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Abstract: We study the production of jets in hadronic collisions, by computing all contri-

butions proportional to αnSα
m, with n+m = 2 and n+m = 3. These correspond to leading

and next-to-leading order results, respectively, for single-inclusive and dijet observables in

a perturbative expansion that includes both QCD and electroweak effects. We discuss

issues relevant to the definition of hadronic jets in the context of electroweak corrections,

and present sample phenomenological predictions for the 13-TeV LHC. We find that both

the leading and next-to-leading order contributions largely respect the relative hierarchy

established by the respective coupling-constant combinations.
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1 Introduction

Jet production is a very common occurrence at high-energy hadron colliders; for example,

at the 13-TeV LHC with an instantaneous luminosity of L = 1034 cm−2s−1, there are several

tens of thousands events per second that contain at least one jet with transverse momentum

larger than 100 GeV. Such an abundance allows experiments to carry out measurements

affected by very small statistical uncertainties, and thus to probe all corners of the phase

space in a multi-differential manner. At the same time, it constitutes a severe problem for

new-physics searches characterised by jet final states, with the signal possibly swamped

by Standard Model (SM) backgrounds. This also applies to the easiest of cases, that of

a dijet signature (which is present in many beyond-the-SM scenarios, such as those that

feature heavy vector bosons, excited quarks, axigluons, Randall-Sundrum gravitons, and

so forth – see e.g. ref. [1] for a review of experimental searches that focus on the dijet-mass

spectrum), whose peak structure can be diluted by QCD effects or be difficult to study if

at the border of the kinematically accessible region. A well known example of the latter

situation was the high-pT excess reported by CDF [2] in inclusive jet events, that triggered

a lot of interest owing to its being a possible evidence of quark compositness, but that was

ultimately entirely due to an SM effect. In particular, the PDFs used for computing the

SM predictions to which the data had been compared were insufficiently constrained in

the x region that dominated high-pT jet production, and the uncertainties associated with

their determination were unknown.

The case of the large transverse momentum excess at CDF typifies the necessity of com-

puting jet cross sections at the highest possible accuracy in the SM. The largest of such

cross sections is the dijet one (which also gives the dominant contribution to single-inclusive

rates); we shall exclusively deal with it in this paper. Next-to-leading order (NLO) QCD
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results for inclusive and two-jet distributions have been available since the early 1990’s [3–

6]. The first complete next-to-NLO (NNLO) QCD predictions have appeared only very

recently [7]. As a rule of thumb based on the values of the respective coupling constants,

NNLO QCD effects (O(α4
S)) have the same numerical impact as the so-called NLO ones

in the electroweak (EW) theory (O(α2
Sα)). Partial pure-weak contributions to the latter

had been computed in refs. [8, 9], and the complete weak results published in ref. [10].

The rationale for ignoring the NLO EW corrections of electromagnetic origin, which to the

best of our knowledge have not been calculated so far, is the possible enhancement of weak

contributions due to the growth of logarithmic terms of Sudakov origin in certain regions

of the phase space associated with large scales [11–14], in particular at high transverse mo-

menta. Incidentally, such Sudakov effects can also be responsible for large violations of the

natural hierarchy of QCD and EW corrections, with NLO EW ones becoming significantly

larger than their NNLO QCD counterparts and competitive with the NLO QCD results.

Motivated by the previous considerations, in this paper we present the computation

of all the leading and next-to-leading order contributions to the dijet cross section in a

mixed QCD-EW coupling scenario. In other words, we compute all the terms in the

perturbative series that factorise the coupling-constant combinations αnSα
m, with n+m = 2

(leading order, LO) and n + m = 3 (NLO). Thus, we calculate here for the first time the

O(α2
Sα) electromagnetic contribution, and the two NLO terms of O(αSα

2) and O(α3). Our

computations are carried out in the MadGraph5 aMC@NLO framework [15] (MG5 aMC

henceforth), and are completely automated; this work therefore constitutes a further step

in the validation of the MG5 aMC code, in a case that requires the subtraction of QED

infrared singularities which is significantly more involved than that studied in ref. [16]. We

also take the opportunity to discuss issues that arise when one defines jets in the presence

of final-state photon and leptons.

This paper is organised as follows. In sect. 2 we outline the contents of our computation

and the general features of the framework in which it is performed. The problem of the

definition of jets in the context of higher-order EW calculations is discussed in sect. 3.

Phenomenological results for the LHC Run II are given in sect. 4. Finally, we present our

conclusions in sect. 5.

2 Calculation setup

A generic observable in two-jet hadroproduction can be written as follows:

Σ
(LO)
jj (αS, α) = α2

S Σ2,0 + αSαΣ2,1 + α2 Σ2,2

≡ ΣLO1 + ΣLO2 + ΣLO3 , (2.1)

Σ
(NLO)
jj (αS, α) = α3

S Σ3,0 + α2
SαΣ3,1 + αSα

2 Σ3,2 + α3 Σ3,3

≡ ΣNLO1 + ΣNLO2 + ΣNLO3 + ΣNLO4 , (2.2)

at the LO and NLO respectively. The notation we adopt throughout this paper is fully

analogous to that of refs. [15–17]. We refer the reader, in particular, to ref. [17] for a detailed

discussion on the physical meaning of the terms that appear in eqs. (2.1) and (2.2), and
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the relevant terminology; we limit ourselves to recalling here that what is conventionally

denoted by NLO QCD and NLO EW corrections can be identified with ΣNLO1 and ΣNLO2 ,

respectively.

