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Abstract

Detector description is a key component of detector design studies, test beam analyses, and
most of particle physics experiments that require the simulation of more and more different
detector geometries and event types. This paper describes DD4hep, which is an easy-to-use
yet flexible and powerful detector description framework that can be used for detector sim-
ulation and also extended to specific needs for a particular working environment. Linear
collider detector concepts ILD, SiD and CLICdp as well as detector development collabor-
ations CALICE and FCal have chosen to adopt the DD4hep geometry framework and its
DDG4 pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plu-
gins suite includes a wide variety of input formats, provides access to the Geant4 particle
gun or general particles source and allows for handling of Monte Carlo truth information,
e.g. by linking hits and the primary particle that caused them, which is indispensable for
performance and efficiency studies. An extendable array of segmentations and sensitive de-
tectors allows the simulation of a wide variety of detector technologies. This paper shows
how DD4hep allows to perform complex Geant4 detector simulations without compiling a
single line of additional code by providing a palette of sub-detector components that can be
combined and configured via compact XML files. Simulation is controlled either completely
via the command line or via simple Python steering files interpreted by a Python executable.
It also discusses how additional plugins and extensions can be created to increase the func-
tionality.
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Abstract. Detector description is a key component of detector design studies, test beam
analyses, and most of particle physics experiments that require the simulation of more and more
di↵erent detector geometries and event types. This paper describes DD4hep, which is an easy-
to-use yet flexible and powerful detector description framework that can be used for detector
simulation and also extended to specific needs for a particular working environment. Linear
collider detector concepts ILD, SiD and CLICdp as well as detector development collaborations
CALICE and FCal have chosen to adopt the DD4hep geometry framework and its DDG4
pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plugins suite
includes a wide variety of input formats, provides access to the Geant4 particle gun or general
particles source and allows for handling of Monte Carlo truth information, eg. by linking hits
and the primary particle that caused them, which is indispensable for performance and e�ciency
studies. An extendable array of segmentations and sensitive detectors allows the simulation of a
wide variety of detector technologies. This paper shows how DD4hep allows to perform complex
Geant4 detector simulations without compiling a single line of additional code by providing a
palette of sub-detector components that can be combined and configured via compact XML
files. Simulation is controlled either completely via the command line or via simple Python
steering files interpreted by a Python executable. It also discusses how additional plugins and
extensions can be created to increase the functionality.

1. Introduction

For a long time, high energy physics experiments have been striving to develop software tools for
the complete description of detector models based a single source of information. For the success
of an experiment it is important to provide a consistent detector description to simulation,
reconstruction and analysis applications from a single source. When referring to the detector
description this includes, in addition to the geometry and the materials used in the device,
also parameters describing e.g. the detection techniques, constants required for alignment and
calibration, description of the readout structures and conditions data.

The main motivation behind the DD4hep package is to devise a toolkit that addresses all
these issues for all the stages of an experiment [1, 2]. It was designed based on experiences
from the LHCb experiment [3], as well as from developments in the Linear Collider community.
The tool relies on usage of pre-existing and widely used software, combining it into a consistent
generic detector description. The main components are the ROOT geometry package [4], which
is used for construction and visualization of geometry, and the Geant4 simulation toolkit [5],
which can be interfaced via the DDG4 application to perform detector simulation from particle
interactions in complex detector designs [6].



2. Project Aim

The intent is to provide a comprehensive detector description for the quantification of the
detector and provide all the information necessary for interpretation of data form the experiment.
From past experiences it can be established that a comprehensive view, not limited only to
geometry, is extremely advantageous for the construction of a complete set of tools aimed at
data interpretation, e.g. alignment, where detector positions varie over time and need to be
matched with the geometry for reconstruction.

The conception of the toolkit was driven mainly by the following requirements:

Complete Detector Description: provides full detector geometry, the materials used when
building the structures, visualization attributes, detector readout information, alignment,
calibration and environmental parameters.

Coverage of the full life cycle of the experiment: supports all stages from detector
concept development, detector optimization, construction, operation and at the same time
enables easy transition from one stage to the next.

