

in the original setup (corresponding to the position of D3(i+1) along x8 + ix9). The

D1

D5

x8

x3

a)

NS5
(i+1)

NS5
(i)

D3
(i)

D3
(i+1)

D1

b)

D5

D1

c)

Figure 26. The local setup (a) with an external D3 segment is related to the setup (c) with a D5
brane by letting the D3 segment end on a D5 (b) and moving it between the two NS5s. The distance
between the D5 and the D3 along x8 + ix9 is ϕi+1 − ϕi.

operator insertion corresponding to the brane setup of Figure 25-a, seen as a single D1

crossing the D3(i) segment, is therefore the product (ϕi−1−ϕi)(ϕi+1−ϕi) coming from

integrating out the D3(i−1)-D3(i) and D3(i)-D3(i+1) modes. We obtain the CB relation

(5.28).

The brane setup of figure 25-b is less straightforward to analyse. It can be seen as

j − i + 1 semi-infinite D1s extended between neighboring NS5s, inserting the product

of monopole operators
∏j

k=i u
+
k . A second way to look at the same setup is to see it

as a single semi-infinite D1 brane stretched between NS5(i) and NS5(j+1), ending on

the D3 segments from above. The ”single” D1 ending on the D3(i) to D3(j) segments

corresponds to the insertion of the monopole operator V +
[i:j], which has monopole charge

+1 in each U(1)k node from k = i to j. In addition there are contributions from the

D3-NS5 intersections with a D1 ending on the D3 from above (and crossing the NS5),

whose stringy origin is unclear. This local setup is S-dual to the D3-D5 intersection

with an F1 ending on the D3 from above (and crossing the D5), which inserts the

same operator as the D3-D5 intersection with an F1 ending on the D5 from the right

(and crossing the D3). Therefore, S-duality predicts that the D3-NS5 intersection

with a D1 ending on the D3 from above (and crossing the NS5) inserts the same

operator as the D3-NS5 intersection with a D1 ending on the NS5 from the right (and

crossing the D3), which is the local setup we analyzed in the previous paragraph. The

operator insertion is then (ϕi−1 − ϕi) for the D3-NS5(i) intersection. The rules for

such operator insertions are summarized in Appendix B. The contributions of the j− i
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intersections, together with the monopole operator insertion, yield in total the insertion

of the operator V +
[i:j]

∏j
k=i+1(ϕk−1−ϕk). Identifying the two readings of the same brane

setup we obtain the second set of relations (5.29).

The other ways to interpret the setup of Figure 25-b, splitting into various numbers

of D1 pieces, lead to redundant relations.

The CB relations (5.29) involving monopole operators with negative charges are

obtained from the same brane setup as in Figure 25-b, but with the semi D1 ending

on the D3 segments from below. The two interpretations of the setup lead to the

insertions of the operators
∏j

k=i(−u
−
k ) and (−V −[i:j])

∏j
k=i+1(ϕk − ϕk−1) respectively,

leading to the CB relations. Here again the negative charge monopole insertions come

with a minus sign and (ϕk − ϕk−1) is the contribution from the D3-NS5(k) intersection

with a D1 ending on the D3 from below, which is the same as the contribution from

the D3-NS5(k) intersection with a D1 ending on the NS5 from the left, studied before.

5.3 Mirror Symmetry

The SQED and Tabel theories are related by mirror symmetry with the identification

Nf = M+1, relating the number of SQED fundamental hyper-multiplets to the number

of nodes of Tabel. The Coulomb branch of one theory should match the Higgs branch

of the other. It is possible to find the mirror map of operators using the knowledge of

the ring relations, but this is not completely straightforward. Instead, as we advocate

in this paper, we can simply let the action of S-duality on the brane setups give us the

answer.

In the absence of operator insertions, the two dual theories are realized by the

brane setups of Figure 15 and 20, which are related by the action of type IIB S-duality,

followed by the exchange of the external pairs of D5 and NS5, on the left and on

the right of the brane configuration. The exchanges of 5-branes induce HW D3 brane

creation effects, as explained in Section 3.1. In the presence of extra strings or/and

branes inserting local operators, the identification of the brane setups proceeds in the

same way, by acting with S-duality and exchanging the external D5-NS5 pairs.

The SQED HB operators realized by the setups of Figure 16-a,b are mapped to

the Tabel CB monopole operators realized by the S-dual setups of Figure 24-a,b,

Zi+1
i

∣∣
SQED

↔ u+
i

∣∣
Tabel

, Zi
i+1

∣∣
SQED

↔ u−i
∣∣
Tabel

. (5.30)

The SQED HB operators realized by the setup of Figure 16-c,d are mapped to the

Tabel Coulomb branch scalar operators realized setups of Figure 24-c, by S-duality and
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Hanany-Witten D3” move,

Yi ≡ Z[i+1:M+1] + ξ2 (= −Z[1:i] + ξ1)
∣∣
SQED

↔ ϕi
∣∣
Tabel

, i = 1, · · · ,M , (5.31)

where we have included the FI deformation in the SQED theory. This provides the

mirror map for operators generating the Higgs/Coulomb branches as Poisson algebras.

To obtain the mirror map for all the operators appearing in a basis of the chiral

rings, we must consider the brane setups related to the ring relations and identify the

various contributions to the operator insertions across S-duality. The setup of Figure

17-a is mapped to the setup of Figure 25-a under S-duality. It implies the mapping of

the ring relations (5.6) and (5.28)

Zi+1
iZ

i
i+1 = Zi

iZ
i+1

i+1 ↔ u+
i u
−
i = (ϕi−1 − ϕi)(ϕi − ϕi+1) , (5.32)

and the identification of the different contributions to the operator insertions leads to

(5.30) and

Zi
i

∣∣
SQED

↔ ϕi−1 − ϕi
∣∣
Tabel

for i = 1, · · · ,M + 1 , (5.33)

with ϕ0 ≡ m̃1 and ϕM+1 = m̃2, the mass parameters of the Tabel theory. These latter

identifications are equivalent to (5.31), upon mapping the deformation parameters with

(ξ1, ξ2)
∣∣
SQED

↔ (m̃1, m̃2)
∣∣
Tabel

. (5.34)

The operator mapping (5.33) follows from identifying the contribution of a D3-D5

intersection with an F1 string ending on the D5, with the contribution of a D3-NS5

intersection with a D1 string ending on the NS5 (in the mirror theory).