In our computation, Σ
(LO)
jj receives contributions from all Feynman diagrams relevant

to tree-level four-point Green functions with external massless SM particles – namely, light

quarks (including bottoms, since we work with five light flavours), gluons, photons, and

leptons1. As far as Σ
(NLO)
jj is concerned, all one-loop four-point and tree-level five-point

functions with massless external legs contribute. Note that this implies that while both

real and virtual photons enter NLO corrections, W±’s and Z’s only appear as internal

particles. Thus, what has been called HBR (for Heavy Boson Radiation) in refs. [16, 17],

that is the contribution from tree-level diagrams that correspond to the real emission of

a W± or a Z (and, in principle, one might consider top-quark emissions, too) from a

Born-level configuration, is not included in our results (incidentally, this is also the reason

why in the present case ΣNLO EW ≡ ΣNLO2). In fact, in order to consider HBR cross

sections, one would need either to possibly cluster a heavy vector boson together with

other massless particles when reconstructing jets (an option which is not appealing from a

physics viewpoint, given the procedure followed by experiments), or to first decay any W±

and Z into a pair of quarks or leptons. Having said that, we point out that MG5 aMC can

be used to simulate HBR contributions to dijet observables, and that the corresponding

calculations are fully independent of those performed here.

All of the computations of the matrix elements mentioned above, the renormalisation

procedure, and the subtraction of the real-emission infrared singularities (IR) are handled

automatically by MG5 aMC (with a still-private version of the code). We remind the

reader that MG5 aMC makes use of the FKS method [18, 19] (automated in the module

MadFKS [20, 21]) for dealing with IR singularities. The computations of one-loop ampli-

tudes are carried out by switching dynamically between two integral-reduction techniques,

OPP [22] or Laurent-series expansion [23], and TIR [24–26]. These have been automated

in the module MadLoop [27], which in turn exploits CutTools [28], Ninja [29, 30], or

IREGI [31], together with an in-house implementation of the OpenLoops optimisation [32].

Two remarks are in order here. Firstly, there is no element in the MG5 aMC code that

has been customised to compute dijet observables, in keeping with the general strategy

that underpins the code. Secondly, although the papers cited above mostly treat explicitly

the case of QCD corrections, MG5 aMC has been constructed for being capable to handle

other theories as well. For what concerns the subtraction of real-emission singularities,

the QED case descends from the QCD one, with the most significant complications in the

context of automation due to bookkeeping (which understands the necessity of retaining

independent control of the various Σk,q terms). The underlying strategy has been outlined

in sect. 2.4.1 of ref. [15]; the necessary extensions to the code were chiefly carried out

for the work of ref. [16], and further validated for the present paper. As far as one-loop

computations are concerned, MadLoop has been completely overhauled in ref. [15] (see in

particular sects. 2.4.2 and 4.3 there), and it is since then that it is able to evaluate virtual

1The reasons for this choice will be discussed in sect. 3.
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amplitudes in theories other than QCD.

Finally, we point out that our simulations are entirely based on a Monte Carlo integra-

tion of the short-distance subtracted cross sections, that results in (weighted) events and

their associated counterevents. In particular, we do not use any factorised formulae for the

one-loop EW logarithmic corrections (see e.g. ref. [13]).

3 Definition of jets

The prescription for the computation of a jet cross section, possibly in association with

other objects, is unambiguous in perturbative QCD: jets are composed of massless coloured

particles (quarks and gluons), and this determines the nature of parton-level processes.

Things become more complicated as soon as one considers the first subleading higher-order

correction, i.e. the electromagnetic one at the NLO. Among other things, this entails the

contribution of diagrams with an extra (w.r.t. the underlying Born configuration) real

photon in the final state. In order to have an IR-finite cross section, such a photon must

be recombined (at least in a suitable subset of the phase space) with nearby QCD partons

to form a jet. However, this raises an issue when the jet is made of a photon and a

gluon: IR safety demands (consider the soft-gluon limit) that there be an associated Born

configuration in which a jet coincides with a photon. In other words, Born-level amplitudes

must feature both QCD partons and photons (which in turn implies that one cannot limit

oneself to considering only the leading, pure-QCD, Born contribution).

This does not really pose any problem: one must simply enlarge the set of particles

that can form jets at the level of short-distance cross sections (both at the leading and

at higher orders), and include photons on top of light quarks and gluons; the resulting

objects are called democratic jets2. The fact that a jet might be predominantly a non-

hadronic quantity is not surprising in a realistic experimental environment; for example,

in certain LHC analyses a jet is a spray of collimated particles with up to 99% of its

energy of electromagnetic origin, of which up to 90% can be carried by a single photon (see

e.g. refs. [34–46] for a list of recent ATLAS and CMS papers approved as publications in

the context of jet physics). Having said that, fixed-order perturbation theory is somehow

pathological, precisely because a jet can coincide with a photon. Although, as we shall

show later, this situation is numerically unimportant, it has motivated the introduction

of procedures with the aim of getting rid of jets whose energy content is dominated by a

photon – in this paper, we shall call such objects photon jets. Recent examples can be

found in refs. [47–50], that deal with NLO EW corrections to vector boson production in

association with jets. The common feature of these procedures is the use of the photon

energy (or of a related quantity, such as the transverse momentum), which is necessary to

define the photon hardness, and thus its relative contribution to that of the jet the photon

belongs to.

