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ABSTRACT

We have explored the sensitivity of pp — nf isospin mixing in L = 0,1
atomic states of protonium to changes in the multi-pion exchange contribu-
tion to the nucleon-antinucleon (NN) potential. The resulting annihilation
probabilities 4¥ for isospin I = 0,1 and state a@ = 25F!L; are combined
with the spin—flavor weights for transitions NN — M; M3 in the 3Py model,
and confronted with selected measured branching ratios. Some problems
with the phenomenology of the 3Py model are identified. We compare the
3Py model with a phenomenological ansatz suggested by Klempt, in which

branching ratios are written as a product of spin, isospin and orbital factors,

multiplied by v§.
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1. Introduction

It has often been stressed, for example by Shapiro!, that the nucleon-antinucleon (NN)
interaction results from a subtle interplay between long-range meson exchange forces and
short-range absorption. The large value of the annihilation cross section, for instance, is
due to the long-range attraction which focuses the wave—function towards the annihilation
regionl!.

A more refined analysis shows that the medium and long-range forces, though attrac-
tive on the average, exhibit a strong spin and isospin dependence. In some partial waves,
the potential is strongly attractive while it is repulsive in other channels?®. We thus expect
annihilation to be substantially enhanced or suppressed in some initial states.

Protonium is the corner stone of this physics. Most data correspond to NN annihi-
lation at rest, i.e. from protonium levels of orbital angular momentum L = 0,1. Model
calculations have shown that the distortion of the NN wave function is dramatically spin
and isospin dependent in the case of protonium?*=7,

The aim of the present paper is twofold. First, we return to the calculation of the
protonium wave function in optical models and analyze how it is sensitive to the details
of the input model. In particular, we wish to compare models which contain only the
one-pion-exchange tail in addition to absorption with models where two—pion—exchange
effects (in particular p-meson exchange) are included. Secondly, we discuss the influence
of the spin-isospin dependence of the protonium wave function on the phenomenology
of branching ratios. This subject has received considerable attention in recent years®—11.

It is still an open questioﬁ whether annihilation diagrams with planar or rearrangement

topology dominate, or whether there is any simple rule at all determining annihilation at

the quark level.

2. Initia! State Interaction

The spin and isospin structure of the NN potential has been analyzed at length in
Refs. (2, 3). The dominant feature is the strong tensor component in the isospin I = 0
potential, arising from the coherent contributions of =, p and w exchanges. This results

in a strong repulsion in the § = 1, J = L partial waves, for example *P;. In contrast,




in natural parity states there is a strong mixing of the 2/t1:25+1L; components 13(J — 1);

and 13(J + 1), resulting in a strong attraction for the appropriate combination of the two

partial waves®.

The consequences of spin—-isospin structure for protonium have been discussed in Refs.
(4-7). First, the 1Sy and 3S; levels receive different energy shifts. The same is true for the
four possible 25+11,; levels for L = 1. It has not yet been possible to measure these fine
structure effects. Secondly, the corresponding widths are also different. For instance, in a
typical calculation® of the 2P level, T'(*Pg) ~ 110 meV, while I'(!P;) =~ 20 meV. Finally, the
neutron-antineutron (nf) admixture in the protonium wave function is a quite important
effect at short distances r < 1 fm. It does not significantly increase the total hadronic
width, except perhaps for the 3P, state, but it dramatically affects the sharing of this
width between the I = 0 and the I = 1 components®’. In Ref. 7 a comparison is shown of
the values obtained from the Dover-Richard®!?(DR1 and DR2) and Kohno-Weise!3(KW)
potentials: the differences are small. Furui et al.1* have considered a wider class of models
with somewhat larger differences. In Table 1, we p.resent the results of a calculation with
the pion exchange only in the external part and the same cut—off procedure and annihilation

core as in DR2. More precisely, we consider a model

V= Vann+V7r+-73V21r+w (1)

where z = 1 corresponds to the original DR2 model® and, for z = 0, only the pion tail is
left. The quantities of interest are T', the total annihilation width and y = I'; /Ty which
measures the sharing of annihilation between the I = 1 and I = 0 components. Remember
that y = 1 would be automatic if the charge—exchange potential, which couples the pp and
n@ channels, is neglected. Note that we do not introduce explicitly the coupling to other
baryon-antibaryon configurations, such as NA, AN, AA, etc., which could significantly
contribute to annihilation at short distances.