The setup of Figure 17-b is mapped to the setup of Figure 25-b under S-duality.

It implies the mapping of the ring relations (5.9) and (5.29) (with positive charge

monopoles)

j∏
k=i

Zk+1
k = Zj+1

i

j∏
k=i+1

Zk
k ↔

j∏
k=i

u+
k = V +

[i:j]

j∏
k=i+1

(ϕk−1 − ϕk) , (5.35)

and the identification of operator insertions yields, in addition to (5.33), the mirror

map

Zj+1
i

∣∣
SQED

↔ V +
[i:j]

∣∣
Tabel

, for 1 ≤ i ≤ j ≤M . (5.36)

Similarly the setup of Figure 17-c is mapped to a setup identical to Figure 25-b but

with the D1 branes ending on the D3 from below, implying the map of the ring relation
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(5.10) and (5.29) (with negative charge monopoles) and the identification

Zi
j+1

∣∣
SQED

↔ V −[i:j]
∣∣
Tabel

, for 1 ≤ i ≤ j ≤M . (5.37)

The operator map is summarized in Table 4.

It remains to compare the Coulomb branch of SQED and the Higgs branch of Tabel.

The setups of Figure 18-a,b inserting the SQED monopole operators are mapped to

the setups of Figure 21-a,b inserting the long mesons, providing the map

u+
∣∣
SQED

↔ W
∣∣
Tabel

, u−
∣∣
SQED

↔ W̃
∣∣
Tabel

. (5.38)

The setup of Figure 18-c inserting the SQED scalar operator is mapped to the setups

of Figure 22, which are all equivalent, being related by D3’ move along x3, giving the

map

ϕ
∣∣
SQED

↔ Y
∣∣
Tabel

, (5.39)

with Y ≡ X ′i ≡ Xi + ξ̃i, for any i ∈ [1,M + 1]. We illustrate these last two S-duality

maps of brane setups in Figure 27.

Finally the brane setups of Figure 19 and 23 are mapped under S-duality and

correspond to the identification of the SQED CB relation (5.13) and Tabel HB relation

(5.17),

u+u− = −
M+1∏
i=1

(mi − ϕ) ↔ WW̃ = −
M+1∏
i=1

(ξ̃i − Y ) , (5.40)

provided we identify the FI and mass parameters as

mi

∣∣
SQED

↔ ξ̃i
∣∣
Tabel

, i = 1, · · · ,M + 1 . (5.41)

The operator and parameter maps are summarized in Table 4.

5.4 Another example

We have worked out all the rules for the insertions of chiral operators, the derivation

of the ring relations on the Higgs and Coulomb branches, and the mirror map between

operators in abelian quiver theories. In this section we illustrate our method on one

more example, extracting the results from the brane setups, without any computation,

simply by applying the rules justified in the previous sections (and summarized in

Appendix B).

Consider as theory A, or TA, a linear quiver with two abelian nodes, with one

fundamental hyper-multiplet of mass m1 in the first node and three fundamental hyper-
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D1

NS5 NS5

D5

x7

x3

a)
F1F1

D5 D5

NS5

x4

x3

S HW

NS5 NS5

D5

b)

D5 D5

NS5

S HW

D3'' D3' D3'

Figure 27. a) From the brane setup realizing the SQED monopole operator u+ to the setup realizing
the insertion of the long meson W in Tabel. b) From the brane setup realizing the SQED scalar operator
ϕ to the setup realizing the insertion of the meson Y (= X ′i) in Tabel. The letters S and HW denote
the action of S-duality and Hanany-Witten brane moves respectively.

SQED HB Tabel CB SQED CB Tabel CB

Zi
i (i = 1, · · · ,M + 1) ϕi−1 − ϕi u+ W

Zj+1
i (i ≤ j) V +

[i:j] u− W̃

Zi
j+1 (i ≤ j) V −[i:j] ϕ Y

SQED parameters Tabel parameters

ξ1, ξ2 m̃1, m̃2

mi (i = 1, · · · ,M + 1) ξ̃i

Table 4. Mirror map of HB operators and CB operators between the SQED and Tabel theories, and
mirror map of FI and mass parameters, with ϕ0 ≡ m̃1 and ϕM+1 ≡ m̃2.

multiplets of masses m2,m3 and m4 in the second node. The FI parameters are ξ1− ξ2

and ξ2 − ξ3. The mirror dual theory is theory B, or TB, with three nodes, with two

fundamental hyper-multiplets of masses m̃1, m̃2 in the first node and one fundamental
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hyper-multiplet of mass m̃3 in the third node. The FI parameters are ξ̃i − ξ̃i+1, for

i = 1, 2, 3.

The quiver diagrams and the type IIB brane configurations realizing these quiver

theories are depicted in Figure 28. The D5 and NS5 branes are labeled D5(α) and

NS5(i), with α, i increasing from left to right. The brane configurations are related by

S-duality and HW 5-brane moves, exchanging the external pairs of NS5 and D5 branes.

D5

NS5

1

1

1

1

3

(1)

1

2

1

1

(2)(1) (3)

(1) (2) (3) (4)

D5

NS5

(1) (2)(1) (4)

(1) (2) (3)

(3)

TA :

TB :

Figure 28. Quiver diagrams and brane configurations of the mirror dual theories TA and TB .

In the following we analyse the Higgs branch of TA, the Coulomb branch of TB
and the mirror map between them. The analysis of the Coulomb branch of TA and the

Higgs branch of TB is left as an exercise. The FI term deformations ξ1, ξ2, ξ3 in theory

A will be turned on, and the masses set to zero, while the masses m̃1, m̃2, m̃3 in theory

B will be turned on, with FI parameters set to zero. To make contact with the gauge

theory language we denote by (Qα, Q̃α), α = 1, · · · 4, the fundamental hyper-multiplet

scalar and (q, q̃) the bi-fundamental hyper-multiplet scalars of the TA theory. We also

denote by V ±[i:j], 1 ≤ i ≤ j ≤ 3, the monopole operators of charge ±1 in the nodes

U(1)k, i ≤ k ≤ j, and ϕi, i = 1, 2, 3, the vector multiplet complex scalars for the three

nodes of the TB theory.