2Starting from the third-leading NLO corrections (that scale like (α/αS)2 w.r.t. the leading, pure-QCD,

ones) it is necessary to include massless leptons as well in the jet-clustering procedure. As far as we know,

the term “democratic” applied to jets in a similar context has been used for the first time in ref. [33].
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Unfortunately, the photon energy is an ill-defined perturbative concept, starting from

the third-leading NLO correction (i.e. ΣNLO3 in the case of dijet production). This can

be easily seen by considering a Born-level diagram with a final-state photon, and the real-

emission diagram obtained from the former by means of a γ → qq̄ splitting: by taking the

q‖ q̄ limit, one sees that the photon energy is not an IR-safe quantity.

In order to use photon degrees of freedom in an IR-safe way, the photon must be a

physical final-state object (in other words, “taggable” or “observable”). For this to happen,

the following rule must be obeyed:

• Photons can be considered as observable objects only if emerging from a fragmenta-

tion process. A photon that appears in a Feynman diagram has not been fragmented,

and thus cannot be tagged.

A taggable photon is quite analogous to e.g. a pion, which is described in perturbative

QCD by means of a (non-perturbative) fragmentation process. As such, we shall have

fragmentation functions that account for the long-distance process:

D(i)
γ (z) : i −→ γ , (3.1)

where i is any massless particle that can fragment into a photon, and z the fraction of

the longitudinal momentum of i carried by the photon. Thus, the particle i may be

itself a photon, which is the most significant difference between the photon and the pion

cases (since no pion can appear at the short-distance level). In particular, owing to the

elementary nature of the photon, one will necessarily have [51]:

D(γ)
γ (z) = (A+Bα+ · · · ) δ(1− z) + ∆D(γ)

γ (z) , (3.2)

with ∆D
(γ)
γ (z) a regular function at z → 1. We point out that the O(α0) δ(1 − z) term

in eq. (3.2) is all one needs in the context of QCD computations that feature final-state

photons3: in that case, the difference between taggable photons and short-distance photons

is irrelevant (and indeed it is not necessary to introduce it). We also remark that it is

perfectly acceptable to have a process with both taggable and short-distance photons in

the final state; the degrees of freedom of the latter must be integrated over (as e.g. in a

jet-finding algorithm), while this is not necessary (but still possible) for the former ones.

The scheme outlined above allows one to define a photon jet regardless of the per-

turbative order in αS and α one is working at: for example, a photon jet is any jet that

contains a taggable photon with energy Eγ such that Eγ ≥ zcutEj , with Ej the jet energy

and zcut a pre-defined constant. However, in the context of a jet analysis what one is really

interested in is a “hadronic” jet, i.e. a jet in which the content of EM energy is smaller,

not larger, than a given threshold (we shall call these jets anti-tagged jets in this paper).

This poses two problems. Firstly, a photon can be anti-tagged not only if Eγ < zcutEj , but

also if it simply escapes detection (which, for a fixed-order theoretical calculation, is the

case where the jet is made of quarks and gluons only, i.e. one in which there is no photon).

3Such a term corresponds to what is usually called the direct contribution in pQCD calculations.
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Secondly, the anti-tagging condition creates a practical problem, because fragmentation

functions can only be measured (if at all) for sufficiently large z’s.

A possible solution to these problems employs again the idea of photon jet. The starting

point is the following identity (which is the hadron-parton-duality unitary condition):

i =
∑
h

D
(i)
h (z) + . . . =

∑
h6=γ

D
(i)
h (z) +D(i)

γ (z) + . . . . (3.3)

where the dots on the r.h.s. generically denote power-suppressed terms. In words: parton

i fragments into any “hadrons”, which will be eventually clustered into a jet (note that

parton i can be dressed by the perturbative radiation of other massless particles – these

are understood in the notation of eq. (3.3)). In the rightmost side of eq. (3.3), the sum

over parton-to-hadron fragmentation functions is split into the sum of a term that features

all hadrons different from the photon, and of a parton-to-photon term. By neglecting the

power-suppressed terms we re-write eq. (3.3) as follows:

i =
∑
h6=γ

D
(i)
h (z) +D(i)

γ (z)Θ(zcut − z) +D(i)
γ (z)Θ(z − zcut) , (3.4)

i.e. we introduce tagging and anti-tagging conditions, which we can do because the photon

emerges from a fragmentation process, and thus is taggable. Thence:∑
h6=γ

D
(i)
h (z) +D(i)

γ (z)Θ(zcut − z) = i−D(i)
γ (z)Θ(z − zcut) . (3.5)