The first surprise in Table 1 is that AFE, I' and y depend very little on z. This
deserves some explanation. Consider for instance the *Py state. For z = 0, the potential is
attractive in I = 0, repulsive in I = 1. Thus the radial wave function u(**Py) is suppressed
while u(laPo) 1s enhanced at short distances and even starts exhibiting oscillations. Witl-'l

a purely real potential and in a one—channel situation u{!*Pg) would have a node, since the




atomic state is a radial excitation of a nuclear bound state; these oscillations are damped
by absorption and isospin mixing. Now, when p-meson exchange and other intermediate
range forces are switched on, u(33Pg) is not suppressed too much further: we are in a
regime where the wave function varies non-linearly as a function of the potential strength.
On the other hand, the oscillations of u(1*Pg) become more pronounced as z increases,
but this does not change its width very much. This is illustrated in Figs. 1 and 2 where
we display the annihilation densities d(r) of 3Py and 33p, wave function components for

z =0 and x = 1, defined as
o0
T =f d(r)dr  d(r) = —2[u|*Im (V) (2)
0

The stability of the width ratio y with respect to = is somewhat frustrating, if our goal
is to draw some conclusions regarding the role of intermediate range forces in protonium.
On the other hand, it implies that our predictions for the channel dependence of the I'’s
are not very model dependent and thus more stable than one may have anticipated. In
fact, the z dependence of the protonium wave function is more pronounced in the pp-nfi
basis and it is partially cancelled out when one reconstructs the isospin states relevant
for calculating annihilation branching ratios. Also, the stability with respect to z is less

pronounced for models without a strong real part in the annihilation potential, such as

Ref. 13.

3. Testing Annihilation Mechanisms

For a given initial state the observed branching ratios into two mesons also depend on
the relative strengths of the various NN — MM, transitions. The experiments at the
Low Energy Antiproton Ring (LEAR) facility at CERN!® have motivated a resurgence of
interest in theoretical models of the annihilation process. Statistical models, models as-
suming factorization of spin and flavor amplitudes, dominance of rearrangement diagrams
with minimal change of the initial quark content, dominance of annihilation diagrams with
planar topology, etc., have all led to different predictions®. To test these models, one would
like to separate the effects of initial state interactions from the intrinsic annihilation rates.

A first idea consists of comparing channels with the same quantum numbers. For
0,0

instance, and 757 arise from the same 1*Py and 3P, channels. However, these two




decays involve quite different momentum transfers ¢, and hence are sensitive to different
regions of the same NN radial wave functions u(r). Since u(r) is likely to exhibit a node,
or, at least, sharp variations”1%(see Fig. 1), the ratio 77 /7% cannot be reduced to a simple
product of phase-space and Clebsch-Gordan factors.

Another strategy was recently attempted by Klempt!”, who compared two-meson chan-
nels with about the same ¢ value, but different isospin. An example is the ratio nw/np.
Adopting this strategy, we extend somewhat the results of Klempt!” to predict a number
of other ratios of two—body modes. These are compared to the predictions of a modified
version of the 3Py model®, in which the effects of pf — nfi mixing are included as isospin
probabilities, as in the model of Klempt!?. In a number of cases, particularly for L = 1,
these two models yield ratios which differ by an order of magnitude. We argue that a sys-
tematic measurement of such two-body bra.nchil;.g ratios B for both L = 0,1 will allow one
to clearly distinguish between these two models. In view of the extreme simplicity of this
treatment of initial state interactions, we would not be surprised if more comprehensive

and precise data led to the demise of both models.