The operators generating the Higgs branch of TA are of two kinds:

• For each pair of D5 branes, D5(α)-D5(β), with 1 ≤ α < β ≤ 4, there is a couple of

operators (Zα
β, Z

β
α). The operator Zα

β is associated to the contribution from
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a semi F1 string stretched between D5(α) and D5(β), ending on the D3 segment

from above. The operator −Zβ
α is associated to the contribution from a semi

F1 string stretched between D5(α) and D5(β), ending on the D3 segment from

below. Figure 29-a presents the setup inserting the operator Z2
1.34 In the gauge

theory language they are meson operators Zα
β = QαQ̃β and Zβ

α = Q̃αQ
β, for

2 ≤ α < β ≤ 4, and Z1
β = −Q1q̃Q̃β and Zβ

1 = Q̃1qQ
β, for 2 ≤ β ≤ 4.

• For each pair of adjacent D5, D5(α)-D5(α+1) with α = 1, 2, 3, there is an operator

Yα, whose insertion is achieved by adding a D3’ brane between D5(α) D5(α+1) and

crossing the D3 segment stretched between them. By moving the D3’ brane along

x3, taking care of the F1 creation effects, we obtain various brane setups inserting

the same operator Yα. Figure 29-b presents the setup inserting the operator Y3.

In the gauge theory language the operator Yα corresponds to several combinations

of meson operators, which are equal by the F-term constraints:

Yα = ξ3 +
4∑

β=α+1

QβQ̃β = ξ2 + qq̃ −
α∑
β=2

QβQ̃β = ξ1 −
α∑
β=1

QβQ̃β , (5.42)

with α = 1, 2, 3. The first expression for Yα follows from moving the D3’ to the

right of the configuration and reading the operator insertion, the second expres-

sion is obtained by moving the D3’ on top of NS5(2), and the third expression is

obtained by moving the D3’ to the left of the configuration. The operators Yα
are related to the standard meson operators X = qq̃ and Zα

α = QαQ̃α by the

equations (5.42), which can be recast as

X = Y1 − ξ2 , Zα
α = Yα−1 − Yα , α = 1, 2, 3, 4 , (5.43)

with Y0 ≡ ξ1 and Y4 = ξ3.

There are in total six operators Z and three operators Y , so nine HB generators,

after the F-term constraints have been imposed (this is already implemented in the

brane setups).

To read the HB relations constraining them, we consider two kinds of brane configu-

rations. The first set of configurations have a full F1 stretched between two consecutive

D5s, D5(α)-D5(α+1), as in Figure 29-c for α = 1. Looking at these configurations as two

34As explained in previous sections, there is no setup inserting the operators Zαβ , with |α−β| ≥ 2,
alone.
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D5

NS5

(1) (2)

(3) (4)

F1

D5

NS5

D3'a) b)

NS5

(1) (2)c)

NS5

(1) (4)d)

Figure 29. Brane setups inserting the HB operators of theory A: a) Z2
1; b) Y3; c) Z2

1(−Z1
2) or

(ξ1 − Y1)(ξ2 − Y1)(Y2 − Y1); d) Z4
3Z

3
2Z

2
1 or Z4

1(Y1 − Y2)(Y2 − Y3).

semi-infinite F1 or a single F1 leads to the identities between the operator inserted,

Zα+1
α(−Zα

α+1) =

{
Z1

1(−X)(−Z2
2) = (ξ1 − Y1)(ξ2 − Y1)(Y2 − Y1) , α = 1 ,

(Zα
α)(−Zα+1

α+1) = (Yα−1 − Yα)(Yα+1 − Yα) , α = 2, 3 ,
(5.44)

where each factor in the product corresponds to the contribution of a local brane

ingredient (F1 ending on D3, F1 ending on D5, D3-NS5 intersection with F1, ...), as

explained in detail in appendix B. We obtain the three relations

Z2
1Z

1
2 = (Y1 − Y2)(ξ1 − Y1)(ξ2 − Y1) ,

Z3
2Z

2
3 = (Y1 − Y2)(Y2 − Y3) ,

Z4
3Z

3
4 = (Y2 − Y3)(Y3 − ξ4) .

(5.45)

The second set of configurations have a semi F1 stretched between a pair of D5

branes, D5(α)-D5(β), with α + 1 < β, ending on the D3 segments from above or below.

An example is shown in Figure 29-d. Looking at the setups as several semi F1 patches

or a single semi F1 extended from D5(α) to D5(β) leads to the second set of HB pre-
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relations. For instance for (α, β) = (1, 3), we obtain the two relations

Z3
2Z

2
1 = Z3

1Z
2

2 = Z3
1(Y1 − Y2) ,

(−Z1
2)(−Z2

3) = (−Z1
3)(−Z2

2) = (−Z1
3)(Y2 − Y1) .

(5.46)

In total we get the six pre-relations

Z3
2Z

2
1 = Z3

1(Y1 − Y2) , Z1
2Z

2
3 = Z1

3(Y1 − Y2) ,

Z4
3Z

3
2 = Z4

2(Y2 − Y3) , Z2
3Z

3
4 = Z2

4(Y2 − Y3) ,

Z4
3Z

3
2Z

2
1 = Z4

1(Y1 − Y2)(Y2 − Y3) , Z1
2Z

2
3Z

3
4 = Z1

4(Y1 − Y2)(Y2 − Y3) ,
(5.47)

completing the three relations (5.45).

The analysis of the Coulomb branch of the TB theory is completely analogous. A

basis of CB generators is given by two sets of operators:

• For each pair of NS5 branes, NS5(i)-NS5(j+1), with 1 ≤ i ≤ j ≤ 3, there is a couple

of operators V ±[i:j]. The operator V +
[i:j] is associated to the contribution from a semi

D1 string stretched between NS5(i) and NS5(j+1), ending on the D3 segments from

above. The operator −V −[i:j] is associated to the contribution from a semi D1 string

stretched between NS5(i) and NS5(j+1), ending on the D3 segments from below.

Figure 30-a presents the setup inserting the operator V +
[1:1].

35 In the gauge theory

language the operators V ±[i:j] are monopoles of charge ±1 under the U(1)(k) nodes

for i ≤ k ≤ j, and vanishing charge under the other nodes.

• For each pair of adjacent NS5, NS5(i)-NS5(i+1) for i = 1, 2, 3, there is an operator

ϕi, corresponding to the vector multiplet complex scalar of the ith node, whose

insertion is achieved by adding a D3” brane between NS5(i) and NS5(i+1), crossing

the D3 segment stretched between them. Figure 30-b presents the setup inserting

the operator ϕ3.

