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Abstract

A search for a long-lived scalar particle χ is performed, looking for the decay
B+ → K+χ with χ→ µ+µ− in pp collision data corresponding to an integrated
luminosity of 3 fb−1, collected by the LHCb experiment at centre-of-mass ener-
gies of

√
s = 7 and 8 TeV. This new scalar particle, predicted by Hidden Sector

models, is assumed to have a narrow width. The signal would manifest itself
as an excess in the dimuon invariant mass distribution over the Standard Model
background. No significant excess is observed in the accessible ranges of mass
250 < m(χ) < 4700 MeV/c2 and lifetime 0.1 < τ(χ) < 1000 ps. Upper limits on the
branching fraction B(B+ → K+χ(µ+µ−)) at 95% confidence level are set as a
function of m(χ) and τ(χ), varying between 2 × 10−10 and 10−7. These are the
most stringent limits to date. The limits are interpreted in the context of a model
with a light inflaton particle.
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In recent years, models with a Hidden Sector of particles [1,2] have gathered considerable
attention, primarily motivated by an absence of direct dark matter identification. This
class of theories postulates the existence of new particles that interact very weakly with
the particles of the Standard Model (SM). In this scenario, dark-sector particles would be
gauge-singlet states with respect to the SM gauge group, and only be able to communicate
with SM particles via weakly interacting mediators through one of four mechanisms: the
vector, axion, Higgs, and neutrino portals.

In the Higgs portal scenario, the new scalar particle, χ, can mix with the SM Higgs
boson. An example of such a model is described in Refs. [3, 4]. In this theory, the Higgs
portal is mediated by a light particle, namely the inflaton, associated to the field that
generates the inflation of the early Universe. These models also help to solve the hierarchy
problem and can explain the baryon asymmetry in the Universe [5, 6]. The inflaton mass
and lifetime are weakly constrained; in particular, the mass can be below the B meson
mass, and the decay of B+ → K+χ, with χ→ µ+µ−, is a candidate process in which to
look for such phenomena at LHCb. As illustrated in Figure 1, in this scenario the inflaton
couples via the Higgs boson to the top quark that at loop level mediates the B+ to K+

transition.
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Figure 1: Feynman diagram of the decay B+ → K+χ(µ+µ−), where the χ interacts by mixing
with the Higgs and then decays to a pair of muons.

Current limits on the process have been set by the CHARM experiment [7] and, looking
for B0 → K∗0χ(µ+µ−) decays, the LHCb experiment [8]. This Letter presents the search
for a hypothetical new scalar particle through the decay B+ → K+χ(µ+µ−) in the ranges
of mass 250 < m(χ) < 4700 MeV/c2 and lifetime 0.1 < τ(χ) < 1000 ps. The inclusion of
charge-conjugate decays is implied throughout this Letter. The data sample used in this
analysis corresponds to integrated luminosities of 1 and 2 fb−1 collected by the LHCb
detector in pp collisions at centre-of-mass energies of

√
s = 7 and 8 TeV, respectively.

The LHCb detector [9, 10] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or
c quarks. The detector has a silicon-strip vertex detector as the first component of a
high-precision charged-particle tracking system for measuring momenta; two ring-imaging
Cherenkov detectors for distinguishing charged hadrons; a calorimeter system for identify-
ing photons, electrons, and hadrons; and a system for identifying muons. The online event
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selection is performed by a trigger consisting of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software stage, which applies a full
event reconstruction.

The hardware trigger selects events containing at least one muon with large transverse
momentum (pT) [11]. The software trigger requires a two- or three-track secondary vertex
with a significant displacement from the primary pp-interaction vertices (PVs). Finally,
the reconstructed B+ decay vertex is required to be significantly displaced from all PVs.
Only tracks with segments reconstructed in the vertex detector are considered by the
trigger algorithms, i.e. the χ boson is required to decay within a distance of about 60 cm
from the PV.

In the simulation, pp collisions are generated following Refs. [12–14], and the interaction
of the generated particles with the detector, and its response, are implemented as in
Refs. [15, 16]. Signal decays are generated using a phase-space model. Simulations were
performed for discrete values of m(χ) and τ(χ), and the resulting efficiencies interpolated
to span the range covered in the analysis.

In the search presented in this Letter, the dimuon mass distribution, m(µ+µ−), is
scanned in steps of half of the dimuon mass resolution, looking for a significant excess
over the expected background yield. Three regions of dimuon decay time, t(µ+µ−),
are defined in the search: a prompt region, |t(µ+µ−)| < 1 ps, an intermediate region,
1 < t(µ+µ−) < 10 ps, and an extremely displaced region, t(µ+µ−) > 10 ps. The ranges of
the three regions are optimized to provide the tightest upper limits. The strategy, based
on the approach of Ref. [17], is similar to that used in Ref. [8].

