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We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously
and apply this idea to the standard model. We compute the quantum corrections to the potential of the Higgs
field (ϕ) in the classically scale-invariant version of the standard model (mϕ ¼ 0 at tree level) extended by
the dilaton (σ). The tree-level potential of ϕ and σ, dictated by scale invariance, may contain nonpolynomial
effective operators, e.g., ϕ6=σ2, ϕ8=σ4, ϕ10=σ6, etc. The one-loop scalar potential is scale invariant, since
the loop calculations manifestly preserve the scale symmetry, with the dimensional regularization
subtraction scale μ generated spontaneously by the dilaton vacuum expectation value μ ∼ hσi. The
Callan-Symanzik equation of the potential is verified in the presence of the gauge, Yukawa, and the
nonpolynomial operators. The couplings of the nonpolynomial operators have nonzero beta functions that
we can actually compute from the quantum potential. At the quantum level, the Higgs mass is protected by
spontaneously broken scale symmetry, even though the theory is nonrenormalizable. We compare the one-
loop potential to its counterpart computed in the “traditional” dimensional regularization scheme that
breaks scale symmetry explicitly (μ ¼ constant) in the presence at the tree level of the nonpolynomial
operators.
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I. MOTIVATION

In this paper, we explore the idea that scale symmetry is a
quantum symmetry and study its implications for physics
beyond the standard model (SM). However, this symmetry
is broken in the real world. We shall consider here only
spontaneous breaking of this (quantum) symmetry.1 One
motivation of our study is that scale symmetry plays a role
in the UV behavior of the models. In particular, the SM
with a classical Higgs mass parameter mϕ ¼ 0 has an
increased symmetry: it is scale invariant at the tree level;
this was invoked [1] to protect mϕ naturally [2] from
large quantum corrections, but a full quantum study is
needed.
Consider a classically scale-invariant theory. One

known issue when studying scale symmetry at the quantum
level is that the regularization of the loop corrections
introduces a dimensionful parameter (subtraction scale μ)

that breaks explicitly the scale symmetry that we want to
investigate.2 To avoid such breaking, the UV regularization
must preserve this symmetry. This is done by using a
subtraction function μðσÞ, which generates (dynamically) a
subtraction scale μðhσiÞwhen the field σ acquires a vacuum
expectation value (vev) hσi after spontaneous scale sym-
metry breaking. For details on this, see Ref. [3] and recent
examples at one loop [4–8] and higher loops [9,10]. Here, σ
is the Goldstone mode (dilaton) of the spontaneously
broken scale symmetry3 and is an additional degree of
freedom of the theory.
The model we consider is a scale-invariant SM, defined

as the SM with classical mϕ ¼ 0 and extended by the
dilaton. The goal is to use this scale-invariant regularization
to compute quantum corrections to the scalar potential. The
quantum result is scale invariant, so it can only have
spontaneous scale symmetry breaking, with a flat direction
for the dilaton (σ). For clarity, this result is then compared
to that in the “usual” dimensional regularization (DR) of
μ ¼ constant scale, which breaks explicitly the scale
symmetry at the quantum level.
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1By quantum scale symmetry, we mean that the full one-
particle irreducible (1PI) quantum action is scale invariant.

2One could use a regularization that does not keep manifest
scale symmetry and then attempt to restore it “by hand” at the
end, but this misses scale-invariant operators if the theory is
nonrenormalizable (see later, Sec. II).

3To be exact, the mass eigenstates may actually contain a small
mixing of original ϕ, σ.
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Let us consider first a simplified scale-invariant
(classical) theory (e.g., Refs. [11–27]) of two real scalar
fields ϕ (Higgs-like) and σ. The potential V is a homo-
geneous function, having no dimensionful couplings, so

Vðϕ;σÞ¼σ4Wðϕ=σÞ; where Wðϕ=σÞ¼Vðϕ=σ;1Þ: ð1Þ

We assume that Vðϕ; σÞ has spontaneous scale symmetry
breaking i.e., that σ acquires a nonzero vacuum expectation
value hσi ≠ 0. We thus search for such a solution and for
the necessary condition for this spontaneous breaking to
happen. With hσi ≠ 0, it is then easy to see that the
minimum conditions Vσ ¼ Vϕ ¼ 0 (Vα ¼ ∂V=∂α) are
equivalent to

WðρÞ ¼ W0ðρÞ ¼ 0; ρ≡ ϕ=σ: ð2Þ

These equations can have a common solution ρ0≡hϕi=hσi,
if the couplings satisfy a particular condition (constraint);
see below. Then, a flat direction exists in the plane ðϕ; σÞ
with ϕ ¼ ρ0σ. Indeed, if ðhϕi; hσiÞ is a ground state with
V ¼ 0, then so is ðthϕi; thσiÞ, t real. Also, the second
derivatives matrix Vαβ with respect to α; β ¼ ϕ; σ has
detðVαβÞ ∝ ð4WW00 − 3W02Þ ¼ 0 on the ground state, so
a massless state is indeed present corresponding to the flat
direction. Finally, since ρ0 is a root of both W and of its
derivative W0, then Wðϕ=σÞ ∝ ðϕ=σ − ρ0Þ2, while if V
depends only on even powers of the scalar fields (our model
below), then the general structure is

Wðϕ=σÞ ∝ ðϕ2=σ2 − ρ20Þ2: ð3Þ

Note that the vanishing vacuum energy Vðhϕi; hσiÞ ¼ 0
follows from the (spontaneously broken) scale symmetry;
see Eq. (2). A scale-invariant regularization of this theory
leads to a scale-invariant quantum potential, which thus
remains of the form shown in Eq. (1). Hence, the above
discussion around Eqs. (1), (2), and (3) remains true at the
quantum level, including the possibility of spontaneous-
only breaking of the scale symmetry.
One of the two minimum conditions in (2) fixes the ratio