There are in total six operators V ± and three operators ϕ, so nine CB generators.

As for the Higgs branch, the CB pre-relations are read from two kinds of brane setups.

The first setups consist of a full D1 stretched between two consecutive NS5s, NS5(i)-

NS5(i+1), as in Figure 30-c for i = 1. Looking at these configurations as two semi-infinite

D1, inserting the product of monopoles V +
[i:i](−V

−
[i:i]), or as a single D1 leads to the three

35As explained in previous sections, there is no setup inserting the operators V ±[i:j], with |i− j| ≥ 1,

alone.
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D5

NS5

(1) (2)D1 D3'a) b)

(4)(3)

D5

NS5

(1) (2)D1c) (1) (4)D1d)

Figure 30. Brane setups inserting the CB operators of theory B: a) V +
[1:1]; b) ϕ3; c) V +

[1:1](−V
−
[1:1])

or (m1 − ϕ1)(m2 − ϕ2)(ϕ2 − ϕ1); d) V +
[1:1]V

+
[2:2]V

+
[3:3] or V +

[1:3](ϕ1 − ϕ2)(ϕ2 − ϕ3).

identities
−V +

[1:1]V
−

[1:1] = (m̃1 − ϕ1)(m̃2 − ϕ2)(ϕ2 − ϕ1) ,

−V +
[2:2]V

−
[2:2] = (ϕ1 − ϕ2)(ϕ3 − ϕ2) ,

−V +
[3:3]V

−
[3:3] = (ϕ2 − ϕ3)(m̃3 − ϕ3) .

(5.48)

The right-hand side factors (m̃i−ϕj) correspond to contributions from D1s crossing the

D3(j) segment and intersecting D5(i) at a point, and the factors ±(ϕi−ϕi−1) corresponds

to the contributions of a NS5-D3 intersection with a D1 ending on the NS5 from the

left or from the right.

The second kind of configurations have a semi D1 stretched between a pair of NS5

branes, NS5(i)-NS5(j+1), with i < j, ending on the D3 segments from above or from

below. The case (i, j) = (1, 3) is presented in Figure 30-d. Looking at the setups as

several semi D1s inserting the product of monopole operators
∏j

k=i(±V
±

[k:k]) or a single
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semi D1 extended from NS5(i) to NS5(j+1) leads to the six remaining CB pre-relations

V ±[1:1]V
±

[2:2] = V ±[1:2](ϕ1 − ϕ2) ,

V ±[2:2]V
±

[3:3] = V ±[2:3](ϕ2 − ϕ3) ,

V ±[1:1]V
±

[2:2]V
±

[3:3] = V ±[1:3](ϕ1 − ϕ2)(ϕ2 − ϕ3) .

(5.49)

The relations (5.48) and (5.49) are the pre-relations from which one can extract the

full set of CB relations of the TB theory.

Mirror symmetry:

From our description of the HB and CB operators from brane setups, it is immediate

to identify the mirror map. The setups realizing the HB operator insertions in theory

A are S-dual to the setups realizing the CB operator insertions in theory B (Figures

29-a,b are S-dual to Figures 30-a,b), and the setups realizing the HB pre-relations in

theory A are S-dual to the setups realizing pre-relations in theory B (Figures 29-c,d are

S-dual to Figures 30-c,d). This leads to the mirror map of operators and parameters

presented in Table 5 and the map between the pre-relations (5.45) and (5.48) on one

side, and between the pre-relations (5.47) and (5.49) on the other side.

Theory A: HB Theory B : CB

Yi (i = 1, 2, 3) ϕi

Zj+1
i (i ≤ j) V +

[i:j]

Zi
j+1 (i ≤ j) V −[i:j]

Theory A: FI param. Theory B: mass param.

ξ1, ξ2, ξ3 m̃1, m̃2, m̃3

Table 5. Mirror map of HB operators of TA and CB operators of TB , and mirror map of FI and
mass parameters.

6 Other chiral operators

So far the discussion has been focused solely on finding the brane setups inserting HB

and CB operators entering in bases of the chiral rings. In the gauge theory description

of the Coulomb branch it is natural to consider monopole operators of higher magnetic

charges. Ultimately these higher charge monopoles are expressed through additional

relations in terms of the monopole operators of lower charge forming a basis of the
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Coulomb branch. In the description of the Higgs branch these redundant operators

are simply products of mesons. For completeness we discuss in this section the brane

setups inserting some of these higher charge operators (or these products of operators).

On the Higgs branch side, products of meson operators can be realized by brane

setups with several F1 strings and/or several D3’ branes. For instance, in the T [SU(2)]

theory studied in Section 4 one can consider the setup with n semi F1 strings stretched

between the two D5s and ending on the D3 from above, as shown in Figure 31-a. Each

semi F1 inserts a factor of the meson operator Z2
1, leading to the total insertion of

(Z2
1)n. We can also consider the setup with several m D3’ branes positioned between

the two D5s, as in Figure 31-b, inserting the product of operators Y m ≡ (−Z1
1−ξ1)m =

(Z2
2− ξ2)m. A setup inserting the product Z2

1Y
2 is shown in Figure 31-c. Notice that

n F1a) b)

m D3'

...

...

c)

Figure 31. Products of HB operators (mesons) are inserted by adding several F1 strings and D3’
branes to the setups. a) n semi F1s inserting (Z2

1)n, b) m D3’s inserting Y m = (Z2
2 − ξ2)m, c) One

semi F1 and two D3’s inserting Z2
1Y

2.

the s-rule (see Section 3.1) forbids to attach more that one F1 string between a D3’ and

a D5 brane, therefore the only way to have several strings attached to a D3’ brane is that

each of them ends on a different D5. This restricts the set of possible configurations.

For the T [SU(2)] theory, the various brane setups realize all the products of mesons

(Z2
1)n1(Z1

2)n2Y n3 , for n1, n2, n3 ≥ 0.