4. Two Simple Models

In the approach of Klempt!?, the branching ratio B for a transition from an NN atomic

state i = {LSJ} to a two meson final state My + M2 (isospins Iy, I) is written as!%?0
B (M1, M) = (27 +1) C(I; i) £(1,2) 77 (3} /Tiot (i) (3)

Here, ;(%) is the probability that the state ¢ has isospin I, with normalization condition
78 + 4} = 1. The allowed value of I is determined by G-parity conservation: (=)yHsSH =
G1G2, where G; are the G-parities of the mesons. The total width of state ¢ is given
by T'iot(2). For a pure pp initial state, we have (i) = v1(f) = 1/2. When pp — nn
mixing is included, we identify ~;(¢)/~o(¢) with the rate y = I';/Ty of total annihilation
widths for state ¢, as shown in Table 1. For our numerical estimates, we adopt the isospin
probabilities shown in Table 2. In Eq. (3), f(1,2) is the kinematical form factor; in Ref. 17,
it is assumed to depend on ¢ and the relative orbital angular momentum £ of the MM,

system. In the 3Py model®, f(1,2) also depends on the NN orbital angular momentum




L. Since we only form ratios of rates for transitions with the same {L, £} values and
approximately the same ¢, f(1,2) cancels out, and we do not need to specify its form here.
Finally, C(I; I I) is a phenomenological factor, assumed to depend only on isospin, and
determined by Klempt!? via a fit to certain branching ratios for L = 0. For instance, we
have?!, assuming Tyos(1So) = T'iot(3S1), the ratios

% B (%) 1

7 Bnw) 2 (1a)

Bt (7o) B! (x%p) 3
Bt (qw) Bt (x0w) 4 (46)

C (1;01) /C(0;00) =

C(0;11) /C (0;00) =

% B! (nt*ay) C(0;11)
34t Bs(wta;) C(0;00)

C(1;11) /C(0;00) =

R

1
0 (4c)

where the superscripts ¢ and s refer to S;-°D; and 1Sg initial NN states, respectively.

The numerical values in Eqgs. (4a—c) result from using the «;(z) values in Table 2 and the

measured ratios!?

B! (%)

Bt (%) = 0'574-_8:(112 (5a)

B* (1"

(g = 42005 (5b)
B(ma3) _gsa+007 (5¢)
Bs (1r+a2_)

Note that the ratios of C’s are very different from the ratios of isospin Clebsch-Gordon
coefficients, which would correspond to 1, 1/3, 1/2 for Egs. (4a—c), respectively; this latter
assumption is made by Vandermeulen??,

The second model we consider is a variant of the 3Py model®®?, in which we write
B (M1, My) = (27 +1) - SF (i > MiM3) £(1,2) 71 (i) /Tsot (i) (6)

where SF(i — M M3) are the spin-flavor weights tabulated by Maruyama et al.®. These
weights, unlike C(I;I1I2), depend on {LSJ¢}, so there is no factorization of spin and
isospin terms. The values of SF are calculated from the planar diagram shown in Fig, 3

(sometimes referred to as “A2” in the literature), where two quark-antiquark (QQ) pairs




are annihilated and one created, each vertex being described in the 3Py model in terms of
QQ pairs with vacuum quantum numbers (0t +(071)).

In Eq. (6), as well as Eq. (3), the full effect of initial state interactions is subsumed in
the isospin probability 4;(z), and final state meson-meson interactions are ignored. This
represents a drastic simplification of the complicated dynamics of the NN annihilation
problem. Nevertheless, it is of interest to work out the detailed predictions of these two

models, which differ qualitatively in certain cases and are very similar in others.