The l.h.s. of eq. (3.5) is what we want: the anti-tag jet contribution. Unfortunately, neither

of the terms that appear there can be reliably computed (for all z’s). Conversely, the

r.h.s. of that equation is just fine: the two terms there correspond to the fully-democratic

jet cross section and to the photon-tagged one. If eq. (3.5) is iterated over all possible

final-state partons, one ends up by defining in a natural manner the anti-tag jet cross

section as the democratic cross section, minus all tagged-photon cross sections, with the

number of photons ranging from one to the maximum number of jets compatible with the

perturbative order considered. In formulae, this can be expressed as follows:

dσ
(antitag)
X;nj = dσ

(dem)
X;nj −

n∑
k=1

dσX+kγ;nj . (3.6)

with X any set of objects that have to be found in the final state on top of n jets (impor-

tantly, taggable photons may appear in such a set). The first term on the r.h.s. of eq. (3.6)

is the democratic jet cross section; no taggable photons are present, except those possibly

in X. Each of the n cross sections that appear in the second term on the r.h.s. of eq. (3.6)

is constructed by using the same short-distance processes as those that contribute to the

first term, and by fragmenting k final-state quarks, gluons, and photons in all possible

ways; n jets are finally reconstructed. All n + 1 terms on the r.h.s. of eq. (3.6) are finite

and IR safe, and can be computed independently of each other in perturbation theory.

What has been done so far for photons can essentially be repeated in the case of

massless leptons. The main difference is that a fermion line cannot be made to disappear
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by splitting, and this implies that there is a way to tag a lepton that is not viable in the case

of photons. Still, IR safety requires that such a tagging is performed on an object which

is not the (short-distance) lepton itself, but its dressed version: this is nothing but a jet,

typically constructed with a small aperture, that contains one lepton and whatever extra

radiation surrounds it. Alternatively, one can follow the same procedure as for photons,

namely introduce parton-to-lepton fragmentation functions. Either way, one arrives at the

idea of taggable leptons, which can be employed to define lepton jets; the anti-tag jet cross

section in the l.h.s. of eq. (3.6) is then defined by inserting on the r.h.s. subtraction terms

relevant to the lepton-jet cross sections4.

The procedure outlined so far puts QCD and QED on a rather similar footing. In

particular, this implies that as far as EW corrections are concerned all computations can

be conveniently performed in an MS-like scheme (such as the Gµ or α(mZ) ones). We

point out that this procedure naturally leads to the prescription usually adopted in NLO

EW computations (see e.g. ref. [53]) that associates a factor α(0) to each external (short-

distance) photon: such a factor results from the RG evolution of the photon-to-photon

fragmentation function, whose δ(1− z) term acquires an overall factor α(0)/α(Q) [51].

3.1 Photon-jet cross sections

We now return to eq. (3.6) in order to define the photon-jet cross sections that appear in

the second term on the r.h.s. of that equation, for the case of dijet hadroproduction we are

interested in. As was discussed above, a construction valid for all the αnSα
m combinations

necessarily entails the use of fragmentation functions, whose knowledge is presently far

from being satisfactory (bar perhaps for the quark-to-photon one).

Therefore, we have to adopt a pragmatic solution; this amounts to defining the photon-

jet cross sections only for those O(αnSα
m) terms for which the introduction of a fragmenta-

tion function can be bypassed; for the other terms, the photon-jet cross sections will be set

equal to zero, and thus our anti-tag dijet cross section will coincide with the democratic

one5. We do this in the following way. The photon-jet cross sections are defined by using

the isolated-photon cross sections for one and two photons, constructed identically to what

one usually does in perturbative QCD, and whose final states are suitably clustered into

jets (as we shall specify later). This implies that the relevant perturbative orders are the

following:

1γ : O(αSα+ α2
Sα) ≡ ΣLO2 + ΣNLO2 , (3.7)

2γ : O(α2 + αSα
2) ≡ ΣLO3 + ΣNLO3 , (3.8)

for the one- and two-isolated-photon cross sections respectively. This is implicitly equiv-

alent to setting the photon-to-photon fragmentation function equal to δ(1 − z), i.e. to

neglecting the contribution to it due to higher-order QED effects. The cross sections that

4The use of the physical lepton masses leads to alternative approaches (see e.g. ref. [52]). These typically

feature large-logarithmic terms, that expose their IR sensitivity and necessitate a careful treatment; we

believe that they are best avoided in the context of jet analyses and lepton-jet rejection.
5We always cluster leptons democratically, which is fully justified by the fact that their contributions

are very subleading, and numerically completely negligible.
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correspond to eqs. (3.7) and (3.8) could still depend on quark-to-photon and gluon-to-

photon fragmentation functions; in order to avoid this, we choose to work with the smooth

isolation prescription of ref. [54], which sets their contributions identically equal to zero.

More in details, we have implemented the following procedure:

1. find jets democratically;

2. find isolated photons; they are defined following ref. [54] (using transverse momenta),

with the same cone aperture as for jets, and with nγ = εγ = 1;

3. loop over those photons: if a photon belongs to a jet, and it carries more than 90%

of the pT of that jet, then flag the jet as a candidate photon jet;

4. candidate photon jets are considered as proper photon jets if and only if:

• there is exactly one isolated photon, and one computes either ΣLO2 or ΣNLO2 ;

• there are exactly two isolated photons, and one computes either ΣLO3 or ΣNLO3 ;

5. each photon jet gives an entry to the histograms relevant to single-inclusive observ-

ables. For dijet correlations, there is an histogram entry for each pair of jets, at least

one of which is a photon jet6.

There are many possible variants to items 1–5 above, but we believe that all those that are

consistent with the general ideas outlined before will give very similar numerical results.