On the Coulomb branch side, there are monopole operators VA of arbitrary mag-

netic charge A ∈ ZM under a U(1)M Cartan gauge symmetry, dressed by products of

scalar operators ϕi [12]. These higher charge monopoles are realized by brane setups

with several D1 strings and D3” branes. In the simple case of the T [SU(2)] theory, we

can consider n semi D1s stretched between the two NS5s and ending on the D3 segment

from above, as in Figure 32-a. The insertion corresponds to a monopole operator Vn
of charge n. It can also be interpreted as the product of monopole operators (u+)n,

leading to the CB relation Vn = (u+)n. The setup of Figure 32-b with m D3” branes
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inserts the products of scalars ϕm. The setup of Figure 32-c inserts the operator u+ϕ2.

Here also the possible brane setups are restricted by the s-rule which imposes that there

is at most a single D1 string stretched between a D3” brane and an NS5 brane.

n D1a) b)

m D3''

...

...

c)

Figure 32. Products of CB operators are inserted by adding several D1 strings and D3” branes to
the setups. a) n semi D1s inserting (u+)n, b) m D3”s inserting ϕm, c) One semi D1 and two D3”s
inserting u+ϕ2.

These three brane setups of Figure 32 are S-dual to those of Figure 31, confirming

the mirror map between operators (u+, ϕ)↔ (Z2
1, Y ).

In more sophisticated abelian theories one can consider richer setups which have

many interpretations, corresponding to operator insertions identified by ring relations.

Let us give one example. We consider the CB operator insertion in the theory B of

Section 5.4 given by the brane setup of Figure 33. The presence of the two D3” branes

corresponds to the insertion of the product ϕ1ϕ3. The insertion due to the D1 branes

can be interpreted in various ways. As four distinct semi D1s, they insert the products

−V(2,0,0)V(0,1,0)V(0,−1,0) = −(V(1,0,0))
2V(0,1,0)V(0,−1,0). Recombining the two semi D1 in

the middle across the D3 segment leads to the insertion of V(2,0,0)(ϕ1 − ϕ2)(ϕ3 − ϕ2) =

(V(1,0,0))
2(ϕ1−ϕ2)(ϕ3−ϕ2). Recombining instead two D1s on the upper side across the

NS5 leads to the insertion of −V(2,1,0)(ϕ1−ϕ2)V(0,−1,0) = −V(1,0,0)V(1,1,0)(ϕ1−ϕ2)V(0,−1,0).

Here we denoted V(n1,n2,n3) the monopole operator of charge (n1, n2, n3). All these

operators are equal by the CB relations. The relations that we obtain from such

complicated setups are therefore correct but redundant. The operators V(2,0,0) and

V(2,1,0) can be eliminated by the relations V(2,0,0) = (V(1,0,0))
2 and V(2,1,0) = V(1,0,0)V(1,1,0)

(which follow from simpler brane setups).

– 61 –



D1

D3'

2 1

1

D3'

Figure 33. Setup with D1s and D3”s. The numbers indicate the number of superposed
D1s in each region. The setup can be interpreted as inserting for instance the operators
−V(2,0,0)V(0,1,0)V(0,−1,0)ϕ1ϕ3 or (V(1,0,0))

2(ϕ1 − ϕ2)(ϕ3 − ϕ2)ϕ1ϕ3.

7 Non-abelian theories

It would be very interesting to generalize this analysis to non-abelian theories and to

find a set of simple rules to derive the non-abelian Coulomb branch relations and the

mirror maps in a systematic way. This generalization is not straightforward, in the

sense that it is not obvious that brane setups can be found which insert each of the

CB and HB operators in non-abelian theories with brane realizations.. However, by a

simple analysis, we can derive the abelianized relations discussed in [12], from which one

can extract the actual CB relations of the non-abelian theory by the method explained

in that paper 36. These are the Coulomb branch relations of the abelian low-energy

theory that one obtains by moving at a generic point of the Coulomb branch with

corrections due to massive W-bosons. It is worth noting that the abelianized relations

were postulated37 in [12] and that the present discussion constitutes a direct derivation

of these relations relying on brane technology.

Let us consider the simple example of U(N) SQCD with Nf fundamental hyper-

multiplets. The gauge field Aµ and the complex scalar ϕ belong to the u(N) algebra

and we can view them as N ×N matrices. One can define a monopole operator MA,p

by specifying Dirac monopole singularities with integer charges A = (n1, n2, · · · , nN)

for the diagonal components of the gauge field at a point in space. This breaks the

36The basic idea is the following. Each non-abelian operator can be expressed as a gauge invariant
polynomial in the abelian operators (abelianization map) and the abelianized relations can be re-
expressed as relations between the non-abelian operators, giving the CB relations of the non-abelian
theory.

37Except for the Coulomb branch relation for N = 4 SQED which was derived in [3] using CFT
methods.
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Figure 34. Quiver diagram and brane realization of U(N) SQCD.

gauge group U(N) to a subgroup H, which is generically a maximal torus U(1)N . The

monopole operator is then dressed with an H-invariant polynomial p(ϕH) of the com-

plex scalar ϕ restricted to H, which is generically a polynomial of the diagonal elements

ϕa, a = 1, · · · , N . The abelianization map of [12] maps a non-abelian monopole opera-

tor MA,p to a combination of monopole operator VA dressed with complex scalars ϕa of

the low-energy abelian theory of generic Coulomb branch loci. The Coulomb branch of

the non-abelian theory is a sub-ring of the Coulomb branch of the abelian theory and

the non-abelian ring relations can be extracted from “abelianized relations” involving

the operators of the abelian theory.

In the case of SQCD with Nf flavors, the abelianized relations read38

u+
a u
−
a = −

Nf∏
α=1

(mα − ϕa)

N∏
b=1
b 6=a

(ϕb − ϕa)2

, a = 1, · · · , N , (7.1)

where u±a , ϕa, a = 1, · · · , N , are the abelian monopole operators and complex scalar

operators of the U(1)N low-energy abelian theory at a generic point on the Coulomb

branch. The difference with the relations of actual abelian quiver theories is the pres-

ence of the factors (ϕb − ϕa)2 in the denominator on the right hand side, due to the

presence of massive W-bosons in the low-energy theory on the Coulomb branch. A

basis of generators of the non-abelian Coulomb branch is given by Weyl invariant

combinations of the abelian operators u±a , ϕa with minimal magnetic charge, M±
n =∑N

a=1 u
±
a

∏
b1 6=···6=bn 6=a ϕb1 · · ·ϕbn and vanishing magnetic charge, Φn =

∑
a1 6=···6=an ϕa1 · · ·ϕan .