5. Consequences for S—wave Annihilation

In the 3Py model, we obtain the equality

B! (r'w) _ B'(n6°) _ B'(pfa) _ B' (miar®) _
Bt (n%%) B'(nw) B'(wfz) B'(x%°)

3 7’
1 = (7)

where 7;q = (u@ + dd)/\/2 corresponds to ideal mixing. For a pseudoscalar mixing angle
fpg ~ —20°, as in Ref. 18, we have

B(1X) ~ 3B (niaX) ®)

The equality (7) is consistent with Eqgs. (5a,5b) and the measured ratios*?

B (o f,) Bt (no?)
—_ =04 .12 —_ =0 ]
B (of) 0.48 £ 0.12, B (x00) 0.28 +£ 0.03 (9) |
if we choose ,
1 0.63 £0.07 (10)
Yo

This is close to the ratio y = 0.8 shown in Table 1 for the 3S;-°D; state, which includes
the strong effects of tensor coupling. The equality of the ratios (7) can also be understood
in the model on Eq. (3) if a somewhat larger value vi/yf = 1.17303% is chosen!”. A
characteristic of model calculations which include tensor coupling is that v} /4§ < 1, so
that Eq. (10) seems more consistent with theoretical expectations.
With the C’s of Eq. (3) now determined, one can make a number of consistency checks

involving other ratios. For instance, we predict

B (r*p7) _ 8wt B'(r7a;)

Bt(wtp) - RT% " B¢ (wtay) (11)




Using the values B*(7tp~) = (4.6 £ 2.0) x 10~* and B'(n+p~) = (165 £ 8) x 10~* from
Ref. 17, we obtain
B*(x*p~) /B (ztp”) =28+ 1.4 x 107* (12)

The smallness of this ratio is known as the “mp puzzle”, and represents an example of
an approximate dynamical selection rule in NN annihilation. Using the wa, ratio of
Eq. (5¢), we find that Eq. (11) is approximately satisfied. In the model of Eq. (3), this
dynamical selection rule is a consequence of the smallness of the ratio C(1;11)/C(0;00),
as per Eq. (4c). Note that this is the result of a fit, and is not a dynamical prediction.
If we assume the C ratios are independent of L, as in Ref. 17, we also predict dynamical
selection rules for L = I; the non—appearance of these would rule out the model of Eq. (3).
The L =1 case is treated in the next section.
In the ®Pg model of Eq. (6), we predict

Bt (r*a;) 34 (18.778)
= 2.5
B (rta;)  m \ I8

(13)

including only the contribution 3*S; — =%a; (¢ = 2) in the numerator. The factor in
brackets arises from the SF weights. This disagrees qualitatively with Eq. (5¢). Similarly,
including only 13S;, we would obtain

B (nto 3
(=*o7) _ M (2) 04 (14)
Bt (ntp™) 375 \2

in disagreement with Eq. (12). Thus the simple form (6) of the *Pq model fails to reproduce
the 7p or mraz dynamical selection rules. For the Tp case, it has been shown by Maruyama
et al.1%, that constructive interference of 138; and 13D initial states, neglected in Eq. (14),
is crucial in understanding the “mp puzzle”. Such interference phenomena cannot be
understood in terms of isospin probabilities alone, as postulated in Eq. (6). Each case
must be treated separately, since the interference will depend on £ and q. For instance,
a large destructive 338, — ¥D; — 7ay(¢ = 2) interference is needed to bring Eq. (13)
in accord with Eq. (5c). However, the tensor mixing® is much less significant for I = 1
than for I = 0, so the interference is expected to less dramatic than for mp. It would be
worthwhile to systematically investigate such interferences in mesonic channels fed by the

13G,-13D),; initial state; in addition to wp(£ = 1), these include nw(¢ = 1) and 7b;(¢ = 0, 2).