Single source of information: provides a consistent detector description, for simulation,
reconstruction, analysis.

Ease of Use: delivers a simple and intuitive interface, with minimal external dependencies.

3. The DD4hep Toolkit

The core element of DD4hep is the the so-called Generic Detector Description Model (GDDM).
Figure 1 depicts the interaction of the main components of DD4hep and their interfaces to the
end-user applications, namely the simulation, reconstruction, alignment and visualization. The
generic detector description is an in-memory model, that consists of a set of objects containing
geometry and auxiliary information about the detector.

�
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Figure 1. The components of the DD4hep detector geometry toolkit.

It is envisioned that the GDDM can be constructed through several means, but current
development is focused on a mechanism that converts a compact detector description in XML

format through specialized code fragments (called Detector constructors) into the GDDM. These
code fragments instantiate the GDDM of the detector defined by a set of C++ classes. From this
model it is possible to transform in memory the GDDM to e.g. Geant4 geometry or a GDML
file.



3.1. The Compact Description
The compact detector description is based on concepts of the linear collider detector simulation
[7]. The compact description is provided in XML format, has a minimalistic form (see example
in Figure 2) and was designed with the aim for conceptual design studies. Since the parsers of
DD4hep do not validate the schema of the XML it facilitates simple addition of new elements and
attributes into the detector description. The information in the XML is per-se not enough for a
comprehensive detector description. To achieve this, specialized code fragments are needed, the
so called Detector Constructors, which interpret the XML.

� �
�

<detector id=”15” name=”HCal” type=”GenericCalBarrel_o1_v01” readout=”HCalCollection”>
<envelope vis=”HCALVis”>
<shape type=”PolyhedraRegular” numsides=”HCal_sym” rmin=”HCal_rmin” rmax=”HCal_rmax” dz=”HCal_dz” material=”Air”/>
<rotation x=”0*deg” y=”0*deg” z=”90*deg�180*deg/HCal_symmetry”/>

</envelope>
<dimensions numsides=”HCal_sym” rmin=”HCal_rmin” z=”HCal_dz*2”/>
<layer repeat=”(int) HCal_layers” vis=”HCalLayerVis”>
<slice material=”Steel235” thickness=”0.5*mm” vis=”HCalAbsorberVis” radiator=”yes”/>
<slice material=”Steel235” thickness=”19*mm” vis=”HCalAbsorberVis” radiator=”yes”/>
<slice material=”Polystyrene” thickness=”3*mm” sensitive=”yes” limits=”cal_limits”/>
<slice material=”Copper” thickness=”0.1*mm” vis=”HCalCopperVis”/>
<slice material=”PCB” thickness=”0.7*mm” vis=”HCalPCBVis”/>
<slice material=”Steel235” thickness=”0.5*mm” vis=”HCalAbsorberVis” radiator=”yes”/>
<slice material=”Air” thickness=”2.7*mm” vis=”InvisibleNoDaughters”/>

</layer>
</detector>

�

�
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Figure 2. An example compact description for a calorimeter.

3.2. Detector Constructors
Detector Constructors are short code pieces that contextualize the XML input and create a
detector instance. Each code segment constructs a single sub-detector at a time, but the toolkit
enables to combine several detector instances together and thus constructs a complex and large
apparatus. Detector construction can be written either via C++ (example snippet shown in
Figure 3) or Python. Whereas the C++ variant enables better detection of errors at compilation
time, the Python interfaces are easier to use, but errors are usually only detected at execution
time. With the combination of compact description and the detector constructors one is able to
simulate and visualize (Figure 4) the detector.

static Ref_t create_detector(LCDD& lcdd,
xml_h e, SensitiveDetector sens) {

xml_det_t x_det = e;
Layering layering(x_det);
xml_comp_t staves = x_det.staves();
xml_dim_t dim = x_det.dimensions();
DetElement sdet(det_name, x_det.id());
Volume motherVol = lcdd.pickMotherVolume(sdet);

PolyhedraRegular polyhedra(numSides, rmin, rmax, detZ);
Volume envelopeVol(det_name, polyhedra, air);

for (xml_coll_t c(x_det, _U(layer)); c; ++c) {
xml_comp_t x_layer = c;
int n_repeat = x_layer.repeat();
const Layer* lay = layering.layer(layer_num � 1);
for (int j = 0; j < n_repeat; j++) {
string layer_name = _toString(layer_num, ”layer%d”);
double layer_thickness = lay�>thickness();
DetElement layer(stave, layer_name, layer_num);
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Figure 3. Code snippet to create a calorimeter.