The non-abelian CB relations obeyed by these operators amounts to rewriting the

38There is a sign difference with respect to the formula in [12], which can be absorbed in a redefinition
of the vector multiplet complex scalars by a minus sign.
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abelianized relations (7.1) in terms the these Weyl invariant generators, as detailed in

[12]. We propose to recover the (crucial) abelianized relations (7.1) from a brane setup.

The brane configuration realizing U(N) SQCD with Nf hyper-multiplets as its low-

energy limit consists of N D3 segments stretched between two NS5 branes with Nf D5

branes crossing the D3s ( Figure 34). In the brane picture, moving to a generic point on

the Coulomb branch by giving vevs to the diagonal components ϕa of the complex scalar

is achieved by moving the D3 segments along the x8+i9 direction, with the position of

the D3 segments corresponding to the abelian scalars vevs 〈ϕa〉, a = 1, · · · , N .

To obtain the abelianized relations the relevant brane setup is that of Figure 35,

where the D3 segments are separated. In addition the setup has a D1 brane stretched

between the two NS5s and intersecting one of the D3 segments, say the D3(a) segment

supporting the U(1)(a) Cartan gauge symmetry. This setup can be interpreted as two

semi D1 branes ending on D3(a) inserting the product of abelian monopole operators

−u+
a u
−
a according to the rules explained in previous sections.39

NS5

D3

NS5

D5

D1

Figure 35. Brane setup in the 3d space (x3, x7, x8) with a D1 string stretched between the two
NS5s and intersecting a D3 brane. In this example there are N = 5 D3s and Nf = 4 D5s.

The second interpretation is that of a single D1 brane crossing the D3. This setup

is essentially the same as that of Section 4.3 and Figure 11. The operator insertion

comes from integrating out the low-energy fields living on the D1 and those living at

the D1-D5 and D1-D3 intersections.

The D1 brane theory is a 2d N = (8, 8) U(1) vector multiplet placed on an interval

with half-BPS Neumann boundary conditions. These boundary conditions set to zero

39As in Section 4.2, we assume here that there is no contribution to the operator insertion from
D1-D5 or D1-D3 string modes. This is can be heuristically understood by noting that a semi D1 is
dissolved into the D3 segment (or forms a spike) so that there is no separate D1-D5 or D1-D3 strings,
but only D3-D5 and D3-D3 strings.
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three out of the eight real scalars and the vector field component along x3. In the low

energy limit the massless modes make an 1d N = (4, 4) vector multiplet, which has

five scalars corresponding to the motions of the D1 along the directions x0,1,2,7,8.

The D1-D3b open string low modes make a 1d hypermultiplet living on the interval

between the two NS5s. The fields of the hyper-multiplet are (qr, ψ
ṙ
±), r = 1, 2, ṙ =

1, 2, where qr denote the two complex scalars and ψṙ± the four fermions, which have

a single complex component in 1d. As is frequently the case when dealing with a

supersymmetric theory on Euclidean space it will be useful to treat the conjugate fields

(qr, ψ± ṙ) as independent fields to begin with. The hyper-multiplet has charge (1,−1)

under the U(1)D1 × U(1)D3 gauge symmetries and therefore is coupled to the 2d and

3d vector multiplets living on the D1 and D3 respectively. The couplings are canonical

couplings to 1d N = (4, 4) vector multiplets embedded inside the 2d and 3d vector

multiplets. In particular the 2d and 3d vector multiplet scalars appear as masses for

the 1d hyper-multiplet.40

The boundary conditions on this hyper-multiplet at the boundaries of the interval,

compatible with the Neumann boundary conditions for the vector multiplets, are im-

posing ∂3qr = 0. Since the boundary condition is half-BPS, half of the fermions are set

to zero at the boundaries as well, while the other half obeys the Neumann condition

∂3ψ = 0. To understand this in detail, let us write the low-energy effective action and

the supersymmetry transformations, keeping all the fermions for the moment. In the

low-energy limit the theory is zero dimensional and the only term in the action is a

mass coupling to the vector multiplet scalars which are not set to zero by the boundary

conditions,41

S0d = |Φ|2qrqr + Φψ+ ṙψ
ṙ
− + Φψ− ṙψ

ṙ
+ , (7.2)

where Φ = ϕb − ϕa is the complex mass of the 0d hyper-multiplet, computed as the

difference between the D3(b) position ϕb and the D1 position ϕa along x8+i9. The 0d

supersymmetry transformations obtained by dimensional reduction of the 2d N = (4, 4)

40In this analysis the 2d and 3d fields can be treated as background fields.
41In principle there should be additional Yakawa couplings involving the fermions of the 2d and 3d

vector multiplets, which are the superpartners of Φ. Here we perform the computation in the situation
when these background fermions are set to zero, assuming that the final result is unchanged when they
are turned on. The fact that we obtain in the end a supersymmetric chiral operator after integrating
out the 0d theory and that these background fermions do not enter in chiral operators justifies this
assumption.
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transformations (or from 6d N = (1, 0)) are

δqr = ψṙ−ε+ rṙ + ψṙ+ε− rṙ , δqr = −ψṙ+ε
rṙ
+ − ψṙ−εrṙ− ,

δψṙ+ = Φqrε
rṙ
− , δψ+ ṙ = Φqrε+ rṙ ,

δψṙ− = Φqrε
rṙ
+ , δψ− ṙ = Φqrε− rṙ ,

(7.3)

where ε± rṙ parametrize eight supercharges. Out of these eight supercharges, four are

broken by the boundary conditions on the interval, which set to zero half of the fermions.

There are several choices of which fermions to set to zero, each preserving a certain

subset of supercharges. Studying the different choices we find that there is a single

choice leading to an operator insertion preserving the supercharges of a Coulomb branch

operator, which are the supercharges preserved by the original brane configuration. The

correct boundary condition is then

ψ+ ṙ = ψṙ− = 0 , (7.4)

preserving the four supercharges parametrized by ε− rṙ, leading to a 0d N = (4, 0)

theory. This analysis indicates that the appropriate reality condition on the 0d fermions

is not the usual Lorentzian reality condition (ψṙ±)∗ = ±ψ± ṙ and (ε± rṙ)
∗ = ∓εrṙ∓ , which

would lead to a real action, but instead we have (ψṙ±)∗ = ±ψ∓ ṙ and (ε± rṙ)
∗ = ∓εrṙ± and

a complex action. After setting ψṙ− = 0, we obtain

S0d = |Φ|2qrqr + Φψ− ṙψ
ṙ
+ . (7.5)

Integrating out the two complex scalars qr and the two complex fermions ψṙ+ leads to

the operator insertion

Φ
2

|Φ|4
=

1

Φ2
=

1

(ϕb − ϕa)2
, (7.6)

which is indeed a CB operator, confirming that we have correctly derived the boundary

conditions on the hyper-multiplet fermions.