For L = 0, there are several other ratios which involve the same {L £q} values. These
are collected in Table 3. The experimental data have large error bars and are somewhat
contradictory. We have

226+£23x10"%  Bizzarri et ol.%

Bs (pow) =
7+3x1078 Baltay et ol.® (15a)
B*(ww)= 14+6x1073 Bloch et al.2® (15b)
1.2+1.2x10"° Diaz et al.?”
Bs (pUPO) —

l4+3x1078 Baltay et ol.?® (15¢)

from which we obtain the ratios

f0.09'_"3:351, Diaz et al.?’
B (%) / B* (ww) =
0.2070-5%  Baltay et al.?® (16a)
rl.Gféjg Bizzarri et al.2*
B* (pow) /B (ww) = {
0.510% Baltay et al.8 (16b)

Using the values B*(x%a)) = (1324 31) x 10™* and B*(x"f2) = 39.6 £ 7.9 x 10~* given by
Klempt!?, we find

B* (v%ap) /B* (" f2) = 3.37]3 (17)

Comparing Eqs. (16) and (17) with the predictions of Table 3, we see that the 3Py model
does not seem to be consistent with any of the above ratios, although we must emphasize
that the error bars are very large. Unfortunately, new results from LEAR experiments on
pp, pw and ww modes have not yet been published. The Klempt model may be consis-
tent with the ma2/7f2 and p%w/ww ratios, but provides no mechanism for the apparent
suppression of p®p? /ww. Precise experimental data are needed to test these simple models

more stringently.




10

6. Consequences for P—wave Annihilation

Qur two models differ rather dramatically in their dependence on the initial state
orbital angular momentum L. Klempt!” assumes that the C’s in Eq. (3) are independent
of L. There is no motivation for this assumption except simplicity, but it is worth testing in
any case. In the 3P¢ model, on the other hand, the factors SF of Eq. (6) depend strongly
on L for a fixed transition NN — M;M,. We now compare transitions with approximately
the same q, as before, and point up the qualitative differences between the two models.

First consider the L = 1 ratios analogous to Eq. (7). We find

B('P; > 7%) B('Py—1np°) B('P1-p"f)  B(*P1— nigp?)
B('P; > %)  B('P1—-nw) B(Py—owf) B(IP;— n%0)

(18)

C'(1;01)y; (*P1)

={ C(0;11) 7 (TPy)
2.78m ('P1) /%0 (*Py) = 1.7 [Eq. (6)]

~046  [Eq. (3)

These ratios, which are not yet experimentally determined, are seen to be significantly
different for the two models: this is due to the marked increase in the SF ratio from 3 /4
for L = 0 to 2.78 for L = 1 in the 3Py model.

The predicted ratios for p~wave annihilation which are analogous to those shown in
Table 3, are displayed in Table 4. When several initial J values contribute, we add the
contributions with the statistical weight (2J + 1). For example, we write

B (*Pg,1,2 — 7%a (£ = 1)) [% (Po) +3% (PP1) + 5% (®P2)] € (0;11)
B(Po12 = Wh(E=1)) [ (Po)+ 30 (P) 450 (P C(on O
from Eq. (3), where a; = ¢1(1260)[1*+(17)] and f; = f1(1285){1T+(0%)]. Here, we define

F1(¢) = I‘Ii tii). If two different £ values occur, the corresponding ratios are generally

different for the ®Pj model, so we quote them separately (for L = 0, the £ =0 and £ = 2
ratios discussed previously are the same).

In Table 4, we note that the only significant difference between the two models is
in the 7% /7% ratio. In the 3Py model, the SF matrix elements for the transitions
UPy — 7%%(¢ = 1) and 3Py — 2%k (€ = 1) both vanish. These are two examples of

dynamical selection rules predicted by the *Pg model, i.e. transitions which are allowed
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by conservation of J*¢(I€) quantum numbers, but in fact forbidden by the dynamics of
the model. It will be very interesting to see if there is any sign of these 3Pg selection rules
in the L = 1 data from LEAR.