Figure 4. Visualization based on
the compact description and a detector
constructor.



3.3. Generic Detector Description Model
The aim of the GDDM is to build an in-memory model of the detector that can provide
geometrical as well as functional facets. It is based on the TGeo geometry package from
ROOT with certain extensions. The TGeo geometry classes are used directly without isolation
interfaces, with the exception of detector constructors, where users can write easy, compact
and readable code for custom detector constructors. The in-memory object is structured as a
tree of DetectorElement objects (Figure 5). These elements provide an easy entry point to
any given detector part of the apparatus and represent a complete sub-detector (e.g. tracker
or calorimeter), a part of a sub-detector (e.g. tracker-disk or tracker-barrel), a module or any
other arbitrary sub-detector part.
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Figure 5. The tree structure of DetectorElement objects that constitute the GDDM.

The main purpose is to provide an easy access to a desired sub-detector information. If a
tracking program wants access to the tracker DetectorElement, DD4hep will allow the program
access to all the geometry properties, alignment and calibration constants and other slow varying
conditions such as temperatures. The DetectorElement acts as a data container. DD4hep
provides a singleton object called LCDD, through which access to the whole geometry is possible,
and which provides at the same time ownership, bookkeeping and management properties to
the instances of the detector model.

As shown in Figure 5, an application might require special functionality. This can be achieved
with specialized classes that extend the DetectorElement. Such extensions are usually needed in
addressing issues connected to reconstruction algorithms, such as pattern recognition, tracking,
vertexing and particle identification. One example could be surfaces that aid in track fitting.
A generic detector description toolkit cannot address all cases, there are far too many of them,
but it can provide a flexible extension mechanism via code fragments to develop the necessary
functionality which is needed for a given case. Depending on the case, the extensions can
store additional specialized data, expose additional behavior or both. The user can easily add
additional behavior by overloading the DetectorElement class and extending its internal data.
Since the internal data is public and addressed by reference, an arbitrary number of extensions
can be created with minimal overhead. In addition to this, more data can be incorporated at any



time by the user into this scheme by using a simple aggregation mechanism. The only constraint
is that these data extensions have to be of di↵erent types. It is thus possible to optimize the
attachment depending on the particular use case. DD4hep utilities this functionality in the
reconstructions extension called DDRec. The content and its application to the Linear Collider
case is discussed elsewhere [8].

4. Simulation support – DDG4

Since the DD4hep geometry is based on ROOT/TGeo, it has to be translated to the Geant4
specific geometry representation to enable simulation. Using the Geant4 user interface
G4VUserDetectorConstruction, a generic mechanism has been implemented that converts on
the fly all geometry entities like shapes, materials, volumes and volume placements to a Geant4
geometry. The mechanism is implemented to traverse the geometry tree from the top level
element and recursively collect all entities. A special treatment was needed for certain objects,
where the implementation paradigm di↵er between the Geant4 and the ROOT geometry, e.g.
shape assemblies.

To simplify the usage and implementation of plugin functionality, all components use a
common base class. The base class is designed to provide simple access to all objects needed to
perform simulation tasks. It is implemented to handle all common functionalities, e.g. external
configuration of component properties, data access via Geant4 or the detector description toolkit.
Since all components inherit from the Geant4Action, a sequence of actions can be created e.g.
to merge and simulate two di↵erent data types. The typical action sequence is:

Initialization step: properties related to the event and its context are prepared.