In the brane setup (Figure 35) there are N D1-D3 hyper-multiplets, however one

of them, the D1-D3(a) is massless, since the D1 is exactly crossing D3(a) and its con-

tribution is diverging. The path integral must be regularized by removing the massless

modes. This leaves the contribution of the N − 1 massive hyper-multiplets

1∏
b 6=a

(ϕb − ϕa)2
. (7.7)
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In addition there are Nf zero-dimensional fermions with complex masses mα − ϕa
sourced by the D1-D5(α) open strings modes, with α = 1, · · · , Nf . As explained in

Section 4.3, integrating out these fermions lead to the insertion of the product of CB

operators
∏Nf

α=1(mα − ϕa). The total operator insertion is then∏Nf

α=1(mα − ϕa)∏
b 6=a

(ϕb − ϕa)2
. (7.8)

Equating this insertion with the product of abelian monopoles −u+
a u
−
a obtained by the

first interpretation of the brane setup reproduces the SQCD abelianized relation (7.1).

Once again we have shown that the Coulomb branch relations can be derived

by studying specific brane setups. This analysis can be generalized to deriving the

abelianized ring relations of arbitrary non-abelian linear quiver theory with unitary

nodes, from which the Coulomb branch relations of the non-abelian theory are derived

following the approach of [12]. We did not find a way to extract directly the non-abelian

CB relations from the brane picture. It might be possible however to extract the mirror

map of operators in a simple way. We leave this analysis for future work.

Finally we can comment on the derivation of the Higgs branch relations in non-

abelian theories. These relations are usually derived from the description of the Higgs

branch as a hyper-Kähler quotient (or a holomorphic quotient), which follows from the

Lagrangian description of the theory. However one may wonder how the Higgs branch

would arise from the brane approach. It is beyond the scope of this paper to provide the

algorithmic derivation of non-abelian Higgs branch relations from branes, but we can

sketch how this would work. As in the Coulomb branch analysis above, the idea would

be to derive the equivalent of abelianized relations from brane setups and to construct

the non-abelian relations from them. The analogue of the low-energy abelian theory

at generic points on the Coulomb branch is the low-energy free hypermultiplets theory

at generic points on the Higgs branch42, which corresponds to moving D3 segments

stretched between D5s along the x5,6 directions. In this “free theory” the HB operators

are inserted by F1 strings stretched between couples of D5s and ending on a given D3

segment, and by D3’ branes placed between neighboring D5s and crossing a given D3

segment. These are the analogue the abelian operators u±a , ϕa in the Coulomb branch

analysis above. The HB operators in the non-abelian theory are then constructed as

polynomials in the free theory operators which are invariant under permutations of the

D3 segments (note that this is not the Weyl group of the non-abelian theory). The non-

abelian HB relations would be obtained from a set of relations, which are the analogue

42If the theory is bad in the sense of [17] there is some residual interacting gauge theory as well.
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of the abelianized relations for the Coulomb branch. These relations would follow from

brane setups with full F1 strings stretched between two D5s and crossing a D3 segment.

The details of the brane reading procedure would need a longer discussion and there

might be additional brane setups to be considered to obtain the full set of Higgs branch

relations in a generic non-abelian theory. The simplest situation where one could test

this method would be for a non-abelian quiver theory whose brane realization has only

two D5s (two fundamental hypermultiplets).

The main idea is that the brane analysis provides a derivation of the abelianized

relations for the Coulomb branch and of an analogue set of relations for the Higgs

branch, from which the CB and HB relations of the non-abelian theory can be derived

following the method of [12].
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A SQED Higgs branch relations

In this appendix we show that the per-relations (5.6), (5.9) and (5.10), following from

the brane setup analysis, imply the trivial Higgs branch relations (5.2).

Let us assume α < β < γ < δ. Using (5.9) and (5.10), we have

Zδ
α

δ−1∏
ε=α+1

Zε
ε =

δ−1∏
ε=α

Zε+1
ε = Zβ

α

( β−1∏
ε=α+1

Zε
ε

)( γ−1∏
ε=β

Zε+1
ε

)
Zδ

γ

( δ−1∏
ε=γ+1

Zε
ε

)
Zβ

γ

γ−1∏
ε=β+1

Zε
ε =

γ−1∏
ε=β

Zε
ε+1 .

(A.1)
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Multiplying these two equations together we obtain

Zδ
αZ

β
γ

δ−1∏
ε=α+1

Zε
ε

γ−1∏
ε=β+1

Zε
ε = Zβ

αZ
δ
γ

( β−1∏
ε=α+1

Zε
ε

)( δ−1∏
ε=γ+1

Zε
ε

)( γ−1∏
ε=β

Zε+1
εZ

ε
ε+1

)
= Zβ

αZ
δ
γ

( β−1∏
ε=α+1

Zε
ε

)( δ−1∏
ε=γ+1

Zε
ε

)( γ−1∏
ε=β

Zε
εZ

ε+1
ε+1

)
= Zβ

αZ
δ
γ

δ−1∏
ε=α+1

Zε
ε

γ−1∏
ε=β+1

Zε
ε ,

(A.2)

where the second equality follows from using (5.6). Dividing by
∏δ−1

ε=α+1 Z
ε
ε

∏γ−1
ε=β+1 Z

ε
ε

on both side yields

Zδ
αZ

β
γ = Zβ

αZ
δ
γ , (A.3)

which is the Higgs branch relation (5.2). This can be done when
∏

α<ε<δ Z
ε
ε

∏
β<ε<γ Z

ε
ε 6=

0. We know that the relation still holds even when this product vanishes, but, strickly

speaking this does not follow from the relations (5.6), (5.9) and (5.10), and we must

add this freedom to divide on both side of a relation by the Zε
ε operators to obtain the

full set of HB relations.

The relations with a different ordering between α, β, γ, δ, as well as the cases when

some of these indices are equal, can be obtained with similar computations, without

difficulty.