In Table 5, we display predicted ratios of charged to neutral modes for the same final
state M Ms. In the Klempt model, each of these ratios is a product of C(1;11)/C(0;11) ~
2/15 and a factor depending on isospin probabilities. The smallness of C(1;11)/C(0;11)
which successfully describes the small ratios (5¢) and (12) for L = 0, then implies a number
of approximate dynamical selection rules for L = 1 as indicated in Table 5. In the case of
the ratios 7% p~ /7% or 7% a5 /7%a), the predictions of the *Py model are of order unity, so
the two models are clearly distinguished. If the suppressed ratios predicted by the Klempt
model for L = 1 are not found in the data, the model can be rejected. Alternatively, one
could argue that the C’s could be independently fit to the L = 1 data, but such a model
would have little content.

The annihilation process NN(L = 1) — wp was studied in detail by the ASTERIX
collaboration at LEAR (B. May et al.2?). They give

B(®Py —» #tp)
B(P; — 79p9)

= 0.64 (20)

which does not suggest a dynamical selection rule for the L = 1 wp system. As seen
from Table 5, neither the Klempt model nor the *Py model is in agreement with Eq. (20).
Another potential difficulty for the 3Py model is seen in the 7a; /7 f ratio. Klempt!” gives

B(L=1-7%a;)=45+24x107?
B(¥P; - 2°f,) =180+ 25 x 107° (21)
and hence

B(L =1 7r+a2_)
B(33P1 — ‘H'sz)

= 0.251'3::125 (22)
The allowed L = 1 transitions are 3P;3 — wta; and ¥P; — nte;. Using the SF
weights of Ref. 9 and isospin probabilities and widths from Table 2, we predict

B(L=1-r%a)
B (33P1 — Wofg)

~ 0.7, (23)
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larger than Eq. (22). Similarly, it is difficult to explain the observed smallness of this ratio
using the model of Eq. (3). In this case, we predict

B (L =1—- 1r+az_) _ [3"70 (3P1) C(0;11) + 570 (3P2) C(0; 11) + 3n (1P1) C(1; 11)] ~19
B(33P; = w0f) 371 (3P1) C (1;01) -

(24)
The results (23) and (24) are rather sensitive to how we treat the coupled 1*P2-13F, partial
wave. In the above, we have attributed the entire probability vy to the 13P, component.
In the tensor—coupled calculations’, 49 = 0.60 in Table 2 splits up into 0.37 for the 13P,
component and 0.23 for 13F;. If we simply suppress the 3F; piece, the ratios (23) and
(24) become 0.56 and 0.85, respectively. Finally, if we make the extreme assumption of
complete destructive interference of 3Py — way and 13F; — was amplitudes, we would
obtain 0.35 and 0.28 for Egs. (23) and (24), not far from the experimental value of Eq. (22).
Clearly one should take such interferences into account explicitly, particularly for I = 0

channels.

One can also use the ratio (22) to obtain a limit on vo(3*P1)/71(3P1), since we have

B (L =1- 7r+a2_) S Yo (3P1)

25

BP: > ) (P (%)
where

£E=C(0;11)/C(1;01) = 3/2
for the Klempt model and

€ = SF (®*P; — nta;) /SF (3P — n°f2) = 1/3
for the 3Pp model. From Eq. (22), we then obtain
6 Klempt
- (3P1) S (Klempt)
70 (3P1) 4/3  (°Po) (26)

Thus in the Klempt model, we get a clear indication that the large value of 71 (*P;)/7(°P;)
(6.7 in Table 2) éxpected theoretically, and arising because of the repulsive tensor potential
in the 13P; channel, is indeed seen in the data. In the 3Py model, on the other hand, the

factor £ is smaller, and the restriction (26) is much weaker. The other dramatic prediction
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of the isospin mixing calculations, namely that v(*Pg) > +1(3Py), is difficult to confirm
based on the existing data. The problem is that there are no transitions which are fed only
by the 3Py channel; in all cases, the 3P, or *P; (or both) initial states also contribute, and
the branching ratio NN| (3PJ) — MM, is not very sensitive to the 3Py part, which has
the lowest statistical weight (2J 4+ 1).