The most important thing to bear in mind is that, regardless of the specific choices made

for the isolation procedure, one is guaranteed to get rid of those configurations where a

photon jet coincides with a photon, which is the semi-pathological situation, peculiar of

fixed-order calculations, that one typically would like to avoid.

We point out that, with the choices made here, each photon jet will coincide with a

democratic jet (while the opposite is obviously not true). Therefore, item 5 implies a local

and exact cancellation of the photon-jet contributions, if all the computations relevant to

the cross sections on the r.h.s. of eq. (3.6) are performed simultaneously (i.e. during the

same run), which is what we do. This not only improves the numerical stability of the

results, but also resembles very closely any possible experimental procedure that would

reject jets with too high a content of EM energy.

4 Results

We now turn to presenting our predictions for a variety of single-inclusive and dijet observ-

ables that result from pp collisions at a center of mass energy of 13 TeV (LHC Run II). We

refer the reader to eqs. (2.1) and (2.2) for the definitions of the LO (ΣLOi , i = 1, 2, 3) and

NLO (ΣNLOi , i = 1, 2, 3, 4) contributions to the cross section, respectively; here, we shall

show different linear combinations of these quantities. Jets are defined by means of the kT

algorithm [55] with D = 0.7, and reconstructed with FastJet [56]; as a default, we present

results relevant to democratic jets, but also explicitly assess the effect of removing photon

6We point out that dijet correlations can be constructed by using a subset of all possible two-jet pairings,

and we choose in sect. 4 to consider only observables defined by means of the two hardest jets.
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jets, as discussed in sect. 3. For all of the observables considered here the contribution of

forward jets is discarded, by imposing the constraint:

|y| < 2.8 . (4.1)

We work in the five-flavour scheme (5FS) where all quarks, including the b, are massless;

electrons, muons, and taus, collectively called leptons, are massless as well, while the vector

boson masses and widths have been set as follows:

mW = 80.419 GeV , mZ = 91.188 GeV , (4.2)

ΓW = 2.09291 GeV , ΓZ = 2.50479 GeV . (4.3)

The CKM matrix is taken to be diagonal, and the complex-mass scheme [57, 58] is em-

ployed throughout. The PDFs are those of the NNPDF2.3QED set [59], extracted from

LHAPDF6 [60] with number 244600; these are associated with

αS(mZ) = 0.118 . (4.4)

We work in the Gµ EW scheme, where:

Gµ = 1.16639 · 10−5 −→ 1

α
= 132.507 . (4.5)

The central values of the renormalisation (µR) and factorisation (µF ) scales are both equal

to:

µ0 =
HT

2
≡ 1

2

∑
i

pT (i) , (4.6)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies have been evaluated by varying these scales independently in the

range:
1

2
µ0 ≤ µR, µF ≤ 2µ0 , (4.7)

and by taking the envelope of the resulting predictions. The scale dependence of α is

ignored, and the systematics associated with the variations in eq. (4.7) is evaluated by

means of the exact reweighting technique introduced in ref. [61]. Reweighting is also

employed for the computation of PDF uncertainties, with individual weights combined

according to the NNPDF methodology [62]. We report the 68% CL symmetric interval

(that is the one that contains only 68 replicas out of a total of a hundred; this is done in

order to avoid the problem of outliers, which is severe in this case owing to the photon

PDF [59]). Finally, we note that the NNPDF2.3 set adopts a variable-flavour-number

scheme. For scales larger than the top mass, this scheme is equivalent to the six-flavour

one (6FS). Since the hard matrix elements are evaluated in the 5FS, the impact of the

sixth flavour has to be removed from the running of αS and from the DGLAP evolution of

the PDFs. This corresponds to adding to the NLO 6FS-PDF cross section the following

quantity:

αS

TF
3π

∑
i,k

[
n(i,k)g log

(
µ2F
m2
t

)
Θ(µF −mt)− b(i,k) log

(
µ2R
m2
t

)
Θ(µR −mt)

]
ΣLOik

. (4.8)
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Here, n
(i,k)
g and b(i,k) are the number of initial-state gluons and the power of αS in ΣLOik

,

respectively, with k numbering the individual partonic channels that contribute to ΣLOi .

The interested reader can find more details in ref. [63] or in sect. IV.2.2 of ref. [64].

In order to determine which transverse-momentum cuts are sensible in an NLO com-

putation, we follow the procedure of ref. [65] and present in fig. 1 the total dijet cross

section as a function of ∆, according to the following definition:

σ(∆) = σ
(
p
(j1)
T ≥ 60 GeV + ∆, p

(j2)
T ≥ 60 GeV

)
, (4.9)

with p
(j1)
T and p

(j2)
T the transverse momentum of the hardest and second-hardest jet, re-

spectively. In other words, ∆ measures the asymmetry between the pT cuts imposed on the

two hardest jets, having assumed the transverse momentum of the second-hardest jet to be

larger than 60 GeV. Such a value is arbitrary, and is chosen as typical of LHC jet analyses;

we point out that its impact on the pattern of the dijet cross section dependence upon ∆

is negligible (within a reasonable range). There are five curves in the main frame of fig. 1.