Acces to input data type 1: reading or generation of events of type 1 (e.g. simulated e+e�
events). The primary vertices from the input data and resulting tracks are then boosted and
the primary vertices are smeared in subsequent modules according to the assumed beam
profiles and beam conditions.

Acces to input data type 2: reading or generation of events of type 2 (e.g. beam induced
background events). The primary vertices from the input data are treated in the same
manner as in the previous step.

Merging: merge to one single record combining the primary vertices and outgoing primary
tracks of both types of data (with possibility to add an arbitrary number of input data).

Geant4: the entire record containing all primary vertices and all primary tracks is given to
Geant4, and the simulation can start.

4.1. Monte Carlo Truth Handling
A basic functionality that DDG4 o↵ers, is the assignment of generated energy deposits to the
tracks which created the deposit. There are several ways to address this issue, e.g:

Complete history record: the entire history is stored containing all energy deposits and the
full record of created tracks. The drawback of this is that the record becomes quite big due
to a large amount of secondary particles and the information associated to them. Such a
record is usually only used for detailed studies and not for mass production.

Reduced history record: Only relevant energy deposits and tracks are kept. Low energetic
tracks are reassigned to the parent tracks, whereas the energy deposits in calorimeters are
handled di↵erently.

DDG4 can handle the propagation of Monte Carlo truth information between hits and tracks
for both cases. It utilizes a truth handler which uses an internal track object model, that can be
tuned by the user at the output stage to the desired user track model. This gives the user a high



degree of flexibility to construct an arbitrary output record based on the complete simulation
information. This reduces the user e↵ort needed to evaluate performance and e�ciency of
detector models.

4.2. Components and handling
DD4hep/DDG4 provides a ready-to-use pallet of components, which include standard input and
output format support such as LCIO [9], StdHEP [10] or HepMC [11] modules to manipulate
primary interactions, e.g. smearing or boosting, and also generic components collecting the
detector response of tracking detectors or calorimeters. All these features enable users interested
in fast detector prototyping to perform all necessary simulation activities of detector designs.
DDG4 comes with a default palette of modules that are generic enough to be applicable to a
wide variety of designs. The users can also provide specific detailed modules via the plugin
mechanism.

Since the Geant4 physics setup is contained in a set of factories, the subsequent instantiations
to particle constructors, physics processes, physics constructors or predefined physics lists are
implemented in DDG4 by means of factory bindings. The configuration of a DDG4 application
is possible via the following ways: data in a XML file, a C++ or a Python script. Due to the
fact that C++ is the native language of the framework, one can configure the simulation via the
same language, however a change of configuration requires a recompilation of the software which
might be cumbersome. The most flexible way to configure DDG4 is via Python. The ROOT
interface PyROOT is the most flexible and still robust way to bootstrap a DDG4 simulation
application. The Python interfaces are provided automatically at the time of the generation of
ROOT dictionaries. The dictionary mechanism exports the same classes to Python that reside
in C++, which leads to a fairly similar configuration. Furthermore this approach does not need
any recompilation. An example showing how easy it is to configure the input file in Python can
be seen in Figure 6, and the usage of a filter in Figure 7.
�

�

#...
gen = DDG4.GeneratorAction( kernel , ”LCIOInputAction/LCIO1” )
gen.Input = ”LCIOFileReader|” + inputFile
#...

�

#...
part = DDG4.GeneratorAction(kernel, ”Geant4ParticleHandler/ParticleHandler”)
kernel.generatorAction().adopt(part)
part.SaveProcesses = [’Decay’]
part.MinimalKineticEnergy = 1*MeV
part.KeepAllParticles = False
#...
user = DDG4.GeneratorAction(kernel,”Geant4TCUserParticleHandler/UserParticleHandler”)
user.TrackingVolume_Zmax = DDG4.tracker_region_zmax
user.TrackingVolume_Rmax = DDG4.tracker_region_rmax
#...
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Figure 6. Example showing how to configure a DDG4 input file in Python.

�

�

#...
gen = DDG4.GeneratorAction( kernel , ”LCIOInputAction/LCIO1” )
gen.Input = ”LCIOFileReader|” + inputFile
#...