ρ0 ¼ hϕi=hσi in terms of the (dimensionless) couplings of
the theory. Thus, all vevs of such a theory, including hϕi,
are proportional to hσi ≠ 0, which is a(n) (unknown)
parameter of the theory. The second minimum condition,
after eliminating ρ0 between the two equations in (2), gives
a relation among the couplings of the theory in the order of
perturbation in which V is computed. This means that one
coupling, say λσ (the dilaton self-coupling), is defined in
terms of the rest, λσ ¼ fðλj≠σÞ. This relation follows from
demanding that V has a flat direction [26], which is a
consequence of our requiring that quantum scale symmetry
be broken spontaneously. Such relation can be “arranged”
by one initial classical tuning, with subsequent (quantum)

tunings bringing “acceptable” OðλjÞ corrections to this
relation, relative to the previous perturbation order4; this
tuning ensures a vanishing vacuum energy Vðhϕi; hσiÞ ∼
Wðρ0Þ ¼ 0 [see conditions (2)].
We stress that the above picture, which builds on

previous studies [3–10], is very different from that obtained
in the “traditional” DR scheme (μ ¼ constant scale) that is
often used in classically scale-invariant models, e.g.,
Refs. [18–27]; in such models, scale symmetry is broken
explicitly by the (regularization of) quantum effects, and
then conditions (1) and (2) are not true anymore at the
quantum level, and the flat direction is lifted by quantum
corrections (the dilaton is then a pseudo-Goldstone, which
is light).
What about the hierarchy problem? In the absence of

gravity (not included here), the standard model has no
hierarchy problem. However, this situation is no longer true
under the reasonable assumption that there is some “new
physics” beyond SM, e.g. a large vev of a new scalar field
that couples to Higgs, etc. In the model we consider,
defined by the scale-invariant version of the SM extended
by the dilaton, we have “new physics” beyond the SM,
represented by the vev hσi that spontaneously breaks the
scale symmetry. hσi can be very large compared to hϕi,
which fixes the electroweak scale. In the Brans-Dicke-
Jordan theory of gravity, not considered here, one expects5

hσi ∼MPlanck. (hσi can then be regarded as a physical cutoff
of the theory.) We simply enforce such hierarchy by
choosing a very weak coupling of the visible to the hidden
sector of the dilaton6 [31]. Such hierarchy is, however,
stable under quantum corrections, so mϕ ∼ hϕi ≪ hσi
without tuning at the quantum level [4,8], and we verify
this in our model at one loop. This is expected to remain
true to all orders in perturbation theory since scale
symmetry is preserved by the regularization and is broken
only spontaneously.7 We thus have an example of a
quantum stable hierarchy, with a vanishing vacuum energy
at the loop level, that follows from the demand of sponta-
neously broken quantum scale symmetry.

4Perturbativity, λσ < 1, is maintained for a weak coupling λm
between the visible (ϕ) and hidden (σ) sectors; see later, Eq. (9)
(a) or (11) (a), which fixes λσ < 1 in terms of the other couplings,
for a small enough λm.5Such hierarchy can be generated dynamically (Refs. [28,29]
or as in Ref. [30]).

6One takes jλmj ≪ λϕ; λm: coupling of hidden (σ) to the visible
sector (ϕ); λϕ: Higgs self-coupling; see later in the paper, Eq. (7).
The hierarchy of vevs (scales) is then replaced by a (more
fundamental) hierarchy of dimensionless couplings.

7Scale symmetry may also be broken at some high scale due to
Landau poles of some of the couplings of the theory or due to
other nonperturbative effects. We do not consider these effects
here since they involve physics above Planck scale in which case
the present flat space-time picture is not appropriate—one needs
to upgrade this formalism to include Brans-Dicke-Jordan gravity;
see, e.g., Ref. [28].
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In the following, we apply these ideas to the scale-
invariant version of the SM (with classical Higgs mass
mϕ ¼ 0) extended by the dilaton. The Higgs and the dilaton
have a potential dictated solely by the classical scale
symmetry, so it can contain higher-dimensional nonpoly-
nomial operators such as ϕ6=σ2, ϕ8=σ4, etc. We then
compute the one-loop potential with a scale-invariant regu-
larization, so a flat direction is maintained at the quantum
level. Even if the tree-level potential does not include the
nonpolynomial operators (by tuning their couplings to 0),
they are generated at one loopwith finite coefficient [8] or as
two-loop or higher counterterms [9,10]—this means the
scale-invariant quantum theory is nonrenormalizable.
Further, the quantum consistency of the theory is shown
by verifying the Callan-Symanzik equation of the potential
in the presence of the nonpolynomial effective operators,
gauge and Yukawa interactions. We also compare the scale-
invariant one-loop potential to its counterpart computed in
the usual DR scheme that breaks scale symmetry explicitly
(μ ¼ constant), in the presence of these effective operators at
tree level.
If scale symmetry is preserved by one-loop V, there is no

dilatation anomaly that is a result of explicit scale symmetry
breaking by quantum calculations with μ ¼ constant.
Contrary to common lore, the couplings still run with
momentum [6–8] since the vanishing of the beta functions
is not a necessary condition for scale invariance. Their one-
loop running is identical to that in the theory with explicit
scale symmetry breaking (μ ¼ constant), but at two loops,
they start to differ in theories with spontaneous vs explicit
breaking [7,10].
This analysis in flat space-time should be extended to

include the effects of gravity that we ignored. Since Einstein
gravity breaks scale symmetry, a natural setup to include
such effects is to consider the Brans-Dicke-Jordan theory of
gravity; see examples in Refs. [4,28,29,32–38]. In such a
setup, it may still be possible to perform a scale-invariant
regularization and then examine such a scale-invariant
theory at the quantum level.

II. SM WITH A SCALE-INVARIANT
ONE-LOOP POTENTIAL

A. Tree-level scale-invariant potential

Consider the SM Lagrangian with tree-level Higgs mass
mϕ ¼ 0, so it is scale invariant. The Higgs sector is weakly
coupled to the “hidden” sector of the dilaton σ with

L ¼ jDμHj2 þ 1

2
ð∂μσÞ2 − V0; ð4Þ

where

H ¼
� Gþ

1ffiffi
2

p ðϕþ iG0Þ
�

ð5Þ

and

V0 ¼
λϕ
3!