σ 
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αs
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3

αs
2+αsαem+αem
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Figure 1. Total dijet cross section as a function of ∆, according to the definition given in eq. (4.9).
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The red histogram overlaid with full diamonds represents the ΣLO1 contribution, while the

blue one corresponds to the sum of all of the LO contributions, Σ
(LO)
jj . The green histogram

overlaid with open boxes is the sum ΣLO1 +ΣNLO1 , i.e. of the leading terms (pure QCD) at

the LO and NLO; the black histogram is the sum of all of the LO and NLO contribution,

Σ
(LO)
jj + Σ

(NLO)
jj , and is denoted by “all orders”. Finally, the brown curve represents the

sum of all LO and NLO contributions, bar the pure QCD ones (ΣLO1 and ΣNLO1); in order

for it to fit into the frame of the figure, this histogram has been rescaled by a factor of 103.

In the region where the latter curve is displayed with a dashed pattern, the cross section

is negative, and thus what is represented is its absolute value; this convention will be used

throughout this section. The lower panel in fig. 1 presents the ratios of the results shown

in the main frame, over the ΣLO1 prediction.

As is explained in detail in ref. [65], the dijet cross section behaves in a pathological

manner for small ∆ values at the NLO, owing to the presence of large log ∆ terms. Given

the definition in eq. (4.9), one would expect a monotonically increasing rate for ∆ → 0.

This is indeed the behaviour of the LO results (red-with-diamonds and blue histograms),

while the NLO ones actually decrease as ∆ = 0 is approached. Figure 1 therefore helps

decide which value of ∆ is appropriate in order to carry out sensible NLO computations.

Inspection of the plot suggests to set ∆ & 20 GeV – for such values, the three NLO

predictions are still monotonically growing. In order to be definite, we shall thus impose

p
(j1)
T ≥ 80 GeV , p

(j2)
T ≥ 60 GeV (4.10)

in our simulations for dijet correlations, while for single-inclusive distributions we impose

p
(j)
T ≥ 60 GeV . (4.11)

There are a couple of further observations relevant to fig. 1. Firstly, the full LO and NLO

results (blue and black histograms, respectively) are extremely close (but not identical,

although that is hard to see directly from the plot) to their leading, pure-QCD, counterparts

(red-with-diamonds and green-with-boxes histograms, respectively). This is the well-known

fact that EW contributions are negligible as far as dijet rates are concerned, their effects

being manifest only in certain phase-space regions characterised by large scales and that

contribute little to total cross sections. Secondly, it appears that the impact of log ∆

terms is larger when the pure-QCD contributions are not included (the peak of the brown

histogram occurs at a much larger ∆ value than that relevant to the two other NLO results).

This suggests that a conservative choice of ∆ (similar to or even more stringent than that

of eq. (4.10)) is recommended where EW effects are particularly prominent.

We now turn our attention to differential observables. We shall present six of them in

figs. 2–14, with two figures for each observable (plus one relevant to the direct comparison

of pT results in different rapidity ranges, fig. 10). The patterns in the layout of the plots are

the same for all of the observables; thus, we shall explain their meaning by using the case

of the single-inclusive jet transverse momentum pinclT (figs. 2 and 3) in order to be definite.

There are three panels in fig. 2. The upper one presents the absolute values of the

three LO and the four NLO contributions to the cross section, as well as their sum; as
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Figure 2. Single-inclusive transverse momentum.

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ΣLO1 , green with open boxes for ΣLO2 , and brown

with open circles for ΣLO3 . The four NLO results are associated with plain histograms:

blue for ΣNLO1 , purple for ΣNLO2 , yellow for ΣNLO3 , and cyan for ΣNLO4 ; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ΣLOi and ΣNLOi terms to the most accurate result

obtained from our simulations. The patterns employed in the middle inset are identical

to those of the upper inset. Finally, the bottom inset presents the relative theoretical
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Figure 3. Single-inclusive transverse momentum.

uncertainty of the all-orders result, in two different ways: the light gray band corresponds

to the hard-scale and PDF systematics (with the two summed linearly), while the dark

gray band shows the hard-scale uncertainty only (see eq. (4.7) and thereabouts).

The main frame of fig. 3 presents various linear combinations of the results shown in

fig. 2, in the form of ratios over the leading LO prediction, ΣLO1 . In particular, we have

defined the quantities:

δ1 =
ΣNLO1

ΣLO1

, (4.12)

δ2 =
ΣLO2 + ΣLO3

ΣLO1

, (4.13)

δ3 =
ΣNLO2 + ΣNLO3 + ΣNLO4

ΣLO1

, (4.14)

which are displayed as a brown histogram overlaid with full triangles (δ1), a red histogram

overlaid with full diamonds (δ2), and a green histogram overlaid with open boxes (δ3),
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respectively. We also show the sum δ2 + δ3 as a blue histogram, and the sum δ1 + δ2 + δ3
as a black histogram. Finally, we report for reference the two uncertainty bands already

shown in fig. 2. In view of the definition of ΣLOi and ΣNLOi , the physical meaning of the

various curves presented in fig. 3 is the following. δ1 is equal to KQCD − 1, with KQCD the

K factor associated with a pure-QCD computation. δ2 measures the relative impact of the

two Born contributions which are non pure-QCD. δ3 is equal to K���QCD − 1, with K���QCD

the K factor associated with NLO contributions that are not pure QCD7. Thus, δ1+δ2+δ3
shows the effect on the best (i.e. the all-orders one) prediction of all contributions different

from the dominant Born one (ΣLO1), while the comparison between δ1 and δ2+δ3 allows an

immediate understanding of how much of that is due to either pure-QCD NLO corrections,

or to other LO and NLO contributions.