7. Conclusions

The problem of initial and final state interactions in NN annihilation is a very com-
plicated one. It is clear from various estimates that such interactions strongly distort
predictions for relative branching ratios based on the Born approximation. What is not
clear is how to incorporate these interactions in a quantitative way. In the present paper,
we compare two models in which the effect of initial state interactions in the NN atom
is expressed in terms of probabilities 7} that states { = {LSJ} have isospin components
I =0,1. These 7} depend very strongly on i, particularly for L = 1 initial states. The
dominant effect at work here is the I = 0 tensor force, which is coherently attractive
for L = J+1 and repulsive for L = J. We have investigated the sensitivity of 4} to
modifications of the vector meson contribution to the tensor potential. Qur conclusion is
that the dramatic effects of short range pp — nfi mixing already occur when only single
pion exchange is included, and that there is no qua.litafive modification of 7} from (p, w)
exchange.

The two models that we study, in addition to 7}, incorporate a channel dependent spin—
flavor factor. In the first model, due to Klempt!’, this factor is assumed to depend only
on isospins, whereas in the second model, we use the 3Py spin—flavor recoupling factors.
Both of these models can be adjusted to produce a number of relative branching ratios
for L = 0. However, they give dramatically different predictions for certain transitions
from initial L = 1 NN states. Data which will become available from experiments at
the LEAR facility at CERN should clearly distinguish between the two models considered
here, enabling us to reject one, or more likely both, of them. )

We have identified some problems with both the Klempt!” and 3Py models, based on the

existing data. Note that we have considered only one form of the 3Py model, with the planar
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A2 topology of Fig. 3. Some admixture of rearrangement amplitudes® may improve the
situation. However, there are a number of conceptual problems with such simple models.
The use of isospin probabilities 7} clearly does not take into account the interferences
which are likely to be strong for tensor-coupled partial waves, particularly *S;-1°D; and
13p, 13F,. Maruyama et al.1% have shown that 133,-13D; constructive interference is very
important for an understanding of the “rp puzzle”. There is another potentially serious
problem with the use of probabilities. These result from an average over the annihilation
region, in the context of an optical model calculation of NN wave functions. Inspection
of these wave functions reveals that the I = 1 to I = 0 ratio depends sensitively on
the distance . When one isospin component dominates, the effect is most pronounced
at short distances, in the region which is relevant for the sizable ¢ values characteristic
of two-body final states. Thus, the branching ratios may not reflect the average values
'y}. Further, our estimates of 7} have been obtained by assuming a local and channel
independent annihilation potential W(r). In microscopic models, W is non-local and
spin—isospin dependent, so our assumption is clearly an- oversimplification. Nevertheless,
we still find it useful to investigate simple treatments of initial state interactions, in order
to see where they break down. This may provide some hints as to how to proceed to a

more refined picture of the low energy NN annihilation process.
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Table Captions

Real part of energy shift AE, total width I' = 'y + I'; and ratio y = I'; /T
of annihilation widths in I = 1 and I = 0 states for the 1Sy, 1P;, 3Pj and
3P; levels of protonium, as calculated from the optical model of Dover and
Richard (DR2), with variable strength z of the 2r + w exchange potential.
Units of AE and I are keV for S-states and meV for P-states.

Isospin probabilities 7"; for L = 0,1 atomic NN states®:<,

Ratios of branching rates for L = 0 NN annihilation at restb:<.

Predicted ratios of branching ratios B for neutral modes in NN (L =1) —
M, M3 annihilation.