ðH†HÞ2 þ λm
2
ðH†HÞσ2 þ λσ

4!
σ4

þ 4λ6
3

ðH†HÞ3
σ2

þ � � � ð6Þ

where the dots stand for higher powers ofH†H. The neutral
Higgs (ϕ) and dilaton part is

Vðϕ;σÞ¼ 1

4!
λϕϕ

4þ1

4
λmϕ

2σ2þ 1

4!
λσσ

4þλ6
6

ϕ6

σ2
þ���: ð7Þ

We take λϕ; λσ > 0 and λm < 0 and that the two sectors of ϕ
and σ are weakly coupled, with jλmj < λϕ. Regarding the
terms suppressed by powers of σ, they respect the
(classical) scale symmetry of the action, so they can be
present in the theory. They are well defined8 since σ
acquires spontaneously a vev hσi ≠ 0 under conditions
that we identify shortly [see (a) in Eqs. (9) and (11) below].
One can expand such terms about the ground state,
into an infinite sum of familiar polynomial (effective)
operators:

λ6
ϕ6

σ2
¼ λ6

ϕ6

hσi2
�
1 − 2

σ0

hσi þ 3
σ02

hσi2 þ � � �
�
;

σ ¼ hσi þ σ0; σ0∶ fluctuation: ð8Þ

However, we prefer to use the form in Eq. (7) since it keeps
manifest the scale symmetry of L. Finally, we keep λ6 ≠ 0

but set to 0 the coefficients of ðH†HÞ4=σ4 and higher terms.
Consider first λ6 ¼ 0. We demanded spontaneous

breaking of scale symmetry, so we seek the condition
for which hσi ≠ 0. The minimum of V exists if derivatives
Vϕ ¼ Vσ ¼ 0, giving

ðaÞ∶ λσ ¼
9λ2m
λϕ

½1þ loops� and

ðbÞ∶ hϕi2
hσi2 ¼ −3λm

λϕ
½1þ loops�; ð9Þ

so also hϕi ≠ 0; here, “loops” stands for loop corrections.
Let us then assume that λσ is indeed that of (a) up to9

loop effects that one can identify order by order in
perturbation theory and that we ignore for the classical

8Even if we set λ6;8;… ¼ 0 at the electroweak scale, such terms
are generated in a quantum scale-invariant theory at one loop
(with a finite coefficient) [8] or as two-loop counterterms [10], so
their presence is inevitable. If instead μ ¼ constant (explicit
breaking) and λ6;8;… ¼ 0, such terms are never generated at
quantum level.

9It is actually the generalization of (a) for λ6 ≠ 0 that we shall
assume to be true, see Eq. (11).
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discussion here. If (a) is true, we have spontaneous
breaking of scale symmetry and

V ¼ 1

4!
λϕσ

4

�
ϕ2

σ2
þ 3λm

λϕ

�
2

ð10Þ

with V ¼ 0 at the minimum. A flat direction, corresponding
to the Goldstone of scale symmetry (dilaton), exists in the
plane ðϕ; σÞ. The neutral Higgs acquires a mass m2

~ϕ
¼

ðλϕ=3Þð1 − 3λm=λϕÞhϕi2, while the electroweark (EW)
Goldstone bosons are massless. Thus, spontaneous scale
symmetry breaking triggers EW symmetry breaking, with a
vacuum energy V ¼ 0.
Consider now λ6 ≠ 0, with λ6 > 0 for a well-defined V at

large ϕ. Then, Eqs. (9) become10

ðaÞ∶ λσ ¼ ρ20½2λ6ρ40 − 3λm� þ loops; where

ðbÞ∶ ρ20 ≡ hϕi2
hσi2 ¼ 1

12λ6
½−λϕ þ ðλ2ϕ − 72λ6λmÞ1=2� þ loops:

ð11Þ

We assume from now on that λσ is indeed given by
relation (a), up to small quantum corrections (ignored
here), to ensure spontaneous scale symmetry breaking; this
relation is “protected” by scale symmetry. The potential is
then

V ¼ λ6
6
σ4
�
ϕ2

σ2
− ρ20

�
2
�
ϕ2

σ2
þ ξ20

�
; ð12Þ

in agreement with (3). Here, ξ20 ¼ ðλϕ þ
2ðλ2ϕ − 72λ6λmÞ1=2Þ=ð12λ6Þ > 0. If λ6 → 0, one recovers
Eq. (10).11 The neutral Higgs mass can again be computed
and recovers the above value for small12 λ6; the dilaton is
again massless, with the flat direction mildly changed by λ6.
To conclude, spontaneous scale symmetry breaking trig-
gers EW symmetry breaking and ensures V ¼ 0 on the
ground state. We would like to know if this can remain true
at quantum level.
The scale hσi of new physics beyond SM should be

larger than hϕi ∼Oð100Þ GeV. In the Brans-Dicke-Jordan
theory of gravity (not considered here) that can generalize
this study, one actually expects hσi ∼MPlanck. So, a
hierarchy hϕi ≪ hσi may be generated dynamically
[28,29]. Here, we take a common view of a very weak
coupling of the hidden (σ) to visible (ϕ) sector: jλmj ≪ λϕ

[31]; then,13 from Eq. (11), λσ ≪ jλmj. This classical
“tuning” can ensure a hierarchy of scales hϕi ≪ hσi (λ6
only brings subleading corrections, since the hierarchy is
controlled by λm, the main coupling of the two sectors).
Note that this is not a tuning in the sense of the cancellation
of mass scales, seen in the mass hierarchy problem.
This concludes the picture of the classical potential with

scale symmetry. At the quantum level, one question is
whether the (quantum) scale symmetry, when spontane-
ously broken, maintains the hierarchy m2

~ϕ
∼ hϕi2 ≪ hσi2

without additional tuning of the couplings. If quantum
corrections λ2ϕhσi2 are generated, a tuning of the Higgs self-
coupling λϕ would be needed, and this would reintroduce
the hierarchy problem.