The lower panel of fig. 3 displays two results, both of which are ratios of all-orders

predictions obtained with specific conditions over the all-orders default prediction. The

red histogram overlaid with full circles corresponds to setting to zero the photon PDF,

while the green histogram corresponds to removing the photon-jet contributions.

The predictions for the single-inclusive jet transverse momentum shown in figs. 2 and 3

are dominated by the leading contributions at both the LO and the NLO for pinclT . 2 TeV.

The impact of non-QCD contributions is essentially negligible up to those values, well

within the scale uncertainty band. As is clear from fig. 3, specifically from the comparison

of δ2, δ3, and δ2 + δ3, this is chiefly due to the very large cancellation that occurs between

the LOi and the NLOi terms (i ≥ 2) – note, from fig. 2, that this is not only true for the

sums of such terms, but to some extent also for them individually, since the NLO ones are

negative either in all or in a large part of the pT range considered. Eventually, the LO cross

sections grow faster in absolute value than their NLO counterparts. Thus, the sum of all

results minus the leading LO term ΣLO1 is indistinguishable from ΣNLO1 up to 2 TeV, but

then starts to differ significantly from it, to the extent that ΣNLO1 contributes to less than

50% to the sum for those transverse momenta at the upper end of the range probed in our

plots, pinclT & 4.5 TeV. When one moves towards such large pinclT ’s, one sees that the NLO

scale uncertainty remains moderate, while that due to the PDFs grows rapidly, owing to

the poor constraining power of the data currently used in PDF fits on the corresponding

x region. To that PDF uncertainty, the photon contribution increases with pinclT (being

equal to about 3% of the total PDF uncertainty at pinclT ' 2.6 TeV, and to about 22% at

pinclT ' 4.6 TeV), but is never the dominant effect. From fig. 3 we see that the impact of

the contributions that depend on the photon PDF is negligible for pinclT . 3.5 TeV, while

it becomes substantial for larger values of the transverse momentum. Needless to say, the

validity of this observation is restricted to the PDF used in the present simulations. The

photon component in the NNPDF2.3QED set is mainly constrained by LHC Drell-Yan data

via a reweighting procedure. This results in a significant photon density at large x that,

however, is associated with a sizeable uncertainty. Other approaches, which rely either on

assumptions on the functional form at some initial scale [66–68], or on a direct extraction

7As was already said, and for the sake of consistency, this K factor is defined by using the pure-QCD

Born ΣLO1 in the denominator.
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Figure 4. Single-inclusive transverse momentum, for |y| ≤ 1.

from proton structure functions [69], suggest that its central value is much smaller than

the NNPDF2.3 one at large x and rather precisely determined (in the recent sets), thus

effectively lying close to the lower limit of the NNPDF2.3QED uncertainty band.

We also remark that the removal of the photon-jet cross sections has a negligible impact

in the whole transverse momentum range considered. It does affect the individual LOi and

NLOi, i ≥ 2 contributions, especially LO2 where it can be as large as 30%; however, this

occurs mostly for pinclT . 0.5 TeV, where non-QCD terms can be safely ignored.

The single-inclusive transverse momentum is again shown in figs. 4 and 5, subject to

the constraint |y| ≤ 1 (in other words, each jet that gives a contribution to these histograms

must satisfy a small-rapidity constraint). The patterns in these figures are very similar to
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Figure 5. Single-inclusive transverse momentum, for |y| ≤ 1.

those of figs. 2 and 3, respectively, owing to the dominance of central jets in the case

inclusive over the whole rapidity range.

Things slightly change when one considers the rapidity intervals 1 < |y| ≤ 2 and

2 < |y| ≤ 2.8, whose cases are presented in figs. 6 and 7, and in figs. 8 and 9, respectively.

In the transverse momentum region pinclT . 1 TeV, δ2 tends to be marginally flatter when

the rapidity is increased; conversely, δ3 decreases, somehow more rapidly. The net effect

is that the amount of cancellation between the LO and NLO cross sections is smaller the

farther away one moves from central rapidities in this range of relatively small pinclT ’s, so

that the overall EW effects, that decrease the pure-QCD cross sections, are stronger the

larger the rapidities. This is seen more clearly in fig. 10, where the results for δ2, δ3,

and δ2 + δ3, already shown in figs. 5, 7, and 9, are presented together (as red, green, and

blue histograms; the |y| ≤ 1, 1 < |y| ≤ 2, and 2 < |y| ≤ 2.8 predictions are displayed as

solid, dashed, and short-dashed histograms, respectively), by using a smaller y-axis scale

w.r.t. those of the original plots. For larger transverse momenta the trend changes, with
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Figure 6. Single-inclusive transverse momentum, for 1 < |y| ≤ 2.

the positive LO contributions eventually becoming larger than their NLO counterparts (in

absolute value). Thus, the δ2 + δ3 prediction crosses zero at pinclT ∼ 1.6 TeV for |y| ≤ 1,

and at pinclT ∼ 2.5 TeV for 1 < |y| ≤ 2 (the statistics is insufficient to draw any conclusion

in the range 2 < |y| ≤ 2.8).