Predicted ratios of charged to neutral modes for NN (L = 1) annihilations.
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Table 1

180 1]:'.)1 3PU 3P1

1.0 [0.58 0.52 0.80|-24 14 0.61|-62 40 0.053| 36 88 6.5
0.8 10.57. 0.50 0.73}-23 14 0.62|-57 45 0.045} 37 8.7 6.8
06 j0.56 048 0.66|-22 15 0.65|-50 54 0.038| 38 8.8 7.2
0.4 |0.56 0.47 0.59]{-22 15 0.67|-60 63 0.033| 39 9.1 7.8
0.2 {056 045 055(-22 15 0.64|-72 67 0.032( 39 9.5 84

0.0 |[056 044 051)-22 14 0.58]-83 61 0.037( 39 9.8 9.0

Table 2

State i [y0(i) |71(5) | Teot(s)

1S | 0.56 | 0.44 1.0

361~*D; 1 0.56 |0.44 | 0.9
1p, 0.62 |0.38 [ 286
Pp 1095 [0.05 | 80.0
p, 0.13 | 0.87 | 17.6

3P,-3F, [ 0.60 | 0.40 { 32.8

a. We use the values for model DR2, with z = 1, and tensor coupling included.

b. For v1('So) and 77(*S; — 3D1), we use the notation ~§ and 4}, respectively, in the text.
c. I'tot in keV for L = 0, in meV for L = 1.




Table 3

Klempt 3Py
Ratio Model (Eq. (3)) |Model (Eq. (6))
B*(0°0")/B*(ww) | G 18/4] 1

SC ; 5
B(p'w)/B'(ww) | BoGoy (04 | T (a4

B*(7%a9)/ B (x° fa) gg%‘% 19 |z [05]

IC ; ]
BY(x°8)/BY(x'h) | BZgen [19) | 52 [17]

a. We use the standard notation az = a(1320)[J7C¢(I%) = 2F+(17)],
b = b1(1235)[1F~(1%)], fo = f2(1270)[2++(07T)].

b. As in the text, the notation B*(p"p?) stands for B(115y — p%p%(¢ = 1)), ete.
For 7% and 7%h,, both £ = 0 and £ = 2 are possible, and the
ratio is the same for each in both models.

c. The numbers in brackets are obtained using Eqs. (4a—4c) and Table 2.




Table 4

Ratio

Klempt
Model (Eq. (3))

31::.0
Model (Eq. (6))

B(®Pg 2—0"0"(£=0,2))
B(°Pg,a—ww(£=0,2))

B(®Pg1,2—p"w(t=0,2))

B(3Pg 2 —ww(£=0,2))

B(®P; 2 —7%d(¢=1))
B(3P; 32— f2(£=1))

B(1P;—x%)(¢=1))
B({IP1—x0h(£=1))

0.8

1.0

0.8

2.5

0.7 (£=0),32(£=2)

0.3

both zero!
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Table 5

Ratio

Klempt
Model (Eq. (3))

3P0
Model (Eq. (6))

B(3Pj—xtp~(¢=0))
B(lPl —rr°p°(£=0))

B(*Py 2—xtp~ (¢=2))
B(IP; —=0,0(¢=2))

B('P1—stp~(£=0))
B(*Pg,2— "% (£=0))

B!1P1—>p+p_f£=2!!
B(°Po,2—p%0%(£=2))

B('Py—xtal (£=1))

B(3PuI1I2—»n’°a?(£=1))

B('Py—xta (£=1))
B(3P; 2—Ya;(£=1)}

0.3

0.4

0.05

0.05

0.04

0.05

6.3

3.9

0.17

0.25

0.07

0.8

21




Fig. 1:

Fig. 2

Fig. 3:
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Figure Captions

Annihilation density d(r) for the I = 0 component of the 3Py state of
protonium, with the full meson exchange potential (z = 1) or with the pion
tail only (z = 0). Units are fm for the distance r and meV/fm for the
density.

Same as Fig. 1, but for the I = 1 component.

Planar annihilation diagram “A2” describing nucleon-antinucleon annihila-

tion Into two mesons.
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