�

#...
part = DDG4.GeneratorAction(kernel, ”Geant4ParticleHandler/ParticleHandler”)
kernel.generatorAction().adopt(part)
part.SaveProcesses = [’Decay’]
part.MinimalKineticEnergy = 1*MeV
part.KeepAllParticles = False
#...
user = DDG4.GeneratorAction(kernel,”Geant4TCUserParticleHandler/UserParticleHandler”)
user.TrackingVolume_Zmax = DDG4.tracker_region_zmax
user.TrackingVolume_Rmax = DDG4.tracker_region_rmax
#...
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Figure 7. Example for configuring actions, filters, sequences and cuts in Python.



5. Use cases

The DD4hep toolkit has been adopted by several of conceptual design studies for future high-
energy colliders, including the CLICdp, ILD, SiD and FCC collaborations. The visualization of
each detector concept that is actively developing simulation and reconstruction software based
on DD4hep can be seen in Figure 8.

Figure 8. Visualization of detector models of known DD4hep user collaborations.

5.1. Linear Collider Simulation Extension
Furthermore, the Linear Collider community has developed an extension to DDG4 called DDSim.
It adds an additional layer of abstraction and simplifies simulation, allowing even command line
configuration of the simulation. An Python example of DDSim steering can be seen in Figure 9.

�

� ddsim --dumpSteeringFile > mySteer.py
�

� DD4hepSimulation

�

from DDSim.DD4hepSimulation import DD4hepSimulation
from SystemOfUnits import mm, GeV, MeV, keV
SIM = DD4hepSimulation()
SIM.compactFile = ”CLIC_o3_v06.xml”
SIM.runType = ”batch”
SIM.numberOfEvents = 2
SIM.inputFile = ”electrons.HEPEvt”
SIM.part.minimalKineticEnergy = 1*MeV
SIM.filter.filters [’edep3kev’] =
dict (name=”EnergyDepositMinimumCut/3keV” ,

parameter={”Cut” : 3.0*keV} )

Tab Completion
For automatic completion of command line parameters: bash
bash-completion, python: argcomplete eval

"$(register-python-argcomplete ddsim)"

Much more convenient interactive use
$ ddsim
--action.calo --filter.tracker --part.keepAllParticles
--action.mapActions -G --part.minimalKineticEnergy
--action.tracker --gun.direction --part.printEndTracking
--compactFile --gun.energy --part.printStartTracking
--crossingAngleBoost --gun.isotrop --part.saveProcesses
--dump --gun.multiplicity --physics.decays
--dumpParameter --gun.particle --physics.list
--dumpSteeringFile --gun.position --physicsList
--enableDetailedShowerMode -h --physics.rangecut
--enableGun --help --printLevel
--field.delta_chord -I --random.file
--field.delta_intersection --inputFiles --random.luxury
--field.delta_one_step -M --random.replace_gRandom
--field.eps_max --macroFile --random.seed
--field.eps_min -N --random.type
--field.equation --numberOfEvents --runType
--field.largest_step -O -S
--field.min_chord_step --outputFile --skipNEvents
--field.stepper --output.inputStage --steeringFile
--filter.calo --output.kernel -v
--filter.filters --output.part --vertexOffset
--filter.mapDetFilter --output.random --vertexSigma

ILDSWWS, Feb 2016 A. Sailer: Simulation Steering with DDSim 10/16
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Figure 9. Example usage of the DDSim Python application.



6. Conclusion

The DD4hep Detector Description Toolkit provides an extended toolset for detector description,
simulation and reconstruction. The user community of DD4hep is growing. In addition to the
Linear Collider community as first users, it was also adopted for the FCC detector studies. The
toolkit is under investigation for future software implementation in LHCb. The software is in
stable condition and the Linear Collider community is planning to commence mass Monte Carlo
production and reconstruction based on DD4hep in 2017. Topics such as alignment and the
connection of condition data to detector elements are addressed in the design and are in the
process of being implemented. These will be a subject of future work.
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