B. One-loop scale-invariant potential

Let us compute the one-loop potential by preserving
scale symmetry at quantum level and thus avoid its
explicit breaking by the UV regularization. The method
is described in Refs. [4,6–10]. To do this, note that we
already have a vev hσi that can act as subtraction scale. The
starting point is in d ¼ 4 − 2ϵ dimensions where the tree-
level potential is modified into

~V ¼ μðσÞ2ϵV; μðσÞ ¼ zσ1=ð1−ϵÞ: ð13Þ

~V is thus scale invariant in d ¼ 4 − 2ϵ. The function μðσÞ
generates a subtraction scale μðhσiÞ when σ acquires
a vev spontaneously. The definition of μðσÞ follows on
dimensional grounds, with z an arbitrary dimensionless
subtraction parameter [7]. If we set μðσÞ ¼ constant, one
immediately recovers the traditional DR scheme that
explicitly breaks the scale symmetry in d ¼ 4 − 2ϵ. We
thus have two possible analytical continuations to
d¼4−2ϵ of the classical scale-invariant theory in d ¼ 4:
one is scale invariant [Eq. (13)], and the other is not
(μ ¼ constant), and they lead to distinct quantum theories
(of different symmetry) [8,10], as discussed below. The
one-loop potential in d ¼ 4 − 2ϵ is then [8,10]14

V1 ¼ ~V −
i
2

Z
ddp
ð2πÞd Tr ln½p

2 − ~Vij þ iε�: ð14Þ

This is computed in the Landau gauge. The field-
dependent squared masses are eigenvalues of the matrix
of second derivatives denoted15 ~Vij, where subscripts i, j

10Equations (11) for small λ6 become λσ ¼ ð9λ2m=λϕÞ½1þ
Oðλ6Þ þ loops� and ρ20 ¼ ð−3λm=λϕÞ½1þOðλ6Þ þ loops�.

11With y¼ϕ2=σ2, V ¼ ðλϕσ4=4!Þðyþ 3λm=λϕÞ½yþ 3λm=λϕþ
ð4λ6=λϕÞðy2 − 3yλm=λϕ þ 9λ2m=λ2ϕÞ� þOðλ6Þ.

12One has m2
~ϕ
¼ð−2þ λϕ

6λ6
Þλmhσi2þρ20½λϕ3 ð

λϕ
6λ6

−1Þ−2λm�hσi2¼
−λmð1−3λm

λϕ
Þhσi2þOðλ6Þ.

13This hierarchy is stable under the renormalization group [31]
due to a shift symmetry, σ → σ þ constant.

14V1 is derived in d ¼ 4 − 2ϵ via usual diagrammatic or
functional methods in effective theories and remains valid in
the presence of the λ6ϕ6=σ2 term, which is just a sum of familiar
polynomial operators; see Eq. (8).

15 ~Vij¼μ2ϵ½Vijþ2ϵμ−2Nij�þOðϵ2Þ; Nij≡μf∂μ
∂si

∂V
∂sjþ

∂μ
∂sj

∂V
∂sigþfμ ∂2μ

∂si∂sj−
∂μ
∂si

∂μ
∂sjgV.
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stand for the EW Goldstone scalars G0, ReðGþÞ, ImðGþÞ,
neutral Higgs ϕ, and dilaton σ. Unlike the EW Goldstone
modes or fermions and gauge bosons, the field-dependent
masses of ϕ and σ acquire a correction ∝ϵ relative to their
values induced by V alone, from derivatives of μðσÞ,

m2
t ¼

μðσÞ2ϵ
2

h2tϕ2; m2
W ¼ μðσÞ2ϵ

4
g22ϕ

2;

m2
Z ¼ μðσÞ2ϵ

4
ðg21 þ g22Þϕ2;

m2
G ¼ μðσÞ2ϵ

6

�
λϕϕ

2 þ 3λmσ
2 þ 6λ6

ϕ4

σ2

�
;

M2
k ¼ μðσÞ2ϵ½m2

k þ ϵδk�; k ¼ ϕ; σ; ð15Þ

where mt (ht) is the field-dependent top mass (Yukawa
coupling), mW;Z denote the gauge boson masses, and mG

denote the three EW Goldstone field-dependent masses.
Finally,M2

k are eigenvalues of ~Vαβ, whilem2
k are eigenvalues

of the 2×2 submatrix Vαβ of Vij with
16 Vαβ ¼ ∂2V=∂α∂β,

α; β ¼ ϕ; σ. Then, one finds at one loop [κ ¼ ð4πÞ2]

V1 ¼ μðσÞ2ϵ
�
V −

1

4κ

� X
j¼ϕ;σ;G;W;Z;t

njm4
jðϕ; σÞ

×

�
1

ϵ
− ln

m2
jðϕ; σÞ

cjμ2ðσÞ
�
þ 4ðVαβNβαÞ

μ2ðσÞ
��

; ð16Þ

with summation over α; β ¼ ϕ; σ and Nαβ ¼ μðμαVβ þ
μβVαÞ − μαμβÞV and μα ¼ ∂μ=∂α. Also, nj ¼
f3; 1; 6; 3;−12g for j ¼ fG; S;W; Z; tg, with S ¼ ϕ; σ;
cj ¼ 4πe3=2−γE if j ¼ ϕ; σ; t; G, and cj ¼ 4πe5=6−γE if
j ¼ W, Z. The one-loop term ðVαβNβαÞ is a new correction,
absent in the case of μ ¼ constant (i.e., explicit scale
symmetry breaking by the regularization).
The poles in the one-loop Lagrangian are cancelled by

the counterterm δL1,
17

δL1 ≡ 1

2
ðZϕ − 1Þð∂μϕÞ2 þ

1

2
ðZσ − 1Þð∂μϕÞ2

− μðσÞ2ϵ
�
1

4!
ðZλϕ − 1Þλϕϕ4 þ 1

4
ðZλm − 1Þλmϕ2σ2

þ 1

4!
ðZλσ − 1Þλσσ4Þ þ

X
j¼3;4;5;6

1

2j
ðZλ2j − 1Þλ2j

ϕ2j

σ2j−4

�
:

ð17Þ

Introducing the notation

Zξ ¼ 1þ 1

ϵ

γξ
κ
; ξ ¼ λϕ; λϕ; etc; ð18Þ

one identifies

γλϕ ¼
3

2λϕ

�
3

2
g42þ

3

4
ðg21þg22Þ2−12h4t þ

4

3
λ2ϕþλ2mþ32λmλ6

�
;

γλm ¼
1

2
ð2λϕþλσþ4λmÞ;

γλσ ¼
3

2
ðλσþ4λ2m=λσÞ: ð19Þ

Notice that λ6 contributes to γλϕ and to the beta function
of λϕ (see later in the paper, Eq. (26)). Finally,

γλ6 ¼
3

2
ð6λϕ − 8λm þ λσÞ; γλ8 ¼

2λ6
λ8

ð28λ6 þ λmÞ;

γλ10 ¼ 20
λ26
λ10

; γλ12 ¼
3λ26
λ12

: ð20Þ

Therefore, the nonpolynomial operator λ6ϕ6=σ2 in the
tree-level V generated new nonpolynomial counterterms up
to and including ϕ12=σ8, of couplings ∝ λ6. This effect is
independent of whether the quantum calculation respects
the scale symmetry or not (i.e., μ ∼ σ or μ ¼ constant). The
generalization to more such operators at the tree level is
immediate.
The SM one-loop potential U1 is then

U1 ¼ V þ Vð1Þ þ Vð1;nÞ; ð21Þ

where

Vð1Þ ¼ 1

4κ

X
j¼ϕ;σ;G;t;W;Z

njm4
jðϕ; σÞ ln

m2
jðϕ; σÞ
cjðzσÞ2

; ð22Þ

Vð1;nÞ ¼ 1

48κ

�
ð−16λmλϕ − 18λ2m þ λϕλσÞϕ4

− λmð48λm þ 25λσÞϕ2σ2 − 7λ2σσ
4

þ ðλϕλm þ 6λ6λσÞ
ϕ6

σ2
þ 8λ6ð4λϕ − 2λmÞ

ϕ8

σ4

þ λ6ð192λ6 þ 2λϕÞ
ϕ10

σ6
þ 40λ26

ϕ12

σ8

�
: ð23Þ

U1 is manifestly scale invariant. First, the Coleman-
Weinberg term is modified into a scale-invariant form
Vð1Þ, where we finally replaced μðσÞ ¼ zσ [see Eq. (13)
for ϵ → 0]. Note that Vð1Þ contains new terms of the
form ϕ8=σ4 ln½…�, ϕ6=σ2 ln½…� of coefficients ∝λ6, that

16In general, in terms of derivatives of tree-level V,
m2

k ¼ 1
2
½TrðVαβÞ � ½ðTrVαβÞ2 − 4 det Vαβ�1=2� and also

δk ¼ μðσÞ−2 fTr ðNαβ Þ � ½ðTrVαβÞðTrNαβÞ − 2ρ�= ½ ðTrVαβÞ2−
4 det Vαβ�1=2g. The expression of ρ is ρ ¼ VϕϕNσσ þ VσσNϕϕ−
2VϕσNϕσ , where Nϕϕ ¼ 0, Nσσ ¼ z2ð2σVσ − VÞ, Nϕσ ¼ z2σVϕ.

17One can use
P

k¼ϕ;σm
4
k ¼ V2

ϕϕ þ V2
σσ þ 2V2

ϕσ .
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originate from m4
Gðϕ; σÞ. In the usual DR scheme, Vð1Þ has

the same form, with ðzσÞ → μ.
There is also a finite one-loop contribution Vð1;nÞ due to

“evanescent” corrections (∝ϵ) to the field-dependent
masses of ϕ and σ [Eq. (15)], induced by derivatives of
μ ∼ σ. Therefore, Vð1;nÞ is not present in the other case of
μ ¼ constant when the regularization breaks the scale
symmetry; thus, Vð1;nÞ can distinguish between these two
cases at one loop. Further, in the classical decoupling limit
of the hidden sector from the SM, λm → 0 and λ6 → 0, and
then Vð1;nÞ vanishes. Vð1;nÞ also contains terms nonpoly-
nomial in fields like λmλϕϕ6=σ2 that remain present even if
we set λ6 ¼ 0.18 At two loops, such nonpolynomial
operators, including higher-order ϕ8=σ4, etc., emerge as
two-loop counterterms [10] even if we set λ6 ¼ 0.19

Although we do not show it, one can immediately Taylor
expand both Vð1Þ and Vð1;nÞ about the nonzero vev of σ,
with σ ¼ hσi þ σ0 (and eventually of ϕ, too, ϕ ¼ hϕi þ ϕ0).
One then obtains a representation that contains an infinite
sum of polynomial operators in the field fluctuations
(ϕ0; σ0) suppressed by powers of hσi. However, in this
case, manifest scale symmetry of the quantum result is
lost.