We conclude that, as far as the single-inclusive transverse momentum is concerned, the

impact of LO and NLO contributions beyond the leading ones do depend on the rapidity

range considered, and tends to decrease (increase) the pure-QCD results when moving

away from the central region for small (large) pinclT ; in all cases, the absolute values of the

overall effects are relatively small. This pattern is due to a variety of reasons; in particular,

one may mention the fact that, the larger the rapidity, the more difficult it is to reach the
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Figure 7. Single-inclusive transverse momentum, for 1 < |y| ≤ 2.

high-pT region where EW effects are known to be more prominent, but also the fact that

the extent of the cancellation between LO and NLO results is difficult to be predicted a

priori. In any case, such a pattern must be taken into account in the context of PDF fits

that aim to include EW corrections, and that need to consider different rapidity ranges in

order to constrain more effectively the small-x region.

Our predictions for the invariant mass of the hardest-jet pair are given in figs. 11

and 12 (note that some of the histograms have been rescaled in the latter figure, in order

to make them more clearly visible in the layout). NLO corrections are dominated by the

pure-QCD ones ΣNLO1 , that turn negative around M12 ' 1 TeV8. EW effects tend to

decrease the cross section further, with the second-leading NLO corrections ΣNLO2 being

negative and larger in absolute value than the second-leading LO term ΣLO2 . However, the

overall impact on the physical cross section is rather small, and in particular smaller than

8There is a visible numerical instability that affects the large-mass predictions of ΣNLO1 . It is due to

significant cancellations between the real-emission and virtual contributions to that mass region.
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Figure 8. Single-inclusive transverse momentum, for 2 < |y| ≤ 2.8.

the hard-scale uncertainty. As was observed in ref. [10], even for mass values of several

TeV’s one is not fully in the Sudakov region, and thus EW contributions tend to follow

the hierarchy established by the couplings, without major logarithmic enhancements. We

also observe a very small impact of the removal of the photon jets. In this regard, the

same comments as for the single-inclusive transverse momentum apply here. By removing

photon-jet cross sections from ΣLO2 , that term is halved at invariant masses smaller than

0.5 TeV; however, as can be seen from fig. 11, in that region its contribution to the all-orders

rate is in practice negligible.

We finally show, in figs. 13 and 14, the rapidity separation between the two hardest

jets (again, some of the histograms have been rescaled in the latter plot to improve its
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Figure 9. Single-inclusive transverse momentum, for 2 < |y| ≤ 2.8.

readability). This observable is dominated by low-pT configurations, and as a consequence

of that subleading terms, both at the LO and the NLO, are numerically extremely small,

and completely swamped by hard-scale uncertainties. Leading NLO corrections are large,

but almost flat in the whole range considered. As in the previous cases, the removal of

photon jets is irrelevant to the all-orders result, while being important up to the largest

rapidity separations in particular for ΣLO2 .

5 Conclusions

In this paper we have studied the hadroproduction of dijets, and considered all of the LO

and NLO contributions of QCD and EW origin to the corresponding cross section, pre-

sented as single-inclusive distributions and two-jet correlations for pp collisions at 13 TeV.

By doing so, we have computed for the first time three subleading NLO corrections: the

O(α2
Sα) electromagnetic one (our results include the contributions due to real-photon emis-

sions), and the O(αSα
2) and O(α3) EW ones. The calculations have been performed in
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Figure 10. Single-inclusive transverse momentum; δ2 and δ3 predictions for the three rapidity

regions already considered in figs. 5, 7, and 9.

the automated MadGraph5 aMC@NLO framework, which is thus extensively tested in a

mixed-coupling scenario that features both EW and QCD loop corrections, and both QCD

and QED real-emission subtractions.

When all subleading NLO corrections are computed, it is necessary to be particu-

larly careful in the case one wants to not take into account jets that are predominantly

of electromagnetic origin. Although from the phenomenological viewpoint we do not con-

sider this operation to have a compelling motivation, we have outlined an IR-safe scheme

through which this result can be achieved. Its exact implementation requires the use of

fragmentation functions, whose determination from data is either poor or not available at

present9. For the sake of this paper, we have adopted a more pragmatic strategy, which

is a (perturbative) approximation of the more general scheme, that does not employ the

fragmentation functions. We have shown that the removal of EW-dominated jets has a

negligible impact at the level of observable differential rates, and one can thus safely work

with democratic jets, in which all massless particles (quarks, gluons, photons, and leptons)

9However, the necessary ingredients for a technically-viable computation that leads to IR-finite cross

sections can all be derived from purely perturbative information.
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Figure 11. Invariant mass of the hardest jet pair.

are treated on equal footing.

In general, contributions that are expected to be subleading according to the coupling-

constant combination they feature turn out to be indeed numerically subleading, with pure-

QCD effects being dominant everywhere, except in the very-high transverse momentum

region of the single-inclusive jet pT . In other words, within the LO and NLO cross sections,

we find that the hierarchy naively established on the basis of the couplings is largely

respected, but we also remark that, in a significant fraction of the phase space, ΣNLO2 is

larger than ΣLO2 . For all observables considered here, there are large cancellations between

the LO and NLO subleading terms, which is one of the major motivations for computing

them all in a consistent manner.
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Figure 12. Invariant mass of the hardest jet pair.
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