The branching fraction of the B+ → K+χ(µ+µ−) decay is normalized to
the well known B+ → K+J/ψ (µ+µ−) decay, which has a branching fraction of
B(B+ → K+J/ψ (µ+µ−)) = (6.12± 0.19)× 10−5 [18]. In order to avoid experimental
biases, a blind analysis is performed, in which the analysis is optimized without examining
the B+ → K+χ(µ+µ−) candidates that have an invariant mass close to the known B+

mass [18].
In a first step, a loose candidate selection with the following requirements is applied:

the B+ decay vertex is significantly separated from the PV; the B+ candidate impact
parameter (IP) is small, and the IP of the charged kaon and muons are large; the angle
between the B+ momentum vector and the vector between the PV and the B+ decay
vertex is small; and the kaon and the muons must each satisfy loose particle identification
requirements.

To further reduce the level of combinatorial background, B+ candidates satisfying these
requirements are filtered by a multivariate selection using a boosted decision tree [19, 20].
The inputs to the algorithm include the pT and the decay time of the B+ candidate,
topological variables like the quality of the B+ and χ vertices, their separation and impact
parameters of the three tracks of the decay and two isolation criteria [21, 22]. These
variables show a good agreement between data and simulation. Data from the high-mass
sideband, 5450 < m(K+µ+µ−) < 5800 MeV/c2, are employed as the background training
sample, using the K-folding technique [23] with K=11 folds. A small dependence on the
mass and lifetime of the signal training sample is observed in the performance of the
multivariate selection. The simulated signal sample generated with m(χ) = 2500 MeV/c2

and τ(χ) = 1 ps provides the best overall sensitivity and is used for training the boosted
decision tree. The candidate selection based on the classifier of the multivariate analysis
is optimized separately in each decay-time region of the search, which results in a signal
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Figure 2: Invariant mass distribution for the normalization channel B+ → K+J/ψ (µ+µ−) with
the results of the fit overlaid. The signal is parametrised with a double-sided Crystal Ball (dotted
red line) [24] and the background with an exponential function (dashed green line).

efficiency between 65% and 97%, depending on m(χ) and τ(χ), and a combinatorial
background rejection rate of 98% in the first and second decay-time region, and 90% in
the third decay-time region of the search.

Besides the combinatorial background, the main background consists of SM
B+ → K+µ+µ− decays, which have the same final state as the signal. The decay-time
resolution is studied with fully simulated events and is found to be between 0.1 and 0.2 ps,
depending on the dimuon mass. Since the value of the decay-time resolution is much
smaller than the boundary of the first decay-time region, B+ → K+µ+µ− decays only
affect the prompt decay-time region of the analysis.

Peaking backgrounds that survive the multivariate selection are vetoed explicitly.
Narrow SM dimuon resonances are vetoed by excluding the regions near the φ, J/ψ ,
ψ(2S), ψ(3770) and ψ(4160) resonances. Since the contributions of the φ and ψ(4160) are
negligible in the two displaced decay-time regions, they are only vetoed in the first decay-
time region. Candidates are also rejected if compatible with K0

S → π+π− and Λ→ pπ−

decays, when pion or proton masses are assigned to the final-state particles that have
been identified as muon candidates. Background from D0 → K+π− decays is rejected by
tighter muon identification criteria when, after assignment of the kaon and the pion mass
to the final-state particles, the invariant mass is close to the D0 mass. Similarly, additional
particle identification criteria are required to reject B+ → K+J/ψ (µ+µ−) decays where
the kaon is misidentified as a muon and the same-sign muon as a kaon. All other particle
misidentification backgrounds have been found to be negligible.

Figure 2 shows the invariant mass distribution for the B+ → J/ψ (µ+µ−)K+ normal-
ization channel. An extended unbinned maximum likelihood fit is performed to estimate
the normalization yield. The signal is parametrised with a double-sided Crystal Ball
function [24], the background with an exponential function, with all parameters free to
vary. The fit yields N(B+ → J/ψ (µ+µ−)K+) = (1142.0± 0.4)× 103 signal events, where
the uncertainty is only statistical.

Figure 3 shows the dimuon mass distributions in the first and second decay-time regions
for candidates with invariant mass within 50 MeV/c2 from the known B+ mass [18]. The
B+ mass is constrained [25] to its known value [18] to improve the dimuon mass resolution
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Figure 3: Distribution of the m(µ+µ−) in the first (black) and second (red) decay-time region of
the search. The binning scheme reflects the dimuon mass scanning procedure and the bin width
corresponds to the mass-dependent dimuon resolution. Empty regions correspond to the K0

S ,
J/ψ , ψ(2S) and ψ(3770) vetoes (for both distributions) and to the φ and ψ(4160) vetoes (only
for the prompt decay-time region).

to be between 3 and 9 MeV/c2. No candidates populate the third decay-time region.
For each value of m(χ) and τ(χ), the background plus signal and the background-only
hypotheses are compared using the CLs method [26, 27], where the information from
the three decay-time regions is combined. For each decay-time region, the expected
background is obtained by linear interpolation of the dimuon mass sidebands [17], while
the shape of the mass distribution for the signal is taken from simulation. No significant
signal excess compared to the background-only hypothesis is found.