C. One-loop beta functions
and Callan-Symanzik equation

To check the quantum consistency of the scalar potential,
we verify the Callan-Symanzik equation for it. This is to
ensure that the physics is independent of the subtraction
scale μðhσiÞ ¼ zhσi. To this purpose, we need the one-loop
beta functions of all couplings, including those of the
nonpolynomial operators. These are computed from
the condition that the bare coupling is independent of
the subtraction parameter20 z. For example, d=ðdlnzÞλBϕ¼0,
where λBϕ ¼ μðσÞ2ϵλϕZ−2

ϕ Zλϕ and ϕ2
B ¼ Zϕϕ

2. Using these
relations, the beta function that is βλϕ ¼ dλϕ=dðln zÞ
becomes

βλϕ ¼ −2ϵλϕ þ
2λϕ
κ

αj
d
dαj

½γλϕ − 2γϕ�; ð24Þ

with summation over j with αj ¼ g21, g
2
2, h

2
t , λϕ, λm, λσ, λ6,

λ8, etc. Next, using notation (18), one has

γϕ ¼ 1

κ

�
3

4
g21 þ

9

4
g22 − 3h2t

�
; γσ ¼ 0; ð25Þ

which can easily be computed in a scale-invariant way.21

Relations similar to Eq. (24) exist for the other beta
functions. We then find

βλϕ ¼
2λϕ
κ

ðγλϕ − 2γϕÞ;

βλm ¼ 2λm
κ

ðγλm − γϕÞ;

βλσ ¼
2λσ
κ

γλσ : ð26Þ

βλϕ includes a correction due to λ6, which is the coupling of
the nonpolynomial term that we included in the classical
potential Eq. (6). These one-loop beta functions are
identical to those of the similar theory with a regularization
that breaks scale symmetry explicitly (μ ¼ constant).22 We
find in a similar way

βλ6 ¼
2λ6
κ

ðγλ6 − 3γϕÞ; βλ8 ¼
2λ8
κ

ðγλ8 − 4γϕÞ;

βλ10 ¼
2λ10
κ

ðγλ10 − 5γϕÞ; βλ12 ¼
2λ12
κ

ðγλ12 − 6γϕÞ: ð27Þ

These beta functions of the nonpolynomial operators are
difficult to obtain by other methods (diagrammatic, etc.).
This justifies keeping these operators in a scale symmetric
form [Eq. (7)], rather than expanding them about the
ground state in a series of polynomial operators [Eq. (8)].
The Callan-Symanzik equation of the scalar potential

states the independence of the potential of the subtraction
scale. At one loop, this gives [7]

d
d lnz

U1ðϕ;σ;αkÞ¼
�
z
∂
∂zþβαk

∂
∂αkþ γϕϕ

∂
∂ϕ

�
U1ðϕ;σ;αkÞ

¼Oðα3jÞ: ð28Þ

Here, αk denote the couplings λϕ; λσ; λm; g21; g
2
2; h

2
t ; λ6; ...λ12,

which were found to have nonzero beta functions. Further,

γϕ ¼ ∂ lnϕ
∂ ln z ¼ − 1

2

∂ lnZϕ

∂ ln z was found in Eqs. (25) and (18),
while γσ ¼ 0. Finally, U1ðϕ; σ; αkÞ denotes the potential
found in Eq. (21) with the observation that all couplings are

18Assuming one set λ6 ¼ 0 at tree level, some other subtraction
scheme could eventually remove finite ϕ4, ϕ2σ2, or σ4 terms in
Vð1;nÞ but could not remove the remaining λmλϕϕ

6=σ2 that does
not vanish for λ6 ¼ 0.

19The two-loop beta functions of such terms are nonzero
even if λ6 ¼ 0, so setting these to zero (at some scale) will
not remove them since they are again generated at a different
scale [10].

20The dimensionless parameter z tracks the dependence on the
subtraction scale μðhσiÞ ¼ zhσi.

21γϕ and γσ have the same expression as when μ ¼ constant
scale.

22However, at two-loop order, the beta functions start to differ
[10] in our case of spontaneous scale symmetry breaking from
the case of explicit breaking (by the regularization with
μ ¼ constant). In this case, the evanescent corrections ∝ϵ to
scalar field-dependent masses (Higgs and dilaton) of the potential
“meet” the 1=ϵ2 usual two-loop poles, to bring new poles
ϵ × 1=ϵ2 ∼ 1=ϵ that demand new counterterms, thus modifying
the beta functions; see Ref. [10] for details.
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now replaced by their “running” versions. In particular, the
tree-level potential (part of U1) is supplemented with the
following terms with running couplings λ8;10;12:

V → V þ λ8
8

ϕ8

σ2
þ λ10

10

ϕ10

σ6
þ λ12

12

ϕ12

σ8
: ð29Þ

These terms are present since the couplings λ8;10;12 (which
had boundary values set to 0 at the EW scale, unlike
λ6 ≠ 0), have nonzero beta functions.
The only explicit z-dependent part in U1 comes through

the Coleman-Weinberg part Vð1Þ of Eq. (21), while the
terms involving the beta functions and anomalous dimen-
sion act only on the tree-level part of the potential, in our
one-loop approximation.
With the above results, checking the Callan-Symanzik

equation is immediate. We stress that this is verified in the
presence of the nonpolynomial operators that actually
correspond to infinitely many polynomial operators when
expanded about the ground state.
In conclusion, the potential is indeed independent of the

subtraction scale zhσi, so one can take any value for it. It is
customary to set the subtraction scale equal to hϕi, to
minimize the log terms in the potential. In our scale-
invariant approach, μðσÞ ¼ zσ, so after scale symmetry
breaking, μðhσiÞ ¼ hϕi if we take z ¼ hϕi=hσi, and we do
so below. This means the couplings and fields are evaluated
at the scale hϕi.

D. One-loop Higgs mass

The one-loop corrected potential is scale invariant, and it
has a flat direction,23 the dilaton, which remains massless at
the quantum level (unlike in the traditional DR scheme of
μ ¼ constant). We can compute the Higgs mass m ~ϕ at one
loop by using

m2
~ϕ
¼ ðU1Þσσ þ ðU1Þϕϕjmin; ð30Þ

where the subscripts denote derivatives with respect to the
fields shown. We calculate the new ground state and the
correction δm2

~ϕ
to classical m2

~ϕ
in the limit of an ultraweak

coupling of the visible to the hidden sector jλmj ≪ λϕ
(giving λσ ≪ jλmj). This was motivated earlier in that it
ensures a classical hierarchy hϕi ≪ hσi. The new ground
state is modified to

hϕi2
hσi2 ¼

−3λm
λϕ

½1þ ζ�; ζ ¼ −
λϕ
4κ

½4 lnðλϕ=2Þ− 8�: ð31Þ

With the notation g2 ≡ g21 þ g22, the one-loop correc-
tion is

δm2
~ϕ
¼ −λm

λϕ

hσi2
16κ

�
27

�
g4
�
ln
g2

4
þ 1

3

�
þ 2g42

�
ln
g22
4
þ 1

3

�

− 16h4t

�
ln
h2t
2
−
1

3

��
þ 4λ2ϕ

�
5 ln

λ2ϕ
12

− 8þ ln 27

��
:

ð32Þ

This quantum correction remains proportional to
λmhσi2 ∼Oð100 GeVÞ, just like the tree-level value.
Thus, the initial classical hierarchy m ~ϕ ∼ hϕi ≪ hσi is
stable in the presence of quantum corrections, without
any quantum tuning of the couplings λϕ;m;σ, in agreement
with previous results [4,8].24’25 An additional correction
from λ6 ≠ 0 does not change this result since it is
subleading in the limit of the ultraweak coupling consid-
ered here (being suppressed by the large hσi). Finally, the
spontaneous breaking of scale symmetry used here avoids
the constraint of Ref. [39] (derived using explicit breaking
by the usual DR scheme) that demands new physics at the
TeV scale.

E. What about the dilatation anomaly?

Let us analyze the situation of the dilatation current Dμ

and its divergence [6,7]. For a set of fields ϕj (ϕ, σ, etc.),

Dμ ¼ ∂L
∂ð∂μϕjÞ

ðxν∂νϕj þ dϕÞ− xμL;

∂μDμ ¼ ðdϕ þ 1Þð∂μϕjÞ
∂L

∂ð∂μϕjÞ
þ dϕϕj

∂L
∂ϕj

− dL; ð33Þ

with dϕ the mass dimension of ϕ, dϕ ¼ ðd − 2Þ=2 for a
scalar in d dimensions. For standard kinetic terms and using
the equations of motion, we find for a potential V in d
dimensions

∂μDμ ¼ dV −
d − 2

2
ϕj

∂V
∂ϕj

: ð34Þ

Consider now that V is scale invariant at both
classical and quantum level as in our case,26 Eq. (13) [also
Eq. (21)]. Therefore, for a dimensionless parameter ρ, V has
the property27 VðρϕjÞ ¼ ρ2d=ðd−2ÞVðϕjÞ in d ¼ 4 − 2ϵ
dimensions (homogeneous function). Differentiating this

23See the previous discussion in the Introduction around
Eqs. (2).

24In particular, there is no term λϕhσi2 that would require
tuning the Higgs self-coupling λϕ, etc.

25For the physical Higgs mass, there is also the usual
correction of running from p2 ¼ 0 to p2 ¼ m2

h.26We have V ¼ μðσÞ2ϵV in Eqs. (13), while in Eq. (21),
V ¼ μðσÞ2ϵU1 before ϵ → 0.

27This property is shown using that VðϕjÞ ¼ ϕξ
kVðϕj=ϕkÞ,

k¼fixed; since ½VðϕjÞ�¼d, Vðϕj=ϕk�¼0 and ½ϕj� ¼ ðd − 2Þ=2,
then ξ¼2d=ðd−2Þ. Then, VðρϕjÞ¼ðρϕkÞξVðϕj=ϕkÞ¼ρξVðϕjÞ
with ξ as above.
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equation with respect to ρ and then taking ρ → 1 gives
2d=ðd − 2ÞV ¼ ϕj∂V=∂ϕj, so the rhs of Eq. (34) then
vanishes. Therefore, ∂μDμ ¼ 0 at both the classical and
quantum levels, so there is no anomalous breaking of the
quantum scale symmetry. Nevertheless, the couplings still
“run” and have nonzero beta functions [Eq. (26)] with their
corresponding poles in L.
To understand this better, let us also see what happens if

V is not scale invariant in d ¼ 4 − 2ϵ. This happens when
V ¼ μ2ϵVðϕjÞ, which is the case of the traditional DR
scheme with explicit scale symmetry breaking, with μ a
fixed scale (not a function of the fields) and V the potential,
scale invariant in d ¼ 4 (assuming no mass terms). Then,
VðρϕjÞ ¼ ρ4VðϕjÞ, but V is no longer scale invariant in
d ¼ 4 − 2ϵ. Then, from Eq. (34),

∂μDμ ¼ dμ2ϵV−2ðd−2Þμ2ϵVðϕjÞ¼ 2ϵμ2ϵV¼ 2ϵμ2ϵλj
∂V
∂λj :
ð35Þ

While at the classical level the rhs vanishes when ϵ → 0, at
the quantum level, the quartic couplings λj in V acquire a
pole βλj=ϵ, which cancels the ϵ in front, to give a finite
nonzero rhs ∂μDμ ∝ βλjð∂L=∂λjÞ. This is the familiar scale
anomaly breaking of the conservation of this current in the
traditional DR scheme.28,29

In conclusion, it is scale invariance of the action in
d ¼ 4 − 2ϵ that ensures that no scale anomaly is present.
This invariance in d ¼ 4 − 2ϵ is lost in the usual DR
regularization with explicit breaking (μ ¼ constant). Thus,
the vanishing of the beta function is not a necessary
condition for the theory to be scale invariant; one must
also specify how the quantum theory was regularized, with
or without respecting its scale symmetry. In other words,
the nonvanishing of the beta function does not mean the
theory cannot be scale invariant.