B Brane setup - Operator insertion dictionary

In this appendix we summarize the rules for inserting/reading Higgs branch and Coulomb

branch operators from brane setups and we provide the general mirror map of operators

and deformation parameters.

The HB operator insertions require a little more effort to extract than the CB

insertions. This is related to the fact that the brane setups automatically solve for the

F-term conditions, so that the natural operator insertions are sometimes combinations

of the standard meson operators.

In the brane configuration realizing the abelian quiver theory with M nodes and K

fundamental hyper-multiplets, we label the NS5 branes as NS5(i) with i = 1, · · · ,M+1,

increasing from left to right, and the D5 branes as D5(α) with α = 1, · · · , K, increasing

from left to right as well.

– 69 –



B.1 Higgs branch operators

To each D5(α)-D3 intersection is associated a fundamental hyper-multiplet with complex

scalars (Qα, Q̃α), sourced by the D5-D3 open strings. To each NS5(i)-D3 intersection

is associated a bifundamental hyper-multiplet with complex scalars (qi, q̃i), sourced by

the D3(i−1)-D3(i) open strings stretched across the NS5.

An F1 string ending on a D5(α)-D3 corner corresponds to the insertion of a scalar

operator Qα, or ±Q̃α as described in Figure 36-a,b,c,d, and an F1 string ending on the

D3 of a NS5(i)-D3 intersection corresponds to the insertion of a scalar operator qi or

−q̃i, as described in Figure 36-e,f.

In terms of gauge invariant meson operators we have meson insertions according to

the prescriptions of Figure 37. In addition there are setups involving D3’ branes which

also insert meson operators. Those insertions are affected by the FI term deformations

ηi = ξi − ξi+1, with ξi corresponding to the position of NS5(i). They are shown in

Figure 38. The mesons Yα inserted by the setups with a D3’ standing between D5(α)

and D5(α+1) are related to the mesons Zα
α inserted by the setups of Figure 37-a,b,c,d,e

by the relation

Zα
α = Yα−1 − Yα , α = 1, · · · , K ,

Xi = Yδ(i) − ξi , with NS5(i) ∈ [D5(δ(i)),D5(δ(i)+1)] ,
(B.1)

where Y−1 = ξ1 and YK = ξM+1, and for the second relation δ(i) is defined by the fact

that NS5(i) sits between D5(δ(i)) and D5(δ(i)+1) in the brane setup. The meson operators

inserted by the setups of Figure 37 and 38 form a basis of the HB chiral ring.
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Figure 36. Setups inserting hyper-multiplet scalar operators. The insertions are: a) Qa, b) Q̃a, c)

−Q̃a, d) Qa, e) qi, f) −q̃i.
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D5

(α)
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(β)
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NS5

(j)

F1
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NS5
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Figure 37. Setups with F1 strings inserting HB operators (mesons). The insertions are: a)

−Zαα ≡ −Q̃αQα, b) Zαα, c) Zαα, d) −Zαα, e) −Xi ≡ −qiq̃i, f) Zβα ≡ Q̃α(
∏j
k=i qk)Qβ , g)

−Zαβ ≡ (−)i−jQα(
∏j
k=i q̃k)Q̃β .

B.2 Coulomb branch operators

To a D3(i) segment stretched between NS5(i) and NS5(i+1), is associated a U(1)(i) gauge

symmetry and the vector multiplet complex scalar ϕi, whose insertion is realized by

the brane setup of Figure 39, with a D3” brane crossing the D3(i) segment. In addition

the setups with D1 and NS5(i) branes of Figure 40-a,b,c,d correspond to the insertions

of the combinations of complex scalars ±(ϕi−1 − ϕi) and the setup with D1 and D5(α)
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D3'
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(1) (α)

d)

...
NS5
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Figure 38. Setups with D3’ branes inserting HB operators. The insertion of the figures a,b,c
and d are related by HW D3’ move and insert the same operator Yα ≡ ξ1 −

∑α
γ=1 Z

γ
γ = ξM+1 +∑K

γ=α+1 Z
γ
γ = ξi +Xi +

∑α+P
γ=α+1 Z

γ
γ (F-term constraints).

branes of Figure 40-e corresponds to the insertion of (mα − ϕi), with mα the complex

mass of the hyper-multiplet sourced by the D5.

The insertion of monopole operators are related to the brane setups of Figure

41. To a pair of NS5 branes, NS5(i)-NS5(j+1) with i ≤ j, with a D1 string stretched

between them and ending on the D3 segments, is associated the monopole operators

V +
[i:j] or −V −[i:j], depending whether the D1 end on the D3 from above or from below,

which have magnetic charges +1 or −1 under each U(1)(k) with i ≤ k ≤ j.

The CB operators inserted by the setups of Figure 39 and 41 form a basis of the

Coulomb branch chiral ring.
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NS5
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Figure 39. Setup with a D3” brane crossing the D3(i) segment, inserting ϕi.
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Figure 40. Setups with D1 strings inserting scalar CB operators. The insertions are: a) ϕi − ϕi−1,
b) ϕi−1 − ϕi, c) ϕi − ϕi−1, d) ϕi−1 − ϕi, e) mα − ϕi.

a)

NS5
(j+1)

D1

NS5
(i)

...

b)

NS5
(j+1)

D1NS5
(i)

...

Figure 41. Setups with D1 strings inserting monopole operators. The insertions are: a) V +
[i:j], b)

−V −[i:j]. The branes which might stand in the place of the dots “...” insert additional CB operators.
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B.3 Mirror Map

From the action of S-duality on the brane setups, one obtains the mirror map between

HB and CB operators of a pair of dual theories A and B presented in Table 6 and the

map of FI and mass parameters.

Theory A: HB Theory B : CB

Yi ϕi

Zi
i ϕi−1 − ϕi

Xi ϕf(i) − m̃i

Zj+1
i (i ≤ j) V +

[i:j]

Zi
j+1 (i ≤ j) V −[i:j]

Theory A: FI param. Theory B: mass param.

ξi m̃i

Table 6. Mirror map of Higgs branch (HB) operators of TA and Coulomb branch (CB) operators of
TB , and mirror map of FI and mass parameters. ϕf(i) denotes the scalar of the U(1)f(i) node under
with the hyper-multiplet of mass m̃i is charged.
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