Several sources of systematic uncertainties are taken into account in setting upper
limits. Deviations from the linear approximation assumed in the background modelling
are studied by means of pseudoexperiments. This uncertainty is estimated to be 8% of
the statistical uncertainty and is assigned as a systematic uncertainty on the expected
background yield. Uncertainties affecting the expected signal yield strongly depend on
m(χ) and τ(χ). Both the signal efficiency and the mass resolution are computed from
the simulation and validated on data using the control modes B+ → K0

SJ/ψ (µ+µ−) and
B+ → K+J/ψ (µ+µ−). The decays B+ → K+ψ(2S)(µ+µ−) and B+ → K+φ(µ+µ−) are
studied in data and the observed yields are found to be compatible with the expected SM
branching fractions of (4.9± 0.6)× 10−6 and (2.5± 0.3)× 10−9, respectively [18]. The
main sources of uncertainty can be attributed to the uncertainty in the branching fraction
of the normalisation channel, contributing 3%, to the limited sizes of the simulated signal
samples, which gives an uncertainty between 2 and 6% of the expected signal yield, to
the signal mass resolution, which contributes between 1.5 and 2%, and to the lifetime
extrapolation from the simulation. The last, based on reweighting the events generated
with τ(χ) = 100 ps to match the lifetime distribution in the studied range, results in
uncertainties between 0 and 20% for τ(χ) > 100 ps. All systematic uncertainties are added
in quadrature, giving a total uncertainty between 4% and 20% of the expected signal
yield, depending on the signal mass and lifetime. In general, the systematic uncertainties
have a very limited impact on the measurement. The precision on the upper limits is
dominated by the statistical uncertainties of the observed yields.
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Figure 4: Excluded branching fraction for the B+ → K+χ(µ+µ−) decay as a function of m(χ)
and τ(χ) at 95% CL. Regions corresponding to the fully-vetoed K0

S , J/ψ , ψ(2S) and ψ(3770) and
to the partially-vetoed φ and ψ(4160) are excluded from the figure. All systematic uncertainties
are included in the calculation of the upper limit.

Figure 4 shows the upper limits, at 95% confidence level (CL), on the branching
fraction for the decay B+ → K+χ(µ+µ−) as a function of m(χ) and τ(χ). The upper
limits vary between 2 × 10−10 and 10−7 and are most stringent in the region around
τ(χ) = 10 ps. For longer lifetimes the limit becomes weaker as the probability for the χ
to decay within the vertex detector decreases. Nevertheless, the present analysis improves
previous limits by up to a factor of 20 in the region of long lifetimes τ(χ) ∼ 1000 ps. The
main improvement with respect to the previous search [8] comes from the optimisation of
the three regions of the dimuon decay time and the fact that the previous analysis studied
the mode B0 → K∗0χ , which has in general a smaller branching fraction than the decay
B+ → K+χ, and where only the decays of K∗0 → K+π− were reconstructed.

Figure 5 shows the excluded region at 95% CL of the parameter space of the inflaton
model presented in Refs. [2–4]. Constraints are placed on the square of the mixing angle,
θ2, which appears in the inflaton effective coupling to the SM fields via mixing with the
Higgs boson. The inflaton lifetime is predicted to scale as τ ∝ 1/θ2. The B+ → K+χ
branching fraction is taken from Ref. [2]. It is predicted to be between 10−4 and 10−8

in the explored region and scales as B(B+ → K+χ) ∝ θ2, while the inflaton branching
fraction into muons is directly taken from Figure 3 of Ref. [4] and is predicted to be
between 100% and slightly less than 1%, depending on the kinematically allowed decay
channels. Figure 5 also presents the theoretical and cosmological constraints [4, 29] and
previous limits set by the CHARM [7] and the LHCb [8] experiments.

In summary, a search for a long-lived scalar particle has been performed at LHCb using
pp collision data corresponding to an integrated luminosity of 3 fb−1. No evidence for a
signal over the background-only hypothesis has been found and upper limits have been
placed on B(B+ → K+χ)× B(χ→ µ+µ−). They are the best upper limits on this decay
to date, improving previous limits by up to a factor of 20. The results imply stringent
constraints on theories that predict the existence of new light scalar particles. For the case
of the inflaton model studied here, a large fraction of the theoretically allowed parameter
space has been excluded.
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Figure 5: Parameter space of the inflaton model described in Refs. [2–4]. The region excluded
at 95% CL by this analysis is shown by the blue hatched area. The region excluded by the
search with the B0 → K∗0χ(µ+µ−) decay [8] is indicated by the red hatched area. Direct
experimental constraints set by the CHARM experiment [7] and NA48 experiments [7, 28] and
regions forbidden by theory or cosmological constraints [4] are also shown.
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43Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
44Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
47University of Birmingham, Birmingham, United Kingdom
48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50Department of Physics, University of Warwick, Coventry, United Kingdom
51STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
55Imperial College London, London, United Kingdom
56School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
57Department of Physics, University of Oxford, Oxford, United Kingdom
58Massachusetts Institute of Technology, Cambridge, MA, United States
59University of Cincinnati, Cincinnati, OH, United States
60University of Maryland, College Park, MD, United States
61Syracuse University, Syracuse, NY, United States
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