F. Further remarks

As mentioned, the vacuum energy vanishes in models
with scale symmetry or with spontaneous breaking of it; see
the discussion after Eq. (2). This protection remains in
place at the quantum level, provided this symmetry is
respected by the quantum calculation itself. The initial
classical tuning of the boundary values of the couplings,
relation (a) in Eq. (9), λσ ¼ 9λ2m=λϕð1þOðλ6ÞÞ, assumed
to be true in the paper (for spontaneous breaking to exist),
receives loop corrections of order OðλjÞ. As a result, the
tuning of the couplings, which enforces Vmin ¼ 0 at the
loop level (demanded by scale symmetry), isOðλjÞ relative

to its tree-level case. More generally, in order n, the tuning
isOðλjÞ relative to that in order n − 1, i.e., at the level of the
precision of the perturbation theory calculation in that
order.
The consistency of the boundary values for the running

couplings with some high-scale physics that must fix the
value of hσi should be investigated. This discussion
requires one to extend this quantum calculation to the case
of curved space-time while respecting this symmetry. The
appropriate setup is in the context of the Brans-Dicke-
Jordan theory of gravity. As discussed in Ref. [40], in such
a frame with nonminimal couplings, the dilaton (with
derivative couplings) decouples and avoids “fifth force
experiments.” For investigations along this direction, see
Refs. [28,29,32–38]. (Another possibility is to consider
Einstein gravity, which breaks the scale symmetry dis-
cussed here. Then, scale symmetry is only an approximate
symmetry, and the dilaton is a pseudo-Goldstone mode that
acquires a small mass, and the vacuum energy is then
nonzero).

III. CONCLUSION

We explored the possibility that scale symmetry is a
quantum symmetry of the SM that is broken (only)
spontaneously. Following previous developments on this
idea, we considered the case of the classically scale-
invariant version of the SM that has vanishing tree-level
mass for the Higgs (ϕ) and is extended by the dilaton σ (the
Goldstone mode of scale symmetry). The vev hσi ≠ 0
breaks the scale symmetry spontaneously and dynamically
generates a subtraction scale μ ∼ hσi that is necessary for
quantum calculations.
The classical scalar potential is dictated by the scale

symmetry only and may contain nonpolynomial effective
operators such as λ6ϕ6=σ2, λ8ϕ8=σ4, λ10ϕ10=σ6, λ12ϕ12=σ8,
etc; these may always be Taylor expanded into a sum of
infinitely many polynomial operators in fields fluctuations
suppressed by powers of hσi (which can be regarded as a
physical cutoff of the theory), but in such a case, the
manifest scale symmetry of the theory is lost.
The one-loop computation of the potential respected the

scale symmetry of the classical Lagrangian. As a result, a
scale-invariant one-loop potential for the Higgs and dilaton
was obtained. The quantum potential had corrections from
gauge and Yukawa interactions and also from the higher-
dimensional, nonpolynomial operators. The latter were
included in the classical Lagrangian, and their couplings
(λ6, λ8, λ10, λ12, etc.) were one-loop renormalized with beta
functions that we computed from the quantum potential.
These beta functions were difficult to compute by other
means and are an important result of this work. Tuning
these couplings to zero at the tree level will not avoid the
presence of their corresponding operators at the quantum
level; these operators reemerge at the quantum level with a
finite one-loop coefficient and as two-loop (scale-invariant)

28even if at classical level it was conserved.
29If V contained mass terms, ∂μDμ would also contain a

“classical” breaking of the scale symmetry term, m2ϕ2.
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counterterms, due to the nonrenormalizability of theories
with quantum scale invariance. The role of these (scale-
invariant) effective operators that capture the effects of an
infinite series of polynomial operators deserves further
study.
The quantumconsistency of the calculationwasverified by

showing that the Callan-Symanzik equation of the quantum
potential is respected in the presence of the nonpolynomial
operators. We also showed the differences between the
scale-invariant one-loop potential and its counterpart com-
puted in the usual DR scheme (μ ¼ constant) that breaks
scale symmetry explicitly, in the presence of nonpolynomial
operators at tree level.
In quantum scale-invariant models, all mass scales are

generated by vacuum expectation values of the fields, after
spontaneous scale symmetry breaking; therefore, any mass
hierarchy is not primary or fundamental but can be
generated by a hierarchy of the (dimensionless) couplings
of the theory. The vacuum energy is vanishing at the loop
level in the case of spontaneously broken quantum scale
symmetry, provided one coupling is a function of the rest;
this ensures the flat direction exists. This can be arranged
by one initial classical tuning, with subsequent, quantum
tunings of OðλjÞ relative to the previous order. This picture
is in contrast to the case in which the regularization
explicitly breaks the classical scale symmetry of the action,
leading to a different quantum theory (in which the
minimum of the potential is nonzero).
It is possible to arrange a hierarchym2

~ϕ
∼ hϕi2 ≪ hσi2 by

choosing at the classical level an ultraweak coupling λm
between the SM and the hidden sector of the dilaton
(jλmj ≪ λϕ) or by more elegant means (dynamics, etc.).
This hierarchy is stable at the one-loop level, without
additional tuning of the couplings and despite the presence
of the nonrenormalizable operators mentioned. This UV
behavior should survive to higher orders due to the
spontaneous (i.e., soft) scale symmetry breaking.
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APPENDIX: ONE-LOOP BETA FUNCTIONS

For convenience, we present the expressions of the beta
functions found in the text:

βλϕ ¼
1

κ

�
3

�
9

4
g42 þ

3

4
g41 þ

3

2
g21g

2
2 − 12h4t

�

− 4λϕ

�
3

4
g21 þ

9

4
g22 − 3h2t

�
þ 4λ2ϕ þ 3λ2m þ 96λmλ6

�
;

βλm ¼ 2λm
κ

�
λϕ þ 2λm þ 1

2
λσ −

�
3

4
g21 þ

9

4
g22 − 3h2t

��
;

βλσ ¼
3λσ
κ

�
λσ þ 4

λ2m
λσ

�
;

βλ6 ¼
3λ6
κ

�
6λϕ − 8λm þ λσ − 2

�
3

4
g21 þ

9

4
g22 − 3h2t

��
;

βλ8 ¼
2

κ

�
2λ6ð28λ6 þ λmÞ− 4λ8

�
3

4
g21 þ

9

4
g22 − 3h2t

��
;

βλ10 ¼
10

κ

�
4λ26 − λ10

�
3

4
g21 þ

9

4
g22 − 3h2t

��
;

βλ12 ¼
2

κ

�
3λ26 − 6λ12

�
3

4
g21 þ

9

4
g22 − 3h2t

��
: ðA1Þ
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